1
|
Pinheiro SM, Dantas GAF, Silva LDR, Trajano GS, Barbosa GM, Dantas PMS. Effects of multiple cold-water immersion during pre-season on recovery performance in under-20 male soccer players: A randomized controlled trial. J Bodyw Mov Ther 2024; 40:563-568. [PMID: 39593644 DOI: 10.1016/j.jbmt.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION This study was designed to evaluate the effects of multiple cold-water immersions performed daily during the preseason period on biochemical, clinical, and neuromuscular aspects of muscle damage of soccer players. METHODS This two-arm, prospectively registered, randomized controlled trial, blinded to statistician and assessors, was conducted at professional football club facilities. Twenty-three under-20 semi-professionals male soccer players were randomly allocated into cold water immersion group (bathtub with water and ice at 10 °C ± 1 °C for 10 min) or control group (rest for 10 min), every day, after training sessions during a preseason. Primary outcome was change in creatine kinase (CK) concentration, and secondary outcomes were changes in vertical jump performance, strength and perception of recovery at baseline (T0) and after protocol training (T1). RESULTS Analysis of Covariance (ANCOVA) showed a statistically significant time-group interactions for CK concentration, with an average reduction of 280.39 U/L (CI95% = -519.14, -41.64; d = 0.55) in the cold-water immersion compared to the control group. No differences between groups were observed in any other measures. CONCLUSION Multiple cold-water immersions at 10 °C for 10 min decreases CK concentration but does not change any clinical and neuromuscular markers of muscle damage in soccer players during a 9-day preseason.
Collapse
Affiliation(s)
- Scheila M Pinheiro
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Glauko A F Dantas
- Coordination of Physical Therapy, Parnaiba Delta Federal University, Parnaiba, PI, Brazil
| | - Leonardo D R Silva
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | - Germanna M Barbosa
- Postgraduate Program in Rehabilitation Science, Faculty of Health Science of Trairi, Federal University of Rio Grande do Norte, Santa Cruz, RN, Brazil
| | - Paulo M S Dantas
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
2
|
Chen R, Ma X, Ma X, Cui C. The effects of hydrotherapy and cryotherapy on recovery from acute post-exercise induced muscle damage-a network meta-analysis. BMC Musculoskelet Disord 2024; 25:749. [PMID: 39294614 PMCID: PMC11409518 DOI: 10.1186/s12891-024-07315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/27/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND This systematic review and network meta-analysis assessed via direct and indirect comparisons the recovery effects of hydrotherapy and cold therapy at different temperatures on exercise induced muscle damage. METHODS Five databases were searched in English and Chinese. The included studies included exercise interventions such as resistance training, high-intensity interval training, and ball games, which the authors were able to define as activities that induce the appearance of EIMD. The included RCTs were analyzed using the Cochrane Risk of Bias tool. Eligible studies were included and and two independent review authors extracted data. Frequentist network meta-analytical approaches were calculated based on standardized mean difference (SMD) using random effects models. The effectiveness of each intervention was ranked and the optimal intervention was determined using the surface under the cumulative ranking curve (SUCRA) indicator. RESULTS 57 studies with 1220 healthy participants were included, and four interventions were examined: Cold Water Immersion (CWI), Contrast Water Therapy (CWT), Thermoneutral or Hot Water Immersion (TWI/HWI), and Cryotherapy(CRYO). According to network meta-analysis, Contrast Water Immersion (SUCRA: 79.9% )is most effective in recovering the biochemical marker Creatine Kinase. Cryotherapy (SUCRA: 88.3%) works best to relieve Delayed Onset Muscle Soreness. In the recovery of Jump Ability, cryotherapy (SUCRA: 83.7%) still ranks the highest. CONCLUSION We found that CWT was the best for recovering biochemical markers CK, and CRYO was best for muscle soreness and neuromuscular recovery. In clinical practice, we recommend the use of CWI and CRYO for reducing EIMD. SYSTEMATIC REVIEW REGISTRATION [PROSPERO], identifier [CRD42023396067].
Collapse
Affiliation(s)
- Ruohan Chen
- Department of Physical Education, Undergraduate College, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaopeng Ma
- School of Sports Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Xiaoman Ma
- China Basketball College, Beijing Sport University, Beijing, China.
| | | |
Collapse
|
3
|
Fan Y, Zhang B, Wang Y, Wu H. Different humidity environments do not affect the subsequent exercise ability of college football players after aerobic high-intensity interval training. Sci Rep 2024; 14:16205. [PMID: 39003355 PMCID: PMC11246416 DOI: 10.1038/s41598-024-66757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
Previous studies have explored the effect of differing heat and relative humidity (RH) environments on the performance of multiple anaerobic high-intensity interval training (HIIT). Still, its impact on physiological responses and performance following aerobic HIIT has not been well studied. This study examined the effects of differing RH environments on physiological responses and performance in college football players following HIIT. Twelve college football completed HIIT under four different environmental conditions: (1) 25 °C/20% RH (Control group); (2) 35 °C/20% RH (H20 group); (3) 35 °C/40% RH (H40 group); (4) 35 °C/80% RH (H80 group). The heart rate (HR), mean arterial pressure (MAP), lactate, tympanic temperature (TT), skin temperature (TS), thermal sensation (TS), and rating of perceived exertion (RPE) were recorded continuously throughout the exercise. The heart rate variability (HRV): including root mean squared differences of the standard deviation (RMSSD)、standard deviation differences of the standard deviation (SDNN)、high frequency (HF), low frequency (LF), squat jump height (SJH), cycling time to exhaustion (TTE), and sweat rate (SR) were monitored pre-exercise and post-exercise. The HR, MAP, lactate, TT, Ts, TS, and RPE in the 4 groups showed a trend of rapid increase, then decreased gradually. There was no significant difference in HR, MAP, TT, or RPE between the 4 groups at the same time point (p > 0.05), in addition to this, when compared to the C group, the lactate, Ts, TS in the other 3 groups significant differences were observed at the corresponding time points (p < 0.05). The RMSSD, SDNN, HF, and LF levels in the 4 groups before exercise were not significantly different. The RMSSD and HF in the H40 and H80 groups were significantly decreased and other HRV indicators showed no significant difference after exercise. In sports performance measurement, the SJH and TTE were significantly decreased, but there was no significant difference in the 4 groups. The SR was no significant difference in the 4 groups after exercise. In conclusion, heat and humidity environments elicited generally greater physiological effects compared with the normal environment but did not affect sports performance in college football players.
Collapse
Affiliation(s)
- Yongzhao Fan
- Department of Physical Education, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Ben Zhang
- Department of Arts and Physical Education, Shantou Polytechnic, Shantou, 515078, Guangdong, China
| | - Yan Wang
- Department of Physical Education Teaching and Research, Fuzhou University, Fuzhou, 350108, Fujian, China.
| | - Hao Wu
- Capital University of Physical Education and Sports, Beijing, 100191, China.
| |
Collapse
|
4
|
Zhou Z, Su Y, Wu Y, Qin F, Zheng X. The effects of cold water immersion and partial body cryotherapy on subsequent exercise performance and thermoregulatory responses in hot conditions. J Therm Biol 2024; 123:103926. [PMID: 39094403 DOI: 10.1016/j.jtherbio.2024.103926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
This study investigated the effects of cold water immersion (CWI) and partial body cryotherapy (PBC) applied within a 15-min post-exercise recovery period on thermoregulatory responses, subjective perceptions, and exercise performance under hot conditions (39 °C). Twelve male soccer players participated in team-sports-specific assessments, including Agility T-test (T-test), 20-m sprint test (20M-ST), and Yo-Yo Intermittent Endurance Test Level 1 (YY-T), during two exercise bouts (1st bout and 2nd bout) with a 15-min post-exercise recovery period. Within the recovery period, a 3-min of PBC at -110 °C or CWI at 15 °C or a seated rest (CON) was performed. Mean skin temperature (Tskin) decreased by 4.3 ± 1.08°C (p < 0.001) immediately after PBC, while CWI induced a reduction of 2.5 ± 0.21°C (p < 0.01). Furthermore, PBC and CWI consistently reduced Tskin for 15 and 33 min, respectively (p < 0.05). During the 2nd bout, core temperature (Tcore) was significantly lower in PBC compared to CON (p < 0.05). Heart rate (HR) was significantly lower in CWI compared to CON and PBC during the intervention period. Thermal sensation (TS) was significantly greater in PBC compared to CON and CWI (p < 0.05). Compared to the 1st bout, PBC alleviated the declines in T-test (p < 0.05) and 20M-ST (p < 0.05), while CWI alleviated the decreases in T-test (p < 0.05) and YY-T (p < 0.05), concurrently significantly enhancing 20M-ST (p < 0.05). 20M-ST and YY-T was greater from PBC (p < 0.05) and CWI (p < 0.05) compared with CON in 2nd bout. Additionally, the T-test in CWI was significantly greater than CON (p < 0.05). These results indicate that both PBC and CWI, performed between two exercise bouts, have the potential to improve thermoregulatory strain, reduce thermal perceptual load, and thereby attenuate the subsequent decline in exercise performance.
Collapse
Affiliation(s)
- Zigui Zhou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yuchen Su
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yuge Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Fanjun Qin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Xinyan Zheng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
5
|
Hohenauer E, Bianchi G, Wellauer V, Taube W, Clijsen R. Acute physiological responses and muscle recovery in females: a randomised controlled trial of muscle damaging exercise in hypoxia. BMC Sports Sci Med Rehabil 2024; 16:70. [PMID: 38520001 PMCID: PMC10960417 DOI: 10.1186/s13102-024-00861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Studies have investigated the effects of training under hypoxia (HYP) after several weeks in a male population. However, there is still a lack of knowledge on the acute hypoxic effects on physiology and muscle recovery in a female population. METHODS This randomized-controlled trial aimed to investigate the acute effects of muscle damaging exercise, performed in HYP and normoxia (CON), on physiological responses and recovery characteristics in healthy females. Key inclusion criteria were recreationally active female participants between the age of 18 to 35 years without any previous surgeries and injuries, whilst key exclusion criteria were acute pain situations, pregnancy, and medication intake. The females conducted a muscle-damaging protocol, comprising 5 × 20 drop-jumps, in either HYP (FiO2: 12%) or CON (FiO2: 21%). Physiological responses, including capillary oxygenation (SpO2), muscle oxygenation (SmO2), heart rate (HR), core- (Tcore) and skin- (Tskin) temperature were assessed at the end of each exercise set. Recovery characteristics were quantified by taking venous blood samples (serum creatine-kinase [CK], C-reactive protein [CRP] and blood sedimentation rate [BSR]), assessing muscle swelling of the quadriceps femoris muscle, maximum voluntary isometric contraction (MVIC) of the knee extensor muscles, countermovement jump (CMJ) performance and muscle soreness ratings (DOMS) at 24-, 48- and 72-hrs post-exercise. RESULTS SpO2 (HYP: 76.7 ± 3.8%, CON: 95.5 ± 1.7%, p < 0.001) and SmO2 (HYP: 60.0 ± 9.3, CON: 73.4 ± 5.8%, p = 0.03) values were lower (p < 0.05) in HYP compared to CON at the end of the exercise-protocol. No physiological differences between HYP and CON were observed for HR, Tcore, and Tskin (all p > 0.05). There were also no differences detected for any recovery variable (CK, CRP, BSR, MVIC, CMJ, and DOMS) during the 72-hrs follow-up period between HYP and CON (all p > 0.05). CONCLUSION In conclusion, our results showed that muscle damaging exercise under HYP leads to reduced capillary and muscle oxygenation levels compared to normoxia with no difference in inflammatory response and muscle recovery during 72 h post-exercise. TRIAL REGISTRATION NCT04902924, May 26th 2021.
Collapse
Affiliation(s)
- Erich Hohenauer
- RESlab, University of Applied Sciences and Arts of Southern Switzerland, Weststrasse 8, CH-7302, Landquart, Switzerland.
- International University of Applied Sciences THIM, Landquart, Switzerland.
- University of Fribourg, Fribourg, Switzerland.
| | - G Bianchi
- RESlab, University of Applied Sciences and Arts of Southern Switzerland, Weststrasse 8, CH-7302, Landquart, Switzerland
| | - V Wellauer
- RESlab, University of Applied Sciences and Arts of Southern Switzerland, Weststrasse 8, CH-7302, Landquart, Switzerland
| | - W Taube
- University of Fribourg, Fribourg, Switzerland
| | - R Clijsen
- RESlab, University of Applied Sciences and Arts of Southern Switzerland, Weststrasse 8, CH-7302, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Jones B, Waterworth S, Tallent J, Rogerson M, Morton C, Moran J, Southall-Edwards R, Cooper CE, McManus C. Cold-Water Immersion and Lower Limb Muscle Oxygen Consumption as Measured by Near-Infrared Spectroscopy in Trained Endurance Athletes. J Athl Train 2024; 59:317-324. [PMID: 37347152 PMCID: PMC10976338 DOI: 10.4085/1062-6050-0532.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
CONTEXT Cold-water immersion (CWI) has been reported to reduce tissue metabolism postimmersion, but physiological data are lacking regarding the muscle metabolic response to its application. Near-infrared spectroscopy (NIRS) is a noninvasive optical technique that can inform muscle hemodynamics and tissue metabolism. OBJECTIVE To investigate the effects of CWI at 2 water temperatures (10°C and 15°C) on NIRS-calculated measurements of muscle oxygen consumption (mVO2). DESIGN Crossover study. SETTING University sports rehabilitation center. PATIENTS OR OTHER PARTICIPANTS A total of 11 male National Collegiate Athletic Association Division II long-distance runners (age = 23.4 ± 3.4 years, height = 1.8 ± 0.1 m, mass = 68.8 ± 10.7 kg, mean adipose tissue thickness = 6.7 ± 2.7 mm). INTERVENTION(S) Cold-water immersion at 10°C and 15°C for 20 minutes. MAIN OUTCOME MEASURE(S) We calculated mVO2 preimmersion and postimmersion at water temperatures of 10°C and 15°C. Changes in tissue oxyhemoglobin (O2Hb), deoxyhemoglobin (HHb), total hemoglobin (tHb), hemoglobin difference (Hbdiff), and tissue saturation index (TSI %) were measured during the 20-minute immersion at both temperatures. RESULTS We observed a decrease in mVO2 after immersion at both 10°C and 15°C (F1,9 = 27.7801, P = .001). During the 20-minute immersion at both temperatures, we noted a main effect of time for O2Hb (F3,27 = 14.227, P = .001), HHb (F3,27 = 5.749, P = .009), tHb (F3,27 = 24.786, P = .001), and Hbdiff (F3,27 = 3.894, P = .020), in which values decreased over the course of immersion. Post hoc pairwise comparisons showed that these changes occurred within the final 5 minutes of immersion for tHb and O2Hb. CONCLUSIONS A 20-minute CWI at 10°C and 15°C led to a reduction in mVO2. This was greater after immersion at 10°C. The reduction in mVO2 suggests a decrease in muscle metabolic activity (ie, O2 use after CWI). Calculating mVO2 via the NIRS-occlusion technique may offer further insight into muscle metabolic responses beyond what is attainable from observing the NIRS primary signals.
Collapse
Affiliation(s)
- Ben Jones
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Sally Waterworth
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Jamie Tallent
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Mike Rogerson
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Chris Morton
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | | | - Chris E. Cooper
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Chris McManus
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| |
Collapse
|
7
|
Siegel L, Rooney J, Marjoram L, Mason L, Bowles E, van Keulen TV, Helander C, Rayo V, Hong MY, Liu C, Hooshmand S, Kern M, Witard OC. Chronic almond nut snacking alleviates perceived muscle soreness following downhill running but does not improve indices of cardiometabolic health in mildly overweight, middle-aged, adults. Front Nutr 2024; 10:1298868. [PMID: 38260074 PMCID: PMC10800814 DOI: 10.3389/fnut.2023.1298868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction As a popular food snack rich in protein, fiber, unsaturated fatty acids, antioxidants and phytonutrients, almond nut consumption is widely associated with improvements in cardiometabolic health. However, limited data exists regarding the role of almond consumption in improving exercise recovery. Accordingly, we aimed to investigate the impact of chronic almond snacking on muscle damage and cardiometabolic health outcomes during acute eccentric exercise recovery in mildly overweight, middle-aged, adults. Methods Using a randomized cross-over design, 25 mildly overweight (BMI: 25.8 ± 3.6 kg/m2), middle-aged (35.1 ± 4.7 y) males (n = 11) and females (n = 14) performed a 30-min downhill treadmill run after 8-weeks of consuming either 57 g/day of whole almonds (ALMOND) or an isocaloric amount (86 g/day) of unsalted pretzels (CONTROL). Muscle soreness (visual analogue scale), muscle function (vertical jump and maximal isokinetic torque) and blood markers of muscle damage (creatine kinase (CK) concentration) and inflammation (c-reactive protein concentration) were measured pre and post (24, 48, and 72 h) exercise. Blood biomarkers of cardiometabolic health (total cholesterol, triglycerides, HDL cholesterol, and LDL cholesterol), body composition and psycho-social assessments of mood (POMS-2 inventory), appetite and well-being were measured pre and post intervention. Results Downhill running successfully elicited muscle damage, as evidenced by a significant increase in plasma CK concentration, increased perception of muscle soreness, and impaired vertical jump performance (all p < 0.05) during acute recovery. No effect of trial order was observed for any outcome measurement. However, expressed as AUC over the cumulative 72 h recovery period, muscle soreness measured during a physical task (vertical jump) was reduced by ~24% in ALMOND vs. CONTROL (p < 0.05) and translated to an improved maintenance of vertical jump performance (p < 0.05). However, ALMOND did not ameliorate the CK response to exercise or isokinetic torque during leg extension and leg flexion (p > 0.05). No pre-post intervention changes in assessments of cardiometabolic health, body composition, mood state or appetite were observed in ALMOND or CONTROL (all p > 0.05). Conclusion Chronic almond supplementation alleviates task-specific perceived feelings of muscle soreness during acute recovery from muscle damaging exercise, resulting in the better maintenance of muscle functional capacity. These data suggest that almonds represent a functional food snack to improve exercise tolerance in mildly overweight, middle-aged adults.
Collapse
Affiliation(s)
- Leah Siegel
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Jessica Rooney
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Lindsey Marjoram
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Lauren Mason
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elena Bowles
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Thomas Valente van Keulen
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Carina Helander
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Vernon Rayo
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Oliver C. Witard
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
8
|
Philpott J, Kern M, Hooshmand S, Carson I, Rayo V, North E, Okamoto L, O'Neil T, Hong MY, Liu C, Dreczkowski G, Rodriguez-Sanchez N, Witard OC, Galloway SD. Pistachios as a recovery food following downhill running exercise in recreational team-sport individuals. Eur J Sport Sci 2023; 23:2400-2410. [PMID: 37596062 DOI: 10.1080/17461391.2023.2239192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
We aimed to investigate the impact of pistachio nut consumption on muscle soreness and function following exercise-induced muscle damage. Using a randomised cross-over design, male team-sport players (n = 18) performed a 40-minute downhill treadmill run to induce muscle damage, which was conducted after 2-wks of consuming either control (CON, water), a standard dose of daily pistachios (STD, 42.5 g/d) or a higher dose of daily pistachios (HIGH, 85 g/d). Lower limb muscle soreness (visual analogue scale), muscle function (maximal voluntary isokinetic torque and vertical jump), and blood markers of muscle damage/inflammation (creatine kinase, C-reactive protein, myoglobin, superoxide dismutase) were measured pre (baseline) and post (24, 48, and 72 h) exercise. No trial order effects were observed for any outcome measurement across trials. Mean quadriceps soreness (non-dominant leg) during exercise recovery was reduced (p < 0.05) in HIGH vs. CON (mean difference (95%CI): 13(1-25) mm). Change in soreness in the dominant quadriceps was not different between HIGH vs. CON (p = 0.06; mean difference (95%CI): 13(-1 to 26 mm)). No main effects of time or trial were observed for mean soreness of hamstrings, or on isokinetic torque of knee extensors or knee flexors, during recovery. Serum creatine kinase concentration peaked at 24 h post-damage (mean(SEM): 763(158)µg/L) from baseline (300(87)µg/L), but had returned to baseline by 72 h post (398(80)µg/L) exercise in all trials, with no trial or trial × time interaction evident. These data suggest that high dose pistachio nut ingestion may provide some alleviation of muscle soreness, but no effect on muscle function, following modest muscle damage.
Collapse
Affiliation(s)
- Jordan Philpott
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Imogene Carson
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Vernon Rayo
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Elise North
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Lauren Okamoto
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Timothy O'Neil
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Gillian Dreczkowski
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Nidia Rodriguez-Sanchez
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Oliver C Witard
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stuart D Galloway
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
9
|
Poignard M, Guilhem G, Jubeau M, Martin E, Giol T, Montalvan B, Bieuzen F. Cold-water immersion and whole-body cryotherapy attenuate muscle soreness during 3 days of match-like tennis protocol. Eur J Appl Physiol 2023; 123:1895-1909. [PMID: 37088821 DOI: 10.1007/s00421-023-05190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE This study aimed to investigate the effect of whole-body cryotherapy (WBC), cold-water immersion (CWI) and passive recovery (PAS) on tennis recovery. METHODS Thirteen competitive male tennis players completed three consecutive match-like tennis protocols, followed by recovery (WBC, CWI, PAS) in a crossover design. Five tennis drills and serves were performed using a ball machine to standardize the fatiguing protocol. Maximal voluntary contraction (MVC) peak torque, creatine kinase activity (CK), muscle soreness, ball accuracy and velocity together with voluntary activation, low- and high-frequency torque and EMG activity were recorded before each protocol and 24 h following the third protocol. RESULTS MVC peak torque (- 7.7 ± 11.3%; p = 0.001) and the high- to low-frequency torque ratio (- 10.0 ± 25.8%; p < 0.05) decreased on Day 1 but returned to baseline on Day 2, Day 3 and Day 4 (p = 0.052, all p > 0.06). The CK activity slightly increased from 161.0 ± 100.2 to 226.0 ± 106.7 UA L-1 on Day 1 (p = 0.001) and stayed at this level (p = 0.016) across days with no differences between recovery interventions. Muscle soreness increased across days with PAS recovery (p = 0.005), while no main effect of time was neither observed with WBC nor CWI (all p > 0.292). The technical performance was maintained across protocols with WBC and PAS, while it increased for CWI on Day 3 vs Day 1 (p = 0.017). CONCLUSION Our 1.5-h tennis protocol led to mild muscle damage, though neither the neuromuscular function nor the tennis performance was altered due to accumulated workload induced by consecutive tennis protocols. The muscle soreness resulting from tennis protocols was similarly alleviated by both CWI and WBC. TRIAL REGISTRATION IRB No. 2017-A02255-48, 12/05/2017.
Collapse
Affiliation(s)
- Mathilde Poignard
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), 11 Avenue du Tremblay, 75012, Paris, France.
