1
|
Strnad A, Sikorova K, Rapti A, Adam K, Charikiopoulou M, Kocourkova L, Strakova G, Kallianos A, Bouros D, Petrek M. Association of HLA variants and related SNPs with sarcoidosis and its phenotypes in the Greek patients. Gene 2024; 927:148706. [PMID: 38885820 DOI: 10.1016/j.gene.2024.148706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Affiliation(s)
- Adam Strnad
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Katerina Sikorova
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Angeliki Rapti
- General Hospital Chest Diseases of Athens "Sotiria", Athens, Greece
| | - Kalliopi Adam
- Department of Immunology and Histocompatibility, Laiko General Hospital, Athens, Greece
| | | | - Lenka Kocourkova
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Gabriela Strakova
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | | | - Demosthenes Bouros
- Medical School, National and Kapodistrian University of Athens First Academic Department of Pneumonology, Interstitial Lung Diseases Unit, Hospital for Diseases of the Chest "Sotiria", Athens, Greece
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Muñiz-Castrillo S, Villagrán-García M, Peris Sempere V, Farina A, Pinto AL, Picard G, Rogemond V, Honnorat J, Mignot E. HLA-DR3 ~ DQ2 associates with sensory neuropathy in paraneoplastic neurological syndromes with Hu antibodies. J Neurol 2024; 271:6336-6342. [PMID: 38990347 PMCID: PMC11377461 DOI: 10.1007/s00415-024-12534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVES To investigate the association between human leukocyte antigen (HLA) and paraneoplastic neurological syndromes (PNS) with Hu antibodies, and potential specificities according to clinical presentation and cancer status. METHODS HLA genotypes at four-digit resolution were imputed from available genome-wide association data. Allele carrier frequencies were compared between patients (whole cohort, n = 100, and according to clinical presentation and cancer status) and matched healthy controls (n = 508) using logistic regression controlled by the three main principal components. RESULTS The clinical presentation of 100 anti-Hu patients involved the central nervous system (28, 28%), the peripheral nervous system (36, 36%) or both combined (36, 36%). Cancer diagnosis was certain in 75 (75%). HLA association analyses revealed that anti-Hu PNS patients were more frequently carriers of DQA1*05:01 (39% vs. 19%, OR = 2.8 [1.74-4.49]), DQB1*02:01 (39% vs. 18%, OR = 2.88 [1.79-4.64]) and DRB1*03:01 (41% vs. 19%, OR = 2.92 [1.80-4.73]) than healthy controls. Remarkably, such DR3 ~ DQ2 association was absent in patients with pure central involvement, but more specific to those manifesting with peripheral involvement: DQA1*05:01 (OR = 3.12 [1.48-6.60]), DQB1*02:01 (OR = 3.35 [1.57-7.15]) and DRB1*03:01 (OR = 3.62 [1.64-7.97]); being even stronger in cases with sensory neuropathy, DQA1*05:01 (OR = 4.41 [1.89-10.33]), DQB1*02:01 (OR = 4.85 [2.04-11.53]) and DRB1*03:01 (OR = 5.79 [2.28-14.74]). Similarly, DR3 ~ DQ2 association was only observed in patients with cancer. DISCUSSION Patients with anti-Hu PNS show different HLA profiles according to clinical presentation and, probably, cancer status, suggesting pathophysiological differences.
Collapse
Affiliation(s)
- Sergio Muñiz-Castrillo
- Stanford Center for Sleep Sciences and Medicine, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
| | - Macarena Villagrán-García
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Vicente Peris Sempere
- Stanford Center for Sleep Sciences and Medicine, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
| | - Antonio Farina
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Laurie Pinto
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Géraldine Picard
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Véronique Rogemond
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Honnorat
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Emmanuel Mignot
- Stanford Center for Sleep Sciences and Medicine, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
3
|
Houen G. Auto-immuno-deficiency syndromes. Autoimmun Rev 2024; 23:103610. [PMID: 39209011 DOI: 10.1016/j.autrev.2024.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autoimmune diseases constitute a broad, heterogenous group with many diverse and often overlapping symptoms. Even so, they are traditionally classified as either systemic, rheumatic diseases or organ-directed diseases. Several theories exist about autoimmune diseases, including defective self-recognition, altered self, molecular mimicry, bystander activation and epitope spreading. While there is no consensus about these theories, it is generally accepted that genetic, pre-disposing factors in combination with environmental factors can result in autoimmune disease. The relative contribution of genetic and environmental factors varies between diseases, as does the significance of individual contributing factors within related diseases. Among the genetic factors, molecules involved in antigen (Ag) recognition, processing, and presentation stand out (e.g., MHC I and II) together with molecules involved in immune signaling and regulation of cellular interactions (i.e., immuno-phenotypes). Also, various immuno-deficiencies have been linked to development of autoimmune diseases. Among the environmental factors, infections (e.g., viruses) have attracted most attention, but factors modulating the immune system have also been the subject of much research (e.g., sunlight and vitamin D). Multiple sclerosis currently stands out due to a very strong and proven association with Epstein-Barr virus infection, notably in cases of late infection and in cases of EBV-associated mononucleosis. Thus, a common picture is emerging that both systemic and organ-directed autoimmune diseases may appropriately be described as auto-immuno-deficiency syndromes (AIdeSs), a concept that emphasizes and integrates existing knowledge on the role of immuno-deficiencies and chronic infections with development of overlapping disease syndromes with variable frequencies of autoantibodies and/or autoreactive T cells. This review integrates and exemplifies current knowledge on the interplay of genetically determined immuno-phenotypes and chronic infections in the development of AIdeSs.
Collapse
Affiliation(s)
- Gunnar Houen
- Department of Neurology and Translational Research Center (TRACE), Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
| |
Collapse
|
4
|
Chen Y, Wang J, An C, Bao S, Zhang C. The role and research progress of macrophages after heart transplantation. Heliyon 2024; 10:e33844. [PMID: 39027574 PMCID: PMC11255595 DOI: 10.1016/j.heliyon.2024.e33844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Since the 60s of the 20th century, heart transplantation has been the best treatment for patients with end-stage heart failure. Due to the increasing number of patients, how to expand the number of donor organs and enhance immune compatibility has become an urgent problem to be solved at this stage. Although current immunosuppression is effective, its side effects are also quite obvious, such as opportunistic infections and malignant tumors. In this review, we focus on the important role in macrophages after heart transplantation and their potential targets for achieving allogeneic graft tolerance, in order to improve effective graft survival and reduce infection and the occurrence of malignant tumors.
Collapse
Affiliation(s)
- Yao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - JianPeng Wang
- School of First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Cheng An
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - ShanQing Bao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - ChengXin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| |
Collapse
|
5
|
Muñiz-Castrillo S, Honnorat J. Genetic predisposition to autoimmune encephalitis and paraneoplastic neurological syndromes. Curr Opin Neurol 2024; 37:329-337. [PMID: 38483154 DOI: 10.1097/wco.0000000000001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
PURPOSE OF REVIEW We summarize the recent discoveries on genetic predisposition to autoimmune encephalitis and paraneoplastic neurological syndromes (PNS), emphasizing clinical and pathophysiological implications. RECENT FINDINGS The human leukocyte antigen (HLA) is the most studied genetic factor in autoimmune encephalitis and PNS. The HLA haplotype 8.1, which is widely known to be related to systemic autoimmunity, has been only weakly associated with a few types of autoimmune encephalitis and PNS. However, the strongest and most specific associations have been reported in a subgroup of autoimmune encephalitis that comprises antileucine-rich glioma-inactivated 1 (LGI1) limbic encephalitis, associated with DRB1∗07 : 01 , anticontactin-associated protein-like 2 (CASPR2) limbic encephalitis, associated with DRB1∗11 : 01 , and anti-IgLON5 disease, associated with DRB1∗10 : 01∼DQA1∗01∼DQB1∗05 . Non-HLA genes have been poorly investigated so far in autoimmune encephalitis, mainly in those lacking HLA associations such as anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, with only a few genome-wide association studies (GWAS) reporting equivocal results principally limited by small sample size. SUMMARY Genetic predisposition seems to be driven mostly by HLA in a group of autoimmune encephalitis characterized by being nonparaneoplastic and having predominantly IgG4 autoantibodies. The contribution of non-HLA genes, especially in those diseases lacking known or strong HLA associations, will require large cohorts enabling GWAS to be powerful enough to render meaningful results.
Collapse
Affiliation(s)
- Sergio Muñiz-Castrillo
- Stanford Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, California, USA
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon
| | - Jérôme Honnorat
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon
- MeLiS Institute - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
6
|
Marzouka NAD, Alnaqbi H, Al-Aamri A, Tay G, Alsafar H. Investigating the genetic makeup of the major histocompatibility complex (MHC) in the United Arab Emirates population through next-generation sequencing. Sci Rep 2024; 14:3392. [PMID: 38337023 PMCID: PMC10858242 DOI: 10.1038/s41598-024-53986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
The Human leukocyte antigen (HLA) molecules are central to immune response and have associations with the phenotypes of various diseases and induced drug toxicity. Further, the role of HLA molecules in presenting antigens significantly affects the transplantation outcome. The objective of this study was to examine the extent of the diversity of HLA alleles in the population of the United Arab Emirates (UAE) using Next-Generation Sequencing methodologies and encompassing a larger cohort of individuals. A cohort of 570 unrelated healthy citizens of the UAE volunteered to provide samples for Whole Genome Sequencing and Whole Exome Sequencing. The definition of the HLA alleles was achieved through the application of the bioinformatics tools, HLA-LA and xHLA. Subsequently, the findings from this study were compared with other local and international datasets. A broad range of HLA alleles in the UAE population, of which some were previously unreported, was identified. A comparison with other populations confirmed the current population's unique intertwined genetic heritage while highlighting similarities with populations from the Middle East region. Some disease-associated HLA alleles were detected at a frequency of > 5%, such as HLA-B*51:01, HLA-DRB1*03:01, HLA-DRB1*15:01, and HLA-DQB1*02:01. The increase in allele homozygosity, especially for HLA class I genes, was identified in samples with a higher level of genome-wide homozygosity. This highlights a possible effect of consanguinity on the HLA homozygosity. The HLA allele distribution in the UAE population showcases a unique profile, underscoring the need for tailored databases for traditional activities such as unrelated transplant matching and for newer initiatives in precision medicine based on specific populations. This research is part of a concerted effort to improve the knowledge base, particularly in the fields of transplant medicine and investigating disease associations as well as in understanding human migration patterns within the Arabian Peninsula and surrounding regions.
