1
|
Castagna F, Liguori G, Lombardi R, Bava R, Costagliola A, Giordano A, Quintiliani M, Giacomini D, Albergo F, Gigliotti A, Lupia C, Ceniti C, Tilocca B, Palma E, Roncada P, Britti D. Hepatitis E and Potential Public Health Implications from a One-Health Perspective: Special Focus on the European Wild Boar ( Sus scrofa). Pathogens 2024; 13:840. [PMID: 39452712 PMCID: PMC11510200 DOI: 10.3390/pathogens13100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The hepatitis E virus (HEV) has become increasingly important in recent years in terms of risk for public health, as the main causative agent of acute viral hepatitis. It is a foodborne disease transmitted to humans through the consumption of contaminated water or contaminated food. Human-to-human transmission is sporadic and is linked to transfusions or transplants. The main reservoirs of the hepatitis E virus are domestic pigs and wild boars, although, compared to pigs, wild boars represent a lesser source of risk since their population is smaller and the consumption of derived products is more limited. These peculiarities often make the role of the wild boar reservoir in the spread of the disease underestimated. As a public health problem that involves several animal species and humans, the management of the disease requires an interdisciplinary approach, and the concept of "One Health" must be addressed. In this direction, the present review intends to analyze viral hepatitis E, with a particular focus on wild boar. For this purpose, literature data have been collected from different scientific search engines: PubMed, MEDLINE, and Google scholar, and several keywords such as "HEV epidemiology", "Extrahepatic manifestations of Hepatitis E", and "HEV infection control measures", among others, have been used. In the first part, the manuscript provides general information on the disease, such as epidemiology, transmission methods, clinical manifestations and implications on public health. In the second part, it addresses in more detail the role of wild boar as a reservoir and the implications related to the virus epidemiology. The document will be useful to all those who intend to analyze this infectious disease from a "One-Health" perspective.
Collapse
Affiliation(s)
- Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy;
| | - Giovanna Liguori
- Local Health Authority, ASL, 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Renato Lombardi
- Local Health Authority, ASL, 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, 80100 Naples, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, 1900 N 12th Street, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnology, University of Siena, 10100 Siena, Italy
| | | | | | - Francesco Albergo
- Department of Management, Finance and Technology, University LUM Giuseppe Degennaro, 70100 Casamassima, Italy;
| | - Andrea Gigliotti
- Interregional Park of Sasso Simone and Simoncello, 61021 Carpegna, Italy;
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy;
| | - Carlotta Ceniti
- ASL Napoli 3 SUD, Department of Prevention, 80053 Castellammare di Stabia, Italy;
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| |
Collapse
|
2
|
Monini M, Di Bartolo I, De Sabato L, Ianiro G, Agostinelli F, Ostanello F. Hepatitis E Virus (HEV) in Heavy Pigs in Slaughterhouses of Northern Italy: Investigation of Seroprevalence, Viraemia, and Faecal Shedding. Animals (Basel) 2023; 13:2942. [PMID: 37760342 PMCID: PMC10525452 DOI: 10.3390/ani13182942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis E virus (HEV) is considered an emerging threat in Europe, owing to the increased number of human cases and the widespread presence of the virus in pigs at farms. Most cases in industrialized countries are caused by the zoonotic HEV-3 genotype. The main transmission route of HEV-3 in Europe is foodborne, through consumption of raw or undercooked liver pork and wild boar meat. Pigs become susceptible to HEV infection after the loss of maternal immunity, and the majority of adult pigs test positive for IgG anti-HEV antibodies. Nonetheless, HEV-infected pigs in terms of liver, faeces, and rarely blood are identified at slaughterhouses. The present study aimed to investigate the prevalence of HEV-positive batches of Italian heavy pigs at slaughterhouses, assessing the presence of animals still shedding HEV upon their arrival at the slaughterhouse by sampling faeces collected from the floor of the trucks used for their transport. The occurrence of viraemic animals and the seroprevalence of anti-HEV antibodies were also assessed. The results obtained indicated the presence of anti-HEV IgM (1.9%), and a high seroprevalence of anti-HEV total antibodies (IgG, IgM, IgA; 89.2%, n = 260). HEV RNA was not detected in either plasma or faecal samples. Nevertheless, seropositive animals were identified in all eight batches investigated, confirming the widespread exposure of pigs to HEV at both individual and farm levels. Future studies are needed to assess the factors associated with the risk of HEV presence on farms, with the aim to prevent virus introduction and spread within farms, thereby eliminating the risk at slaughterhouse.