- French Tennis Federation, Paris, France.
| | - Gaël Guilhem
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), 11 Avenue du Tremblay, 75012, Paris, France
| | - Marc Jubeau
- Nantes University, Movement-Interactions-Performance, MIP, UR 4334, 44000, Nantes, France
| | | | | | | | | |
Collapse
|
10
|
Hidalgo-Tallón FJ, Pinto-Bonilla R, Baeza-Noci J, Menéndez-Cepero S, Cabizosu A. Medical ozone on hamstring injury in a professional athlete assessed by thermography: a clinical case report. BJR Case Rep 2023; 9:20220078. [PMID: 37576006 PMCID: PMC10412915 DOI: 10.1259/bjrcr.20220078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 08/15/2023] Open
Abstract
Injuries associated with the hamstring muscles in the running athlete are increasingly investigated due to the economic and functional consequences associated with them. Although hardly used in the treatment of sports injuries, medical ozone is effective and very well tolerated in the treatment of musculoskeletal pain, it was decided to add a series of medical ozone infiltrations to the treatment. The evolution of the case was recorded by medical thermography, in addition to measuring pain intensity (visual analog scale) and functional capacity (toe touch test). Pain intensity (visual analog scale) decreased from seven at baseline to two at the end of treatment (after two ozone infiltrations, one weekly). Mobility of the damaged area (toe touch test) improved from a distance of 8 cm at baseline to 0 cm at the end of treatment. Regarding medical thermography, after the first and second infiltration of ozone, the temperature rose to a significant increase in perfusion from baseline from 31.2 to 31.8 °C and from 31.2 to 32 °C, respectively. These results suggest the possible interest of medical ozone as an adjuvant treatment for the recovery of sports tendinopathies and encourage us to carry out further studies.
Collapse
Affiliation(s)
- Francisco Javier Hidalgo-Tallón
- Chair of Ozone Therapy and Chronic Pain, San Antonio Catholic University of Murcia (UCAM), Institute of Neurosciences, University of Granada, Granada, Spain
| | | | - Jose Baeza-Noci
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | | | - Alessio Cabizosu
- THERMHESC Group, Chair of Ribera Hospital de Molina - San Antonio Catholic University of Murcia (UCAM), Molina de Segura, Spain
| |
Collapse
|
11
|
Choo HC, Lee M, Yeo V, Poon W, Ihsan M. The effect of cold water immersion on the recovery of physical performance revisited: A systematic review with meta-analysis. J Sports Sci 2023; 40:2608-2638. [PMID: 36862831 DOI: 10.1080/02640414.2023.2178872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
This review evaluated the effect of CWI on the temporal recovery profile of physical performance, accounting for environmental conditions and prior exercise modality. Sixty-eight studies met the inclusion criteria. Standardised mean differences were calculated for parameters assessed at <1, 1-6, 24, 48, 72 and ≥96 h post-immersion. CWI improved short-term recovery of endurance performance (p = 0.01, 1 h), but impaired sprint (p = 0.03, 1 h) and jump performance (p = 0.04, 6h). CWI improved longer-term recovery of jump performance (p < 0.01-0.02, 24 h and 96 h) and strength (p < 0.01, 24 h), which coincided with decreased creatine kinase (p < 0.01-0.04, 24-72 h), improved muscle soreness (p < 0.01-0.02, 1-72 h) and perceived recovery (p < 0.01, 72 h). CWI improved the recovery of endurance performance following exercise in warm (p < 0.01) and but not in temperate conditions (p = 0.06). CWI improved strength recovery following endurance exercise performed at cool-to-temperate conditions (p = 0.04) and enhanced recovery of sprint performance following resistance exercise (p = 0.04). CWI seems to benefit the acute recovery of endurance performance, and longer-term recovery of muscle strength and power, coinciding with changes in muscle damage markers. This, however, depends on the nature of the preceding exercise.
Collapse
Affiliation(s)
- Hui Cheng Choo
- Sport Physiology Department, Sport Science and Medicine Centre, Singapore Sport Institute, Singapore
| | - Marcus Lee
- Sports Science, National Youth Sports Institute, Singapore
| | - Vincent Yeo
- Sport Physiology Department, Sport Science and Medicine Centre, Singapore Sport Institute, Singapore
| | - Wayne Poon
- School of Medical and Health Science, Edith Cowan University, Joondalup, Australia
| | - Mohammed Ihsan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
12
|
Moore E, Fuller JT, Bellenger CR, Saunders S, Halson SL, Broatch JR, Buckley JD. Effects of Cold-Water Immersion Compared with Other Recovery Modalities on Athletic Performance Following Acute Strenuous Exercise in Physically Active Participants: A Systematic Review, Meta-Analysis, and Meta-Regression. Sports Med 2023; 53:687-705. [PMID: 36527593 DOI: 10.1007/s40279-022-01800-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Studies investigating the effects of common recovery modalities following acute strenuous exercise have reported mixed results. OBJECTIVES This systematic review with meta-analysis and meta-regression compared the effects of cold-water immersion (CWI) against other common recovery modalities on recovery of athletic performance, perceptual outcomes, and creatine kinase (CK) following acute strenuous exercise in physically active populations. STUDY DESIGN Systematic review, meta-analysis, and meta-regression. METHODS The MEDLINE, SPORTDiscus, Scopus, Web of Science, Cochrane Library, EmCare, and Embase databases were searched up until September 2022. Studies were included if they were peer reviewed, published in English, included participants who were involved in sport or deemed physically active, compared CWI with other recovery modalities following an acute bout of strenuous exercise, and included measures of performance, perceptual measures of recovery, or CK. RESULTS Twenty-eight studies were meta-analysed. CWI was superior to other recovery methods for recovering from muscle soreness, and similar to other methods for recovery of muscular power and flexibility. CWI was more effective than active recovery, contrast water therapy and warm-water immersion for most recovery outcomes. Air cryotherapy was significantly more effective than CWI for the promotion of recovery of muscular strength and the immediate recovery of muscular power (1-h post-exercise). Meta-regression revealed that water temperature and exposure duration were rarely exposure moderators. CONCLUSION CWI is effective for promoting recovery from acute strenuous exercise in physically active populations compared with other common recovery methods. PROTOCOL REGISTRATION Open Science Framework: https://doi.org/10.17605/OSF.IO/NGP7C.
Collapse
Affiliation(s)
- Emma Moore
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, SA, Australia.
| | - Joel T Fuller
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Clint R Bellenger
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, SA, Australia
| | - Siena Saunders
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, SA, Australia
| | - Shona L Halson
- School of Behavioural and Health Sciences, McAuley at Banyo, Brisbane, QLD, Australia
| | - James R Broatch
- Institute for Health and Sport (IHES), Victoria University, VIC, Australia
| | - Jonathan D Buckley
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
13
|
Ntoumani M, Dugué B, Rivas E, Gongaki K. Thermoregulation and thermal sensation during whole-body water immersion at different water temperatures in healthy individuals: A scoping review. J Therm Biol 2023; 112:103430. [PMID: 36796887 DOI: 10.1016/j.jtherbio.2022.103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Severe thermal discomfort may increase risk of drowning due to hypothermia or hyperthermia from prolonged exposure to noxious water temperatures. The importance of using a behavioral thermoregulation model with thermal sensation may predict the thermal load that the human body receives when exposed to various immersive water conditions. However, there is no thermal sensation "gold standard" model specific for water immersion. This scoping review aims to present a comprehensive overview regarding human physiological and behavioral thermoregulation during whole-body water immersion and explore the feasibility for an accepted defined sensation scale for cold and hot water immersion. METHODS A standard literary search was performed on PubMed, Google Scholar, and SCOPUS. The words "Water Immersion," "Thermoregulation," "Cardiovascular responses" were used either as independent searched terms and MeSH terms (Medical Subject Headings) or in combination with other text words. The inclusion criteria for clinical trials terms to thermoregulatory measurements (core or skin temperature), whole-body immersion, 18-60 years old and healthy individuals. The prementioned data were analyzed narratively to achieve the overall study objective. RESULTS Twenty-three published articles fulfilled the review inclusion/exclusion criteria (with nine measured behavioral responses). Our outcomes illustrated a homogenous thermal sensation in a variety of water temperatures ranges, that was strongly associated with thermal balance, and observed different thermoregulatory responses. This scoping review highlights the impact of water immersion duration on human thermoneutral zone, thermal comfort zone, and thermal sensation. CONCLUSION Our findings enlighten the significance of thermal sensation as a health indicator for establishing a behavioral thermal model applicable for water immersion. This scoping review provides insight for the needed development of subjective thermal model of thermal sensation in relation to human thermal physiology specific to immersive water temperature ranges within and outside the thermal neutral and comfort zone.