Collapse
Affiliation(s)
- Nour Al Dain Marzouka
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Amira Al-Aamri
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Guan Tay
- Division of Psychiatry, Faculty of Health and Medical Sciences, Medical School, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Dara L, Ghabril M, Phillips E, Kleiner D, Chalasani N. A 68-Year-Old Woman With Unexplained Liver Enzyme Elevation and Active Chronic Hepatitis: Beware of Drug-Induced Autoimmune-Like Hepatitis. Gastroenterology 2024; 166:259-266.e1. [PMID: 37797776 DOI: 10.1053/j.gastro.2023.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Affiliation(s)
- Lily Dara
- Division of GI and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Marwan Ghabril
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Elizabeth Phillips
- Center for Drug Interactions and Immunology, Division of Infectious Diseases, Department of Medicine, Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
8
|
Vică ML, Dobreanu M, Curocichin G, Matei HV, Bâlici Ș, Vușcan ME, Chiorean AD, Nicula GZ, Pavel Mironescu DC, Leucuța DC, Teodoru CA, Siserman CV. The Influence of HLA Polymorphisms on the Severity of COVID-19 in the Romanian Population. Int J Mol Sci 2024; 25:1326. [PMID: 38279325 PMCID: PMC10816224 DOI: 10.3390/ijms25021326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
In this study, we aimed to investigate whether specific HLA alleles found in patients from Romania and the Republic of Moldova were associated with the severity of COVID-19 infection and its associated mortality. We analyzed the HLA alleles at the -A, -B, -C, -DRB1, and -DQB1 loci in a cohort of 130 individuals with severe and extremely severe forms of COVID-19, including 44 individuals who died. We compared these findings to a control group consisting of individuals who had either not been diagnosed with COVID-19 or had experienced mild forms of the disease. Using multivariate logistic regression models, we discovered that the B*27 and B*50 alleles were associated with an increased susceptibility to developing a severe form of COVID-19. The A*33 and C*15 alleles showed potential for offering protection against the disease. Furthermore, we identified two protective alleles (A*03 and DQB1*02) against the development of extremely severe forms of COVID-19. By utilizing score statistics, we established a statistically significant association between haplotypes and disease severity (p = 0.021). In summary, this study provides evidence that HLA genotype plays a role in influencing the clinical outcome of COVID-19 infection.
Collapse
Affiliation(s)
- Mihaela Laura Vică
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Minodora Dobreanu
- Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
- Department of Laboratory Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Târgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Târgu Mureș, Romania
| | - Ghenadie Curocichin
- Department of Family Medicine, “Nicolae Testemițanu” State University of Medicine and Pharmacy, MD-2004 Chișinău, Moldova;
| | - Horea Vladi Matei
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Ștefana Bâlici
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
| | - Mihaela Elvira Vușcan
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Alin Dan Chiorean
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Emergency Clinical Hospital for Children, 400370 Cluj-Napoca, Romania
| | - Gheorghe Zsolt Nicula
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
| | - Daniela Cristina Pavel Mironescu
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Daniel Corneliu Leucuța
- Department of Medical Informatics and Biostatistics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Cosmin Adrian Teodoru
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Costel Vasile Siserman
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
- Department of Legal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Khoo T, Lilleker JB, Thong BYH, Leclair V, Lamb JA, Chinoy H. Epidemiology of the idiopathic inflammatory myopathies. Nat Rev Rheumatol 2023; 19:695-712. [PMID: 37803078 DOI: 10.1038/s41584-023-01033-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
The idiopathic inflammatory myopathies (IIMs) are a heterogeneous group of systemic autoimmune diseases that affect the skeletal muscles and can also involve the skin, joints, lungs and heart. The epidemiology of IIM is obscured by changing classification criteria and the inherent shortcomings of case identification using healthcare record diagnostic coding. The incidence of IIM is estimated to range from 0.2 to 2 per 100,000 person-years, with prevalence from 2 to 25 per 100,000 people. Although the effects of age and gender on incidence are known, there is only sparse understanding of ethnic differences, particularly in indigenous populations. The incidence of IIM has reportedly increased in the twenty-first century, but whether this is a genuine increase is not yet known. Understanding of the genetic risk factors for different IIM subtypes has advanced considerably. Infections, medications, malignancy and geography are also commonly identified risk factors. Potentially, the COVID-19 pandemic has altered IIM incidence, although evidence of this occurrence is limited to case reports and small case series. Consideration of the current understanding of the epidemiology of IIM can highlight important areas of interest for future research into these rare diseases.
Collapse
Affiliation(s)
- Thomas Khoo
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- School of Medicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Rheumatology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK
| | - James B Lilleker
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neuroscience, Manchester Academic Health Science Centre, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Bernard Yu-Hor Thong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Valérie Leclair
- Department of Medicine, Division of Rheumatology, McGill University, Montreal, Canada
| | - Janine A Lamb
- Epidemiology and Public Health Group, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Hector Chinoy
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Department of Rheumatology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK.
| |
Collapse
|
10
|
Crow MK. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis 2023; 82:999-1014. [PMID: 36792346 DOI: 10.1136/ard-2022-223741] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Research elucidating the pathogenesis of systemic lupus erythematosus (SLE) has defined two critical families of mediators, type I interferon (IFN-I) and autoantibodies targeting nucleic acids and nucleic acid-binding proteins, as fundamental contributors to the disease. On the fertile background of significant genetic risk, a triggering stimulus, perhaps microbial, induces IFN-I, autoantibody production or most likely both. When innate and adaptive immune system cells are engaged and collaborate in the autoimmune response, clinical SLE can develop. This review describes recent data from genetic analyses of patients with SLE, along with current studies of innate and adaptive immune function that contribute to sustained IFN-I pathway activation, immune activation and autoantibody production, generation of inflammatory mediators and tissue damage. The goal of these studies is to understand disease mechanisms, identify therapeutic targets and stimulate development of therapeutics that can achieve improved outcomes for patients.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
11
|
Gerencer M, McGuffin LJ. Are the integrin binding motifs within SARS CoV-2 spike protein and MHC class II alleles playing the key role in COVID-19? Front Immunol 2023; 14:1177691. [PMID: 37492575 PMCID: PMC10364474 DOI: 10.3389/fimmu.2023.1177691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/22/2023] [Indexed: 07/27/2023] Open
Abstract
The previous studies on the RGD motif (aa403-405) within the SARS CoV-2 spike (S) protein receptor binding domain (RBD) suggest that the RGD motif binding integrin(s) may play an important role in infection of the host cells. We also discussed the possible role of two other integrin binding motifs that are present in S protein: LDI (aa585-587) and ECD (661-663), the motifs used by some other viruses in the course of infection. The MultiFOLD models for protein structure analysis have shown that the ECD motif is clearly accessible in the S protein, whereas the RGD and LDI motifs are partially accessible. Furthermore, the amino acids that are present in Epstein-Barr virus protein (EBV) gp42 playing very important role in binding to the HLA-DRB1 molecule and in the subsequent immune response evasion, are also present in the S protein heptad repeat-2. Our MultiFOLD model analyses have shown that these amino acids are clearly accessible on the surface in each S protein chain as monomers and in the homotrimer complex and bind to HLA-DRB1 β chain. Therefore, they may have the identical role in SARS CoV-2 immune evasion as in EBV infection. The prediction analyses of the MHC class II binding peptides within the S protein have shown that the RGD motif is present in the core 9-mer peptide IRGDEVRQI within the two HLA-DRB1*03:01 and HLA-DRB3*01.01 strong binding 15-mer peptides suggesting that RGD motif may be the potential immune epitope. Accordingly, infected HLA-DRB1*03:01 or HLA-DRB3*01.01 positive individuals may develop high affinity anti-RGD motif antibodies that react with the RGD motif in the host proteins, like fibrinogen, thrombin or von Willebrand factor, affecting haemostasis or participating in autoimmune disorders.
Collapse
Affiliation(s)
| | - Liam J. McGuffin
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
12
|
Che WI, Westerlind H, Lundberg IE, Hellgren K, Kuja-Halkola R, Holmqvist ME. Familial autoimmunity in patients with idiopathic inflammatory myopathies. J Intern Med 2023; 293:200-211. [PMID: 36165332 PMCID: PMC10092836 DOI: 10.1111/joim.13573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Familial associations can be indicators of shared genetic susceptibility between two diseases. Previous data on familial autoimmunity in patients with idiopathic inflammatory myopathies (IIM) are scarce and inconsistent. OBJECTIVES To investigate which autoimmune diseases (ADs) may share genetic susceptibility with IIM, we examined the familial associations between IIM and different ADs. METHODS In this Swedish population-based family study, we assembled 7615 first-degree relatives (FDRs) of 1620 patients with IIM and 37,309 relatives of 7797 matched individuals without IIM. Via register linkages, we ascertained rheumatoid arthritis, other rheumatic inflammatory diseases (RIDs), multiple sclerosis, inflammatory bowel diseases (IBD), type 1 diabetes mellitus, autoimmune thyroid diseases (AITD), coeliac disease (CeD) and myasthenia gravis among the FDRs. We estimated the familial association between IIM and each AD using conditional logistic regression and performed subgroup analyses by kinship. RESULTS Patients with IIM had significantly higher odds of having ≥1 FDR affected by other RIDs (adjusted odds ratio [aOR] = 1.40, 95% confidence interval [CI] 1.11-1.78) and greater odds of having ≥2 FDRs affected by CeD (aOR = 3.57, 95% CI 1.28-9.92) compared to the individuals without IIM. In the analyses of any FDR pairs, we observed familial associations for other RIDs (aOR = 1.34, 95% CI 1.14-1.56), IBD (aOR = 1.20, 95% CI 1.02-1.41), AITD (aOR = 1.10, 95% CI 1.02-1.19) and CeD (aOR = 1.37, 95% CI 1.08-1.74) while associations for other ADs were not statistically significant. CONCLUSION The observed familial associations may suggest that IIM shares genetic susceptibility with various ADs, information that may be useful for clinical counselling and guiding future genetic studies of IIM.
Collapse
Affiliation(s)
- Weng Ian Che
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Helga Westerlind
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,ME Gastro, Derm and Rheuma, Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Hellgren
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marie E Holmqvist
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Baker J, Seiffert-Sinha K, Sinha AA. Patient genetics shape the autoimmune response in the blistering skin disease pemphigus vulgaris. Front Immunol 2023; 13:1064073. [PMID: 36703961 PMCID: PMC9871500 DOI: 10.3389/fimmu.2022.1064073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Background and aim Pemphigus vulgaris (PV) is known to have one of the strongest HLA associations among autoimmune diseases. DRB1*0402 and DQB1*0503 in particular are significantly overrepresented in PV patients in certain worldwide populations. Yet, there remain significant gaps in our understanding regarding the precise link between PV-associated HLA molecules, the specificity of the autoimmune response, and clinical expression. In this study we assessed correlations between factors including HLA genotype, ethnicity, autoantibody levels, and lesion distribution in a cohort of 293 patients. Methods and population Participants were recruited from multiple outpatient dermatology clinic settings and patient support meetings in the USA. On intake, patients provided venous blood samples and answered questionnaires regarding their current disease activity. Results Eighty-one percent of patients typed as either DRB1*0402 or DQB1*0503 with a high prevalence of DRB1*0402 in patients of Ashkenazi Jewish or Caucasian (non-Jewish) descent (86% and 42%, respectively) and DQB1*0503 in patients of Southeast Asian descent (78%). Patients typing as HLA DRB1*0402 had higher levels of anti-desmoglein (Dsg)3 antibodies (204.6 +/- 340.5 IU/ml) than patients without DRB1*0402 (138.5 +/- 236.4 IU/ml) (p=0.03) and had mucosal only lesions more often than cutaneous only or mucocutaneous lesions. Patients typing as DQB1*0503 had higher levels of anti-Dsg1 antibodies (47.3 +/- 59.8 IU/ml) compared to other groups (27.8 +/- 43.7 IU/ml) (p=0.06) and higher rates of mucocutaneous disease than other lesion types. We also report an unexpected HLA association of DRB1*0804 in PV patients of African descent. Sixty-four percent of this population carried the DRB1*0804 allele, and presented with highly elevated levels of anti-Dsg3 (p=0.02). However, neither African heritage nor the presence of DRB1*0804 correlated with a predilection to any specific lesion morphology. Patients that carried neither DRB1*0402, nor DQB1*0503 or DRB1*0804 had the lowest levels of anti-Dsg3 antibodies (60.0 +/- 80.0 IU/ml) and the highest rate of solely cutaneous disease compared to carriers of these alleles. Conclusion Our data illuminate the broader impact of genetic factors on disease development by showing that differences in HLA expression among patients and ethnicities play a large role in driving distinct patterns of antibody selection and disease phenotype in PV. These findings provide insights regarding clinical heterogeneity, and are relevant to developing improved, patient tailored management strategies.
