1
|
Hou Z, Jin S, Liang Y, Wang H, Jiang D, Cao N, Sun M, Tian Y, Liu W, Xu D, Fu X. Apoptosis, inflammatory and innate immune responses induced by infection with a novel goose astrovirus in goose embryonic kidney cells. Front Cell Infect Microbiol 2024; 14:1452158. [PMID: 39502173 PMCID: PMC11534606 DOI: 10.3389/fcimb.2024.1452158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Since 2016, a highly lethal visceral gout induced by infection with the novel goose astrovirus (GoAstV) resulted in an ongoing outbreak in goslings in China, with a mortality rate ranging from 10% to 50%, and causing considerable economic losses in the goose industry. However, the pathogenesis of GoAstV and the molecular mechanism by which kidney lesions are induced by GoAstV infection are unclear. Methods In the present study, a GEK cell infection model for GoAstV was established, and the apoptosis, inflammatory and innate immune responses induced by GoAstV were investigated in GEK cells. Results The results shown that the expression of proapoptotic proteins, including Bax, caspase-3, caspase-9 and cytochrome c, increased in the infection group; however, the expression of the antiapoptotic protein Bcl-2 decreased, indicating that apoptosis was induced by GoAstV infection in GEK cells. Besides, the activation of the RIG-I/MDA5 pathway and the downstream upregulation of proinflammatory cytokines, including the adapter proteins MAVS, IRF7 and NF-κB and the proinflammatory cytokines IL-6, IL-8 and TNF-α, were detected in GEK cells infected with GoAstV. In addition, GoAstV infection induces the activation of the NLPR3 pathway and further stimulates the increased production of IL-1β. In summary, the present study revealed that GoAstV infection could induce apoptosis and the activation of the RIG-I/MDA5 and NLRP3 pathways in GEK cells, as well as the massive release of proinflammatory cytokines. Discussion These results are helpful for elucidating the molecular mechanism of pathological lesions in the kidney in gout goslings infected with GoAstV and the interaction between GoAstV and the innate immune system of the host.
Collapse
Affiliation(s)
- Zhanpeng Hou
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shaobing Jin
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yu Liang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Haiyue Wang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Danli Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinliang Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
2
|
Xiang Y, Li L, Huang Y, Zhang J, Dong J, Zhai Q, Sun M, Liao M. Cellular vimentin interacts with VP70 protein of goose astrovirus genotype 2 and acts as a structural organizer to facilitate viral replication. Poult Sci 2024; 103:104146. [PMID: 39128391 PMCID: PMC11367133 DOI: 10.1016/j.psj.2024.104146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
The fatal gouty disease caused by goose astrovirus genotype 2 (GAstV-2) still seriously endangers the goose industry in China, causing great economic losses. However, research on its infection mechanism has progressed relatively slowly. VP70 is the structural protein of GAstV-2 and is closely related to virus invasion and replication. To better understand the role of VP70 during GAstV-2 infection, we used immunoprecipitation and mass spectrometry to identify host proteins that interact with VP70. Here, we report that cellular vimentin (VIM) is a host binding partner of VP70. Site-directed mutagenesis showed that amino acid residues 399 to 413 of VP70 interacted with VIM. Using reverse genetics, we found that VP70 mutation disrupts the interaction of VP70 with VIM, which is essential for viral replication. Overexpression of VIM significantly promoted GAstV-2 replication, while knockdown of VIM significantly inhibited GAstV-2 replication. Laser confocal microscopy showed that VP70 protein expression induced the rearrangement of VIM, gradually aggregating from the original uniform grid to the side of the nucleus, and aggregated the originally dispersed GAstV-2 RNA in VIM. This rearrangement was associated with increased VIM phosphorylation caused by GAstV-2. Meanwhile, blocking VIM rearrangement with acrylamide substantially inhibited viral replication. These results indicate that VIM interacts with VP70 and positively regulates GAstV-2 replication, and VIM-VP70 interaction and an intact VIM network are needed for GAstV-2 replication. This study provides a theoretical basis and novel perspective for the further characterization of the pathogenic mechanism of GAstV-2-induced gouty disease in goslings.
Collapse
Affiliation(s)
- Yong Xiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Linlin Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Yunzhen Huang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Junqin Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Jiawen Dong
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Qi Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China; College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
3
|
Xiang Y, Chen M, Sun M, Dong J, Zhang J, Huang Y, Zhai Q, Liao M, Li L. Isolation, identification, and epidemiological characteristics of goose astrovirus causing acute gout in Guangdong province, China. Poult Sci 2024; 103:104143. [PMID: 39128392 PMCID: PMC11367137 DOI: 10.1016/j.psj.2024.104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Goose astrovirus (GAstV) has been widespread in China since 2016, causing significant growth inhibition and gout symptoms in goslings and leading to substantial economic losses in the goose industry. To better understand the epidemiological characteristics of GAstV in Guangdong Province, 682 samples were collected from geese with suspected GAstV infection across different regions of Guangdong Province from January 2022 to January 2024. Virus isolation, identification, and genetic evolution analysis were performed. The results showed that all samples were GAstV positive, with 52.64% co-infected with GAstV-1 and GAstV-2, and 42.38% positive for GAstV-2 alone, indicating that GAstV-2 remains the most prevalent subtype. Additionally, three GAstV isolates were identified using molecular detection, immunofluorescence, and transmission electron microscopy on LMH cells or goose embryos. Compared with GDYJ2304 and other reported GAstV-2 strains, the ORF2 region of the GDYJ2210 isolates lacked 3 bases, and the replication ability of GDYJ2210 was significantly higher than that of GDYJ2304. Whole genome sequence alignment and genetic evolution analysis revealed that the GDFS2209 isolate was located in the GAstV-1 branch, with a sequence similarity of 89.70 to 99.00% to GAstV-1 reference strains. The GDYJ2210 and GDYJ2304 isolates were located in the GAstV-2 branch, showing a sequence similarity of 96.80 to 98.90% to GAstV-2 reference strains. These results demonstrated that the GAstV isolates were highly similar to each other despite being prevalent in 5 different regions of Guangdong Province. These findings enhance the understanding of the genetic diversity and evolution of GAstV and may facilitate the development of effective preventive strategies.
Collapse
Affiliation(s)
- Yong Xiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Meiting Chen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China; School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Jiawen Dong
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Junqin Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Yunzhen Huang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Qi Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China; College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China
| | - Linlin Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
4
|
Ji J, Ji L, Dong X, Li W, Zhang W, Wang X, Wang J, Lei B, