1
|
Fan Y, Wu J, Huang W, Li S, Zeng Q, Gesang Z, Silang Y, Zhang C, Fu G. Immunomodulatory effect of tibetan medicine compound extracts against ORFV in vitro by metabolomics. BMC Vet Res 2024; 20:366. [PMID: 39143608 PMCID: PMC11325804 DOI: 10.1186/s12917-024-04204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Ovine contagious pustular dermatitis (ORF) is one of the main diseases of sheep and is a zoonotic disease caused by Ovine contagious pustular dermatitis virus (ORFV) infection, posing a significant constraint on sheep breeding industry and human health. The Tibetan medical formulation composed of Polygonum leucoides, Polygonum xanthoxylum and Acanthophora rotunda significantly regulated lymphocyte immune function following ORFV stimulation, although the mechanism remains unclear. In order to study the immunomodulatory effects and mechanism of three Tibetan medicinal extracts (Polygonum leucoides, Polygonum xanthoxylum, and Acanthophora rotunda) against ORFV in vitro, sheep peripheral blood lymphocytes were isolated in vitro and treated with different concentrations of Tibetan medicine compound extract solution after ORFV infection. The cytokine expression levels in lymphocytes were measured at 4 h, 8 h and 12 h. Additionally endogenous metabolites in lymphocytes at 0 h, 4 h, 8 h and 12 h were quantified by untargeted metabolomics method. The results showed that, the extracts could regulate the lymphocyte immune factors altered by ORFV, and regulate the lymphocyte immune function through cysteine and methionine metabolic pathways as well as the pyrimidine metabolic pathways, potentially alleviating the immune evasion induced by ORFV.
Collapse
Affiliation(s)
- Yueyuan Fan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiao Wu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Huang
- College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China
| | - Saiju Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Qin Zeng
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhuoga Gesang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Yuzhen Silang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China.
| | - Chong Zhang
- Kunming Customs Technology Center, Kunming, 650228, China.
| | - Guowen Fu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Amanya SB, Oyewole-Said D, Ernste KJ, Bisht N, Murthy A, Vazquez-Perez J, Konduri V, Decker WK. The mARS complex: a critical mediator of immune regulation and homeostasis. Front Immunol 2024; 15:1423510. [PMID: 38975338 PMCID: PMC11224427 DOI: 10.3389/fimmu.2024.1423510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Over the course of evolution, many proteins have undergone adaptive structural changes to meet the increasing homeostatic regulatory demands of multicellularity. Aminoacyl tRNA synthetases (aaRS), enzymes that catalyze the attachment of each amino acid to its cognate tRNA, are such proteins that have acquired new domains and motifs that enable non-canonical functions. Through these new domains and motifs, aaRS can assemble into large, multi-subunit complexes that enhance the efficiency of many biological functions. Moreover, because the complexity of multi-aminoacyl tRNA synthetase (mARS) complexes increases with the corresponding complexity of higher eukaryotes, a contribution to regulation of homeostatic functions in multicellular organisms is hypothesized. While mARS complexes in lower eukaryotes may enhance efficiency of aminoacylation, little evidence exists to support a similar role in chordates or other higher eukaryotes. Rather, mARS complexes are reported to regulate multiple and variegated cellular processes that include angiogenesis, apoptosis, inflammation, anaphylaxis, and metabolism. Because all such processes are critical components of immune homeostasis, it is important to understand the role of mARS complexes in immune regulation. Here we provide a conceptual analysis of the current understanding of mARS complex dynamics and emerging mARS complex roles in immune regulation, the increased understanding of which should reveal therapeutic targets in immunity and immune-mediated disease.
Collapse
Affiliation(s)
- Sharon Bright Amanya
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Damilola Oyewole-Said
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Keenan J. Ernste
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Nalini Bisht
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Arnav Murthy
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Natural Sciences, Rice University, Houston, TX, United States
| | - Jonathan Vazquez-Perez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - William K. Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Yan SH, Chen Y, Huang ZQ, Zhong WX, Wang XT, Tang YC, Zhao XY, Wu YS, Zhou C, Zhu W, Xiao W, Li X, Zhang DS. Acupoint Autohemotherapy Attenuates DNCB-Induced Atopic Dermatitis and Activates Regulatory T Cells in BALB/c Mice. J Inflamm Res 2024; 17:2839-2850. [PMID: 38751687 PMCID: PMC11094283 DOI: 10.2147/jir.s454325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Acupoint autohemotherapy (A-AHT) has been proposed as an alternative and complementary treatment for atopic dermatitis (AD), yet the exact role of its blood component in terms of therapeutic efficacy and mechanism of action is still largely unknown. Methods This study aimed to evaluate the therapeutic efficacies and action mechanisms of intramuscular injections of autologous whole blood (AWB) and mouse immunoglobulin G (IgG) (autologous or heterologous) at acupoints on 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse models. Serum levels of total immunoglobulin E (IgE), IgG, interleukin-10 (IL-10), and interferon-gamma (IFN-γ) were measured, as well as mRNA expression levels of Forkhead box P3 (FoxP3), IL-10 and IFN-γ in dorsal skin lesions, and IL-10+, IFN-γ+ and FoxP3+CD4+T cells in murine spleen. Results It showed that repeated acupoint injection of AWB, autologous total IgG (purified from autologous blood in AD mice) or heterologous total IgG (purified from healthy blood in normal mice) effectively reduced the severity of AD symptoms and decreased epidermal and dermal thickness as well as mast cells in skin lesions. Additionally, AWB acupoint injection was found to upregulate FoxP3+, IL-10+ and IFN-γ+ CD4+T cells in murine spleen, suppressing the production of IgE antibodies and increasing that of IgG antibodies in the serum. Furthermore, both AWB and autologous total IgG administrations significantly elevated FoxP3 expression, mRNA levels of IL-10 and IFN-γ in dorsal skin lesions. However, acupoint injection of heterologous total IgG had no effect on regulatory T (Treg) and Th1 cells modulation. Conclusion These findings suggest that the therapeutic effects of A-AHT on AD are mediated by IgG-induced activation of Treg cells.
Collapse
Affiliation(s)
- Shi-Hua Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Department of Traditional Chinese Medicine, The Tenth affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, 523058, People’s Republic of China
| | - Yong Chen
- Department of Rheumatology and Immunology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, People’s Republic of China
| | - Zhi-Qian Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Wen-Xi Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Xiao-Tian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Yang-Can Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Xu-Yi Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Yu-Shan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Chun Zhou
- School of Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Wei Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, People’s Republic of China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, People’s Republic of China
| | - Xuan Li
- Department of Traditional Chinese Medicine, The Tenth affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, 523058, People’s Republic of China
| | - Dong-Shu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Department of Traditional Chinese Medicine, The Tenth affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, 523058, People’s Republic of China
| |
Collapse
|
4
|
Zhu Y, Ma J, Shen R, Lin J, Li S, Lu X, Stelzel JL, Kong J, Cheng L, Vuong I, Yao ZC, Wei C, Korinetz NM, Toh WH, Choy J, Reynolds RA, Shears MJ, Cho WJ, Livingston NK, Howard GP, Hu Y, Tzeng SY, Zack DJ, Green JJ, Zheng L, Doloff JC, Schneck JP, Reddy SK, Murphy SC, Mao HQ. Screening for lipid nanoparticles that modulate the immune activity of helper T cells towards enhanced antitumour activity. Nat Biomed Eng 2024; 8:544-560. [PMID: 38082180 PMCID: PMC11162325 DOI: 10.1038/s41551-023-01131-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 10/15/2023] [Indexed: 06/09/2024]
Abstract
Lipid nanoparticles (LNPs) can be designed to potentiate cancer immunotherapy by promoting their uptake by antigen-presenting cells, stimulating the maturation of these cells and modulating the activity of adjuvants. Here we report an LNP-screening method for the optimization of the type of helper lipid and of lipid-component ratios to enhance the delivery of tumour-antigen-encoding mRNA to dendritic cells and their immune-activation profile towards enhanced antitumour activity. The method involves screening for LNPs that enhance the maturation of bone-marrow-derived dendritic cells and antigen presentation in vitro, followed by assessing immune activation and tumour-growth suppression in a mouse model of melanoma after subcutaneous or intramuscular delivery of the LNPs. We found that the most potent antitumour activity, especially when combined with immune checkpoint inhibitors, resulted from a coordinated attack by T cells and NK cells, triggered by LNPs that elicited strong immune activity in both type-1 and type-2 T helper cells. Our findings highlight the importance of optimizing the LNP composition of mRNA-based cancer vaccines to tailor antigen-specific immune-activation profiles.
Collapse
Affiliation(s)
- Yining Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jingyao Ma
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ruochen Shen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jinghan Lin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuyi Li
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoya Lu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica L Stelzel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiayuan Kong
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Leonardo Cheng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivan Vuong
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhi-Cheng Yao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Christine Wei
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole M Korinetz
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Wu Han Toh
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Choy
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rebekah A Reynolds
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Melanie J Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Won June Cho
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Natalie K Livingston
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gregory P Howard
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yizong Hu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald J Zack
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua C Doloff
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan P Schneck
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sashank K Reddy
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA.
- Department of Microbiology, University of Washington, Seattle, WA, USA.
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Bretscher PA. A Plausible Framework Reveals Potential Similarities in the Regulation of Immunity against Some Cancers and Some Infectious Agents: Implications for Prevention and Treatment. Cancers (Basel) 2024; 16:1431. [PMID: 38611110 PMCID: PMC11010850 DOI: 10.3390/cancers16071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Different frameworks, which are currently employed to understand how immune responses are regulated, can account for different observations reported in the classical literature. I have argued that the predominant frameworks, employed over the last two/three decades to analyze the circumstances that determine whether an immune response is generated or this potential is ablated, and that determine the class of immunity an antigen induces, are inconsistent with diverse classical observations. These observations are "paradoxical" within the context of these frameworks and, consequently, tend to be ignored by most contemporary researchers. One such observation is that low and high doses of diverse types of antigen result, respectively, in cell-mediated and IgG antibody responses. I suggest these paradoxes render these frameworks implausible. An alternative framework, The Threshold Hypothesis, accounts for the paradoxical observations. Some frameworks are judged more plausible when found to be valuable in understanding findings in fields beyond their original compass. I explore here how the Threshold Hypothesis, initially based on studies with chemically well-defined and "simple antigens", most often a purified protein, can nevertheless shed light on diverse classical and more recent observations in the fields of immunity against cancer and against infectious agents, thus revealing common, immune mechanisms. Most cancers and some pathogens are best contained by cell-mediated immunity. The success of the Threshold Hypothesis has encouraged me to employ it as a basis for proposing strategies to prevent and to treat cancer and those infectious diseases caused by pathogens best contained by a cell-mediated attack.
Collapse
Affiliation(s)
- Peter A Bretscher
- Department of Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| |
Collapse
|
6
|
Wong MTJ, Anuar NS, Noordin R, Tye GJ. Generation of IgG antibodies against Strongyloides stercoralis in mice via immunization with recombinant antigens A133 and Ss-IR. Acta Trop 2024; 251:107122. [PMID: 38246399 DOI: 10.1016/j.actatropica.2024.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/16/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Strongyloidiasis, caused by the nematode Strongyloides stercoralis, remains a threat to global public health, and a vaccine would be useful to control the disease, especially in developing countries. This study aimed to evaluate the efficacy of recombinant proteins, A133 and Ss-IR, as potential vaccine candidates against strongyloidiasis by investigating the humoral and cellular immune responses in immunized mice. Respective antigens were adjuvanted with Complete Freund's Adjuvant (prime) and Incomplete Freund's Adjuvant (boost) and administered intraperitoneally (prime) and subcutaneously (boost) to female BALB/c mice. For antigen-only doses, only antigens were injected without adjuvants. Altogether, 1 prime dose, 4 booster doses, and 2 antigen-only doses were administered successively. ELISAs were conducted to assess the antibody responses, along with flow cytometry and cytokine ELISA to elucidate the cellular immune responses. Results showed that A133 and Ss-IR induced the production of IgG1 and IgG2a, with A133 generating more robust IgG2a responses than Ss-IR. Flow cytometry findings indicated that effector CD8+T-cells and memory B-cells activity were upregulated significantly for A133 only, whereas cytokine ELISA demonstrated that a Th1/Th2/Th17 mixed cell responses were triggered upon vaccination with either antigen. This preliminary study illustrated the good potential of recombinant A133 and Ss-IR as vaccine candidates against S. stercoralis. It provided information on the probable immune mechanism involved in host defence and the elicitation of protection against S. stercoralis.