Collapse
|
14
|
Sikorova K, Osoegawa K, Kocourkova L, Strnad A, Petrkova J, Fernández-Viña MA, Doubkova M, Petrek M. Association between sarcoidosis and HLA polymorphisms in a Czech population from Central Europe: focus on a relationship with clinical outcome and treatment. Front Med (Lausanne) 2023; 10:1094843. [PMID: 37153085 PMCID: PMC10160604 DOI: 10.3389/fmed.2023.1094843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Background Sarcoidosis is an immune-mediated systemic disease with unknown etiology affecting the lung predominantly. The clinical manifestation of sarcoidosis is rather diverse ranging from Löfgren's syndrome to fibrotic disease. Also, it differs among patients with distinct geographical and ethnic origins, consistent with environmental and genetic factors' role in its pathogenesis. Of those, the polymorphic genes of the HLA system have been previously implicated in sarcoidosis. Therefore, we have performed an association study in a well-defined cohort of Czech patients aiming to define how variation in HLA genes, may contribute to disease origin and development. Materials and methods Total of the 301 Czech unrelated sarcoidosis patients were diagnosed according to international guidelines. In those, HLA typing was performed using next-generation sequencing. The allele frequencies at six HLA loci (HLA-A,-B,-C,-DRB1,-DQA1, and -DQB1) observed in the patients were compared with HLA allele distribution determined in 309 unrelated healthy Czech subjects; sub-analyses of relationships between HLA and distinct sarcoidosis clinical phenotypes were performed. Associations were assessed by two-tailed Fischer's exact test with correction for multiple comparisons. Results We report two variants, HLA-DQB1*06:02, and HLA-DQB1*06:04, as risk factors for sarcoidosis, and three variants, HLA-DRB1*01:01, HLA-DQA1*03:01, and HLA-DQB1*03:02 as protective factors. HLA-B*08:01, HLA-C*07:01, HLA-DRB1*03:01, HLA-DQA1*05:01, and HLA-DQB1*02:01 variants associated with Löfgren's syndrome, a more benign phenotype. HLA- DRB1*03:01 and HLA-DQA1*05:01 alleles were connected with better prognosis-chest X-ray (CXR) stage 1, disease remission, and non-requirement of corticosteroid treatment. The alleles HLA-DRB1*11:01 and HLA-DQA1*05:05 are associated with more advanced disease represented by the CXR stages 2-4. HLA-DQB1*05:03 associated with sarcoidosis extrapulmonary manifestation. Conclusion In our Czech cohort, we document some associations between sarcoidosis and HLA previously described in other populations. Further, we suggest novel susceptibility factors for sarcoidosis, such as HLA-DQB1*06:04, and characterize associations between HLA and sarcoidosis clinical phenotypes in Czech patients. Our study also extends the role of the 8.1 ancestral haplotype (HLA-A*01:01∼HLA-B*08:01∼HLA-C*07:01∼HLA-DRB1*03:01∼HLA-DQA1*05:01∼HLA-DQB1*02:01), already implicated in autoimmune diseases, as a possible predictor of better prognosis in sarcoidosis. The general translational application of our newly reported findings for personalized patient care should be validated by an independent study from another, international referral center.
Collapse
Affiliation(s)
- K. Sikorova
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - K. Osoegawa
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - L. Kocourkova
- Laboratory of Cardiogenomics–Experimental Medicine, University Hospital Olomouc, Olomouc, Czechia
| | - A. Strnad
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - J. Petrkova
- Laboratory of Cardiogenomics–Experimental Medicine, University Hospital Olomouc, Olomouc, Czechia
| | - M. A. Fernández-Viña
- Histocompatibility, Immunogenetics, and Disease Profiling Laboratory, Department of Pathology, Stanford Blood Center, Stanford University School Medicine, Palo Alto, CA, United States
| | - M. Doubkova
- Department of Pulmonary Diseases and Tuberculosis, Faculty of Medicine of Masaryk University, University Hospital Brno, Brno, Czechia
| | - M. Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- *Correspondence: M. Petrek,
| |
Collapse
|
15
|
Nørgaard-Pedersen C, Steffensen R, Kesmodel US, Christiansen OB. A combination of the HLA-DRB1*03 phenotype and low plasma mannose-binding lectin predisposes to autoantibody formation in women with recurrent pregnancy loss. Front Immunol 2023; 14:1069974. [PMID: 36776871 PMCID: PMC9909406 DOI: 10.3389/fimmu.2023.1069974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction It is documented that a series of autoantibodies can be detected with increased frequency in women with recurrent pregnancy loss (RPL) and they may impact the pregnancy prognosis negatively. It is unknown whether the autoantibodies per se or the basic immune disturbances underlying autoantibody production, are the reason for this association. Our group has previously found that some genetically determined immunological biomarkers are associated with RPL and the same biomarkers are also in various degrees known to predispose to autoantibody production. The aim of this study was to clarify whether the RPL-associated immunogenetic biomarkers are associated with positivity for three major classes of autoantibodies associated with RPL. Methods In 663 patients with RPL in whom we had results for HLA-DRB1 typing and plasma mannose-binding lectin (p-MBL) measurement, it was investigated whether there is a correlation between positivity for the autoantibodies: anticardiolipin antibodies, β2 glycoprotein I antibodies, and lupus anticoagulant (jointly called antiphospholipid antibodies), thyroid-peroxidase antibodies, and antinuclear antibodies and each of the HLA-DRB1 alleles HLA-DRB1*03 or HLA-DRB1*07 either alone or in combination with low p-MBL defined as ≤500 µg/l. Results Although slightly higher frequencies of positivity of two or more autoantibodies were seen in patients with either p-MBL ≤500 µg/l or being positive for HLA-DRB1*03, none were significantly associated. However, in patients with the combination of low p-MBL and HLA-DRB1*03, presence of at least one autoantibody was significantly more frequent than in patients with no such combination (OR= 2.4; 95% CI 1.2-5.0, p = 0.01). In an analysis of which autoantibodies were most strongly associated with the low p-MBL/HLA-DRB1*03 combination, antinuclear antibodies were significantly more frequent in these patients (OR 2.0; 95% CI 1.0-3.9, p=0.05) whereas the other autoantibodies were also positively but more weakly associated with this combination. Discussion In conclusion, to clarify the pathogenetic background, underlying immunogenetic factors should be examined in autoantibody positive RPL patients (as well as other patients with autoimmune diseases) but the genetic background may be complex.
Collapse
Affiliation(s)
- Caroline Nørgaard-Pedersen
- Centre for Recurrent Pregnancy loss of Western Denmark, Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Rudi Steffensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Ulrik Schiøler Kesmodel
- Centre for Recurrent Pregnancy loss of Western Denmark, Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ole Bjarne Christiansen
- Centre for Recurrent Pregnancy loss of Western Denmark, Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
16
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. HLA, gut microbiome and hepatic autoimmunity. Front Immunol 2022; 13:980768. [PMID: 36059527 PMCID: PMC9433828 DOI: 10.3389/fimmu.2022.980768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
Genetic susceptibility to autoimmune liver diseases is conferred mainly by polymorphisms of genes encoding for the human leukocyte antigens (HLA). The strongest predisposition to autoimmune hepatitis type 1 (AIH-1) is linked to the allele DRB1*03:01, possession of which is associated with earlier disease onset and more severe course. In populations where this allele is very rare, such as in Asia, and in DRB1*03-negative patients, risk of AIH-1 is conferred by DRB1*04, which is associated with later disease onset and milder phenotype. AIH type 2 (AIH-2) is associated with DRB1*07. The pediatric condition referred to as autoimmune sclerosing cholangitis (ASC), is associated with the DRB1*13 in populations of Northern European ancestry. DRB1*1501 is protective from AIH-1, AIH-2 and ASC in Northern European populations. Possession of the DRB1*08 allele is associated with an increased risk of primary biliary cholangitis (PBC) across different populations. DRB1*03:01 and B*08:01 confer susceptibility to primary sclerosing cholangitis (PSC), as well as DRB1*13 and DRB1*15 in Europe. The hepatic blood supply is largely derived from the splanchnic circulation, suggesting a pathophysiological role of the gut microbiome. AIH appears to be associated with dysbiosis, increased gut permeability, and translocation of intestinal microbial products into the circulation; molecular mimicry between microbial and host antigens may trigger an autoaggressive response in genetically-predisposed individuals. In PBC an altered enteric microbiome may affect intestinal motility, immunological function and bile secretion. Patients with PSC have a gut microbial profile different from health as well as from patients with inflammatory bowel disease without PSC.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Faculty of Biomedical Sciences, Epatocentro Ticino and Università della Svizzera Italiana, Lugano, Switzerland
- MowatLabs, Faculty of Life Sciences and Medicine, King’s College London, King’s College Hospital, London, United Kingdom
- *Correspondence: Benedetta Terziroli Beretta-Piccoli,
| | - Giorgina Mieli-Vergani
- MowatLabs, Faculty of Life Sciences and Medicine, King’s College London, King’s College Hospital, London, United Kingdom
| | - Diego Vergani
- MowatLabs, Faculty of Life Sciences and Medicine, King’s College London, King’s College Hospital, London, United Kingdom
| |
Collapse
|
17
|
Caruso C, Ligotti ME, Accardi G, Aiello A, Candore G. An immunologist's guide to immunosenescence and its treatment. Expert Rev Clin Immunol 2022; 18:961-981. [PMID: 35876758 DOI: 10.1080/1744666x.2022.2106217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION : The ageing process causes several changes in the immune system, although immune ageing is strongly influenced by individual immunological history, as well as genetic and environmental factors leading to inter-individual variability. AREAS COVERED : Here, we focused on the biological and clinical meaning of immunosenescence. Data on SARS-CoV-2 and Yellow Fever vaccine have demonstrated the clinical relevance of immunosenescence, while inconsistent results, obtained from longitudinal studies aimed at looking for immune risk phenotypes, have revealed that the immunosenescence process is highly context-dependent. Large projects have allowed the delineation of the drivers of immune system variance, including genetic and environmental factors, sex, smoking, and co-habitation. Therefore, it is difficult to identify the interventions that can be envisaged to maintain or improve immune function in older people. That suggests that drug treatment of immunosenescence should require personalized intervention. Regarding this, we discussed the role of changes in lifestyle as a potential therapeutic approach. EXPERT OPINION : Our review points out that age is only part of the problem of immunosenescence. Everyone ages differently because he/she is unique in genetics and experience of life and this applies even more to the immune system (immunobiography). Finally, the present review shows how appreciable results in the modification of immunosenescence biomarkers can be achieved with lifestyle modification.