Collapse
Affiliation(s)
- Maria Ntoumani
- National & Kapodistrian University of Athens, Medical School, Department of Physiology, 11527, Athens, Greece; National & Kapodistrian University of Athens, School of Physical Education and Sport Science, Philosophy Division, 17237, Athens, Greece.
| | - Benoit Dugué
- Université de Poitiers, Faculté des Sciences du Sport, UR 20296, Laboratoire "Mobilité, Vieillissement et Exercice (MOVE)", 86000, Poitiers, France
| | - Eric Rivas
- KBR, Human Physiology, Performance, Protection & Operations Laboratory, NASA Johnson Space Center, 77058, Houston, Texas, USA
| | - Konstantina Gongaki
- National & Kapodistrian University of Athens, School of Physical Education and Sport Science, Philosophy Division, 17237, Athens, Greece
| |
Collapse
|
14
|
Nasser N, Zorgati H, Chtourou H, Guimard A. Cold water immersion after a soccer match: Does the placebo effect occur? Front Physiol 2023; 14:1062398. [PMID: 36895634 PMCID: PMC9988943 DOI: 10.3389/fphys.2023.1062398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Although cold water immersion (CWI) is one of the most widely used post-exercise strategies to accelerate recovery processes, the benefits of CWI may be associated with placebo effects. This study aimed to compare the effects of CWI and placebo interventions on time course of recovery after the Loughborough Intermittent Shuttle Test (LIST). In a randomized, counterbalanced, crossover study, twelve semi-professional soccer players (age 21.1 ± 2.2 years, body mass 72.4 ± 5.9 kg, height 174.9 ± 4.6 cm, V ˙ O2max 56.1 ± 2.3 mL/min/kg) completed the LIST followed by CWI (15 min at 11°C), placebo (recovery Pla beverage), and passive recovery (Rest) over three different weeks. Creatine kinase (CK), C-reactive protein (CRP), uric acid (UA), delayed onset muscle soreness (DOMS), squat jump (SJ), countermovement jump (CMJ), 10-m sprint (10 mS), 20-m sprint (20 mS) and repeated sprint ability (RSA) were assessed at baseline and 24 and 48 h after the LIST. Compared to baseline, CK concentration was higher at 24 h in all conditions (p < 0.01), while CRP was higher at 24 h only in CWI and Rest conditions (p < 0.01). UA was higher for Rest condition at 24 and 48 h compared to Pla and CWI conditions (p < 0.001). DOMS score was higher for Rest condition at 24 h compared to CWI and Pla conditions (p = 0.001), and only to Pla condition at 48 h (p = 0.017). SJ and CMJ performances decreased significantly after the LIST in Rest condition (24 h: -7.24%, p = 0.001 and -5.45%, p = 0.003 respectively; 48 h: -9.19%, p < 0.001 and -5.70% p = 0.002 respectively) but not in CWI and Pla conditions. 10 mS and RSA performance were lower for Pla at 24 h compared to CWI and Rest conditions (p < 0.05), while no significant change was observed for 20 mS time. These data suggests that CWI and Pla intervention were more effective than the Rest conditions in recovery kinetics of muscle damage markers and physical performance. Furthermore, the effectiveness of CWI would be explained, at least in part, by the placebo effect.
Collapse
Affiliation(s)
- Nidhal Nasser
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis, Tunisie.,Institut Supérieur du Sport et de l'Education Physique de Sfax, Université de Sfax, Sfax, Tunisie
| | - Houssem Zorgati
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis, Tunisie.,Institut Supérieur du Sport et de l'Education Physique de Gafsa, Université de Gafsa, Gafsa, Tunisie
| | - Hamdi Chtourou
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis, Tunisie.,Institut Supérieur du Sport et de l'Education Physique de Sfax, Université de Sfax, Sfax, Tunisie
| | - Alexandre Guimard
- Université Sorbonne Paris Nord, Hypoxie et Poumon, H&P, INSERM, UMR 1272, Bobigny, France.,Département STAPS, Université Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
15
|
The effects of normobaric and hypobaric hypoxia on cognitive performance and physiological responses: A crossover study. PLoS One 2022; 17:e0277364. [DOI: 10.1371/journal.pone.0277364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
This partially randomised controlled, crossover study sought to investigate the effects of normobaric hypoxia (NH) and hypobaric hypoxia (HH) on cognitive performance, the physiological response at rest and after a 3-min step-test. Twenty healthy participants (10 females and 10 males, 27.6±6.2yrs, 73.6±13.7kg, 175.3±8.9cm) completed a cognitive performance test, followed by the modified Harvard-step protocol, in four environments: normobaric normoxia (NN; PiO2: 146.0±1.5mmHg), NH (PiO2: 100.9±1.3mmHg), HH at the first day of ascent (HH1: PiO2 = 105.6±0.4mmHg) and HH after an overnight stay (HH2: PiO2 = 106.0±0.5mmHg). At rest and/or exercise, SpO2, NIRS, and cardiovascular and perceptual data were collected. The cerebral tissue oxygenation index and the cognitive performance (throughput, accuracy, and reaction time) were not different between the hypoxic conditions (all p>0.05). In NH, SpO2 was higher compared to HH1 (ΔSpO2 NH vs HH1: 1.7±0.5%, p = 0.003) whilst heart rate (ΔHR NH vs HH2: 5.8±2.6 bpm, p = 0.03) and sympathetic activation (ΔSNSi NH vs HH2: 0.8±0.4, p = 0.03) were lower in NH compared to HH2. Heart rate (ΔHR HH1 vs HH2: 6.9±2.6 bpm, p = 0.01) and sympathetic action (ΔSNSi HH1 vs HH2: 0.9±0.4, p = 0.02) were both lower in HH1 compared to HH2. In conclusion, cognitive performance and cerebral oxygenation didn’t differ between the hypoxic conditions. SpO2 was only higher in NH compared to HH1. In HH2, heart rate and sympathetic activation were higher compared to both NH and HH1. These conclusions account for a PiO2 between 100–106 mmHg.
Collapse
|
16
|
Azevedo KP, Bastos JAI, de Sousa Neto IV, Pastre CM, Durigan JLQ. Different Cryotherapy Modalities Demonstrate Similar Effects on Muscle Performance, Soreness, and Damage in Healthy Individuals and Athletes: A Systematic Review with Metanalysis. J Clin Med 2022; 11:jcm11154441. [PMID: 35956058 PMCID: PMC9369651 DOI: 10.3390/jcm11154441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background: There are extensive studies focusing on non-invasive modalities to recover physiological systems after exercise-induced muscle damage (EIMD). Whole-body cryotherapy (WBC) and Partial-body cryotherapy (PBC) have been recommended for recovery after EIMD. However, to date, no systematic reviews have been performed to compare their effects on muscle performance and muscle recovery markers. Methods: This systematic review with metanalysis compared the effects of WBC and PBC on muscle performance, muscle soreness (DOMS), and markers of muscular damage following EIMD. We used Pubmed, Embase, PEDro, and Cochrane Central Register of Controlled Trials as data sources. Two independent reviewers verified the methodological quality of the studies. The studies were selected if they used WBC and PBC modalities as treatment and included muscle performance and muscle soreness (DOMS) as the primary outcomes. Secondary outcomes were creatine kinase and heart rate variability. Results: Six studies with a pooled sample of 120 patients were included. The methodological quality of the studies was moderate, with an average of 4.3 on a 0–10 scale (PEDro). Results: Both cryotherapy modalities induce similar effects without difference between them. Conclusion: WBC and PBC modalities have similar global responses on muscle performance, soreness, and markers of muscle damage.
Collapse
Affiliation(s)
- Klaus Porto Azevedo
- Rehabilitation Sciences Program, Physical Therapy Division, University of Brasilia, Brasília 72220-275, Brazil; (K.P.A.); (J.A.I.B.)
| | - Júlia Aguillar Ivo Bastos
- Rehabilitation Sciences Program, Physical Therapy Division, University of Brasilia, Brasília 72220-275, Brazil; (K.P.A.); (J.A.I.B.)
| | | | - Carlos Marcelo Pastre
- Physical Therapy Department, Paulista State University, Presidente Prudente 19060-900, Brazil;
| | - Joao Luiz Quagliotti Durigan
- Rehabilitation Sciences Program, Physical Therapy Division, University of Brasilia, Brasília 72220-275, Brazil; (K.P.A.); (J.A.I.B.)
- Correspondence: ; Tel.: +55-(61)-31078401
| |
Collapse
|
17
|
Haq A, Ribbans WJ, Hohenauer E, Baross AW. The Comparative Effect of Different Timings of Whole Body Cryotherapy Treatment With Cold Water Immersion for Post-Exercise Recovery. Front Sports Act Living 2022; 4:940516. [PMID: 35873209 PMCID: PMC9299249 DOI: 10.3389/fspor.2022.940516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Despite several established benefits of Whole Body Cryotherapy (WBC) for post-exercise recovery, there is a scarcity of research which has identified the optimum WBC protocol for this purpose. This study investigated the influence of WBC treatment timing on physiological and functional responses following a downhill running bout. An additional purpose was to compare such responses with those following cold water immersion (CWI), since there is no clear consensus as to which cold modality is more effective for supporting athletic recovery. Thirty-three male participants (mean ± SD age 37.0 ± 13.3 years, height 1.76 ± 0.07 m, body mass 79.5 ± 13.7 kg) completed a 30 min downhill run (15% gradient) at 60% VO2 max and were then allocated into one of four recovery groups: WBC1 (n = 9) and WBC4 (n = 8) underwent cryotherapy (3 min, −120°C) 1 and 4 h post-run, respectively; CWI (n = 8) participants were immersed in cold water (10 min, 15°C) up to the waist 1 h post-run and control (CON, n = 8) participants passively recovered in a controlled environment (20°C). Maximal isometric leg muscle torque was assessed pre and 24 h post-run. Blood creatine kinase (CK), muscle soreness, femoral artery blood flow, plasma IL-6 and sleep were also assessed pre and post-treatment. There were significant decreases in muscle torque for WBC4 (10.9%, p = 0.04) and CON (11.3% p = 0.00) and no significant decreases for WBC1 (5.6%, p = 0.06) and CWI (5.1%, p = 0.15). There were no significant differences between groups in muscle soreness, CK, IL-6 or sleep. Femoral artery blood flow significantly decreased in CWI (p = 0.02), but did not differ in other groups. WBC treatments within an hour may be preferable for muscle strength recovery compared to delayed treatments; however WBC appears to be no more effective than CWI. Neither cold intervention had an impact on inflammation or sleep.
Collapse
Affiliation(s)
- Adnan Haq
- Sports Studies, Moulton College, Moulton, United Kingdom
- Sport and Exercise Science, University of Northampton, Northampton, United Kingdom
- School of Health, Sport and Professional Practice, University of South Wales Sport Park, Pontypridd, United Kingdom
- *Correspondence: Adnan Haq
| | - William J. Ribbans
- Sport and Exercise Science, University of Northampton, Northampton, United Kingdom
- The County Clinic, Northampton, United Kingdom
| | - Erich Hohenauer
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Anthony W. Baross
- Sport and Exercise Science, University of Northampton, Northampton, United Kingdom
| |
Collapse
|
18
|
Efficacy of Different Cold-Water Immersion Temperatures on Neuromotor Performance in Young Athletes. Life (Basel) 2022; 12:life12050683. [PMID: 35629351 PMCID: PMC9147268 DOI: 10.3390/life12050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cold-Water-Immersion (CWI) has been frequently used to accelerate muscle recovery and to improve performance after fatigue onset. In the present study, the aim was to investigate the effects of different CWI temperatures on neuromuscular activity on quadriceps after acute fatigue protocol. Thirty-six young athletes (16.9 ± 1.4 years-old; 72.1 ± 13.8 kg; 178.4 ± 7.2 cm) were divided into three groups: passive recovery group (PRG); CWI at 5 °C group (5G); and CWI at 10 °C group (10G). All participants performed a fatigue exercise protocol; afterwards, PRG performed a passive recovery (rest), while 5G and 10G were submitted to CWI by means of 5 °C and 10 °C temperatures during 10 min, respectively. Fatigue protocol was performed by knee extension at 40% of isometric peak force from maximal isometric voluntary contraction. Electromyography was used to evaluate neuromuscular performance. The passive recovery and CWI at 5 °C were associated with normalized isometric force and quadriceps activation amplitude from 15 until 120 min after exercise-induced fatigue (F = 7.169, p < 0.001). CWI at 5 °C and 10 °C showed higher muscle activation (F = 6.850, p < 0.001) and lower median frequency (MF) than passive recovery after 15 and 30 min of fatigue (F = 5.386, p < 0.001). For neuromuscular efficiency (NME) recovery, while PRG normalized NME values after 15 min, 5G and 10G exhibited these responses after 60 and 30 min (F = 4.330, p < 0.01), respectively. Passive recovery and CWI at 5 °C and 10 °C revealed similar effects in terms of recovery of muscle strength and NME, but ice interventions resulted in higher quadriceps activation recovery.
Collapse
|
19
|
Wang Z, Fan Y, Kong X, Viroux P, Tiemessen IJH, Wu H. The Physiological Profile Following Two Popular Cold Interventions After Activity in Hot and Humid Environment. Am J Mens Health 2022; 16:15579883221079150. [PMID: 35209744 PMCID: PMC8883315 DOI: 10.1177/15579883221079150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This research aims to describe and compare the effects of partial-body cryotherapy (PBC) and cold-water immersion (CWI) on the physiological responses of soccer players after cycling in a hot and humid environment. Sixteen elite soccer players participated in three experiments, and received CWI (13°C for 15 min), PBC (110°C−140°C for 3 min), and CON (room temperature: 21°C ± 2°C), respectively, after aerobic and anaerobic cycling in a hot and humid environment (temperature: 35°C–38°C; humidity: 60%–70%). Heart rate (HR), blood lactate (BLa-), perfusion index (PI), oxygen saturation (SaO2), core temperature (Tc), skin temperature (Ts), and rating of perceived exertion (RPE) were assessed at baseline and through 20 min (5-min intervals). HR was lower in CWI than CON after 20 min (p < .05). SaO2 was higher in CWI than PBC and CON between 10 and 20 min (p < .05). Tc was lower from CWI and PBC than CON between 10 and 20 min (p < .05). Ts was lower in PBC than CWI between 15 and 20 min (p < .05). RPE was lower in PBC than CON 20 min after the exercise (p < .05). No main group differences for BLa- and PI were observed. The physiological effects of PBC are generally similar to CWI. Compared with CON, both CWI and PBC could promote the recovery of physiological indexes within 20 min of exercise in a hot and humid environment. However, PBC can lead to a decrease in SaO2 due to excessive nitrogen inhalation.