Collapse
Affiliation(s)
- Matthew Tze Jian Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Nor Suhada Anuar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Rahmah Noordin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia; Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
7
|
Bretscher P. Relapsing/remitting multiple sclerosis: A speculative model and its implications for a novel treatment. Scand J Immunol 2023; 98:e13325. [PMID: 39008000 DOI: 10.1111/sji.13325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 07/16/2024]
Abstract
The clinical pattern in relapsing/remitting multiple sclerosis may be accounted for if an autoreactive immune response can transition back and forth between inflammatory, pathogenic, and non-inflammatory, non-pathogenic modes. Such 'back-and-forth' immune responses are rare. I speculate how such back-and-forth immune responses may arise. Understanding the nature of these different modes, and what controls their mutual transition, may help in designing strategies to favour the nonpathogenic mode, thus constituting treatment. Antigen dose is known to be critical in determining the class/subclass of primary immune responses. Observations have led us to suggest the level of antigen also similarly influences the class/subclass of on-going immune responses. I propose the relapsing, inflammatory and the remitting modes are respectively sustained by relatively low and high amounts of the responsible autoantigens, as is the case, for example, for Th1 and Th2 responses to foreign antigens. In addition, I propose more self-antigens are released during an inflammatory than during a remitting mode. The decrease in the amount of antigen released, as the response transitions from an inflammatory to a remitting mode, results in time in a decreased level of antigen and so the response again evolves towards the inflammatory mode. The inflammatory mode then leads to an increased release of antigen and so, in time, to remission. This model thus explains the transition between different modes. I outline non-invasive, testable predictions of the hypothesis. If confirmed, it may be ethical to examine whether the non-inflammatory mode can be sustained by administering myelin antigens during the remitting phase.
Collapse
Affiliation(s)
- Peter Bretscher
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Bretscher P. What Determines the Class of Immunity an Antigen Induces? A Foundational Question Whose Rational Consideration Has Been Undermined by the Information Overload. BIOLOGY 2023; 12:1253. [PMID: 37759652 PMCID: PMC10525557 DOI: 10.3390/biology12091253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Activated CD4 T helper cells are required to activate B cells to produce antibody and CD8 T cells to generate cytotoxic T lymphocytes. In the absence of such help, antigens inactivate B cells and CD8 T cells. Thus, the activation or inactivation of CD4 T cells determines whether immune responses are generated, or potentially ablated. Most consider that the activation of CD4 T cells requires an antigen-dependent signal, signal 1, as well as a critical costimulatory signal, initiated when a pattern recognition receptor (PRR) engages with a danger- or pathogen-associated molecular pattern (DAMP or PAMP). Most also envisage that the nature of the DAMP/PAMP signal determines the Th subset predominantly generated and so the class of immunity predominantly induced. I argue that this framework is implausible as it is incompatible with diverse observations of the variables of immunization affecting the class of immunity induced. An alternative framework, the threshold hypothesis, posits that different levels of antigen mediated CD4 T cell interactions lead to the generation of different Th subsets and so different classes of immunity, that it is compatible with these observations. This alternative supports a rational approach to preventing and treating diverse clinical conditions associated with infectious disease and, more speculatively, with cancer.
Collapse
Affiliation(s)
- Peter Bretscher
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
9
|
Anderson CC, Bonney EA, Mueller TF, Corthay A, Havele C, Singh NJ, Øynebråten I, Bretscher PA. On antigen-specific signals, immune class regulation and energetics: Report III from the workshops on foundational concepts of immune regulation. Scand J Immunol 2023; 98:e13311. [PMID: 38112131 DOI: 10.1111/sji.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 12/20/2023]
Abstract
This is a report from a one-week workshop held in Athens, Greece in July of 2022. The workshop aimed to identify emerging concepts relevant to the fundamentals of immune regulation and areas for future research. Theories of immune regulation emphasize the role of T cell help or co-stimulation (signal 2). The workshop participants considered how new data on the characteristics of agonist antigens, the role of the antigen receptor signals (signal 1) in driving fate decisions, the effect of energetics on immunity and a better understanding of class-control in the immune response, may impact theories of immune regulation. These ideas were discussed in the context of tumour immunology, autoimmunity, pregnancy and transplantation. Here we present the discussions as a narrative of different viewpoints to allow the reader to join the conversation. These discussions highlight the evolving understanding of the nature of specific antigen recognition and how both antigen-specific and non-specific mechanisms impact immune responses.
Collapse
Affiliation(s)
- Colin C Anderson
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, Alberta, Canada
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Larner College of medicine, Burlington, Vermont, USA
| | - Thomas F Mueller
- Clinic of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Calliopi Havele
- Dept of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Peter A Bretscher
- Dept of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Xu X, Dennett P, Zhang J, Sherrard A, Zhao Y, Masubuchi T, Bui JD, Chen X, Hui E. CTLA4 depletes T cell endogenous and trogocytosed B7 ligands via cis-endocytosis. J Exp Med 2023; 220:e20221391. [PMID: 37042938 PMCID: PMC10103642 DOI: 10.1084/jem.20221391] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
CD28 and CTLA4 are T cell coreceptors that competitively engage B7 ligands CD80 and CD86 to control adaptive immune responses. While the role of CTLA4 in restraining CD28 costimulatory signaling is well-established, the mechanism has remained unclear. Here, we report that human T cells acquire antigen-presenting-cell (APC)-derived B7 ligands and major histocompatibility complex (MHC) via trogocytosis through CD28:B7 binding. Acquired MHC and B7 enabled T cells to autostimulate, and this process was limited cell-intrinsically by CTLA4, which depletes B7 ligands trogocytosed or endogenously expressed by T cells through cis-endocytosis. Extending this model to the previously proposed extrinsic function of CTLA4 in human regulatory T cells (Treg), we show that blockade of either CD28 or CTLA4 attenuates Treg-mediated depletion of APC B7, indicating that trogocytosis and CTLA4-mediated cis-endocytosis work together to deplete B7 from APCs. Our study establishes CTLA4 as a cell-intrinsic molecular sink that limits B7 availability on the surface of T cells, with implications for CTLA4-targeted therapy.
Collapse
Affiliation(s)
- Xiaozheng Xu
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Preston Dennett
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jibin Zhang
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Alice Sherrard
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yunlong Zhao
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Takeya Masubuchi
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Jack D. Bui
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Xu Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Enfu Hui
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Lin Z, Huang J, Xie S, Zheng Z, Tang K, Li S, Chen R. The Association Between Insulin Use and Asthma: An Epidemiological Observational Analysis and Mendelian Randomization Study. Lung 2023; 201:189-199. [PMID: 36971839 DOI: 10.1007/s00408-023-00611-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Asthma is a common respiratory disease caused by genetic and environmental factors, but the contribution of insulin use to the risk of asthma remains unclear. This study aimed to investigate the association between insulin use and asthma in a large population-based cohort, and further explore their causal relationship by Mendelian randomization (MR) analysis. METHODS An epidemiological study including 85,887 participants from the National Health and Nutrition Examination Survey (NHANES) 2001-2018 was performed to evaluate the association between insulin use and asthma. Based on the inverse-variance weighted approach, MR analysis were conducted to estimate the causal effect of insulin use on asthma from the UKB and FinnGen datasets, respectively. RESULTS In the NHANES cohort, we found that insulin use was associated with an increased risk of asthma [odd ratio (OR) 1.38; 95% CI 1.16-1.64; p < 0.001]. For the MR analysis, we found a causal relationship between insulin use and a higher risk of asthma in both Finn (OR 1.10; p < 0.001) and UK Biobank cohorts (OR 1.18; p < 0.001). Meanwhile, there was no causal association between diabetes and asthma. After multivariable adjustment for diabetes in UKB cohort, the insulin use remained significantly associated with an increased risk of asthma (OR 1.17, p < 0.001). CONCLUSIONS An association between insulin use and an increased risk of asthma was found via the real-world data from the NHANES. In addition, the current study identified a causal effect and provided a genetic evidence of insulin use and asthma. More studies are needed to elucidate the mechanisms underlying the association between insulin use and asthma.
Collapse
Affiliation(s)
- Zikai Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- Nanshan School of Medical, Guangzhou Medical University, Guangzhou, China
| | - Junfeng Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Shuojia Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- Nanshan School of Medical, Guangzhou Medical University, Guangzhou, China
| | - Ziwen Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Kailun Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Clinical Medical College of Henan University, Kaifeng, China
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Alam MS. Insight into SARS-CoV-2 Omicron variant immune escape possibility and variant independent potential therapeutic opportunities. Heliyon 2023; 9:e13285. [PMID: 36744070 PMCID: PMC9886571 DOI: 10.1016/j.heliyon.2023.e13285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
The Omicron, the latest variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first detected in November 2021 in Botswana, South Africa. Compared to other variants of SARS-CoV-2, the Omicron is the most highly mutated, with 50 mutations throughout the genome, most of which are in the spike (S) protein. These mutations may help the Omicron to evade host immunity against the vaccine. Epidemiological studies suggest that Omicron is highly infectious and spreads rapidly, but causes significantly less severe disease than the wild-type strain and the other variants of SARS-CoV-2. With the increased transmissibility and a higher rate of re-infection, Omicron has now become a dominant variant worldwide and is predicted to be able to evade vaccine-induced immunity. Several clinical studies using plasma samples from individuals receiving two doses of US Food and Drugs Administration (FDA)-approved COVID-19 vaccines have shown reduced humoral immune response against Omicron infection, but T cell-mediated immunity was well preserved. In fact, T cell-mediated immunity protects against severe disease, and thus the disease caused by Omicron remains mild. In this review, I surveyed the current status of Omicron variant mutations and mechanisms of immune response in the context of immune escape from COVID-19 vaccines. I also discuss the potential implications of therapeutic opportunities that are independent of SARS-CoV-2 variants, including Omicron. A better understanding of vaccine-induced immune responses and variant-independent therapeutic interventions that include potent antiviral, antioxidant, and anti-cytokine activities may pave the way to reducing Omicron-related COVID-19 complications, severity, and mortality. Collectively, these insights point to potential research gaps and will aid in the development of new-generation COVID-19 vaccines and antiviral drugs to combat Omicron, its sublineages, or upcoming new variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| |
Collapse
|
13
|
The Problem of Host and Pathogen Genetic Variability for Developing Strategies of Universally Efficacious Vaccination against and Personalised Immunotherapy of Tuberculosis: Potential Solutions? Int J Mol Sci 2023; 24:ijms24031887. [PMID: 36768222 PMCID: PMC9916249 DOI: 10.3390/ijms24031887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Rational vaccination against and immunotherapy of any infectious disease requires knowledge of how protective and non-protective immune responses differ, and how immune responses are regulated, so their nature can be controlled. Strong Th1 responses are likely protective against M tuberculosis. Understanding how immune class regulation is achieved is pertinent to both vaccination and treatment. I argue that variables of infection, other than PAMPs, primarily determine the class of immunity generated. The alternative, non-PAMP framework I favour, allows me to propose strategies to achieve efficacious vaccination, transcending host and pathogen genetic variability, to prevent tuberculosis, and personalised protocols to treat disease.