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| |
Collapse
|
18
|
Prognostic role of TNF alpha, LT alpha, MDR1 and codon 72 Tp53 Gene polymorphisms on Multiple Myeloma Egyptian patients. Leuk Res 2022; 117:106854. [DOI: 10.1016/j.leukres.2022.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022]
|
19
|
Human leukocyte antigen (HLA) haplotype matching in unrelated single HLA allele mismatch bone marrow transplantation. Bone Marrow Transplant 2022; 57:407-415. [DOI: 10.1038/s41409-021-01552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022]
|
20
|
Axial spondyloarthritis may protect against poor outcomes in COVID-19: propensity score matched analysis of 9766 patients from a nationwide multi-centric research network. Clin Rheumatol 2021; 41:721-730. [PMID: 34837569 PMCID: PMC8626282 DOI: 10.1007/s10067-021-05979-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/12/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022]
Abstract
Introduction The outcomes of COVID-19 in patients with axial spondyloarthritis (ax-SpA) have not been explored in detail. Tumour necrosis factor inhibitors (TNFi) are commonly used for ax-SpA patients, and how they influence outcomes may have implications on COVID-19 management. Methods A nationwide multi-centric research network was queried for patients with ax-SpA, including ankylosing spondylitis (AS) and non-radiographic SpA (nr-SpA) who had developed COVID-19. An equal number of propensity score(PS) matched controls were extracted from the database amongst patients with COVID-19 who did not have any inflammatory arthritis. Outcomes included mortality and others including hospitalization, intensive care unit, ventilation, acute kidney injury (AKI), renal replacement therapy, acute respiratory distress syndrome, cerebral infarction, venous thromboembolism (VTE), and sepsis. Results We identified 9766 patients with ax-SpA (924 AS and 8842 nr-SpA) and 691,862 without SpA who had COVID-19. In the unmatched comparison, patients with ax-SpA had higher risk ratios (RR) for all outcomes. After matching for demographics and comorbidities, patients with ax-SpA had lower RR for mortality [RR: 0.707 (95% CI: 0.598–0.836), p < 0.0001], severe COVID-19 [RR: 0.791 (0.69–0.906), p = 0.0007], hospitalization [RR: 0.872 (0.826–0.921), p < 0.0001], and AKI [RR: 0.902 (0.816–0.997), p = 0.044]. Only the risk of VTE was higher in ax-SpA patients [RR: 1.219 (1.037–1.433), p = 0.016]. Amongst the ax-SpA group, males had worse outcomes in 9 out of the 11 domains except for VTE and cerebral infarction, while blacks had worse outcomes in all except for mortality and the need for renal replacement therapy. AS had similar risk ratios for all outcomes compared with nr-SpA except hospitalization [RR: 1.457 (1.03–2.06), p = 0.0318]. There was no difference in outcomes in patients who had received TNFi in the year previous to COVID-19 infection. Ax-SpA patients who had been prescribed non-steroidal anti-inflammatory drugs in the 3 months prior to COVID-19 had poorer outcomes. Conclusion In conclusion, COVID-19 outcomes were better in patients with ax-SpA as compared with PS matched controls except for increased risk for VTE. The use of TNFi is not associated with better or worse outcomes. These apparently protective effects observed need to be validated and explored further. Key Points • Patients with axial spondyloarthritis have lower mortality and morbidity during COVID-19 infections as compared with propensity score matched controls. • Axial spondyloarthritis is associated with higher risks for venous thromboembolism during COVID-19. • There is no difference in outcomes between ankylosing spondylitis and non-radiographic spondyloarthritis except in rates of hospitalization, which were higher in ankylosing spondylitis. • Use of tumour necrosis factor inhibitors did not influence COVID-19 outcomes. |
Collapse
|
21
|
Acosta-Herrera M, Kerick M, Lopéz-Isac E, Assassi S, Beretta L, Simeón-Aznar CP, Ortego-Centeno N, Proudman SM, Hunzelmann N, Moroncini G, de Vries-Bouwstra JK, Orozco G, Barton A, Herrick AL, Terao C, Allanore Y, Brown MA, Radstake TR, Fonseca C, Denton CP, Mayes MD, Martin J. Comprehensive analysis of the major histocompatibility complex in systemic sclerosis identifies differential HLA associations by clinical and serological subtypes. Ann Rheum Dis 2021; 80:1040-1047. [PMID: 34096881 PMCID: PMC8292594 DOI: 10.1136/annrheumdis-2021-219884] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The greatest genetic effect reported for systemic sclerosis (SSc) lies in the major histocompatibility complex (MHC) locus. Leveraging the largest SSc genome-wide association study, we aimed to fine-map this region to identify novel human leucocyte antigen (HLA) genetic variants associated with SSc susceptibility and its main clinical and serological subtypes. METHODS 9095 patients with SSc and 17 584 controls genome-wide genotyped were used to impute and test single-nucleotide polymorphisms (SNPs) across the MHC, classical HLA alleles and their composite amino acid residues. Additionally, patients were stratified according to their clinical and serological status, namely, limited cutaneous systemic sclerosis (lcSSc), diffuse cutaneous systemic sclerosis (dcSSc), anticentromere (ACA), antitopoisomerase (ATA) and anti-RNApolIII autoantibodies (ARA). RESULTS Sequential conditional analyses showed nine SNPs, nine classical alleles and seven amino acids that modelled the observed associations with SSc. This confirmed previously reported associations with HLA-DRB1*11:04 and HLA-DPB1*13:01, and revealed a novel association of HLA-B*08:01. Stratified analyses showed specific associations of HLA-DQA1*02:01 with lcSSc, and an exclusive association of HLA-DQA1*05:01 with dcSSc. Similarly, private associations were detected in HLA-DRB1*08:01 and confirmed the previously reported association of HLA-DRB1*07:01 with ACA-positive patients, as opposed to the HLA-DPA1*02:01 and HLA-DQB1*03:01 alleles associated with ATA presentation. CONCLUSIONS This study confirms the contribution of HLA class II and reveals a novel association of HLA class I with SSc, suggesting novel pathways of disease pathogenesis. Furthermore, we describe specific HLA associations with SSc clinical and serological subtypes that could serve as biomarkers of disease severity and progression.
Collapse
Affiliation(s)
- Marialbert Acosta-Herrera
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Andalucía, Spain
| | - Martin Kerick
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Andalucía, Spain
| | - Elena Lopéz-Isac
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Andalucía, Spain
| | - Shervin Assassi
- Rheumatology and Clinical Immunogenetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | | | | | - Susanna M Proudman
- Department of Rheumatology, Royal Adelaide Hospital, Adelaide, Victoria, Australia
| | | | - Gianluca Moroncini
- Department of Clinical and Molecular Science, Università Politecnica delle Marche and Ospedali Riuniti, Ancona, Italy
| | | | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Ariane L Herrick
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yannick Allanore
- Department of Rheumatology A, Hospital Cochin, Paris, Île-de-France, France
| | - Matthew A Brown
- NIHR Biomedical Research Centre, Guy's and Saint Thomas' NHS Foundation Trust and King's College, London, UK
| | - Timothy Rdj Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carmen Fonseca
- Centre for Rheumatology, Royal Free and University College Medical School, London, UK
| | - Christopher P Denton
- Centre for Rheumatology, Royal Free and University College Medical School, London, UK
| | - Maureen D Mayes
- Rheumatology and Clinical Immunogenetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Javier Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Andalucía, Spain
| |
Collapse
|
22
|
Ji J, Zhuang Y, Wang H, Feng C, Zhao Y, Zhang X. M-CSF and prostratin induced Mregs promote immune tolerance in transplanted mice through Arg-1 pathway. Int Immunopharmacol 2021; 99:108014. [PMID: 34332340 DOI: 10.1016/j.intimp.2021.108014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Regulatory macrophages (Mregs) are a group of heterogeneous macrophages. These cells could induce immunosuppressive effects through the expression of immune regulatory molecules and cytokines. METHODS The differentiation of Mregs was induced by treating bone marrow cells with M-CSF and prostratin in vitro. The cell-phenotypes and immunosuppressive function were determined by flow cytometry. Rt-PCR was employed to assess the mechanisms of Mregs. Skin grafted mouse model was used for in vivo validation. RESULTS Mregs induced by M-CSF + prostratin had a strong inhibitory effect on T cell proliferation and cytokines production. The phenotype of induced bone marrow cells changed towards Mregs. These Mregs could induce the differentiation of Tregs in vivo. Arg-1 expression in these cells were significantly upregulated. Inhibition of arginase (Arg) or arginine supplement significantly reversed the immunosuppressive function. In mice skin-grafted models, adoptive transfer of these Mregs significantly prolonged allograft survival. In mice models, Arg-1 expression significantly elevated on skin grafts cells and Tregs increased in graft tissues. CONCLUSIONS We successfully developed a Mregs-inducing protocol with the combination of M-CSF and prostratin in vitro. M-CSF + prostratin induced Mregs prevented mice skin graft rejection through upregulating the expression Arg-1.
Collapse
Affiliation(s)
- Jiawei Ji
- Capital Medical University, Beijing, China; Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haozhou Wang
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Chang Feng
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Zhang
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China.
| |
Collapse
|
23
|
Creary LE, Sacchi N, Mazzocco M, Morris GP, Montero-Martin G, Chong W, Brown CJ, Dinou A, Stavropoulos-Giokas C, Gorodezky C, Narayan S, Periathiruvadi S, Thomas R, De Santis D, Pepperall J, ElGhazali GE, Al Yafei Z, Askar M, Tyagi S, Kanga U, Marino SR, Planelles D, Chang CJ, Fernández-Viña MA. High-resolution HLA allele and haplotype frequencies in several unrelated populations determined by next generation sequencing: 17th International HLA and Immunogenetics Workshop joint report. Hum Immunol 2021; 82:505-522. [PMID: 34030896 PMCID: PMC8315142 DOI: 10.1016/j.humimm.2021.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
The primary goal of the unrelated population HLA diversity (UPHD) component of the 17th International HLA and Immunogenetics Workshop was to characterize HLA alleles at maximum allelic-resolution in worldwide populations and re-evaluate patterns of HLA diversity across populations. The UPHD project included HLA genotype and sequence data, generated by various next-generation sequencing methods, from 4,240 individuals collated from 12 different countries. Population data included well-defined large datasets from the USA and smaller samples from Europe, Australia, and Western Asia. Allele and haplotype frequencies varied across populations from distant geographical regions. HLA genetic diversity estimated at 2- and 4-field allelic resolution revealed that diversity at the majority of loci, particularly for European-descent populations, was lower at the 2-field resolution. Several common alleles with identical protein sequences differing only by intronic substitutions were found in distinct haplotypes, revealing a more detailed characterization of linkage between variants within the HLA region. The examination of coding and non-coding nucleotide variation revealed many examples in which almost complete biunivocal relations between common alleles at different loci were observed resulting in higher linkage disequilibrium. Our reference data of HLA profiles characterized at maximum resolution from many populations is useful for anthropological studies, unrelated donor searches, transplantation, and disease association studies.