Collapse
Affiliation(s)
- Zewen Wang
- Capital University of Physical Education and Sports, Beijing, China
| | - Yongzhao Fan
- Capital University of Physical Education and Sports, Beijing, China
| | - Xiaoyang Kong
- Capital University of Physical Education and Sports, Beijing, China
| | | | | | - Hao Wu
- Capital University of Physical Education and Sports, Beijing, China
| |
Collapse
|
20
|
Moore E, Fuller JT, Buckley JD, Saunders S, Halson SL, Broatch JR, Bellenger CR. Impact of Cold-Water Immersion Compared with Passive Recovery Following a Single Bout of Strenuous Exercise on Athletic Performance in Physically Active Participants: A Systematic Review with Meta-analysis and Meta-regression. Sports Med 2022; 52:1667-1688. [PMID: 35157264 PMCID: PMC9213381 DOI: 10.1007/s40279-022-01644-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 01/10/2023]
Abstract
Background Studies investigating the effects of cold-water immersion (CWI) on the recovery of athletic performance, perceptual measures and creatine kinase (CK) have reported mixed results in physically active populations. Objectives The purpose of this systematic review was to investigate the effects of CWI on recovery of athletic performance, perceptual measures and CK following an acute bout of exercise in physically active populations. Study Design Systematic review with meta-analysis and meta-regression. Methods A systematic search was conducted in September 2021 using Medline, SPORTDiscus, Scopus, Web of Science, Cochrane Library, EmCare and Embase databases. Studies were included if they were peer reviewed and published in English, included participants who were involved in sport or deemed physically active, compared CWI with passive recovery methods following an acute bout of strenuous exercise and included athletic performance, athlete perception and CK outcome measures. Studies were divided into two strenuous exercise subgroups: eccentric exercise and high-intensity exercise. Random effects meta-analyses were used to determine standardised mean differences (SMD) with 95% confidence intervals. Meta-regression analyses were completed with water temperature and exposure durations as continuous moderator variables. Results Fifty-two studies were included in the meta-analyses. CWI improved the recovery of muscular power 24 h after eccentric exercise (SMD 0.34 [95% CI 0.06–0.62]) and after high-intensity exercise (SMD 0.22 [95% CI 0.004–0.43]), and reduced serum CK (SMD − 0.85 [95% CI − 1.61 to − 0.08]) 24 h after high-intensity exercise. CWI also improved muscle soreness (SMD − 0.89 [95% CI − 1.48 to − 0.29]) and perceived feelings of recovery (SMD 0.66 [95% CI 0.29–1.03]) 24 h after high-intensity exercise. There was no significant influence on the recovery of strength performance following either eccentric or high-intensity exercise. Meta-regression indicated that shorter time and lower temperatures were related to the largest beneficial effects on serum CK (duration and temperature dose effects) and endurance performance (duration dose effects only) after high-intensity exercise. Conclusion CWI was an effective recovery tool after high-intensity exercise, with positive outcomes occurring for muscular power, muscle soreness, CK, and perceived recovery 24 h after exercise. However, after eccentric exercise, CWI was only effective for positively influencing muscular power 24 h after exercise. Dose–response relationships emerged for positively influencing endurance performance and reducing serum CK, indicating that shorter durations and lower temperatures may improve the efficacy of CWI if used after high-intensity exercise. Funding Emma Moore is supported by a Research Training Program (Domestic) Scholarship from the Australian Commonwealth Department of Education and Training. Protocol registration Open Science Framework: 10.17605/OSF.IO/SRB9D. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-022-01644-9.
Collapse
Affiliation(s)
- Emma Moore
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, SA, Australia.
| | - Joel T Fuller
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jonathan D Buckley
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, SA, Australia
| | - Siena Saunders
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, SA, Australia
| | - Shona L Halson
- School of Behavioural and Health Sciences, McAuley at Banyo, Brisbane, QLD, Australia
| | - James R Broatch
- Institute for Health and Sport (IHES), Victoria University, Footscray, VIC, Australia
| | - Clint R Bellenger
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
21
|
Wang Y, Lu H, Li S, Zhang Y, Yan F, Huang Y, Chen X, Yang A, Han L, Ma Y. Effect of cold and heat therapies on pain relief in patients with delayed onset muscle soreness: A network meta-analysis. J Rehabil Med 2022; 54:jrm00258. [PMID: 34636405 PMCID: PMC8862647 DOI: 10.2340/jrm.v53.331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To comprehensively compare the effectiveness of cold and heat therapies for delayed onset muscle soreness using network meta-analysis. METHODS Eight Chinese and English databases were searched from date of establishment of the database to 31 May 2021. Cochrane risk-of-bias tool was used to analyse the included randomized controlled trials. Potential papers were screened for eligibility, and data were extracted by 2 independent researchers. RESULTS A total of 59 studies involving 1,367 patients were eligible for this study. Ten interventions were examined: contrast water therapy, phase change material, the novel modality of cryotherapy, cold-water immersion, hot/warm-water immersion, cold pack, hot pack, ice massage, ultrasound, and passive recovery. Network meta-analysis results showed that: (i) within 24 h after exercise, hot pack was the most effective for pain relief, followed by contrast water therapy; (ii) within 48 h, the ranking was hot pack, followed by the novel modality of cryotherapy; and (iii) over 48 h post-exercise, the effect of the novel modality of cryotherapy ranked first. CONCLUSION Due to the limited quality of the included studies, further well-designed research is needed to draw firm conclusions about the effectiveness of cold and heat therapies for delayed onset muscle soreness.
Collapse
|
22
|
Matsumura N, Nagashima S, Negoro K, Motomura Y, Shimoura K, Tateuchi H, Ichihashi N, Aoyama T, Nagai-Tanima M. The effect of Liquid ice after high-intensity exercise on muscle function compared to Block ice. J Exerc Sci Fit 2022; 20:23-26. [PMID: 34976076 PMCID: PMC8666667 DOI: 10.1016/j.jesf.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/10/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Cryotherapy is used to recover muscle damage after exercise and to treat acute sports injuries. Liquid ice (LI) can keep cold for a long time, and is assumed more effective than block ice (BI). From this, the aim of this study was to investigate the effects of LI on the change of passive stiffness (PS) as muscle function and to validate the effectiveness of LI compared to BI. We performed the experiment as part of a case series of verification of the effects of cryotherapy. 22 healthy men (target area: right leg) were randomized to two groups: LI group and BI group. PS was measured three times during experiment protocol, pre: before exercise; post; after treating each cryotherapy after exercise; 48h: 48 hours after pre. Statistical analysis compared the PS, the amount of change in PS, and the rate of change in PS between the two groups. The rate of change between pre and 48h in LI was significantly lower compared to that in BI (p = 0.03). There was no significant difference regarding other results between groups. It revealed that the difference of effect between LI and BI for PS of muscles after high-intensity exercises. These results could be helpful for the choice of intervention for reducing muscle stiffness after exercise and at sports field.
Collapse
Affiliation(s)
- Natsuki Matsumura
- Human Health Science, Graduate School of Medicine, Kyoto University, Japan
| | - Shohei Nagashima
- Human Health Science, Graduate School of Medicine, Kyoto University, Japan
| | - Kaho Negoro
- Human Health Science, Graduate School of Medicine, Kyoto University, Japan
| | - Yoshiki Motomura
- Human Health Science, Graduate School of Medicine, Kyoto University, Japan
| | - Kanako Shimoura
- Human Health Science, Graduate School of Medicine, Kyoto University, Japan
| | - Hiroshige Tateuchi
- Human Health Science, Graduate School of Medicine, Kyoto University, Japan
| | - Noriaki Ichihashi
- Human Health Science, Graduate School of Medicine, Kyoto University, Japan
| | - Tomoki Aoyama
- Human Health Science, Graduate School of Medicine, Kyoto University, Japan
| | - Momoko Nagai-Tanima
- Human Health Science, Graduate School of Medicine, Kyoto University, Japan
- Corresponding author. Human Health Science, Graduate School of Medicine, Kyoto University, Japan.
| |
Collapse
|
23
|
Bouzigon R, Dupuy O, Tiemessen I, De Nardi M, Bernard JP, Mihailovic T, Theurot D, Miller ED, Lombardi G, Dugué BM. Cryostimulation for Post-exercise Recovery in Athletes: A Consensus and Position Paper. Front Sports Act Living 2021; 3:688828. [PMID: 34901847 PMCID: PMC8652002 DOI: 10.3389/fspor.2021.688828] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Recovery after exercise is a crucial key in preventing muscle injuries and in speeding up the processes to return to homeostasis level. There are several ways of developing a recovery strategy with the use of different kinds of traditional and up-to-date techniques. The use of cold has traditionally been used after physical exercise for recovery purposes. In recent years, the use of whole-body cryotherapy/cryostimulation (WBC; an extreme cold stimulation lasting 1-4 min and given in a cold room at a temperature comprised from -60 to -195°C) has been tremendously increased for such purposes. However, there are controversies about the benefits that the use of this technique may provide. Therefore, the main objectives of this paper are to describe what is whole body cryotherapy/cryostimulation, review and debate the benefits that its use may provide, present practical considerations and applications, and emphasize the need of customization depending on the context, the purpose, and the subject's characteristics. This review is written by international experts from the working group on WBC from the International Institute of Refrigeration.