Collapse
|
14
|
Barral TD, Kalil MA, Mariutti RB, Arni RK, Gismene C, Sousa FS, Collares T, Seixas FK, Borsuk S, Estrela-Lima A, Azevedo V, Meyer R, Portela RW. Immunoprophylactic properties of the Corynebacterium pseudotuberculosis-derived MBP:PLD:CP40 fusion protein. Appl Microbiol Biotechnol 2022; 106:8035-8051. [PMID: 36374330 PMCID: PMC9660185 DOI: 10.1007/s00253-022-12279-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Caseous lymphadenitis (CLA) is a disease that affects small ruminants, and the best way to prevent its spread on a herd is through immunoprophylaxis. Thus, we aimed to evaluate the MBP:PLD:CP40 fusion protein as a new CLA immunogen. The fusion protein was constructed by combining Corynebacterium pseudotuberculosis PLD and CP40 proteins with maltose-binding protein (MBP) as an intrinsic adjuvant. The antigenicity, allergenic potential, prediction of B epitopes, binding to MHC receptors, and docking on the Toll-Like 2 receptor were evaluated in silico. MBP:PLD:CP40 was expressed and purified. 40 BALB/c were divided into four groups (G1 - control, G2 - Saponin, G3 - MBP:PLD:CP40, and G4 - rPLD + rCP40). Total IgG, IgG1, and IgG2a were quantified, and the expressions of cytokines after splenocyte in vitro stimulation were assessed. Mice were challenged 42 days after the first immunization. The in silico analysis showed that MBP:PLD:CP40 has immunogenic potential, does not have allergic properties, and can dock on the TRL2 receptor. MBP:PLD:CP40 stimulated the production of IgG1 antibodies in a fivefold proportion to IgG2a, and TNF and IL-17 were significantly expressed in response to the antigenic stimuli. When rPLD and rCP40 were used together for immunization, they could induce IFN-γ and IL-12, but with no detectable antibody production. The G3 and G4 groups presented a survival of 57.14% and 42.86%, respectively, while the G1 and G2 mice were all dead 15 days after the challenge. MBP:PLD:CP40 partially protected the mice against C. pseudotuberculosis infection and can be considered a potential new CLA immunogen. KEY POINTS: • The fusion protein induced more IgG1 than IgG2a antibodies; • The fusion protein also induced the expression of the TNF and IL-17 cytokines; • Mice inoculated with MBP:PLD:CP40 presented a 57.14% survival.
Collapse
Affiliation(s)
- Thiago Doria Barral
- Laboratory of Immunology and Molecular Biology, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Salvador, Bahia State, 40110-100, Brazil
| | - Mauricio Alcantara Kalil
- Laboratory of Immunology and Molecular Biology, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Salvador, Bahia State, 40110-100, Brazil
| | - Ricardo Barros Mariutti
- Multiuser Center for Biomolecular Innovation, Universidade Estadual Paulista, São José do Rio Preto, São Paulo State, 15054-000, Brazil
| | - Raghuvir Krishnaswamy Arni
- Multiuser Center for Biomolecular Innovation, Universidade Estadual Paulista, São José do Rio Preto, São Paulo State, 15054-000, Brazil
| | - Carolina Gismene
- Multiuser Center for Biomolecular Innovation, Universidade Estadual Paulista, São José do Rio Preto, São Paulo State, 15054-000, Brazil
| | - Fernanda Severo Sousa
- Center for Technological Development, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul State, 96010-900, Brazil
| | - Tiago Collares
- Center for Technological Development, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul State, 96010-900, Brazil
| | - Fabiana Kommling Seixas
- Center for Technological Development, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul State, 96010-900, Brazil
| | - Sibele Borsuk
- Center for Technological Development, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul State, 96010-900, Brazil
| | - Alessandra Estrela-Lima
- Laboratory of Veterinary Pathology, School of Veterinary Medicine and Zootechnics, Universidade Federal da Bahia, Salvador, Bahia State, 40110-100, Brazil
| | - Vasco Azevedo
- Laboratory of Molecular and Cellular Genetics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais State, 31270-901, Brazil
| | - Roberto Meyer
- Laboratory of Immunology and Molecular Biology, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Salvador, Bahia State, 40110-100, Brazil
| | - Ricardo Wagner Portela
- Laboratory of Immunology and Molecular Biology, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Salvador, Bahia State, 40110-100, Brazil.
| |
Collapse
|
15
|
Bretscher PA. Analyzing some concepts of immune regulation of the last three decades: Fostering greater research resilience despite the information overload. A personal view. Front Immunol 2022; 13:960742. [PMID: 36405696 PMCID: PMC9666764 DOI: 10.3389/fimmu.2022.960742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 01/24/2023] Open
Abstract
There is considerable interest in whether increased investment in science, made by society, pays dividends. Some plausibly argue the increased rate of production of information results in an ossification of the canon. Reports, challenging the canon, fall by the wayside. The field thus becomes increasingly complex, reflecting not so much the reality of nature but how we investigate the subject. I suggest that focusing on and resolving the paradoxes evident within a canon will free the logjam, resulting in more resilient research. Immunology is among the fastest growing of biological sciences and is, I suggest, an appropriate case study. I examine the commonly accepted frameworks employed over the last three decades to address two major, related immunological questions: what determines whether antigen activates or inactivates CD4 T cells, and so whether immune responses are initiated or this potential ablated; secondly, what determines the Th subset to which the activated Th cells belong, thus determining the class of immunity generated. I show there are major paradoxes within these frameworks, neglected for decades. I propose how research focused on resolving paradoxes can be better fostered, and so support the evolution of the canon. This perspective is pertinent in facing critical issues on how immune responses are regulated, and to more general issues of both the philosophy of science and of science policy.The last section is in response to questions and comments of the reviewers. It brings together several considerations to express my view: the same frameworks, formulated in response to the two questions, are useful in understanding the regulation of the immune response against model antigens, against self and foreign antigens, those of tumors and of pathogens.
Collapse
|
16
|
Induction of Broadly Cross-Reactive Antibody Responses to SARS-CoV-2 Variants by S1 Nanoparticle Vaccines. J Virol 2022; 96:e0038322. [PMID: 35699445 PMCID: PMC9278117 DOI: 10.1128/jvi.00383-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite the rapid deployment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, the emergence of SARS-CoV-2 variants and reports of their immune evasion characteristics have led to an urgent need for novel vaccines that confer potent cross-protective immunity. In this study, we constructed three different SARS-CoV-2 spike S1-conjugated nanoparticle vaccine candidates that exhibited high structural homogeneity and stability. Notably, these vaccines elicited up to 50-times-higher neutralizing antibody titers than the S1 monomer in mice. Crucially, it was found that the S1-conjugated nanoparticle vaccine could elicit comparable levels of neutralizing antibodies against wild-type or emerging variant SARS-CoV-2, with cross-reactivity to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), the effect of which could be further enhanced using our designed nanoparticles. Our results indicate that the S1-conjugated nanoparticles are promising vaccine candidates with the potential to elicit potent and cross-reactive immunity against not only wild-type SARS-CoV-2, but also its variants of concern, variants of interest, and even other pathogenic betacoronaviruses. IMPORTANCE The emergence of SARS-CoV-2 variants led to an urgent demand for a broadly effective vaccine against the threat of variant infection. The spike protein S1-based nanoparticle designed in our study could elicit a comprehensive humoral response toward different SARS-CoV-2 variants of concern and variants of interest and will be helpful to combat COVID-19 globally.
Collapse
|
17
|
Kwon B, Yang SJ, Cho SM, Kim ME, Nahm DH. Intramuscular administration of autologous total immunoglobulin G induces immunomodulatory effects on T cells in healthy human subjects: An open-labeled prospective single-arm trial. Medicine (Baltimore) 2022; 101:e29486. [PMID: 35665739 PMCID: PMC9276166 DOI: 10.1097/md.0000000000029486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/05/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND We hypothesized that intramuscular administration of autologous total immunoglobulin G (IgG) could induce an immunomodulatory effect in human subjects. In our previous studies, we showed that intramuscular administration of autologous total IgG could induce significant clinical improvements and increases of the serum levels of interleukin-10 (IL-10) and interferon-gamma (IFN-γ) in patients with atopic dermatitis. OBJECTIVE To investigate the mechanism of immunomodulation induced by intramuscular administration of autologous total IgG, we evaluated changes in T cells before and after intramuscular administrations of autologous total IgG in this study. METHODS Thirteen healthy adults received 8 intramuscular injections of 50 mg autologous total IgG for 4 weeks (from week 0 to week 4). The percentages of IL-10- or IFN-γ-producing peripheral blood T cells, as well as serum levels of IL-10, IFN-γ, and immunoglobulins, were measured at baseline (week 0) and at weeks 4, 8, and 12. RESULTS The percentage of IL-10-producing CD4+ T cells was significantly increased at weeks 8 and 12 compared to baseline (P < .05), while the percentage of IFN-γ-producing CD3+ T cells was significantly increased at week 12 compared to baseline (P < .05). There were no significant differences in the serum levels of IL-10, IFN-γ, and immunoglobulins before and after intramuscular administration of autologous total IgG (P > .05). No serious adverse events were observed. CONCLUSION Intramuscular administration of autologous total IgG induced immunomodulatory effects on T cells in healthy human subjects. This simple intervention could be a safe, effective, and economical T cell immunomodulation method for human subjects (NCT03695757).
Collapse
|
18
|
Dong GJ, Yang J, Zhao X, Guo SB. Anisodamine hydrobromide ameliorates cardiac damage after resuscitation. Exp Ther Med 2022; 23:422. [PMID: 35601065 PMCID: PMC9117957 DOI: 10.3892/etm.2022.11349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
The microcirculation is correlated with the prognosis of patients with cardiac arrest and changes after resuscitation. In the present study, the effects of anisodamine hydrobromide (AH) on microcirculation was investigated and its potential mechanisms were explored. A total of 24 pigs were randomly grouped into three groups (n=8): Sham, Saline and AH group. After pigs were anesthetized, intubated and mechanically ventilated, ventricular fibrillation was induced by electrical stimulation. After 8 min, cardiopulmonary resuscitation was given to the restoration of spontaneous circulation (ROSC). Arteriovenous blood was collected at baseline and 0, 1, 2, 4 and 6 h after ROSC to measure blood gas and cytokines. Perfused vessel density (PVD) and microvascular flow index (MFI) were measured to reflect the microcirculation. Continuous cardiac output and global ejection fraction were measured to indicate hemodynamics. Compared with Sham group, PVD and MFI in the intestines and the sublingual regions decreased significantly after resuscitation. The microcirculation recovered faster in the AH group than the SA group. The decrease of intestinal microcirculatory blood flow was closely related to the decrease of sublingual microcirculatory blood flow. The cardiac function was impaired after resuscitation, and a decrease of IFN-γ as well as IL-2 and an increase of IL-4 as well as IL-10 suggested the immune imbalance. The microcirculation changes in sublingual regions were closely related to the changes in intestines. AH could improve the immune imbalance after resuscitation and was beneficial to the recovery of cardiac function.