Collapse
Affiliation(s)
- Lisa E Creary
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA; Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto CA, USA.
| | - Nicoletta Sacchi
- Italian Bone Marrow Donor Registry Tissue Typing Laboratory, E.O. Ospedali Galliera, Genova, Italy
| | - Michela Mazzocco
- Italian Bone Marrow Donor Registry Tissue Typing Laboratory, E.O. Ospedali Galliera, Genova, Italy
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Gonzalo Montero-Martin
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto CA, USA
| | - Winnie Chong
- Histocompatibility and Immunogenetics Service Development Laboratory, NHS Blood and Transplant, London, UK
| | - Colin J Brown
- Department of Histocompatibility and Immunogenetics, NHS Blood and Transplant, London, UK; Faculty of Life Sciences and Medicine, King's College London, University of London, England, UK
| | - Amalia Dinou
- Biomedical Research Foundation Academy of Athens, Hellenic Cord Blood Bank, Athens, Greece
| | | | - Clara Gorodezky
- Laboratory of Immunology and Immunogenetics, Fundación Comparte Vida, A.C. Mexico City, Mexico
| | | | | | - Rasmi Thomas
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, USA
| | | | - Jennifer Pepperall
- Welsh Transplant and Immunogenetics Laboratory, Welsh Blood Service, Pontyclun, United Kingdom
| | - Gehad E ElGhazali
- Sheikh Khalifa Medical City-Union 71, Abu Dhabi and the Department of Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Zain Al Yafei
- Sheikh Khalifa Medical City-Union 71, Abu Dhabi and the Department of Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Medhat Askar
- Department of Pathology and Laboratory Medicine, Baylor University Medical center, Dallas, USA
| | - Shweta Tyagi
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Kanga
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Susana R Marino
- Department of Pathology, The University of Chicago Medicine, Chicago, IL, USA
| | - Dolores Planelles
- Histocompatibility, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain; Grupo Español de Trabajo en Histocompatibilidad e Inmunología del Trasplante (GETHIT), Spanish Society for Immunology, Madrid, Spain
| | | | - Marcelo A Fernández-Viña
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA; Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto CA, USA.
| |
Collapse
|
24
|
Creary LE, Gangavarapu S, Caillier SJ, Cavalcante P, Frangiamore R, Lie BA, Bengtsson M, Harbo HF, Brauner S, Hollenbach JA, Oksenberg JR, Bernasconi P, Maniaol AH, Hammarström L, Mantegazza R, Fernández-Viña MA. Next-Generation Sequencing Identifies Extended HLA Class I and II Haplotypes Associated With Early-Onset and Late-Onset Myasthenia Gravis in Italian, Norwegian, and Swedish Populations. Front Immunol 2021; 12:667336. [PMID: 34163474 PMCID: PMC8215161 DOI: 10.3389/fimmu.2021.667336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic susceptibility to myasthenia gravis (MG) associates with specific HLA alleles and haplotypes at the class I and II regions in various populations. Previous studies have only examined alleles at a limited number of HLA loci that defined only broad serotypes or alleles defined at the protein sequence level. Consequently, genetic variants in noncoding and untranslated HLA gene segments have not been fully explored but could also be important determinants for MG. To gain further insight into the role of HLA in MG, we applied next-generation sequencing to analyze sequence variation at eleven HLA genes in early-onset (EO) and late-onset (LO) non-thymomatous MG patients positive for the acetylcholine receptor (AChR) antibodies and ethnically matched controls from Italy, Norway, and Sweden. For all three populations, alleles and haplotype blocks present on the ancestral haplotype AH8.1 were associated with risk in AChR-EOMG patients. HLA-B*08:01:01:01 was the dominant risk allele in Italians (OR = 3.28, P = 1.83E-05), Norwegians (OR = 3.52, P = 4.41E-16), and in Swedes HLA-B*08:01 was the primary risk allele (OR = 4.24, P <2.2E-16). Protective alleles and haplotype blocks were identified on the HLA-DRB7, and HLA-DRB13.1 class II haplotypes in Italians and Norwegians, whereas in Swedes HLA-DRB7 exhibited the main protective effect. For AChR-LOMG patients, the HLA-DRB15.1 haplotype and associated alleles were significantly associated with susceptibility in all groups. The HLA-DR13-HLA-DR-HLA-DQ haplotype was associated with protection in all AChR-LOMG groups. This study has confirmed and extended previous findings that the immunogenetic predisposition profiles for EOMG and LOMG are distinct. In addition, the results are consistent with a role for non-coding HLA genetic variants in the pathogenesis of MG.
Collapse
Affiliation(s)
- Lisa E Creary
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States.,Histocompatibility, Immunogenetics and Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Sridevi Gangavarapu
- Histocompatibility, Immunogenetics and Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Stacy J Caillier
- Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Paola Cavalcante
- Neurology IV Unit Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S Istituto Neurologico Carlo Besta (INCB), Milan, Italy
| | - Rita Frangiamore
- Neurology IV Unit Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S Istituto Neurologico Carlo Besta (INCB), Milan, Italy
| | - Benedicte A Lie
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mats Bengtsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory, Uppsala University and University Hospital, Uppsala, Sweden
| | - Hanne Flinstad Harbo
- Department of Neurology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Susanna Brauner
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jill A Hollenbach
- Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Jorge R Oksenberg
- Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Pia Bernasconi
- Neurology IV Unit Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S Istituto Neurologico Carlo Besta (INCB), Milan, Italy
| | | | - Lennart Hammarström
- The Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Renato Mantegazza
- Neurology IV Unit Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S Istituto Neurologico Carlo Besta (INCB), Milan, Italy.,Department of Clinical Research and Innovation, Fondazione I.R.C.C.S Istituto Neurologico Carlo Besta (INCB), Milan, Italy
| | - Marcelo A Fernández-Viña
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States.,Histocompatibility, Immunogenetics and Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| |
Collapse
|
25
|
Kulski JK, Suzuki S, Shiina T. Haplotype Shuffling and Dimorphic Transposable Elements in the Human Extended Major Histocompatibility Complex Class II Region. Front Genet 2021; 12:665899. [PMID: 34122517 PMCID: PMC8193847 DOI: 10.3389/fgene.2021.665899] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
The major histocompatibility complex (MHC) on chromosome 6p21 is one of the most single-nucleotide polymorphism (SNP)-dense regions of the human genome and a prime model for the study and understanding of conserved sequence polymorphisms and structural diversity of ancestral haplotypes/conserved extended haplotypes. This study aimed to follow up on a previous analysis of the MHC class I region by using the same set of 95 MHC haplotype sequences downloaded from a publicly available BioProject database at the National Center for Biotechnology Information to identify and characterize the polymorphic human leukocyte antigen (HLA)-class II genes, the MTCO3P1 pseudogene alleles, the indels of transposable elements as haplotypic lineage markers, and SNP-density crossover (XO) loci at haplotype junctions in DNA sequence alignments of different haplotypes across the extended class II region (∼1 Mb) from the telomeric PRRT1 gene in class III to the COL11A2 gene at the centromeric end of class II. We identified 42 haplotypic indels (20 Alu, 7 SVA, 13 LTR or MERs, and 2 indels composed of a mosaic of different transposable elements) linked to particular HLA-class II alleles. Comparative sequence analyses of 136 haplotype pairs revealed 98 unique XO sites between SNP-poor and SNP-rich genomic segments with considerable haplotype shuffling located in the proximity of putative recombination hotspots. The majority of XO sites occurred across various regions including in the vicinity of MTCO3P1 between HLA-DQB1 and HLA-DQB3, between HLA-DQB2 and HLA-DOB, between DOB and TAP2, and between HLA-DOA and HLA-DPA1, where most XOs were within a HERVK22 sequence. We also determined the genomic positions of the PRDM9-recombination suppression sequence motif ATCCATG/CATGGAT and the PRDM9 recombination activation partial binding motif CCTCCCCT/AGGGGAG in the class II region of the human reference genome (NC_ 000006) relative to published meiotic recombination positions. Both the recombination and anti-recombination PRDM9 binding motifs were widely distributed throughout the class II genomic regions with 50% or more found within repeat elements; the anti-recombination motifs were found mostly in L1 fragmented repeats. This study shows substantial haplotype shuffling between different polymorphic blocks and confirms the presence of numerous putative ancestral recombination sites across the class II region between various HLA class II genes.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia.,Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Shingo Suzuki
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
26
|
Muñiz-Castrillo S, Hedou JJ, Ambati A, Jones D, Vogrig A, Pinto AL, Benaiteau M, de Broucker T, Fechtenbaum L, Labauge P, Murnane M, Nocon C, Taifas I, Vialatte de Pémille C, Psimaras D, Joubert B, Dubois V, Wucher V, Desestret V, Mignot E, Honnorat J. Distinctive clinical presentation and pathogenic specificities of anti-AK5 encephalitis. Brain 2021; 144:2709-2721. [PMID: 33843981 DOI: 10.1093/brain/awab153] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/10/2021] [Accepted: 03/28/2021] [Indexed: 11/12/2022] Open
Abstract
Limbic encephalitis (LE) with antibodies against adenylate kinase 5 (AK5) has been difficult to characterize because of its rarity. In this study, we identified 10 new cases and reviewed 16 previously reported patients, investigating clinical features, IgG subclasses, human leukocyte antigen (HLA), and CSF proteomic profiles. Patients with anti-AK5 LE were mostly men (20/26, 76.9%) of median age 66 years old (range 48-94). Predominant symptom was severe episodic amnesia in all patients, frequently associated with depression (17/25, 68.0%). Weight loss, asthenia, and anorexia were also highly characteristic, being present in 11/25 (44.0%) patients. Although epilepsy was always lacking at disease onset, seizures developed later in a subset of patients (4/25, 16.0%). All patients presented CSF abnormalities, such as pleocytosis (18/25, 72.0%), oligoclonal bands (18/25, 72.0%), and increased Tau (11/14, 78.6%). Temporal lobe hyper-intensities were almost always present at disease onset (23/26, 88.5%), evolving nearly invariably toward a severe atrophy in subsequent MRIs (17/19, 89.5%). This finding was in line with a poor response to immunotherapy, with only 5/25 (20.0%) patients responding. IgG1 was the predominant subclass, being the most frequently detected and the one with highest titres in nine CSF-serum paired samples. Temporal biopsy from one of our new cases showed massive lymphocytic infiltrates dominated by both CD4+ and CT8+ T-cells, intense granzyme B expression, and abundant macrophages/microglia. HLA analysis in 11 patients showed a striking association with HLA-B*08:01 (7/11, 63.6%; OR = 13.4, 95% CI [3.8-47.4]), C*07:01 (8/11, 72.7%; OR = 11.0, 95% CI [2.9-42.5]), DRB1*03:01 (8/11, 72.7%; OR = 14.4, 95% CI [3.7-55.7]), DQB1*02:01 (8/11, 72.7%; OR = 13.5, 95% CI [3.5-52.0]), and DQA1*05:01 (8/11, 72.7%; OR = 14.4, 95% CI [3.7-55.7]) alleles, which formed the extended haplotype B8-C7-DR3-DQ2 in 6/11 (54.5%) patients (OR = 16.5, 95% CI [4.8-57.1]). Finally, we compared the CSF proteomic profile of five anti-AK5 patients with that of 40 controls and 10 cases with other more common non-paraneoplastic LE (five with antibodies against leucine-rich glioma inactivated 1 and five against contactin-associated protein-like 2), as well as 10 cases with paraneoplastic neurological syndromes (five with antibodies against Yo and five against Ma2). These comparisons revealed, respectively, 31 and seven significantly up-regulated proteins in anti-AK5 LE, mapping to apoptosis pathways and innate/adaptive immune responses. These findings suggest that the clinical manifestations of anti-AK5 LE result from a distinct T-cell mediated pathogenesis, with major cytotoxicity-induced apoptosis leading to a prompt and aggressive neuronal loss, likely explaining the poor prognosis and response to immunotherapy.