Collapse
Affiliation(s)
- Romain Bouzigon
- Université de Franche-Comté, UFR STAPS Besançon, Laboratoire C3S (EA4660), Axe Sport Performance, Besançon, France
- Society Inside the Athletes 3.0, Sport Performance Optimization Complex (COPS25), Besançon, France
- Society Aurore Concept, Noisiel, France
| | - Olivier Dupuy
- Université de Poitiers, Laboratoire MOVE (EA 6314), Faculté des Sciences du Sport, Poitiers, France
- Ecole de Kinésiologie et des Sciences de l'Actvivité Physique (EKSAP), Faculté de Medecine, Université de Montreal, Montreal, QC, Canada
| | - Ivo Tiemessen
- ProCcare BVBA, Antwerp, Belgium
- Mobilito Sport, Amsterdam, Netherlands
| | - Massimo De Nardi
- Krioplanet Ltd, Treviglio, Italy
- Department of Experimental Medicine, Università Degli Studi di Genova, Genoa, Italy
| | - Jean-Pierre Bernard
- Air Liquide Group International Expert in Cryogenic Applications Cryolor, Ennery, France
| | - Thibaud Mihailovic
- Université de Franche-Comté, UFR STAPS Besançon, Laboratoire C3S (EA4660), Axe Sport Performance, Besançon, France
- Society Inside the Athletes 3.0, Sport Performance Optimization Complex (COPS25), Besançon, France
| | - Dimitri Theurot
- Université de Poitiers, Laboratoire MOVE (EA 6314), Faculté des Sciences du Sport, Poitiers, France
| | | | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Benoit Michel Dugué
- Université de Poitiers, Laboratoire MOVE (EA 6314), Faculté des Sciences du Sport, Poitiers, France
| |
Collapse
|
24
|
JUNAIDI J, SOBARNA AS, APRIYANTO TA, APRIANTONO TA, WINATA BW, FAHMI MF, INAROTA LI. Effects of cold-water immersion to aid futsal athlete’s recovery after exercise induced muscle damage. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2021. [DOI: 10.23736/s0393-3660.20.04431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Partridge EM, Cooke J, McKune AJ, Pyne DB. Pre-Exercise Whole- or Partial-Body Cryotherapy Exposure to Improve Physical Performance: A Systematic Review. Sports (Basel) 2021; 9:135. [PMID: 34678916 PMCID: PMC8537366 DOI: 10.3390/sports9100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Whole- (WBC) and partial-body cryotherapy (PBC) are commonly used sports medicine modalities for the treatment of injury and exercise recovery. Physiological and perceptual effects have the potential to be utilised in a novel application that involves pre-exercise WBC and PBC exposure to improve physical performance. A systematic literature search of multiple databases was conducted in July 2021 to identify and evaluate the effects of pre-exercise exposure of WBC or PBC on physical performance measures, and any potential translational effects. The following inclusion criteria were applied: (1) use of WBC or PBC exposure pre-exercise, (2) use of WBC or PBC in healthy and/or athletic populations, (3) control group was used in the data collection, and (4) investigated physiological, psychosocial or direct physical performance impacts of pre-exercise cryotherapy exposure. A total of 759 titles were identified, with twelve relevant studies satisfying the inclusion criteria after full-text screening. The twelve studies were categorised into three key areas: performance testing (n = 6), oxidative stress response (n = 4) and lysosomal enzyme activity (n = 2). The potential for eliciting favourable physical and physiological responses from pre-exercise WBC or PBC is currently unclear with a paucity of good quality research available. Furthermore, a lack of standardisation of cryotherapy protocols is a current challenge.
Collapse
Affiliation(s)
- Emily M. Partridge
- Research Institute for Sport and Exercise Science (UCRISE), University of Canberra, Bruce, ACT 2617, Australia; (J.C.); (A.J.M.); (D.B.P.)
| | - Julie Cooke
- Research Institute for Sport and Exercise Science (UCRISE), University of Canberra, Bruce, ACT 2617, Australia; (J.C.); (A.J.M.); (D.B.P.)
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia
| | - Andrew J. McKune
- Research Institute for Sport and Exercise Science (UCRISE), University of Canberra, Bruce, ACT 2617, Australia; (J.C.); (A.J.M.); (D.B.P.)
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - David B. Pyne
- Research Institute for Sport and Exercise Science (UCRISE), University of Canberra, Bruce, ACT 2617, Australia; (J.C.); (A.J.M.); (D.B.P.)
| |
Collapse
|
26
|
Hohenauer E, Costello JT, Deliens T, Clarys P, Stoop R, Clijsen R. Partial-body cryotherapy (-135°C) and cold-water immersion (10°C) after muscle damage in females. Scand J Med Sci Sports 2019; 30:485-495. [PMID: 31677292 PMCID: PMC7027844 DOI: 10.1111/sms.13593] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/05/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
This randomized controlled trial examined the effects of cold‐water immersion (CWI), partial‐body cryotherapy (PBC), or a passive control (CON) on physiological and recovery variables following exercise‐induced muscle damage (EIMD, 5 × 20 drop jumps) in females. Twenty‐eight females were allocated to PBC (30 seconds at −60°C, 2 minutes at −135°C), CWI (10 minutes at 10°C), or CON (10 minutes resting). Muscle oxygen saturation (SmO2), cutaneous vascular conductance (CVC), mean arterial pressure (MAP), and local skin temperature were assessed at baseline and through 60 minutes (10‐minute intervals), while delayed onset of muscle soreness (DOMS), muscle swelling, maximum voluntary isometric contraction (MVIC), and vertical jump performance (VJP) were assessed up to 72 hours (24‐hour intervals) following treatments. SmO2 was lower in PBC (Δ‐2.77 ± 13.08%) and CWI (Δ‐5.91 ± 11.80%) compared with CON (Δ18.96 ± 1.46%) throughout the 60‐minute follow‐up period (P < .001). CVC was lower from PBC (92.7 ± 25.0%, 90.5 ± 23.4%) and CWI (90.3 ± 23.5%, 88.1 ± 22.9%) compared with CON (119.0 ± 5.1 and 116.1 ± 6.6%, respectively) between 20 and 30 minutes (P < .05). Mean skin temperature was lower from CWI vs PBC (between 10 and 40 minutes, P < .05). Mean skin temperature was higher in CON compared with CWI up to 60 minutes and compared with PBC up to 30 minutes (P < .05). DOMS was lower following both PBC and CWI compared with CON through 72‐hour (P < .05), with no difference between groups. No main group differences for swelling, MVIC, and VJP were observed. In conclusion, CWI elicited generally greater physiological effects compared with PBC while both interventions were more effective than CON in reducing DOMS in females, but had no effect on functional measures or swelling.
Collapse
Affiliation(s)
- Erich Hohenauer
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland.,International University of Applied Sciences THIM, Landquart, Switzerland.,Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joseph T Costello
- School of Sport, Health & Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Tom Deliens
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Clarys
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rahel Stoop
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland.,International University of Applied Sciences THIM, Landquart, Switzerland
| | - Ron Clijsen
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland.,International University of Applied Sciences THIM, Landquart, Switzerland.,Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|