Collapse
Affiliation(s)
- Gui-Juan Dong
- Emergency Medicine Clinical Research Center, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing 100020, P.R. China
| | - Jun Yang
- Emergency Medicine Clinical Research Center, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing 100020, P.R. China
| | - Xin Zhao
- Emergency Medicine Clinical Research Center, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing 100020, P.R. China
| | - Shu-Bin Guo
- Emergency Medicine Clinical Research Center, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing 100020, P.R. China
| |
Collapse
|
19
|
Dong G, Yang J, Zhao X, Guo S. Protection of intestinal immune barrier against ischemia/reperfusion injury in a swine model using anisodamine hydrobromide. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Jun Yang
- Beijing Chaoyang Hospital, China
| | - Xin Zhao
- Beijing Chaoyang Hospital, China
| | | |
Collapse
|
20
|
Khatri B, Keeble J, Dagg B, Kaveh DA, Hogarth PJ, Ho MM. Efficacy and immunogenicity of different BCG doses in BALB/c and CB6F1 mice when challenged with H37Rv or Beijing HN878. Sci Rep 2021; 11:23308. [PMID: 34857776 PMCID: PMC8639814 DOI: 10.1038/s41598-021-02442-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
Two strains of mice (BALB/c and CB6F1) were vaccinated with a range of Bacille Calmette-Guérin (BCG) Danish doses from 3 × 105 to 30 CFU/mouse, followed by aerosol infection with Mtb (H37Rv or West-Beijing HN878 strain). The results indicated that both strains of mice when infected with HN878 exhibited significant protection in their lungs with BCG doses at 3 × 105-3000 CFU (BALB/c) and 3 × 105-300 CFU (CB6F1). Whereas, a significant protection was seen in both strains of mice with BCG doses at 3 × 105-300 CFU when infected with H37Rv. A significant increase in the frequencies of BCG-specific IFNγ+ IL2+ TNFα+ CD4 T cells in the BCG doses at 3 × 105-3000 CFU (BALB/c) and 3 × 105-300 CFU (CB6F1) was seen. The IFNγ+ IL2+ TNFα+ CD4 T cells correlated with the Mtb burden in the lungs of HN878 infected mice (BALB/c and CB6F1) whereas, IFNγ+ TNFα+ CD4 T cells correlated with the BALB/c mice infected with H37Rv or HN878. The BCG dose at 3000 CFU (an equivalent single human dose in the mice by body weight) is protective in both strains of mice infected with H37Rv or HN878 and may serve an interesting dose to test new TB vaccine in a preclinical animal model.
Collapse
Affiliation(s)
- Bhagwati Khatri
- Bacteriology Division, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK.
| | - James Keeble
- Bacteriology Division, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Belinda Dagg
- Bacteriology Division, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Daryan A Kaveh
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Philip J Hogarth
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Mei Mei Ho
- Bacteriology Division, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
21
|
Joshi LR, Knudsen D, Piñeyro P, Dhakal S, Renukaradhya GJ, Diel DG. Protective Efficacy of an Orf Virus-Vector Encoding the Hemagglutinin and the Nucleoprotein of Influenza A Virus in Swine. Front Immunol 2021; 12:747574. [PMID: 34804030 PMCID: PMC8602839 DOI: 10.3389/fimmu.2021.747574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 01/19/2023] Open
Abstract
Swine influenza is a highly contagious respiratory disease of pigs caused by influenza A viruses (IAV-S). IAV-S causes significant economic losses to the swine industry and poses challenges to public health given its zoonotic potential. Thus effective IAV-S vaccines are needed and highly desirable and would benefit both animal and human health. Here, we developed two recombinant orf viruses, expressing the hemagglutinin (HA) gene (OV-HA) or the HA and the nucleoprotein (NP) genes of IAV-S (OV-HA-NP). The immunogenicity and protective efficacy of these two recombinant viruses were evaluated in pigs. Both OV-HA and OV-HA-NP recombinants elicited robust virus neutralizing antibody response in pigs, with higher levels of neutralizing antibodies (NA) being detected in OV-HA-NP-immunized animals pre-challenge infection. Although both recombinant viruses elicited IAV-S-specific T-cell responses, the frequency of IAV-S-specific proliferating CD8+ T cells upon re-stimulation was higher in OV-HA-NP-immunized animals than in the OV-HA group. Importantly, IgG1/IgG2 isotype ELISAs revealed that immunization with OV-HA induced Th2-biased immune responses, whereas immunization with OV-HA-NP virus resulted in a Th1-biased immune response. While pigs immunized with either OV-HA or OV-HA-NP were protected when compared to non-immunized controls, immunization with OV-HA-NP resulted in incremental protection against challenge infection as evidenced by a reduced secondary antibody response (NA and HI antibodies) following IAV-S challenge and reduced virus shedding in nasal secretions (lower viral RNA loads and frequency of animals shedding viral RNA and infectious virus), when compared to animals in the OV-HA group. Interestingly, broader cross neutralization activity was also observed in serum of OV-HA-NP-immunized animals against a panel of contemporary IAV-S isolates representing the major genetic clades circulating in swine. This study demonstrates the potential of ORFV-based vector for control of swine influenza virus in swine.
Collapse
Affiliation(s)
- Lok R Joshi
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.,Department of Veterinary and Biomedical Sciences, Animal Disease Research And Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - David Knudsen
- Department of Veterinary and Biomedical Sciences, Animal Disease Research And Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Santosh Dhakal
- Department of Veterinary Preventive Medicine, Center for Food Animal Health, Ohio State University, Wooster, OH, United States
| | - Gourapura J Renukaradhya
- Department of Veterinary Preventive Medicine, Center for Food Animal Health, Ohio State University, Wooster, OH, United States
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.,Department of Veterinary and Biomedical Sciences, Animal Disease Research And Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
22
|
Phenotypical and genotypical differences among Leishmania (Leishmania) amazonensis isolates that caused different clinical frames in humans and dogs: A systematic review. Acta Trop 2021; 221:106018. [PMID: 34157292 DOI: 10.1016/j.actatropica.2021.106018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022]
Abstract
Leishmania (Leishmania) amazonensis is an important etiological agent of American cutaneous leishmaniasis (ACL) in Brazil. The species causes a large spectrum of clinical manifestations in humans and dogs, ranging from cutaneous, cutaneous diffuse, mucocutaneous, and visceral involvement, however, the factors that drive the development of different disease forms by the same species are not yet fully known. In the present work, it was systematically reviewed the studies addressing phenotypic and genotypic characteristics of Leishmania (L.) amazonensis isolates causing cutaneous and visceral clinical frames in humans and dogs, comparing the results observed. For this, four research databases were searched for the following keywords: (Leishmania amazonensis AND visceral leishmaniasis) AND (tropism OR virulence OR visceralization OR adaptations OR mutation OR clinical presentation OR resistance OR survival OR wide spectrum). The results revealed that the complexity disease seems to involve the combination of genetic factors of the parasite (as modifications in molecules related to the virulence and metabolism) and also of the host's immune background and status. Nonetheless, the exact mechanism that leads to different clinical manifestations between strains of the same species is still uncertain and future studies must be developed to better elucidate this phenomenon.
Collapse
|
23
|
Cytokine-Laden Extracellular Vesicles Predict Patient Prognosis after Cerebrovascular Accident. Int J Mol Sci 2021; 22:ijms22157847. [PMID: 34360613 PMCID: PMC8345931 DOI: 10.3390/ijms22157847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Background: A major contributor to disability after hemorrhagic stroke is secondary brain damage induced by the inflammatory response. Following stroke, global increases in numerous cytokines—many associated with worse outcomes—occur within the brain, cerebrospinal fluid, and peripheral blood. Extracellular vesicles (EVs) may traffic inflammatory cytokines from damaged tissue within the brain, as well as peripheral sources, across the blood–brain barrier, and they may be a critical component of post-stroke neuroinflammatory signaling. Methods: We performed a comprehensive analysis of cytokine concentrations bound to plasma EV surfaces and/or sequestered within the vesicles themselves. These concentrations were correlated to patient acute neurological condition by the Glasgow Coma Scale (GCS) and to chronic, long-term outcome via the Glasgow Outcome Scale-Extended (GOS-E). Results: Pro-inflammatory cytokines detected from plasma EVs were correlated to worse outcomes in hemorrhagic stroke patients. Anti-inflammatory cytokines detected within EVs were still correlated to poor outcomes despite their putative neuroprotective properties. Inflammatory cytokines macrophage-derived chemokine (MDC/CCL2), colony stimulating factor 1 (CSF1), interleukin 7 (IL7), and monokine induced by gamma interferon (MIG/CXCL9) were significantly correlated to both negative GCS and GOS-E when bound to plasma EV membranes. Conclusions: These findings correlate plasma-derived EV cytokine content with detrimental outcomes after stroke, highlighting the potential for EVs to provide cytokines with a means of long-range delivery of inflammatory signals that perpetuate neuroinflammation after stroke, thus hindering recovery.
Collapse
|
24
|
Kuroda K, Nakagawa K, Horikawa T, Moriyama A, Ojiro Y, Takamizawa S, Ochiai A, Matsumura Y, Ikemoto Y, Yamaguchi K, Sugiyama R. Increasing number of implantation failures and pregnancy losses associated with elevated Th1/Th2 cell ratio. Am J Reprod Immunol 2021; 86:e13429. [PMID: 33835626 DOI: 10.1111/aji.13429] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/01/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
PROBLEM We aimed to assess whether an imbalance of T-helper (Th) 1 and Th2 cells contributes to implantation failure and pregnancy loss. METHOD OF STUDY In this cross-sectional study, 197 consecutive patients with a history of repeated implantation failure (RIF) after three or more embryo transfer (ET) cycles and/or recurrent pregnancy loss (RPL) after two or more clinical pregnancy losses underwent Th cell testing. After excluding 42 women aged ≥44 and 9 with vitamin D supplementation, we recruited 146 women including 79 with RIF and 81 with RPL. Fourteen women had a history of both RIF and RPL. We also recruited 45 fertile women and 40 general infertile women without a history of in vitro fertilization treatment. This study was approved by the local ethics committee. RESULTS There was no significant difference in IFN-γ-producing Th1 and IL-4-producing Th2 cell levels between the fertile and general infertile women, but Th1 cell levels and the Th1/Th2 cell ratio were significantly higher in the women with ≥4 ET cycles and ≥2 pregnancy losses than in the fertile and general infertile women. In the general infertile women, the total livebirth rates including natural conception after two ET cycles in the normal and high Th1/Th2 groups (Th1/Th2 <11.8 and ≥11.8, respectively) were 66.7% and 87.5%, respectively (p = .395). CONCLUSIONS A high Th1/Th2 cell ratio was linked to ≥4 implantation failure cycles and ≥2 pregnancy losses but not to general infertility.
Collapse
Affiliation(s)
- Keiji Kuroda
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, Tokyo, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Koji Nakagawa
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, Tokyo, Japan
| | - Takashi Horikawa
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, Tokyo, Japan
| | - Azusa Moriyama
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, Tokyo, Japan
| | - Yuko Ojiro
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, Tokyo, Japan
| | - Satoru Takamizawa
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, Tokyo, Japan
| | - Asako Ochiai
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuko Matsumura
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuko Ikemoto
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Koushi Yamaguchi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Rikikazu Sugiyama
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, Tokyo, Japan
| |
Collapse
|
25
|
Li P, Wang J, Wang C, Cheng L, Ma Q, Li Y, An Y, Dai H, Duan Y, Wang T, Ma X, Zhang M, Wang T, Zhao B. Therapeutic effects and mechanisms study of Hanchuan Zupa Granule in a Guinea pig model of cough variant asthma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113719. [PMID: 33358856 DOI: 10.1016/j.jep.2020.113719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hanchuan Zupa Granule (HCZP), a traditional Chinese ethnodrug, has the functions of supressing a cough, resolving phlegm, warming the lungs, and relieving asthma. In clinical practice employing traditional Chinese medicine (TCM), HCZP is commonly used to treat acute colds, cough and abnormal mucous asthma caused by a cold, or "Nai-Zi-Lai" in the Uygur language. Studies have confirmed the use of HCZP to treat cough variant asthma (CVA) and other respiratory diseases. However, the pharmacological mechanisms of HCZP remain unrevealed. AIM OF THE STUDY To investigate the anti-tussive and anti-asthmatic effects and the possible pharmacological mechanisms of HCZP in the treatment of CVA. MATERIALS AND METHODS A guinea pig CVA animal model was established by intraperitoneal injection of ovalbumin (OVA) combined with intraperitoneal injection of aluminium hydroxide adjuvant and atomized OVA. Meanwhile, guinea pigs with CVA received oral HCZP (at dosages of 0.571, 0.285 and 0.143 g/kg bodyweight). The number of coughs induced by aerosol capsaicin was recorded, and the airway hyperresponsiveness (AHR) of CVA guinea pigs was detected with the FinePointe series RC system. H&E staining of lung tissues was performed to observe pathological changes. ELISA was used to detect inflammatory cytokines. qRT-PCR and western blotting analyses were used to detect the expression of Th1-specific transcription factor (T-bet), Th2-specific transcription factor (GATA3), and Toll-like receptor 4 (TLR4) signal transduction elements. These methods were performed to assess the protective effects and the potential mechanisms of HCZP on CVA. RESULTS Great changes were found in the CVA guinea pig model after HCZP treatment. The number of coughs induced by capsaicin in guinea pigs decreased, the body weights of guinea pigs increased, and inflammation of the eosinophilic airway and AHR were reduced simultaneously. These results indicate that HCZP has a significant protective effect on CVA. A pharmacological study of HCZP showed that the levels of interleukin-4 (IL-4) and IL-5 and tumour necrosis factor-α (TNF-α) in serum decreased. The amount of interferon-γ (IFN-γ) increased, mRNA and protein expression of TLR4 and GATA3 weakened, and mRNA and protein expression of T-bet increased. CONCLUSIONS HCZP ameliorated the symptoms of guinea pigs with CVA induced by OVA by regulating the Th1/Th2 imbalance and TLR4 receptors.