Collapse
Affiliation(s)
- Sergio Muñiz-Castrillo
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Aditya Ambati
- Stanford University Center for Narcolepsy, Palo Alto, CA, USA
| | - David Jones
- Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, NY, USA
| | - Alberto Vogrig
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Laurie Pinto
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Marie Benaiteau
- Neurology Department, Hôpital Pierre-Paul Riquet, Toulouse, France
| | - Thomas de Broucker
- Neurology Department, Hôpital Pierre Delafontaine, Centre Hospitalier de Saint-Denis, Saint-Denis, France
| | - Laura Fechtenbaum
- Neurology Department, Centre Hospitalier Henri Mondor, Paris, France
| | - Pierre Labauge
- Neurology Department, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Matthew Murnane
- Neurology Department, Albany Medical Center Hospital, Albany, NY, USA
| | - Claire Nocon
- Neurology Department, Centre Hospitalier de Dax, Dax, France
| | - Irina Taifas
- Neurology Department, Hôpital d´Instruction des Armées Percy, Clamart, France
| | | | - Dimitri Psimaras
- Neurology Department 2-Mazarin, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, APHP, Paris, France.,Brain and Spinal Cord Institute, INSERM U1127/CNRS UMR 7255, Université Pierre-et-Marie-Curie, Universités Sorbonnes, Paris, France
| | - Bastien Joubert
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Valérie Dubois
- HLA Laboratory, French Blood Service, EFS Auvergne-Rhône-Alpes, Lyon, France
| | - Valentin Wucher
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Virginie Desestret
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Emmanuel Mignot
- Stanford University Center for Narcolepsy, Palo Alto, CA, USA
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
27
|
Pojero F, Candore G, Caruso C, Di Bona D, Groneberg DA, Ligotti ME, Accardi G, Aiello A. The Role of Immunogenetics in COVID-19. Int J Mol Sci 2021; 22:2636. [PMID: 33807915 PMCID: PMC7961811 DOI: 10.3390/ijms22052636] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is induced by SARS-CoV-2 and may arise as a variety of clinical manifestations, ranging from an asymptomatic condition to a life-threatening disease associated with cytokine storm, multiorgan and respiratory failure. The molecular mechanism behind such variability is still under investigation. Several pieces of experimental evidence suggest that genetic variants influencing the onset, maintenance and resolution of the immune response may be fundamental in predicting the evolution of the disease. The identification of genetic variants behind immune system reactivity and function in COVID-19 may help in the elaboration of personalized therapeutic strategies. In the frenetic look for universally shared treatment plans, those genetic variants that are common to other diseases/models may also help in addressing future research in terms of drug repurposing. In this paper, we discuss the most recent updates about the role of immunogenetics in determining the susceptibility to and the history of SARS-CoV-2 infection. We propose a narrative review of available data, speculating about lessons that we have learnt from other viral infections and immunosenescence, and discussing what kind of aspects of research should be deepened in order to improve our knowledge of how host genetic variability impacts the outcome for COVID-19 patients.
Collapse
Affiliation(s)
- Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - David A. Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany;
| | - Mattia E. Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| |
Collapse
|
28
|
Kulski JK, Suzuki S, Shiina T. SNP-Density Crossover Maps of Polymorphic Transposable Elements and HLA Genes Within MHC Class I Haplotype Blocks and Junction. Front Genet 2021; 11:594318. [PMID: 33537058 PMCID: PMC7848197 DOI: 10.3389/fgene.2020.594318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
The genomic region (~4 Mb) of the human major histocompatibility complex (MHC) on chromosome 6p21 is a prime model for the study and understanding of conserved polymorphic sequences (CPSs) and structural diversity of ancestral haplotypes (AHs)/conserved extended haplotypes (CEHs). The aim of this study was to use a set of 95 MHC genomic sequences downloaded from a publicly available BioProject database at NCBI to identify and characterise polymorphic human leukocyte antigen (HLA) class I genes and pseudogenes, MICA and MICB, and retroelement indels as haplotypic lineage markers, and single-nucleotide polymorphism (SNP) crossover loci in DNA sequence alignments of different haplotypes across the Olfactory Receptor (OR) gene region (~1.2 Mb) and the MHC class I region (~1.8 Mb) from the GPX5 to the MICB gene. Our comparative sequence analyses confirmed the identity of 12 haplotypic retroelement markers and revealed that they partitioned the HLA-A/B/C haplotypes into distinct evolutionary lineages. Crossovers between SNP-poor and SNP-rich regions defined the sequence range of haplotype blocks, and many of these crossover junctions occurred within particular transposable elements, lncRNA, OR12D2, MUC21, MUC22, PSORS1A3, HLA-C, HLA-B, and MICA. In a comparison of more than 250 paired sequence alignments, at least 38 SNP-density crossover sites were mapped across various regions from GPX5 to MICB. In a homology comparison of 16 different haplotypes, seven CEH/AH (7.1, 8.1, 18.2, 51.x, 57.1, 62.x, and 62.1) had no detectable SNP-density crossover junctions and were SNP poor across the entire ~2.8 Mb of sequence alignments. Of the analyses between different recombinant haplotypes, more than half of them had SNP crossovers within 10 kb of LTR16B/ERV3-16A3_I, MLT1, Charlie, and/or THE1 sequences and were in close vicinity to structurally polymorphic Alu and SVA insertion sites. These studies demonstrate that (1) SNP-density crossovers are associated with putative ancestral recombination sites that are widely spread across the MHC class I genomic region from at least the telomeric OR12D2 gene to the centromeric MICB gene and (2) the genomic sequences of MHC homozygous cell lines are useful for analysing haplotype blocks, ancestral haplotypic landscapes and markers, CPSs, and SNP-density crossover junctions.
Collapse
Affiliation(s)
- Jerzy K. Kulski
- Faculty of Health and Medical Sciences, Medical School, The University of Western Australia, Crawley, WA, Australia
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Shingo Suzuki
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
29
|
Tamouza R, Krishnamoorthy R, Leboyer M. Understanding the genetic contribution of the human leukocyte antigen system to common major psychiatric disorders in a world pandemic context. Brain Behav Immun 2021; 91:731-739. [PMID: 33031918 PMCID: PMC7534661 DOI: 10.1016/j.bbi.2020.09.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/01/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022] Open
Abstract
The human leukocyte antigen (HLA) is a complex genetic system that encodes proteins which predominantly regulate immune/inflammatory processes. It can be involved in a variety of immuno-inflammatory disorders ranging from infections to autoimmunity and cancers. The HLA system is also suggested to be involved in neurodevelopment and neuroplasticity, especially through microglia regulation and synaptic pruning. Consequently, this highly polymorphic gene region has recently emerged as a major player in the etiology of several major psychiatric disorders, such as schizophrenia, autism spectrum disorder and bipolar disorder and with less evidence for major depressive disorders and attention deficit hyperactivity disorder. We thus review here the role of HLA genes in particular subgroups of psychiatric disorders and foresee their potential implication in future research. In particular, given the prominent role that the HLA system plays in the regulation of viral infection, this review is particularly timely in the context of the Covid-19 pandemic.
Collapse
Affiliation(s)
- Ryad Tamouza
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie Translationnelle, F-94010 Creteil, France; AP-HP, Hopital Henri Mondor, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), F-94010, France; Fondation FondaMental, Créteil, France.
| | | | - Marion Leboyer
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie Translationnelle, F-94010 Creteil, France; AP-HP, Hopital Henri Mondor, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), F-94010, France; Fondation FondaMental, Créteil, France
| |
Collapse
|
30
|
Gambino CM, Accardi G, Aiello A, Caruso C, Carru C, Gioia BG, Guggino G, Rizzo S, Zinellu A, Ciaccio M, Candore G. Uncoupling Protein 2 as genetic risk factor for systemic lupus erythematosus: association with malondialdehyde levels and intima media thickness. Minerva Cardioangiol 2020; 68:609-618. [DOI: 10.23736/s0026-4725.20.05225-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Buendía-Roldán I, Santiago-Ruiz L, Pérez-Rubio G, Mejía M, Rojas-Serrano J, Ambrocio-Ortiz E, Benítez-Valdez G, Selman M, Falfán-Valencia R. A major genetic determinant of autoimmune diseases is associated with the presence of autoantibodies in hypersensitivity pneumonitis. Eur Respir J 2020; 56:13993003.01380-2019. [PMID: 32366487 PMCID: PMC7424117 DOI: 10.1183/13993003.01380-2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/13/2020] [Indexed: 11/24/2022]
Abstract
Background Hypersensitivity pneumonitis is an immune-mediated disease triggered by exposure to organic particles in susceptible individuals. It has been reported that a subgroup of patients with hypersensitivity pneumonitis develops autoantibodies with or without clinical manifestations of autoimmune disease. However, the mechanisms involved in this process and the effect of the autoantibodies on clinical course in hypersensitivity pneumonitis is unknown. We evaluated the association between human leukocyte antigen (HLA) class II alleles and hypersensitivity pneumonitis patients with and without autoantibodies. Methods 170 hypersensitivity pneumonitis patients were included. We analysed the presence of antinuclear antibodies, rheumatoid factor, anti-SSA/Ro, anti-SSB/La and anti-CCP at the time of diagnosis. In addition, in a subset of patients we evaluated anti-Scl-70, anti-neutrophil cytoplasmic antibody, and anti-DNA. HLA typing was performed using PCR sequence-specific primers in a high-resolution modality, including HLA-DRB1 and HLA-DQB1 loci. Statistical analysis was performed employing Epi-Info v7 and SPSS v20. Results 60 hypersensitivity pneumonitis patients showed sera autoantibodies (HPAbs+), and 110 hypersensitivity pneumonitis patients did not (HPAbs−). The frequency of the allele HLA-DRB1*03:01 was remarkably increased in the HPAbs+ group (10.8% versus 0.45%; OR 30.14, 95% CI 3.83–237.1; p=1.65×10-4 after Bonferroni's correction). Likewise, we found that the haplotype DRB1*03:01-DQB1*02:01, which is part of the 8.1 ancestral haplotype, a major genetic determinant of autoimmune diseases, confers significant risk to develop autoantibodies (OR 19.23, 95% CI 2.37–155.9; p=0.0088 after Bonferroni's correction). In addition, the HLA-DRB1*03:01 allele was associated with higher mortality in patients with hypersensitivity pneumonitis (adjusted OR 5.9, 95% CI 1.05–33.05; p=0.043). Conclusions A subset of hypersensitivity pneumonitis patients presents circulating autoantibodies and higher mortality that are associated with some alleles of 8.1 ancestral haplotype. Alleles from 8.1 ancestral haplotype (#HLA-DRB1 and DQB1 loci) are associated with #autoantibodies production in #hypersensitivity #pneumonitis in a cohort of Mexican mestizo patientshttps://bit.ly/3bprPeB
Collapse
Affiliation(s)
- Ivette Buendía-Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Luis Santiago-Ruiz
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Mayra Mejía
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Jorge Rojas-Serrano
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Enrique Ambrocio-Ortiz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Geovanni Benítez-Valdez
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Moisés Selman
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico.,Joint lead authors
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico .,Joint lead authors
| |
Collapse
|
32
|
Stahl E, Roda G, Dobbyn A, Hu J, Zhang Z, Westerlind H, Bonfiglio F, Raj T, Torres J, Chen A, Petras R, Pardi DS, Iuga AC, Levi GS, Cao W, Jain P, Rieder F, Gordon IO, Cho JH, D’Amato M, Harpaz N, Hao K, Colombel JF, Peter I. Collagenous Colitis Is Associated With HLA Signature and Shares Genetic Risks With Other Immune-Mediated Diseases. Gastroenterology 2020; 159:549-561.e8. [PMID: 32371109 PMCID: PMC7483815 DOI: 10.1053/j.gastro.2020.04.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Collagenous colitis (CC) is an inflammatory bowel disorder with unknown etiopathogenesis involving HLA-related immune-mediated responses and environmental and genetic risk factors. We carried out an array-based genetic association study in a cohort of patients with CC and investigated the common genetic basis between CC and Crohn's disease (CD), ulcerative colitis (UC), and celiac disease. METHODS DNA from 804 CC formalin-fixed, paraffin-embedded tissue samples was genotyped with Illumina Immunochip. Matching genotype data on control samples and CD, UC, and celiac disease cases were provided by the respective consortia. A discovery association study followed by meta-analysis with an independent cohort, polygenic risk score calculation, and cross-phenotype analyses were performed. Enrichment of regulatory expression quantitative trait loci among the CC variants was assessed in hemopoietic and intestinal cells. RESULTS Three HLA alleles (HLA-B∗08:01, HLA-DRB1∗03:01, and HLA-DQB1∗02:01), related to the ancestral haplotype 8.1, were significantly associated with increased CC risk. We also identified an independent protective effect of HLA-DRB1∗04:01 on CC risk. Polygenic risk score quantifying the risk across multiple susceptibility loci was strongly associated with CC risk. An enrichment of expression quantitative trait loci was detected among the CC-susceptibility variants in various cell types. The cross-phenotype analysis identified a complex pattern of polygenic pleiotropy between CC and other immune-mediated diseases. CONCLUSIONS In this largest genetic study of CC to date with histologically confirmed diagnosis, we strongly implicated the HLA locus and proposed potential non-HLA mechanisms in disease pathogenesis. We also detected a shared genetic risk between CC, celiac disease, CD, and UC, which supports clinical observations of comorbidity.