Collapse
Affiliation(s)
- Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Francesca Agostinelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell’Emilia, 40064 Bologna, Italy;
| |
Collapse
|
3
|
A Randomized Large-Scale Cross-Sectional Serological Survey of Hepatitis E Virus Infection in Belgian Pig Farms. Microorganisms 2023; 11:microorganisms11010129. [PMID: 36677421 PMCID: PMC9863458 DOI: 10.3390/microorganisms11010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Hepatitis E virus (HEV) is the causative agent of hepatitis E disease in humans. While sporadic HEV infections, which occur in industrialised countries and are typically due to HEV genotypes 3 or 4, are asymptomatic and self-limiting, a chronic form of the disease can lead to liver cirrhosis in immunocompromised individuals. Pigs share HEV 3 and 4 genotypes and are thus considered a major animal reservoir for human infection. A subset of animals has been shown to carry HEV particles at the age of slaughter, rendering raw or undercooked pig products potential vectors for human infection. To provide an overview of the current dissemination of HEV in Belgian pig herds, this study was designed as a randomized, robust, large-scale, cross-sectional, serological survey. HEV genotypes and subtypes recently circulating in Belgium (2020-2021) were investigated. Sample stratification as well as epidemiological investigation through the available demographic data of the sampled herds showed that HEV widely circulated in the Belgian pig population during this time and that a change in the circulating HEV strains may have occurred in the last decade. Herd size and type were identified as risk factors for HEV herd-seropositivity. Identifying farms at risk of being HEV-positive is an important step in controlling HEV spread and human infection.
Collapse
|
4
|
Boxman ILA, Verhoef L, Dop PY, Vennema H, Dirks RAM, Opsteegh M. High prevalence of acute hepatitis E virus infection in pigs in Dutch slaughterhouses. Int J Food Microbiol 2022; 379:109830. [PMID: 35908493 DOI: 10.1016/j.ijfoodmicro.2022.109830] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/19/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022]
Abstract
Hepatitis E is caused by hepatitis E virus (HEV), one of the causes of acute viral hepatitis. Domestic pigs are considered as the main reservoir of HEV-3. The recently reported high prevalence of HEV in liver- and meat products on the Dutch market warranted a cross-sectional prevalence study on HEV infection among 5-6 months old pigs slaughtered in the Netherlands (n = 250). For this, liver, caecum content and blood samples were analyzed for the presence of genomic HEV RNA by RT-PCR. In addition, a serological test was performed to detect HEV IgG. Background information was retrieved on the corresponding farms to evaluate potential risk factors for HEV at pig slaughter age. HEV IgG was detected in sera from 167 pigs (67.6 %). HEV RNA was detected in 64 (25.6 %) caecum content samples, in 40 (16.1 %) serum samples and in 25 (11.0 %) liver samples. The average level of viral contamination in positive samples was log10 4.6 genome copies (gc)/g (range 3.0-8.2) in caecum content, log10 3.3 gc/ml (range 2.4-5.9) in serum and log10 3.2 gc/0.1 g (range 1.7-6.2) in liver samples. Sequence analyses revealed HEV-3c only. Ten times an identical strain was detected in two or three samples obtained from the same pig. Each animal in this study however appeared to be infected with a unique strain. The presence of sows and gilts and welfare rating at the farm of origin had a significant effect (p < 0.05) on the distribution over the four groups representing different stages of HEV infection based on IgG or RNA in caecum and/or serum. The observed proportion of tested pigs with viremia (16 %) was higher than in other reported studies and was interestingly often observed in combination with a high number of HEV genome copies in liver and caecum content as detected by RT-qPCR. Data provided will be useful for risk assessment for food safety of pork products, will provide baseline data for future monitoring of HEV infections in pigs and new thoughts for mitigation strategies.
Collapse
Affiliation(s)
- Ingeborg L A Boxman
- WFSR, Wageningen Food Safety Research, Wageningen University and Research, Mailbox 230, 6700 AE Wageningen, the Netherlands.
| | - Linda Verhoef
- NVWA, Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands
| | - Petra Y Dop
- NVWA, Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands
| | - Harry Vennema
- RIVM, National Institute of Public Health and the Environment, Bilthoven, the Netherlands
| | - René A M Dirks
- WFSR, Wageningen Food Safety Research, Wageningen University and Research, Mailbox 230, 6700 AE Wageningen, the Netherlands
| | - Marieke Opsteegh
- RIVM, National Institute of Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
5
|
Genetic Diversity and Epidemiological Significance of Wild Boar HEV-3 Strains Circulating in Poland. Viruses 2021; 13:v13061176. [PMID: 34205456 PMCID: PMC8235543 DOI: 10.3390/v13061176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 01/06/2023] Open
Abstract
The wild boar is the most important reservoir of zoonotic HEV-3 strains among different wildlife species. The aim of the study was subtype identification of wild boar HEV-3 strains circulating in Poland. Wild boar liver was used in the study in the form of homogenates prepared from 57 samples positive for HEV in a real-time RT-PCR. These samples were collected from juvenile and adult wild boars hunted in the jurisdictions of different Regional Directorates of State Forests (RDSF) across Poland. Subtype identification of detected HEV strains was based on a phylogenetic analysis of the most conserved HEV ORF2 genome fragment. Out of 57 tested samples, consensus HEV ORF2 sequences of 348 bp were obtained for 45 strains. Nineteen strains were identified and belonged to the HEV gt 3a and 3i subtypes, whereas 26 were not assigned to any virus subtype. HEV gt 3i strains prevailed in the Polish wild boar population, 16 of such were identified, and they were significantly more often observed in the RDSF Katowice area (χ2 = 28.6, p = 0.027 (<0.05)) compared to other regions of the country. Circulation of 3a strains was limited only to the RDSF Gdańsk territory (χ2 = 48, p = 0.000 (<0.05)). The virus strains detected in the Polish population of wild boars representing previously identified HEV subtypes in wild boars, pigs, or humans in Europe are of epidemiological importance for public health.
Collapse
|
6
|
Mechanism of Cross-Species Transmission, Adaptive Evolution and Pathogenesis of Hepatitis E Virus. Viruses 2021; 13:v13050909. [PMID: 34069006 PMCID: PMC8157021 DOI: 10.3390/v13050909] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis E virus (HEV) is the leading cause of acute hepatitis worldwide. While the transmission in developing countries is dominated by fecal-oral route via drinking contaminated water, the zoonotic transmission is the major route of HEV infection in industrialized countries. The discovery of new HEV strains in a growing number of animal species poses a risk to zoonotic infection. However, the exact mechanism and the determinant factors of zoonotic infection are not completely understood. This review will discuss the current knowledge on the mechanism of cross-species transmission of HEV infection, including viral determinants, such as the open reading frames (ORFs), codon usage and adaptive evolution, as well as host determinants, such as host cellular factors and the host immune status, which possibly play pivotal roles during this event. The pathogenesis of hepatitis E infection will be briefly discussed, including the special forms of this disease, including extrahepatic manifestations, chronic infection, and fulminant hepatitis in pregnant women.
Collapse
|
7
|
Kozyra I, Jabłoński A, Bigoraj E, Rzeżutka A. Wild Boar as a Sylvatic Reservoir of Hepatitis E Virus in Poland: A Cross-Sectional Population Study. Viruses 2020; 12:v12101113. [PMID: 33008103 PMCID: PMC7600272 DOI: 10.3390/v12101113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
The most important wildlife species in the epidemiology of hepatitis E virus (HEV) infections are wild boars, which are also the main reservoir of the virus in a sylvatic environment. The aim of the study was a serological and molecular assessment of the prevalence of HEV infections in wild boars in Poland. In total, 470 pairs of samples (wild boar blood and livers) and 433 samples of faeces were tested. An ELISA (ID.vet, France) was used for serological analysis. For the detection of HEV RNA, real-time (RT)-qPCR was employed. The presence of specific anti-HEV IgG antibodies was found in 232 (49.4%; 95%CI: 44.7–54%) sera, with regional differences observed in the seroprevalence of infections. HEV RNA was detected in 57 (12.1%, 95%CI: 9.3–15.4%) livers and in 27 (6.2%, 95%CI: 4.1–8.9%) faecal samples, with the viral load ranging from 1.4 to 1.7 × 1011 G.C./g and 38 to 9.3 × 107 G.C./mL, respectively. A correlation between serological and molecular results of testing of wild boars infected with HEV was shown. HEV infections in wild boars appeared to be common in Poland.
Collapse
Affiliation(s)
- Iwona Kozyra
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (I.K.); (E.B.)
| | - Artur Jabłoński
- Department of Large Animal Diseases and Clinic, Warsaw University of Life Sciences, Nowoursynowska Street 100, 02-797 Warsaw, Poland;
| | - Ewelina Bigoraj
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (I.K.); (E.B.)
| | - Artur Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (I.K.); (E.B.)
- Correspondence: ; Tel.: +48–081-889–3036
| |
Collapse
|
8
|
Tavakoli A, Alavian SM, Moghoofei M, Mostafaei S, Abbasi S, Farahmand M. Seroepidemiology of hepatitis E virus infection in patients undergoing maintenance hemodialysis: Systematic review and meta-analysis. Ther Apher Dial 2020; 25:4-15. [PMID: 32348032 DOI: 10.1111/1744-9987.13507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/28/2020] [Accepted: 04/24/2020] [Indexed: 12/23/2022]
Abstract
Patients undergoing regular hemodialysis (HD) are at an extreme risk of acquiring bloodstream infections compared to the general population. Hepatitis E virus (HEV) infection is an important emerging health issue in these patients. To date, numerous studies have investigated the seroprevalence of HEV among HD patients across the world; however, the data are conflicting. The present study aimed to measure the exposure rate of HD patients to HEV infection by estimating the overall seroprevalence of HEV in this high-risk group. A systematic literature search was carried out using five electronic databases from inception to January 10, 2020, with standard keywords. Pooled seroprevalence estimates with 95% confidence intervals (CIs) were calculated using a random intercept logistic regression model. The seroprevalence of HEV increased from 6.6% between the years of 1994 and 2000 to 11.13% from 2016 to 2020. Blood transfusion was associated with a nearly 2-fold increase in the rate of HEV seropositivity (OR = 1.99; 95% CI: 1.50-2.63, P < .0001, I2 = 6.5%). HEV seroprevalence among patients with HD for more than 60 months was significantly higher than those with HD for less than 60 months (27.69%, 95% CI: 20.69%-35.99% vs 15.78%, 95%CI: 8.85%-26.57%, respectively) (P = .06). Our results indicated increased exposure of HD patients with HEV infection over the last decade. We concluded that blood transfusion and duration of HD are considerable risk factors for acquiring HEV infection among HD patients.
Collapse
Affiliation(s)
- Ahmad Tavakoli
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran.,Middle East Liver Disease (MELD) Center, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Institute of Health and Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shayan Mostafaei
- Medical Biology Research Center, Institute of Health and Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Epidemiology and Biostatistics Unit, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Abbasi
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
García N, Hernández M, Gutierrez-Boada M, Valero A, Navarro A, Muñoz-Chimeno M, Fernández-Manzano A, Escobar FM, Martínez I, Bárcena C, González S, Avellón A, Eiros JM, Fongaro G, Domínguez L, Goyache J, Rodríguez-Lázaro D. Occurrence of Hepatitis E Virus in Pigs and Pork Cuts and Organs at the Time of Slaughter, Spain, 2017. Front Microbiol 2020; 10:2990. [PMID: 32047480 PMCID: PMC6997137 DOI: 10.3389/fmicb.2019.02990] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Zoonotic hepatitis E, mainly caused by hepatitis E virus (HEV) genotype (gt) 3, is a foodborne disease that has emerged in Europe in recent decades. The main animal reservoir for genotype 3 is domestic pigs. Pig liver and liver derivates are considered the major risk products, and studies focused on the presence of HEV in pig muscles are scarce. The objective of the present study was to evaluate the presence of HEV in different organs and tissues of 45 apparently healthy pigs from nine Spanish slaughterhouses (50% national production) that could enter into the food supply chain. Anti-HEV antibodies were evaluated in serum by an ELISA test. Ten samples from each animal were analyzed for the presence of HEV RNA by reverse transcription real-time PCR (RT-qPCR). The overall seroprevalence obtained was 73.3% (33/45). From the 450 samples analyzed, a total of 26 RT-qPCR positive samples were identified in the liver (7/45), feces (6/45), kidney (5/45), heart (4/45), serum (3/45), and diaphragm (1/45). This is the first report on detection of HEV RNA in kidney and heart samples of naturally infected pigs. HEV RNA detection was negative for rib, bacon, lean ham, and loin samples. These findings indicate that pig meat could be considered as a low risk material for foodborne HEV infection.
Collapse
Affiliation(s)
- Nerea García
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Marta Hernández
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
| | - Maialen Gutierrez-Boada
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
| | - Antonio Valero
- Department of Food Science and Technology, University of Córdoba, Córdoba, Spain
| | - Alejandro Navarro
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Milagros Muñoz-Chimeno
- Laboratorio de Referencia e Investigación en Hepatitis Víricas, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Franco Matías Escobar
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Irene Martínez
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Carmen Bárcena
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Sergio González
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Ana Avellón
- Laboratorio de Referencia e Investigación en Hepatitis Víricas, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M. Eiros
- Department of Microbiology, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense Madrid, Madrid, Spain
| | - Joaquín Goyache
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense Madrid, Madrid, Spain
| | - David Rodríguez-Lázaro
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
| |
Collapse
|
10
|
Abstract
Wild boar populations around the world have increased dramatically over past decades. Climate change, generating milder winters with less snow, may affect their spread into northern regions. Wild boars can serve as reservoirs for a number of bacteria, viruses, and parasites, which are transmissible to humans and domestic animals through direct interaction with wild boars, through contaminated food or indirectly through contaminated environment. Disease transmission between wild boars, domestic animals, and humans is an increasing threat to human and animal health, especially in areas with high wild boar densities. This article reviews important foodborne zoonoses, including bacterial diseases (brucellosis, salmonellosis, tuberculosis, and yersiniosis), parasitic diseases (toxoplasmosis and trichinellosis), and the viral hepatitis E. The focus is on the prevalence of these diseases and the causative microbes in wild boars. The role of wild boars in transmitting these pathogens to humans and livestock is also briefly discussed.
Collapse
Affiliation(s)
- Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki , Helsinki, Finland
| |
Collapse
|
11
|
De Sabato L, Ostanello F, De Grossi L, Marcario A, Franzetti B, Monini M, Di Bartolo I. Molecular survey of HEV infection in wild boar population in Italy. Transbound Emerg Dis 2018; 65:1749-1756. [PMID: 30207081 DOI: 10.1111/tbed.12948] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 12/18/2022]
Abstract
Hepatitis E virus (HEV) is an RNA virus causing an acute generally self-limited disease in humans. An increasing number of autochthonous cases linked to zoonotic transmission of HEV genotype 3 have been reported over the last 10 years in Europe. Pigs and wild boars are considered the main reservoirs. The principal route of transmission in Europe is food-borne, linked by direct or indirect evidence to the consumption of raw or undercooked pork products and wild boar meat. In this study, we sampled 92 wild boar (Sus scrofa) livers during active surveillance in five municipalities in Central Italy throughout the hunting season 2016-2017. HEV RNA was detected in 52.2% of liver sampled with prevalence ranging from 0.0% to 65.7%. HEV-positive wild boars were detected in all but one area of hunting. Phylogenetic analysis showed that strains clustered within the two subtypes HEV-3c and HEV-3f and displayed a wide range of phylogenetic diversity. Several strains were circulating in the areas investigated; animals possibly belonging to the same family group hunted by the same team were infected with a unique strain (100% nucleotide identity). As wild animals are a proven source of HEV transmission to humans and pigs, the high prevalence observed (mean 52.2%) poses a question on the risk of consuming raw or undercooked wild boar meat, and thus, this subject deserves further investigations.