Collapse
Affiliation(s)
- Pengfei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingkang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Long Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Quantao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yaqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yongcheng An
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hongyu Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuhui Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuan Ma
- Xinjiang Qimu Medical Research Institute (Co., Ltd.), Xinjiang 830011, China
| | - Minghui Zhang
- Xinjiang Qimu Medical Research Institute (Co., Ltd.), Xinjiang 830011, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
26
|
Pathogen Dose in Animal Models of Hemorrhagic Fever Virus Infections and the Potential Impact on Studies of the Immune Response. Pathogens 2021; 10:pathogens10030275. [PMID: 33804381 PMCID: PMC7999429 DOI: 10.3390/pathogens10030275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
Viral hemorrhagic fever viruses come from a wide range of virus families and are a significant cause of morbidity and mortality worldwide each year. Animal models of infection with a number of these viruses have contributed to our knowledge of their pathogenesis and have been crucial for the development of therapeutics and vaccines that have been approved for human use. Most of these models use artificially high doses of virus, ensuring lethality in pre-clinical drug development studies. However, this can have a significant effect on the immune response generated. Here I discuss how the dose of antigen or pathogen is a critical determinant of immune responses and suggest that the current study of viruses in animal models should take this into account when developing and studying animal models of disease. This can have implications for determination of immune correlates of protection against disease as well as informing relevant vaccination and therapeutic strategies.
Collapse
|
27
|
Tackling cancer cell dormancy: Insights from immune models, and transplantation. Semin Cancer Biol 2021; 78:5-16. [PMID: 33582171 DOI: 10.1016/j.semcancer.2021.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/06/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Disseminated non-dividing (dormant) cancer cells as well as those in equilibrium with the immune response remain the major challenge for successful treatment of cancer. The equilibrium between disseminated dormant cancer cells and the immune system is reminiscent of states that can occur during infection or allogeneic tissue and cell transplantation. We discuss here the major competing models of how the immune system achieves a self nonself discrimination (pathogen/danger patterns, quorum, and coinhibition/tuning models), and suggest that taking advantage of a combination of the proposed mechanisms in each model may lead to increased efficacy in tackling cancer cell dormancy.
Collapse
|
28
|
Ramsay C, Rohr JR. The application of community ecology theory to co-infections in wildlife hosts. Ecology 2021; 102:e03253. [PMID: 33222193 DOI: 10.1002/ecy.3253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 11/11/2022]
Abstract
Priority effect theory, a foundational concept from community ecology, states that the order and timing of species arrival during species assembly can affect species composition. Although this theory has been applied to co-infecting parasite species, it has almost always been with a single time lag between co-infecting parasites. Thus, how the timing of parasite species arrival affects co-infections and disease remains poorly understood. To address this gap in the literature, we exposed postmetamorphic Cuban tree frogs (Osteopilus septentrionalis) to Ranavirus, the fungus Batrachochytrium dendrobatidis (Bd), a nematode Aplectana hamatospicula, or pairs of these parasites either simultaneously or sequentially at a range of time lags and quantified load of the secondary parasite and host growth, survival, and parasite tolerance. Prior exposure to Bd or A. hamatospicula significantly increased viral loads relative to hosts singly infected with Ranavirus, whereas A. hamatospicula loads in hosts were higher when coexposed to Bd than when coexposed to Ranavirus. There was a significant positive relationship between time since Ranavirus infection and Bd load, and prior exposure to A. hamatospicula decreased Bd loads compared to simultaneous co-infection with these parasites. Infections with Bd and Ranavirus either singly or in co-infections decreased host growth and survival. This research reveals that time lags between co-infections can affect parasite loads, in line with priority effects theory. As co-infections in the field are unlikely to be simultaneous, an understanding of when co-infections are impacted by time lags between parasite exposures may play a major role in controlling problematic co-infections.
Collapse
Affiliation(s)
- Chloe Ramsay
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| |
Collapse
|
29
|
Naghibi L, Yazdani M, Momtazi-Borojeni AA, Razazan A, Shariat S, Mansourian M, Arab A, Barati N, Arabsalmani M, Abbasi A, Saberi Z, Badiee A, Jalali SA, Jaafari MR. Preparation of nanoliposomes containing HER2/neu (P5+435) peptide and evaluation of their immune responses and anti-tumoral effects as a prophylactic vaccine against breast cancer. PLoS One 2020; 15:e0243550. [PMID: 33301467 PMCID: PMC7728212 DOI: 10.1371/journal.pone.0243550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022] Open
Abstract
HER2/neu is an immunogenic protein inducing both humoral and cell-mediated immune responses. The antigen-specific cytotoxic T lymphocytes (CTLs) are the main effector immune cells in the anti-tumor immunity. To induce an effective CTL specific response against P5+435 single peptide derived from rat HER2/neu oncogene, we used a liposome delivery vehicle. In vivo enhancement of liposome stability and intracytoplasmic delivery of peptides are the main strategies which elevate the liposome-mediated drug delivery. Liposomes containing high transition temperature phospholipids, such as DSPC, are stable with prolonged in vivo circulation and more accessibility to the immune system. Incorporation of DOPE phospholipid results in the effective delivery of peptide into the cytoplasm via the endocytotic pathway. To this end, the P5+435 peptide was linked to Maleimide-PEG2000-DSPE and coupled on the surface of nanoliposomes containing DSPC: DSPG: Cholesterol with/without DOPE. We observed that mice vaccinated with Lip-DOPE-P5+435 formulation had the highest number of IFN-γ- producing CTLs with the highest cytotoxic activity that consequently led to significantly smallest tumor size and prolonged survival rate in the TUBO mice model. In conclusion, our study indicated that the liposomal form of P5+435 peptide containing DOPE can be regarded as a promising prophylactic anti-cancer vaccine to generate potent antigen-specific immunity.
Collapse
Affiliation(s)
- Laleh Naghibi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Razazan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheida Shariat
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mercedeh Mansourian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Atefeh Arab
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Barati
- Vice Chancellor for Research and Technology, Hamadan University of Medical Science, Hamadan, Iran
| | - Mahdieh Arabsalmani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Abbasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Saberi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
- * E-mail: (MRJ); (SAJ); (AB)
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail: (MRJ); (SAJ); (AB)
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- * E-mail: (MRJ); (SAJ); (AB)
| |
Collapse
|
30
|
Characterization of cytokine profile to distinguish latent tuberculosis from active tuberculosis and healthy controls. Cytokine 2020; 135:155218. [PMID: 32771857 DOI: 10.1016/j.cyto.2020.155218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Tuberculosis (TB) is an infectious disease and its mortality rate ranks first. Latent tuberculosis infection (LTBI) means that a patient is infected with Mycobacterium tuberculosis, but has no relative clinical symptoms. It has been estimated that approximately 10% of patients with LTBI would develop into active tuberculosis. Therefore, it was urgent to search for more efficient biomarkers to discriminate LTBI from healthy population. METHODS The Luminex assay was employed to detect the quantity of cytokines secreted by mononuclear cells from peripheral blood stimulated with the ESAT6 protein among TB, LTBI and healthy controls. The cytokine profile was analyzed by principal components analysis and the receiver operating characteristic curve analysis. RESULTS The principal components analysis indicated that LTBI and TB were clearly separated from healthy controls, and that LTBI was also successfully differentiated from healthy controls. The cytokine profiling method to distinguish LTBI from healthy controls has a sensitivity and specificity of 100%. Nine potential biomarkers, including IL-23, IL-21, HGF, Bngf, IL-27, IL-31, IL-1β, IL-22 and IL-18, were identified, and these cytokines were considered as a potential cytokine complex for more effectively discriminating LTBI from healthy controls. CONCLUSION IL-23, IL-21, HGF, Bngf, IL-27, IL-31, IL-1β, IL-22 and IL-18 were demonstrated to be the potential cytokine complex for the assessment between LTBI and healthy controls.
Collapse
|
31
|
Pitts MG, Nardo D, Isom CM, Venditto VJ. Autoantibody Responses to Apolipoprotein A-I Are Not Diet- or Sex-Linked in C57BL/6 Mice. Immunohorizons 2020; 4:455-463. [PMID: 32759326 PMCID: PMC7646948 DOI: 10.4049/immunohorizons.2000027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/14/2020] [Indexed: 01/16/2023] Open
Abstract
Atherosclerosis is responsible for a large percentage of all-cause mortality worldwide, but it is only now beginning to be understood as a complex disease process involving metabolic insult, chronic inflammation, and multiple immune mechanisms. Abs targeting apolipoprotein A-I (ApoA-I) have been found in patients with cardiovascular disease, autoimmune conditions, as well as those with no documented history of either. However, relatively little is known about how these Abs are generated and their relationship to diet and sex. In the current study, we modeled this aspect of autoimmunity using anti–ApoA-I immunization of male and female C57BL/6 mice. Unexpectedly, we found that autoantibodies directed against a single, previously unknown, epitope within the ApoA-I protein developed irrespective of immunization status or dyslipidemia in mice. When total IgG subclasses were analyzed over the course of time, we observed that rather than driving an increase in inflammatory IgG subclasses, consumption of Western diet suppressed age-dependent increases in IgG2b and IgG2c in male mice only. The lack of change observed in female mice suggested that diet and sex might play a combined role in Th1/Th2 balance and, ultimately, in immunity to pathogen challenge. This report demonstrates the need for inclusion of both sexes in studies pertaining to diet and aging and suggests that further study of immunogenic epitopes present in ApoA-I is warranted.
Collapse
Affiliation(s)
- Michelle G Pitts
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536; and.,Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536
| | - David Nardo
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536; and
| | - Cierra M Isom
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536; and
| | - Vincent J Venditto
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536; and
| |
Collapse
|
32
|
Buezo Montero S, Gabrieli P, Montarsi F, Borean A, Capelli S, De Silvestro G, Forneris F, Pombi M, Breda A, Capelli G, Arcà B. IgG Antibody Responses to the Aedes albopictus 34k2 Salivary Protein as Novel Candidate Marker of Human Exposure to the Tiger Mosquito. Front Cell Infect Microbiol 2020; 10:377. [PMID: 32850479 PMCID: PMC7405501 DOI: 10.3389/fcimb.2020.00377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023] Open
Abstract
Mosquitoes of the Aedes genus transmit arboviruses of great importance to human health as dengue, chikungunya, Zika and yellow fever. The tiger mosquito Aedes albopictus can play an important role as arboviral vector, especially when Aedes aegypti is absent or present at low levels. Remarkably, the rapid worldwide spreading of the tiger mosquito is expanding the risk of arboviral transmission also to temperate areas, and the autochthonous cases of chikungunya, dengue and Zika in Europe emphasize the need for improved monitoring and control. Proteomic and transcriptomic studies on blood feeding arthropod salivary proteins paved the way toward the exploitation of genus-specific mosquito salivary proteins for the development of novel tools to evaluate human exposure to mosquito bites. We previously found that the culicine-specific 34k2 salivary protein from Ae. albopictus (al34k2) evokes specific IgG responses in experimentally exposed mice, and provided preliminary evidence of its immunogenicity to humans. In this study we measured IgG responses to al34k2 and to Ae. albopictus salivary gland protein extracts (SGE) in individuals naturally exposed to the tiger mosquito. Sera were collected in two areas of Northeast Italy (Padova and Belluno) during two different time periods: at the end of the low- and shortly after the high-density mosquito seasons. Anti-SGE and anti-al34k2 IgG levels increased after the summer period of exposure to mosquito bites and were higher in Padova as compared to Belluno. An age-dependent decrease of anti-saliva IgG responses was found especially in Padova, an area with at least 25 years history of Ae. albopictus colonization. Moreover, a weak correlation between anti-saliva IgG levels and individual perception of mosquito bites by study participants was found. Finally, determination of anti-al34k2 IgG1 and IgG4 levels indicated a large predominance of IgG1 antibodies. Overall, this study provides a convincing indication that antibody responses to al34k2 may be regarded as a reliable candidate marker to detect temporal and/or spatial variation of human exposure to Ae. albopictus; a serological tool of this kind may prove useful both for epidemiological studies and to estimate the effectiveness of anti-vectorial measures.