Collapse
Affiliation(s)
- Eli Stahl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulia Roda
- IBD Center, Humanitas Research Hospital, Milan, Italy
| | - Amanda Dobbyn
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helga Westerlind
- Department of Medicine, Karolinska Institutet, Solna, SE-17176, Stockholm, Sweden
| | - Ferdinando Bonfiglio
- Department of Medicine, Karolinska Institutet, Solna, SE-17176, Stockholm, Sweden
| | - Towfique Raj
- Ronald M. Loeb Center for Alzheimer’s Disease, Departments of Neuroscience, and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joana Torres
- Department of Gastroenterology, Hospital Beatriz Angelo, Loures, Portugal
| | - Anli Chen
- Department of Pathology, Icahn School of Medicine, New York, NY, USA
| | - Robert Petras
- AmeriPath Institute of Gastrointestinal Pathology and Digestive Disease, Cleveland, OH, USA
| | - Darrell S. Pardi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alina C. Iuga
- Department of Biology and Cell Pathology, Columbia University, New York, NY, USA
| | - Gabriel S. Levi
- Department of Pathology, Icahn School of Medicine, New York, NY, USA
| | - Wenqing Cao
- Division of Anatomic Pathology, New York University Langone Medical Center, New York, NY, USA
| | - Prantesh Jain
- Department of Hematology and Oncology, University Hospitals, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Florian Rieder
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic
| | - Ilyssa O. Gordon
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic
| | - Judy H. Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mauro D’Amato
- Department of Medicine, Karolinska Institutet, Solna, SE-17176, Stockholm, Sweden,School of Biological Sciences, Monash University, Clayton, VIC Australia
| | - Noam Harpaz
- Department of Pathology, Icahn School of Medicine, New York, NY, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean Frederic Colombel
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
33
|
Impact of HLA polymorphisms among cadaveric donors on kidney graft allocation. Transpl Immunol 2020; 62:101318. [PMID: 32623050 DOI: 10.1016/j.trim.2020.101318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
This study provides data on HLA-A, -B, and -DRB1 frequencies among 861 end-stage renal disease (ESRD) patients from Croatia and estimates the benefit of the kidney exchange program by comparing HLA distribution and assessing HLA mismatches (MMs) within a group of ESRD patients who received kidney grafts from 707 cadaveric donors (422 from Croatia and 285 from Eurotransplant). Patients positive for HLA-B*07, -B*08, or -B*44 genes more often received a kidney from ET donors, while HLA-DRB1*11 and -DRB1*16 positive patients more frequently received a kidney from CRO donors. ABDR MM 000 was more frequently present in the case of transplantation from ET donors, while MM 222 was significantly more frequent when the donor was from Croatia. Sensitized patients received kidney more frequently from ET donors (P < .0001). A large pool of organ donors with different HLA gene distributions allows for a higher probability of transplantation from HLA highly matched donor.
Collapse
|
34
|
Bruijstens AL, Wong YYM, van Pelt DE, van der Linden PJE, Haasnoot GW, Hintzen RQ, Claas FHJ, Neuteboom RF, Wokke BHA. HLA association in MOG-IgG- and AQP4-IgG-related disorders of the CNS in the Dutch population. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/3/e702. [PMID: 32198229 PMCID: PMC7136059 DOI: 10.1212/nxi.0000000000000702] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/07/2020] [Indexed: 01/04/2023]
Abstract
Objective To investigate the possible human leukocyte antigen (HLA) association of both myelin oligodendrocyte glycoprotein (MOG-IgG)-associated diseases (MOGAD) and aquaporin-4 antibody (AQP4-IgG)-positive neuromyelitis optica spectrum disorders (NMOSDs) in the Dutch population with European ancestry to clarify similarities or differences in the immunogenetic background of both diseases. Methods Blood samples from patients in the Dutch national MS/NMOSD expert clinic were tested for MOG-IgG and AQP4-IgG using a cell-based assay. HLA Class I and II genotyping was performed in 43 MOG-IgG–seropositive and 42 AQP4-IgG–seropositive Dutch patients with European ancestry and compared with those of 5,604 Dutch healthy blood donors. Results No significant HLA association was found in MOG-IgG–seropositive patients. The AQP4-IgG–seropositive patients had a significant higher frequency of HLA-A*01 (61.9% vs 33.7%, OR 3.16, 95% CI, 1.707–5.863, p after correction [pc] = 0.0045), HLA-B*08 (61.9% vs 25.6%, OR 4.66, 95% CI, 2.513–8.643, pc < 0.0001), and HLA-DRB1*03 (51.2% vs 27.6%, OR 2.75, 95% CI, 1.495–5.042, pc = 0.0199) compared with controls. Conclusions The present study demonstrates differences in the immunogenetic background of MOGAD and AQP4-IgG–positive NMOSD. The strong positive association with HLA-A*01, -B*08, and -DRB1*03 is suggestive of a role of this haplotype in the etiology of AQP4-IgG–positive NMOSD in patients with European ancestry, whereas in MOGAD no evidence was found for any HLA association in these disorders.
Collapse
Affiliation(s)
- Arlette L Bruijstens
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands.
| | - Yu Yi M Wong
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Daniëlle E van Pelt
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Pieter J E van der Linden
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Geert W Haasnoot
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Rogier Q Hintzen
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Frans H J Claas
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Rinze F Neuteboom
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| | - Beatrijs H A Wokke
- From the Department of Neurology (A.L.B., Y.Y.M.W., E.D.P., R.Q.H., R.F.N., B.H.A.W.), Erasmus University Medical Center, Rotterdam; and Department of Immunohaematology and Blood Transfusion (P.J.E.L., G.W.H., F.H.J.C.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
35
|
The MHC gamma block matching: Impact on unrelated hematopoietic stem cell transplantation outcome. Hum Immunol 2020; 81:12-17. [DOI: 10.1016/j.humimm.2019.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 11/21/2022]
|
36
|
D'Antonio M, Reyna J, Jakubosky D, Donovan MKR, Bonder MJ, Matsui H, Stegle O, Nariai N, D'Antonio-Chronowska A, Frazer KA. Systematic genetic analysis of the MHC region reveals mechanistic underpinnings of HLA type associations with disease. eLife 2019; 8:e48476. [PMID: 31746734 PMCID: PMC6904215 DOI: 10.7554/elife.48476] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
The MHC region is highly associated with autoimmune and infectious diseases. Here we conduct an in-depth interrogation of associations between genetic variation, gene expression and disease. We create a comprehensive map of regulatory variation in the MHC region using WGS from 419 individuals to call eight-digit HLA types and RNA-seq data from matched iPSCs. Building on this regulatory map, we explored GWAS signals for 4083 traits, detecting colocalization for 180 disease loci with eQTLs. We show that eQTL analyses taking HLA type haplotypes into account have substantially greater power compared with only using single variants. We examined the association between the 8.1 ancestral haplotype and delayed colonization in Cystic Fibrosis, postulating that downregulation of RNF5 expression is the likely causal mechanism. Our study provides insights into the genetic architecture of the MHC region and pinpoints disease associations that are due to differential expression of HLA genes and non-HLA genes.