Collapse
Affiliation(s)
- Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy.,Department of Sciences, University Roma Tre, Rome, Italy
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Luigi De Grossi
- Zooprophylaxis and Research Institute of Latium and Tuscany "M. Aleandri'', Viterbo, Italy
| | - Anita Marcario
- Zooprophylaxis and Research Institute of Latium and Tuscany "M. Aleandri'', Viterbo, Italy
| | - Barbara Franzetti
- Italian National Institute for Environmental Protection and Research, Ozzano dell'Emilia, Italy
| | - Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
12
|
Serological and virological survey of hepatitis E virus (HEV) in animal reservoirs from Uruguay reveals elevated prevalences and a very close phylogenetic relationship between swine and human strains. Vet Microbiol 2018; 213:21-27. [DOI: 10.1016/j.vetmic.2017.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023]
|
13
|
Pavio N, Doceul V, Bagdassarian E, Johne R. Recent knowledge on hepatitis E virus in Suidae reservoirs and transmission routes to human. Vet Res 2017; 48:78. [PMID: 29157309 PMCID: PMC5696788 DOI: 10.1186/s13567-017-0483-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022] Open
Abstract
Hepatitis E virus (HEV) causes self-limiting acute hepatitis in humans that can eventually result in acute liver failures or progress to chronic infections. While in tropical and sub-tropical areas, HEV infections are associated with important waterborne epidemics, in Northern countries, HEV infections are autochthonous with a zoonotic origin. In the past decade, it has become clear that certain HEV genotypes are zoonotic and that swine, and more generally Suidae, are the main reservoir. Zoonotic transmissions of the virus may occur via direct contact with infected pigs, wild boars or consumption of contaminated meat. This review describes the current knowledge on domestic and wild Suidae as reservoirs of HEV and the evidence of the different routes of HEV transmission between these animals and humans.
Collapse
Affiliation(s)
- Nicole Pavio
- Animal Health Laboratory, UMR 1161 Virology, ANSES, Maisons-Alfort, France
- UMR 1161 Virology, INRA, Maisons-Alfort, France
- UMR 1161 Virology, PRES University Paris 12, National Veterinary School, Maisons-Alfort, France
| | - Virginie Doceul
- Animal Health Laboratory, UMR 1161 Virology, ANSES, Maisons-Alfort, France
- UMR 1161 Virology, INRA, Maisons-Alfort, France
- UMR 1161 Virology, PRES University Paris 12, National Veterinary School, Maisons-Alfort, France
| | - Eugénie Bagdassarian
- Animal Health Laboratory, UMR 1161 Virology, ANSES, Maisons-Alfort, France
- UMR 1161 Virology, INRA, Maisons-Alfort, France
- UMR 1161 Virology, PRES University Paris 12, National Veterinary School, Maisons-Alfort, France
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
14
|
Salines M, Andraud M, Rose N. From the epidemiology of hepatitis E virus (HEV) within the swine reservoir to public health risk mitigation strategies: a comprehensive review. Vet Res 2017; 48:31. [PMID: 28545558 PMCID: PMC5445439 DOI: 10.1186/s13567-017-0436-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans, an emerging zoonosis mainly transmitted via food in developed countries and for which domestic pigs are recognised as the main reservoir. It therefore appears important to understand the features and drivers of HEV infection dynamics on pig farms in order to implement HEV surveillance programmes and to assess and manage public health risks. The authors have reviewed the international scientific literature on the epidemiological characteristics of HEV in swine populations. Although prevalence estimates differed greatly from one study to another, all consistently reported high variability between farms, suggesting the existence of multifactorial conditions related to infection and within-farm transmission of the virus. Longitudinal studies and experimental trials have provided estimates of epidemiological parameters governing the transmission process (e.g. age at infection, transmission parameters, shedding period duration or lag time before the onset of an immune response). Farming practices, passive immunity and co-infection with immunosuppressive agents were identified as the main factors influencing HEV infection dynamics, but further investigations are needed to clarify the different HEV infection patterns observed in pig herds as well as HEV transmission between farms. Relevant surveillance programmes and control measures from farm to fork also have to be fostered to reduce the prevalence of contaminated pork products entering the food chain.
Collapse
Affiliation(s)
- Morgane Salines
- ANSES-Ploufragan-Plouzané Laboratory, BP 53, 22440, Ploufragan, France. .,Université Bretagne Loire, Rennes, France.
| | - Mathieu Andraud
- ANSES-Ploufragan-Plouzané Laboratory, BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Nicolas Rose
- ANSES-Ploufragan-Plouzané Laboratory, BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| |
Collapse
|