Collapse
Affiliation(s)
- Sara Buezo Montero
- Division of Parasitology, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paolo Gabrieli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Fabrizio Montarsi
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Alessio Borean
- Department of Immunohematology and Transfusion Medicine, San Martino Hospital, Belluno, Italy
| | - Stefano Capelli
- Department of Immunohematology and Transfusion Medicine, San Martino Hospital, Belluno, Italy
| | | | - Federico Forneris
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Marco Pombi
- Division of Parasitology, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Antonio Breda
- Coordinamento Regionale Attività Trasfusionali (CRAT), Padova, Italy
| | - Gioia Capelli
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Bruno Arcà
- Division of Parasitology, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
33
|
Zhou M, Qu W, Sun Y, Liang L, Jin Z, Cui S, Zhao K. Water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan enhanced the immunogenicity of inactivated porcine parvovirus vaccine vaccination on sows against porcine parvovirus infection. Immunol Lett 2020; 223:26-32. [PMID: 32333964 DOI: 10.1016/j.imlet.2020.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023]
Abstract
Porcine parvovirus (PPV) is one of the most common and important virus causes of infectious infertility in swine throughout the world. Inactivated PPV vaccine is broadly used, however, there is no appropriate immunomodulatory adjuvant for enhancing present vaccines and developing new ones. Therefore, in this study, the water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) was synthesized, the adjuvant potential of chitosan derivative was evaluated in inactivated PPV vaccine. Twenty adult healthy sows were assigned to four groups and vaccinated with synthesized PPV/N-2-HACC, commercial inactivated vaccine, N-2-HACC adjuvant and PBS. After insemination, all sows were challenged with the homologous PPV-H strain. In vivo immunization showed that sows immunized with the PPV/N-2-HACC induced more long-lasting HI antibodies and strong immune responses. Importantly, immunization of PPV/N-2-HACC significantly protected sows from homologous PPV-H strain infection. However, immunization of PPV/N-2-HACC didn't change the level of IL-2, IL-4 and IFN-γ and the production of CD4+, CD8 + T lymphocyte. The results indicated that PPV/N-2-HACC protect PPV infection mainly through enhancing the humoral immunity rather than cellular immunity. In addition, the mummified fetuses were observed from the control groups, but neither of the two vaccine groups. In conclusion, these results suggest that N-2-HACC can be exploited as an effective adjuvant for vaccine development, and the PPV/N-2-HACC are potent immunization candidates against PPV infection.
Collapse
Affiliation(s)
- Mo Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbinm, 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Wanying Qu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbinm, 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Yanwei Sun
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Lin Liang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Beijing Scientific Observing and Experiment Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture, Beijing, 100193, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University, Harbin, 150080, China
| | - Shangjin Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Beijing Scientific Observing and Experiment Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture, Beijing, 100193, China.
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbinm, 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
34
|
Ferreira SS, Oliveira MA, Tsujita M, Nunes FPB, Casagrande FB, Gomes E, Russo M, Tavares de Lima W, Martins JO. Insulin Modulates the Immune Cell Phenotype in Pulmonary Allergic Inflammation and Increases Pulmonary Resistance in Diabetic Mice. Front Immunol 2020; 11:84. [PMID: 32117245 PMCID: PMC7026190 DOI: 10.3389/fimmu.2020.00084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction: Reports have shown that the onset of diabetes mellitus (DM) in patients previously diagnosed with asthma decreases asthmatic symptoms, whereas insulin aggravates asthma. The present study evaluated the modulatory effect of insulin on the development of allergic airway inflammation in diabetic mice. Materials and Methods: To evaluate the effects of relative insulin deficiency, an experimental model of diabetes was induced by a single dose of alloxan (50 mg/kg, i.v.). After 10 days, the mice were sensitized with ovalbumin [OVA, 20 μg and 2 mg of Al(OH)3, i.p.]. A booster immunization was performed 6 days after the first sensitization [20 μg of OVA and 2 mg of Al(OH)3, i.p.]. The OVA challenge (1 mg/mL) was performed by daily nebulization for 7 days. Diabetic animals were treated with multiple doses of neutral protamine Hagedorn (NPH) before each challenge with OVA. The following parameters were measured 24 h after the last challenge: (a) the levels of p38 MAP kinase, ERK 1/2 MAP kinases, JNK, STAT 3, and STAT 6 in lung homogenates; (b) the serum profiles of immunoglobulins IgE and IgG1; (c) the concentrations of cytokines (IL-4, IL-5, IL-10, IL-13, TNF-α, VEGF, TGF-β, and IFN-γ) in lung homogenates; (d) cells recovered from the bronchoalveolar lavage fluid (BALF); (e) the profiles of immune cells in the bone marrow, lung, thymus, and spleen; and (f) pulmonary mechanics using invasive (FlexiVent) and non-invasive (BUXCO) methods. Results: Compared to non-diabetic OVA-challenged mice, OVA-challenged diabetic animals showed decreases in ERK 1 (2-fold), ERK 2 (7-fold), JNK (phosphor-54) (3-fold), JNK/SAPK (9-fold), STAT3 (4-fold), the levels of immunoglobulins, including IgE (1-fold) and IgG1 (3-fold), cytokines, including Th2 profile cytokines such as IL-4 (2-fold), IL-5 (2-fold), IL-13 (4-fold), TNF-α (2-fold), VEGF (2-fold), and TGF-β (2-fold), inflammatory infiltrates (14-fold), T cells, NK cells, B cells and eosinophils in the bone marrow, lung, thymus and spleen, and airway hyperreactivity. STAT6 was absent, and no eosinophilia was observed in BALF. Insulin treatment restored all parameters. Conclusion: The data suggested that insulin modulates immune cell phenotypes and bronchial hyperresponsiveness in the development of allergic airway inflammation in diabetic mice.
Collapse
Affiliation(s)
- Sabrina S Ferreira
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University São Paulo (FCF/USP), São Paulo, Brazil
| | - Maria A Oliveira
- Laboratory of Physiopathology of Experimental Lung Inflammation, Department of Pharmacology, Institute of Biomedical Sciences, University São Paulo (ICB/USP), São Paulo, Brazil
| | - Maristela Tsujita
- Laboratory of Hematology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University São Paulo (FCF/USP), São Paulo, Brazil
| | - Fernanda P B Nunes
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University São Paulo (FCF/USP), São Paulo, Brazil
| | - Felipe B Casagrande
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University São Paulo (FCF/USP), São Paulo, Brazil
| | - Eliane Gomes
- Laboratory of Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University São Paulo (ICB/USP), São Paulo, Brazil
| | - Momtchilo Russo
- Laboratory of Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University São Paulo (ICB/USP), São Paulo, Brazil
| | - Wothan Tavares de Lima
- Laboratory of Physiopathology of Experimental Lung Inflammation, Department of Pharmacology, Institute of Biomedical Sciences, University São Paulo (ICB/USP), São Paulo, Brazil
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University São Paulo (FCF/USP), São Paulo, Brazil
| |
Collapse
|
35
|
Tang CL, Xie YP, Yu WH, Jin L, Xie ZL, Li XR. Effects of regulatory T cells on glyceraldehyde-3-phosphate dehydrogenase vaccine efficacy against Schistosoma japonicum. Acta Trop 2020; 202:105239. [PMID: 31669534 DOI: 10.1016/j.actatropica.2019.105239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/06/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a candidate subunit vaccine that induces protective immunity and elicits partial resistance to Schistosoma japonicum upon mouse and livestock vaccination. This study aimed to evaluate the effect of regulatory T cells (Tregs), which were defined as CD4+CD25+Foxp3+ cells, on the efficacy of a GAPDH vaccine against S. japonicum. BALB/c female mice were randomly divided into five groups as follows: normal, infected control, anti-CD25 monoclonal antibody (anti-CD25 mAb), GAPDH group, and co-treated with anti-CD25 mAb and GAPDH group. The worm reduction and liver egg reduction rates in the GAPDH group were 32.46% and 35.43%, respectively, which increased to 60.09% and 58.78%, respectively, after anti-CD25 mAb administration. Compared with those in the infected control group, the percentage of Tregs in the spleen decreased significantly when GAPDH and anti-CD25 mAb were used either alone or in combination. Furthermore, secretions associated with the Th1 response increased in splenocytes of the anti-CD25 mAb group, whereas the Th1 and Th2 responses increased in splenocytes of the GAPDH and co-treated groups. Compared to that in the infected control group, granuloma diameter in the GAPDH and co-treated groups increased slightly, but there were no significant differences among the groups. Our results indicate that the protective effect of the GAPDH vaccines can be improved by decreasing Tregs and enhancing the Th1- and Th2-type immune responses. Therefore, anti-CD25 mAb and GAPDH might exert synergistic effects to clear parasites by decreasing the frequency of Tregs and increasing the Th1- and Th2-type immune responses.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Ya-Ping Xie
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Wen-Hui Yu
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Lei Jin
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Zhao-Lan Xie
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China.
| | - Xiu-Rong Li
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China.
| |
Collapse
|
36
|
Zheng T, Moustafa Y, Finn C, Scott S, Haase CJ, Carpinelli NA, Osorio JS, McKinstry KK, Strutt TM, Huo Q. A rapid blood test to monitor immunity shift during pregnancy and potential application for animal health management. SENSORS INTERNATIONAL 2020; 1. [PMID: 35600205 PMCID: PMC9122116 DOI: 10.1016/j.sintl.2020.100009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The immune health of a farm animal can have significant impact on its overall health, welfare and productivity. One of the most vulnerable physiological states for both humans and animals is pregnancy. Many systemic changes correlate with the gravid state, including shifts in the immune system that may impact the ability to respond optimally to pathogen challenge. Because of this, it would be beneficial to be able to monitor the immune health of the pregnant animals closely. Recently, we developed a new nanoparticle-enabled rapid blood test that can detect ongoing immune responses from both laboratory and farm animals. Here, we report that this novel test reveals highly repeatable and acute changes associated with pregnancy and peri-parturition period in laboratory mice and in cattle. We hypothesize that the test score change reflects changes in the immune status of the gravid females related to the humoral immune response. The test is easy to conduct, of low cost, with results obtained in less than 20 min. This rapid test could be potentially used as an onsite test in local farms and small clinics for animal health management.
Collapse
Affiliation(s)
- Tianyu Zheng
- Nano Discovery Inc., 1060 Woodcock Road Suite 131, Orlando, FL, 32803, USA
| | - Yasmine Moustafa
- Department of Chemistry and NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, FL, 32826, USA
| | - Caroline Finn
- Burnett School of Biomedical Science, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Sydney Scott
- Department of Chemistry and NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, FL, 32826, USA
| | - Christopher J Haase
- CJ Haase Veterinary & Immunological Service, 407 Prairie St, Reeseville, WI, 53579, USA
| | - Nathaly A Carpinelli
- Dairy and Food Science Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Johan S Osorio
- Dairy and Food Science Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Karl K McKinstry
- Burnett School of Biomedical Science, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Tara M Strutt
- Burnett School of Biomedical Science, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Qun Huo
- Department of Chemistry and NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, FL, 32826, USA
| |
Collapse
|
37
|
Nahm DH, Ye YM, Shin YS, Park HS, Kim ME, Kwon B, Cho SM, Han J. Efficacy, Safety, and Immunomodulatory Effect of the Intramuscular Administration of Autologous Total Immunoglobulin G for Atopic Dermatitis: A Randomized Clinical Trial. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:949-963. [PMID: 32935488 PMCID: PMC7492515 DOI: 10.4168/aair.2020.12.6.949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 01/09/2023]
Abstract
Purpose The management of patients with atopic dermatitis (AD) is often difficult. We hypothesized that repeated intramuscular administration of autologous total immunoglobulin G (IgG) could induce clinical improvement in patients with AD through immune modulation. This clinical trial was conducted to evaluate the efficacy, safety, and immunomodulatory effect of the intramuscular administration of autologous total IgG in patients with AD. Methods In this randomized, double-blind, placebo-controlled trial, 51 adolescent and adult patients with moderate-to-severe AD were randomized to receive 8 weekly intramuscular administrations of autologous total IgG 50 mg (n = 26) or saline (n = 25) over a 7-week period and were followed up to week 16. Changes in the clinical severity score (Eczema Area and Severity Index), affected body surface area, patient-reported Dermatology Life Quality Index (DLQI) score, laboratory biomarkers, and incidence of adverse events from baseline to week 16 were assessed. Results The intramuscular administration of autologous total IgG, compared with saline, decreased the clinical severity score (−64.8% vs. −20.3%, P < 0.001), reduced the affected body surface area (−53.9% vs. −19.1%, P < 0.001), improved the DLQI score (−35.4% vs. −14.4%, P = 0.015), increased serum interleukin-10 and interferon-γ levels (P = 0.011 and P = 0.003, respectively), and reduced the incidence of AD exacerbation (11.5% vs. 48.0%, P = 0.004) from baseline to week 16. No serious adverse events were observed. Conclusions The intramuscular administration of autologous total IgG provided clinical improvements and a systemic immunomodulatory effect in adolescent and adult patients with moderate-to-severe AD without significant side effects. Trial Registration Clinical Research Information Service Identifier: KCT0001597
Collapse
Affiliation(s)
- Dong Ho Nahm
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| | - Young Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Myoung Eun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Byul Kwon
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Su Mi Cho
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Jinjoo Han
- Office of Biostatistics, Institute of Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
38
|
Atosuo J, Karhuvaara O, Suominen E, Vilén L, Nuutila J, Putus T. Indoor exposure to Streptomyces albus and Aspergillus versicolor elevates the levels of spore-specific IgG, IgG1 and IgG3 serum antibodies in building users - A new ELISA-based assay for exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134335. [PMID: 31518785 DOI: 10.1016/j.scitotenv.2019.134335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Moisture-indicative microbes in buildings are associated with a variety of symptoms, ranging from mild irritation to severe clinical illnesses. These symptoms are caused principally by dried, dormant and dead microbe material like spores, mycelium and microbe metabolites, leading to the activation of the immune system and formation of the antigen-specific immunoglobulins. This activation presumably takes place through the respiratory track and is a normal immune reaction against pathogenic invaders. During continuous exposure, a prolonged state of inflammation will follow, and this forms a considerable health risk for a building's occupant. A new ELISA system utilizing spores from two species Streptomyces albus and Aspergillus versicolor as an antigen was developed to reveal the related immunological processes. In 159 persons, microbial exposure was observed to increase the levels of spore-specific IgG, IgG1 and IgG3 serum antibody levels of individuals residing in microbe-dense buildings compared with the control reference buildings. No differences were detected in the levels of S. albus- and A. versicolor-specific serum IgA or IgM levels.
Collapse
Affiliation(s)
- Janne Atosuo
- The Laboratory of Immunochemistry, Department of Biochemistry, Faculty of Science and Engineering, University of Turku, Turku, Finland; Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland.
| | - Outi Karhuvaara
- The Laboratory of Immunochemistry, Department of Biochemistry, Faculty of Science and Engineering, University of Turku, Turku, Finland; Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Eetu Suominen
- The Laboratory of Immunochemistry, Department of Biochemistry, Faculty of Science and Engineering, University of Turku, Turku, Finland; Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Liisa Vilén
- Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Jari Nuutila
- The Laboratory of Immunochemistry, Department of Biochemistry, Faculty of Science and Engineering, University of Turku, Turku, Finland
| | - Tuula Putus
- Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| |
Collapse
|
39
|
Pimentel LS, Turini CA, Santos PS, Morais MAD, Souza AG, Barbosa MB, Martins EMDN, Coutinho LB, Furtado CA, Ladeira LO, Martins JR, Goulart LR, Faria PCBD. Balanced Th1/Th2 immune response induced by MSP1a functional motif coupled to multiwalled carbon nanotubes as anti-anaplasmosis vaccine in murine model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102137. [PMID: 31857182 DOI: 10.1016/j.nano.2019.102137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/02/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Anaplasmosis is one of the most prevalent tick-borne diseases of cattle caused by Anaplasma marginale. MSP1a surface protein has been shown to be involved in eliciting immunity to infected cattle. Carbon nanotubes (CNTs) has been increasingly highlighted due to their needle like structure, which contain multiple attachment sites for biomolecules and may interact with or cross biological membranes, increasing antigen availability to immune system. Here, we have successfully designed a nanocomplex of a synthetic peptide noncovalently attached to multiwalled CNT (MWCNT). Peptide comprising the core motif of the MSP1a was efficiently adsorb onto the nanoparticle surface. The MWCNT-Am1 nanocomplex exhibited high stability and good dispersibility and in vivo immunization showed high levels of IgG1 and IgG2a, followed by increased expression of pro-inflammatory and anti-inflammatory cytokines. This is a proof-of-concept of a nanovaccine that was able to generate a strong immune response compared to the common antigen-adjuvant vaccine without the nanoparticles.
Collapse
Affiliation(s)
- Leticia Santos Pimentel
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Carolina Alvarenga Turini
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Paula Souza Santos
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mariana Abilio de Morais
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Aline Gomes Souza
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mariana Botelho Barbosa
- Laboratory of Chemistry of Carbon Nanostructures, Nuclear Technology Development Center, CDTN, Belo Horizonte, MG, Brazil
| | | | | | - Clascídia Aparecida Furtado
- Laboratory of Chemistry of Carbon Nanostructures, Nuclear Technology Development Center, CDTN, Belo Horizonte, MG, Brazil
| | - Luiz Orlando Ladeira
- Laboratory of Nanomaterials, Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Ricardo Martins
- Laboratory of Parasitology, Institute of Veterinary Research Desidério Finamor, Eldorado do Sul, RS, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | |
Collapse
|
40
|
Lew MH, Norazmi MN, Tye GJ. Enhancement of immune response against Mycobacterium tuberculosis HspX antigen by incorporation of combined molecular adjuvant (CASAC). Mol Immunol 2019; 117:54-64. [PMID: 31739193 DOI: 10.1016/j.molimm.2019.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) is one of the deadliest human diseases worldwide caused by mycobacterial infection in the lung. Bacillus Calmette-Guerin (BCG) vaccine protects against disseminated TB in children, but its effectiveness is still questionable due to highly variable protections in adolescence and elderly individuals. Targeting the latency M.tb antigen is a recent therapeutic approach to eradicate dormant pathogen that could possibly lead to disease activation. In this study, we aimed to potentiate immune responses elicited against 16 kDa α-crystalline (HspX) tuberculosis latency antigen by incorporation of Combined Adjuvant for Synergistic Activation of Cellular immunity (CASAC). Histidine-tagged recombinant HspX protein was initially produced in Escherichia coli and purified using Ni-NTA chromatography. To evaluate its adjuvanticity, C57BL/6 mice (n = 5) were initially primed and intradermally immunised in 2-weeks interval for 4 rounds with recombinant HspX, formulated with and without CASAC. Humoral and cell-mediated immune responses elicited against HspX antigen were evaluated using ELISA and Flow Cytometry. Our findings showed that CASAC improved humoral immunity with increased antigen-specific IgG1 and IgG2a antibody response. Stronger CD8+ and Th1-driven immunity was induced by CASAC formulation as supported by elevated level of IFN-γ, TNF-α, IL-12 and IL-17A; and with low IL-10 secretion. Interestingly, adjuvanted HspX vaccine triggered a higher percentage of effector memory T-cell population than those immunised with unadjuvanted vaccine. In conclusion, CASAC adjuvant has great potential to enhance immunogenicity elicited against HspX antigen, which could be an alternative regimen to improve the efficacy of future therapeutic vaccine against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Min Han Lew
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
41
|
A new multi-epitope peptide vaccine induces immune responses and protection against Leishmania infantum in BALB/c mice. Med Microbiol Immunol 2019; 209:69-79. [PMID: 31696313 DOI: 10.1007/s00430-019-00640-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
Visceral leishmaniasis (VL) is a tropical and subtropical disease which is endemic in more than eighty countries around the world. Leishmania infantum is one of the main causative agents of VL disease. Currently, there is no approved-to-market vaccine for VL therapy. In this study, we evaluated cellular and humoral immune responses induced by our newly designed multi-epitope vaccine in BALB/c mice. Four antigenic proteins, including histone H1, sterol 24-c-methyltransferase (SMT), Leishmania-specific hypothetical protein (LiHy), and Leishmania-specific antigenic protein (LSAP) were chosen for the prediction of potential immunodominant epitopes. Moreover, to enhance vaccine immunogenicity, two toll-like receptors 4 (TLR4) agonists, resuscitation-promoting factors of Mycobacterium tuberculosis (RpfE and RpfB), were employed as the built-in adjuvants. Immunization with the designed multi-epitope vaccine elicited a robust Th1-type immune response, compared to other groups, as shown by increased levels of IL-2, IFN-γ, TNF-α, and IgG2a. Furthermore, a significant decrease was observed in Th-2-type-related cytokines such as IL-4 in immunized mice. The designed construct also induced a significant reduction in parasite load (p < 0.0001), conferring protection against L. infantum challenge. This study could be promising in gaining insight towards the potential of peptide epitope-based vaccines as effective protective approaches against Leishmania species.
Collapse
|
42
|
Hou Y, Yan T, Cao H, Liu P, Zheng K, Li Z, Deng Q, Hu S. Chimeric hepatitis B virus core particles displaying Neisserial surface protein A confer protection against virulent Neisseria meningitidis serogroup B in BALB/c mice. Int J Nanomedicine 2019; 14:6601-6613. [PMID: 31496701 PMCID: PMC6702424 DOI: 10.2147/ijn.s206210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose The primary goal of the present study was to explore and evaluate the highly conserved Neisserial surface protein A (NspA) molecule, fused with truncated HBV virus-like particles (VLPs), as a candidate vaccine against the virulent Neisseria meningitidis serogroup B (NMB). Methods NspA was inserted into the major immunodominant region of the truncated hepatitis B virus core protein (HBc; amino acids 1–144). The chimeric protein, HBc-N144-NspA, was expressed from a prokaryotic vector and generated HBc-like particles, as determined by transmission electron microscopy. Further, the chimeric protein and control proteins were used to immunize mice and the resulting immune responses evaluated by flow cytometry, enzyme-linked immunosorbent assay, and analysis of serum bactericidal activity (SBA) titer. Results Evaluation of the immunogenicity of the recombinant HBc-N144-NspA protein showed that it elicited the production of high levels of NspA-specific total IgG. The SBA titer of HBc-N144-NspA/F reached 1:16 2 weeks after the last immunization in BALB/c mice, when human serum complement was included in the vaccine. Immunization of HBc-N144-NspA, even without adjuvant, induced high levels of IL-4 and a high IgG1 to IgG2a ratio, confirming induction of an intense Th2 immune response. Levels of IL-17A increased rapidly in mice after the first immunization with HBc-N144-NspA, indicating the potential for this vaccine to induce a mucosal immune response. Meanwhile, the immunization of HBc-N144-NspA without adjuvant induced only mild inflammatory infiltration into the mouse muscle tissue. Conclusion This study demonstrates that modification using HBc renders NspA a candidate vaccine, which can trigger protective immunity against NMB.