Collapse
Affiliation(s)
- Matteo D'Antonio
- Institute for Genomic MedicineUniversity of California, San DiegoSan DiegoUnited States
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
| | - Joaquin Reyna
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
- Biomedical Sciences Graduate ProgramUniversity of California, San DiegoLa JollaUnited States
| | - David Jakubosky
- Biomedical Sciences Graduate ProgramUniversity of California, San DiegoLa JollaUnited States
- Bioinformatics and Systems Biology Graduate ProgramUniversity of California, San DiegoSan DiegoUnited States
| | - Margaret KR Donovan
- Bioinformatics and Systems Biology Graduate ProgramUniversity of California, San DiegoSan DiegoUnited States
- Department of Biomedical InformaticsUniversity of California, San DiegoSan DiegoUnited States
| | - Marc-Jan Bonder
- European Molecular Biology Laboratory, European Bioinformatics InstituteCambridgeUnited Kingdom
| | - Hiroko Matsui
- Institute for Genomic MedicineUniversity of California, San DiegoSan DiegoUnited States
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics InstituteCambridgeUnited Kingdom
| | - Naoki Nariai
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
| | - Agnieszka D'Antonio-Chronowska
- Institute for Genomic MedicineUniversity of California, San DiegoSan DiegoUnited States
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
| | - Kelly A Frazer
- Institute for Genomic MedicineUniversity of California, San DiegoSan DiegoUnited States
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
37
|
Zhong H, Zhao C, Luo S. HLA in myasthenia gravis: From superficial correlation to underlying mechanism. Autoimmun Rev 2019; 18:102349. [DOI: 10.1016/j.autrev.2019.102349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
|
38
|
Next-generation sequencing reveals new information about HLA allele and haplotype diversity in a large European American population. Hum Immunol 2019; 80:807-822. [PMID: 31345698 DOI: 10.1016/j.humimm.2019.07.275] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/21/2019] [Accepted: 07/06/2019] [Indexed: 12/11/2022]
Abstract
The human leukocyte antigen (HLA) genes are extremely polymorphic and are useful molecular markers to make inferences about human population history. However, the accuracy of the estimation of genetic diversity at HLA loci very much depends on the technology used to characterize HLA alleles; high-resolution genotyping of long-range HLA gene products improves the assessment of HLA population diversity as well as other population parameters compared to lower resolution typing methods. In this study we examined allelic and haplotype HLA diversity in a large healthy European American population sourced from the UCSF-DNA bank. A high-resolution next-generation sequencing method was applied to define non-ambiguous 3- and 4-field alleles at the HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DRB3/4/5, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1 loci in samples provided by 2248 unrelated individuals. A number of population parameters were examined including balancing selection and various measurements of linkage disequilibrium were calculated. There were no detectable deviations from Hardy-Weinberg proportions at HLA-A, HLA-DRB1, HLA-DQA1 and HLA-DQB1. For the remaining loci moderate and significant deviations were detected at HLA-C, HLA-B, HLA-DRB3/4/5, HLA-DPA1 and HLA-DPB1 loci mostly from population substructures. Unique 4-field associations were observed among alleles at 2 loci and haplotypes extending large intervals that were not apparent in results obtained using testing methodologies with limited sequence coverage and phasing. The high diversity at HLA-DPA1 results from detection of intron variants of otherwise well conserved protein sequences. It may be speculated that divergence in exon sequences may be negatively selected. Our data provides a valuable reference source for future population studies that may allow for precise fine mapping of coding and non-coding sequences determining disease susceptibility and allo-immunogenicity.
Collapse
|
39
|
Aiello A, Accardi G, Candore G, Caruso C, Colomba C, Di Bona D, Duro G, Gambino CM, Ligotti ME, Pandey JP. Role of Immunogenetics in the Outcome of HCMV Infection: Implications for Ageing. Int J Mol Sci 2019; 20:ijms20030685. [PMID: 30764515 PMCID: PMC6386818 DOI: 10.3390/ijms20030685] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/30/2022] Open
Abstract
The outcome of host-virus interactions is determined by a number of factors, some related to the virus, others to the host, such as environmental factors and genetic factors. Therefore, different individuals vary in their relative susceptibility to infections. Human cytomegalovirus (HCMV) is an important pathogen from a clinical point of view, as it causes significant morbidity and mortality in immunosuppressed or immunosenescent individuals, such as the transplanted patients and the elderly, respectively. It is, therefore, important to understand the mechanisms of virus infection control. In this review, we discuss recent advances in the immunobiology of HCMV-host interactions, with particular emphasis on the immunogenetic aspects (human leukocyte antigens, HLA; killer cell immunoglobulin-like receptors, KIRs; immunoglobulin genetic markers, GM allotypes) to elucidate the mechanisms underlying the complex host-virus interaction that determine various outcomes of HCMV infection. The results, which show the role of humoral and cellular immunity in the control of infection by HCMV, would be valuable in directing efforts to reduce HCMV spurred health complications in the transplanted patients and in the elderly, including immunosenescence. In addition, concerning GM allotypes, it is intriguing that, in a Southern Italian population, alleles associated with the risk of developing HCMV symptomatic infection are negatively associated with longevity.
Collapse
Affiliation(s)
- Anna Aiello
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Giulia Accardi
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Giuseppina Candore
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Calogero Caruso
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Claudia Colomba
- Dipartimento di Scienze per la Promozione della Salute e Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy.
| | - Danilo Di Bona
- Dipartimento dell'Emergenza e dei Trapianti d'Organo, Università di Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Giovanni Duro
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Caterina Maria Gambino
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Mattia Emanuela Ligotti
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Janardan P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC 29425, USA.
| |
Collapse
|
40
|
Regueiro C, Rodriguez-Rodriguez L, Triguero-Martinez A, Nuño L, Castaño-Nuñez AL, Villalva A, Perez-Pampin E, Lopez-Golan Y, Abasolo L, Ortiz AM, Herranz E, Pascual-Salcedo D, Martínez-Feito A, Boveda MD, Gomez-Reino JJ, Martín J, Gonzalez-Escribano MF, Fernandez-Gutierrez B, Balsa A, Gonzalez-Alvaro I, Gonzalez A. Specific Association of HLA-DRB1*03 With Anti-Carbamylated Protein Antibodies in Patients With Rheumatoid Arthritis. Arthritis Rheumatol 2019; 71:331-339. [PMID: 30277011 DOI: 10.1002/art.40738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Recognition of a new type of rheumatoid arthritis (RA)-specific autoantibody, the anti-carbamylated protein antibodies (anti-CarP), has provided an opportunity to improve the management and understanding of RA. The current study was undertaken to assess the relationship between anti-CarP antibodies and HLA-DRB1 alleles in RA. METHODS Serum samples were obtained from 3 different collections, comprising a total of 1,126 RA patients. Serum reactivity against in vitro carbamylated fetal calf serum proteins was determined by enzyme-linked immunosorbent assay. HLA-DRB1 alleles were determined using either hybridization techniques or imputation from HLA-dense genotypes. Results of these analyses were combined in a meta-analysis with data from 3 previously reported cohorts. The carrier frequencies of the common HLA-DRB1 alleles were compared between the antibody-positive RA subgroups and the double-negative subgroup of RA patients stratified by anti-citrullinated protein antibody (ACPA)/anti-CarP antibody status, and also between the 4 RA patient strata and healthy controls. RESULTS Meta-analysis was conducted with 3,709 RA patients and 2,305 healthy control subjects. Results revealed a significant increase in frequency of HLA-DRB1*03 carriers in the ACPA-/anti-CarP+ subgroup as compared to ACPA-/anti-CarP- RA patients and healthy controls; this was consistently found across the 6 sample collections. This association of HLA-DRB1*03 with ACPA-/anti-CarP+ RA was independent of the presence of the shared allele (SE) and any other confounders analyzed. No other allele was specifically associated with the ACPA-/anti-CarP+ RA patient subgroup. In contrast, frequency of the SE was significantly increased in the ACPA+/anti-CarP- and ACPA+/anti-CarP+ RA patient subgroups, without a significant distinction between them. Furthermore, some alleles (including HLA-DRB1*03) were associated with protection from ACPA+ RA. CONCLUSION These findings indicate a specific association of HLA-DRB1*03 with ACPA-/anti-CarP+ RA, suggesting that preferential presentation of carbamylated peptides could be a new mechanism underlying the contribution of HLA alleles to RA susceptibility.
Collapse
Affiliation(s)
- Cristina Regueiro
- Instituto de Investigacion Sanitaria-Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Luis Rodriguez-Rodriguez
- Hospital Clínico San Carlos-Instituto Investigación Sanitaria San Carlos (IdISSC), Madríd, Spain
| | - Ana Triguero-Martinez
- Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-lP), Madrid, Spain
| | - Laura Nuño
- Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| | - Angel L Castaño-Nuñez
- Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| | - Alejandro Villalva
- Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| | - Eva Perez-Pampin
- Instituto de Investigacion Sanitaria-Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Yolanda Lopez-Golan
- Instituto de Investigacion Sanitaria-Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Lydia Abasolo
- Hospital Clínico San Carlos-Instituto Investigación Sanitaria San Carlos (IdISSC), Madríd, Spain
| | - Ana M Ortiz
- Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-lP), Madrid, Spain
| | - Eva Herranz
- Hospital Clínico San Carlos-Instituto Investigación Sanitaria San Carlos (IdISSC), Madríd, Spain
| | - Dora Pascual-Salcedo
- Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| | - Ana Martínez-Feito
- Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| | - María Dolores Boveda
- Instituto de Investigacion Sanitaria-Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Juan J Gomez-Reino
- Instituto de Investigacion Sanitaria-Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Granada, Spain
| | | | | | - Alejandro Balsa
- Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| | - Isidoro Gonzalez-Alvaro
- Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-lP), Madrid, Spain
| | - Antonio Gonzalez
- Instituto de Investigacion Sanitaria-Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| |
Collapse
|
41
|
Paladini F, Fiorillo MT, Tedeschi V, Cauli A, Mathieu A, Sorrentino R. Ankylosing Spondylitis: A Trade Off of HLA-B27, ERAP, and Pathogen Interconnections? Focus on Sardinia. Front Immunol 2019; 10:35. [PMID: 30740100 PMCID: PMC6355666 DOI: 10.3389/fimmu.2019.00035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/08/2019] [Indexed: 01/04/2023] Open
Abstract
The frequency of HLA-B27 in patients with Ankylosing Spondylitis (AS) is over 85%. There are more than 170 recognized HLA-B27 alleles but the majority of them is not sufficiently represented for genetic association studies. So far only two alleles, the HLA-B*2706 in Asia and the HLA-B*2709 in Sardinia, have not been found to be associated with AS. The highly homogenous genetic structure of the Sardinian population has favored the search of relevant variants for disease-association studies. Moreover, malaria, once endemic in the island, has been shown to have contributed to shape the native population genome affecting the relative allele frequency of relevant genes. In Sardinia, the prevalence of HLA-B*2709, which differs from the strongly AS-associated B*2705 prototype for one amino acid (His/Asp116) in the F pocket of the peptide binding groove, is around 20% of all HLA-B27 alleles. We have previously hypothesized that malaria could have contributed to the establishment of this allele in Sardinia. Based on our recent findings, in this perspective article we speculate that the Endoplasmic Reticulum Amino Peptidases, ERAP1 and 2, associated with AS and involved in antigen presentation, underwent co-selection by malaria. These genes, besides shaping the immunopeptidome of HLA-class I molecules, have other biological functions that could also be involved in the immunosurveillance against malaria.
Collapse
Affiliation(s)
- Fabiana Paladini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Alberto Cauli
- Department of Medical Sciences and Public Health, Chair of Rheumatology and Rheumatology Unit, University and AOU of Cagliari, Cagliari, Italy
| | - Alessandro Mathieu
- Department of Medical Sciences and Public Health, Chair of Rheumatology and Rheumatology Unit, University and AOU of Cagliari, Cagliari, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| |
Collapse
|
42
|
Caruso C, Pandey JP, Puca AA. Genetics of exceptional longevity: possible role of GM allotypes. Immun Ageing 2018; 15:25. [PMID: 30450118 PMCID: PMC6219196 DOI: 10.1186/s12979-018-0133-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Calogero Caruso
- Department of Pathobiology and Medical Biotechnologies, Section of General Pathology, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Janardan P. Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Annibale A. Puca
- Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
- IRCCS MultiMedica, Milan, Italy
| |
Collapse
|