Collapse
Affiliation(s)
- YongLi Hou
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Ting Yan
- Department of Health Services, Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Hui Cao
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Peng Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Kang Zheng
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Zhenyu Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Qing Deng
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - SiHai Hu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| |
Collapse
|
43
|
Bretscher P. On Analyzing How the Th1/Th2 Phenotype of an Immune Response Is Determined: Classical Observations Must Not Be Ignored. Front Immunol 2019; 10:1234. [PMID: 31231378 PMCID: PMC6560152 DOI: 10.3389/fimmu.2019.01234] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
How an antigen interacts differently with lymphocytes and other cells of the immune system, to result in the generation of distinct classes of immunity, is one of the most basic questions of immune regulation. Understanding the nature of these "decision criteria" is central to developing effective medical interventions. Clinical observations lead to the recognition that much disease is due to an inappropriate class of immunity being generated, inappropriate because damaging, as in autoimmunity and allergies, or inappropriate because ineffective, against pathogens and cancer. I argue that the prevalent, contemporary conceptual frameworks, employed to analyze the nature of the decision criterion controlling the Th1/Th2 phenotype of the immune response, are implausible, as they ignore pertinent, classical observations. I outline reasons for favoring a different framework, that takes these observations into account, and explore its pertinence to the design of strategies of medical intervention.
Collapse
Affiliation(s)
- Peter Bretscher
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
44
|
Bretscher PA. The history of the two-signal model of lymphocyte activation: A personal perspective. Scand J Immunol 2019; 89:e12762. [PMID: 30825214 PMCID: PMC6850391 DOI: 10.1111/sji.12762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/07/2023]
Abstract
The first ideas leading to The Two-Signal Model of lymphocyte activation were published 50 years ago, but the model was not realized in one sitting. I describe the three phases that led to its contemporary formulations. A motivation underlying all these models was to generate a minimal description of what is required for antigen to inactivate and activate mature lymphocytes that, at the same time, accounts for how peripheral tolerance is achieved. I suggest the two signal model has not only provided a substantiated framework for understanding how antigen interacts differently with B cells and CD8 T cells, to result in their inactivation and activation, but its postulates are pertinent to contemporary issues concerning the inactivation and activation of CD4 T cells.
Collapse
Affiliation(s)
- Peter A. Bretscher
- Department of Biochemistry, Microbiology and ImmunologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
45
|
Mamrot J, Balachandran S, Steele EJ, Lindley RA. Molecular model linking Th2 polarized M2 tumour-associated macrophages with deaminase-mediated cancer progression mutation signatures. Scand J Immunol 2019; 89:e12760. [PMID: 30802996 PMCID: PMC6850162 DOI: 10.1111/sji.12760] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
A new and diverse range of somatic mutation signatures are observed in late-stage cancers, but the underlying reasons are not fully understood. We advance a "combinatorial association model" for deaminase binding domain (DBD) diversification to explain the generation of previously observed cancer-progression associated mutation signatures. We also propose that changes in the polarization of tumour-associated macrophages (TAMs) are accompanied by the expression of deaminases with a new and diverse range of DBDs, and thus accounting for the generation of new somatic mutation signatures. The mechanism proposed is molecularly reminiscent of combinatorial association of heavy (H) and light (L) protein chains following V(D)J recombination of immunoglobulin molecules (and similarly for protein chains in heterodimers α/β and γ/δ of V(D)Js of T Cell Receptors) required for pathogen antigen recognition by B cells and T cells, respectively. We also discuss whether extracellular vesicles (EVs) emanating from tumour enhancing M2-polarized macrophages represent a likely source of the de novo deaminase DBDs. We conclude that M2-polarized macrophages extruding EVs loaded with deaminase proteins or deaminase-specific transcription/translation regulatory factors and like information may directly trigger deaminase diversification within cancer cells, and thus account for the many new somatic mutation signatures that are indicative of cancer progression. This hypothesis now has a plausible evidentiary base, and it is worth direct testing in future investigations. A long-term objective would be to identify molecular biomarkers predicting cancer progression (or metastatic disease) and to support the development of new drug targets before metastatic pathways are activated.
Collapse
Affiliation(s)
| | - Siddharth Balachandran
- Blood Cell Development and Function ProgramFox Chase Cancer CenterPhiladelphiaPennsylvania
| | - Edward J. Steele
- CYO’Connor ERADE Village FoundationPerthWestern AustraliaAustralia
- Melville Analytics Pty LtdMelbourneVictoriaAustralia
| | - Robyn A. Lindley
- GMDxCo Pty LtdMelbourneVictoriaAustralia
- Faculty of Medicine, Dentistry & Health Sciences, Department of Clinical PathologyUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
46
|
Recombinant H5 hemagglutinin adjuvanted with nanoemulsion protects ferrets against pathogenic avian influenza virus challenge. Vaccine 2019; 37:1591-1600. [DOI: 10.1016/j.vaccine.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 12/29/2022]
|
47
|
Tang CL, Zhang RH, Liu ZM, Jin H, He L. Effect of regulatory T cells on the efficacy of the fatty acid-binding protein vaccine against Schistosoma japonicum. Parasitol Res 2019; 118:559-566. [PMID: 30607606 DOI: 10.1007/s00436-018-6186-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/14/2018] [Indexed: 01/21/2023]
Abstract
Schistosomiasis is one of the most devastating parasitic diseases, making it imperative to develop efficient vaccines to control the causative flatworms called schistosomes. Regulatory T cells (Tregs) and the Th1 immune response have been implicated in the effectiveness of vaccines to control schistosomiasis, but the mechanisms underlying their effects are unclear. In this study, we evaluated the role of Tregs on the efficacy of the 14 kDa FABP (fatty acid-binding protein) vaccine against Schistosoma japonicum. BALB/c female mice were randomly divided into five groups: an uninfected group, infected control group, anti-CD25 monoclonal antibody (anti-CD25 mAb) group, FABP group, and combined anti-CD25 mAb and FABP group. Compared with FABP alone, a combined treatment with FABP and anti-CD25 mAb increased the rate of S. japonicum inhibition in mice from 30.3 to 56.08% and decreased the number of eggs per gram of liver. Compared with that of the infected control group, the percentage of Tregs in the spleen decreased significantly after single or combined treatment with FABP and anti-CD25 mAb, while it increased gradually in the anti-CD25 mAb group. Further, the secretion of Th1 cytokines, IFN-γ, and IL-2 increased in splenocytes in the anti-CD25 mAb group. Our results indicate that anti-CD25 mAb partially blocks Tregs and concomitantly enhances the Th1 type immune response, thereby enhancing the protective effect of the FABP vaccine.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Zhi-Ming Liu
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Huang Jin
- Department of Clinical Laboratory, Wuhan Fourth Hospital; Pu'ai hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China.
| | - Long He
- Department of Clinical Laboratory, Shanghai East Hospital; School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
48
|
Gao X, Wu C, Wang X, Xu H, Wu Y, Li Y, Jia Y, Wei C, He W, Wang Y, Zhang B. The DosR antigen Rv1737c from Mycobacterium tuberculosis confers inflammation regulation in tuberculosis infection. Scand J Immunol 2018; 89:e12729. [PMID: 30372549 DOI: 10.1111/sji.12729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
Abstract
There is an urgent need to identify the potential risk factors for activating latent Mycobacterium tuberculosis infection. In this study, we evaluated the immune function of Rv1737c, which is a latency-associated antigen of dormancy survival regulator (DosR) of M. tuberculosis in a mouse model. Our data showed that mice pretreated with recombinant Rv1737c (rRv1737c) exhibited higher levels of antigen-specific antibodies (IgG, IgM and IgA) than sham-treated mice. Following Bacilli Calmette-Guerin (BCG) challenge, rRv1737c adjuvanted with cholera toxin subunit B (CTB) induced diffuse lung inflammation and fibrosis compared to the control mice. The inflammatory pathogenesis due to rRv1737c pre-exposure was associated with a switch in the macrophage phenotype from M1 to activated M2 and was characterized by IL-10 production. Intracellular cytokine analysis further showed that the rRv1737c-pretreated mice exhibited an increased frequency of Th2 cells in the lungs, lymph nodes and spleen after BCG challenge. Furthermore, IFN-γ expression increased in the lungs after rRv1737c pretreatment compared to that in the sham mice. Accordingly, lung cells from rRv1737c-immunized mice stimulated with killed BCG produced higher levels of multiple cytokines, such as IFN-γ, IL-10 and IL-6. The results confirmed that the pathological features of rRv1737c promoted inflammation. Overall, our findings provide direct evidence of the pro-inflammatory function of rRv1737c in a murine model of BCG infection, indicating that Rv1737c is a pathogenic antigen of M. tuberculosis and may be key to the recurrence of latent infection.
Collapse
Affiliation(s)
- Xiaoling Gao
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Cong Wu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Hui Xu
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yu Wu
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yonghong Li
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yanjuan Jia
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Chaojun Wei
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Wenhua He
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yongxiang Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Benzhong Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
49
|
Zhang Q, Liu B, Zhao L, Lian Y, Yuan X, Zhang Y, Lin J, Li C. Venoarterial Extracorporeal Membrane Oxygenation Increased Immune Function of Spleen and Decreased Reactive Oxygen Species During Post-Resuscitation. Artif Organs 2018; 43:377-385. [PMID: 30282117 DOI: 10.1111/aor.13367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/27/2018] [Accepted: 09/27/2018] [Indexed: 12/28/2022]
Abstract
We aimed to investigate the effect of venoarterial extracorporeal membrane oxygenation (VA-ECMO) on immune function of the spleen and reactive oxygen species (ROS) during post-resuscitation in a porcine model. After 8 min of untreated ventricular fibrillation and 6 min of basic life support, pigs were randomized into two groups: Group 1 received VA-ECMO and Group 2 received conventional cardiopulmonary resuscitation. After successful return of spontaneous circulation, the hemodynamic status was determined and blood samples were collected at 0, 1, 2, 4, and 6 h. Surviving pigs were euthanized 6 h after return of spontaneous circulation, their spleens were harvested and the T-cells were separated. Then, we investigated immune function parameters of the spleen and ROS levels. VA-ECMO increased the return of spontaneous circulation and 6 h survival rate after return of spontaneous circulation. Compared with the conventional cardiopulmonary resuscitation group, the VA-ECMO group showed increased superoxide dismutase and decreased malondialdehyde and ROS levels. Furthermore, VA-ECMO was associated with a high rate of CD4+ and CD4+/CD8+, high levels of interleukin 2, interferon γ, and interferon γ/interleukin 4, as well as high proliferation of lymphocytes. The apoptotic rate of T-cells was lower in the VA-ECMO group than it was in the conventional cardiopulmonary resuscitation group. VA-ECMO increased immune function of spleen and decreased ROS levels during post-resuscitation. Further research is expected to illustrate whether the differences in immune responses are due to ROS or some other perfusion related effect on spleen.
Collapse
Affiliation(s)
- Qiang Zhang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Bo Liu
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lianxing Zhao
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yong Lian
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Yuan
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Tong-Ren Hospital, Capital Medical University, Beijing, China
| | - Yun Zhang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Tong-Ren Hospital, Capital Medical University, Beijing, China
| | - Jiyang Lin
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Tong-Ren Hospital, Capital Medical University, Beijing, China
| | - Chunsheng Li
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Al-Yassin GA, Bretscher PA. Does T Cell Activation Require a Quorum of Lymphocytes? THE JOURNAL OF IMMUNOLOGY 2018; 201:2855-2861. [DOI: 10.4049/jimmunol.1800805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022]
|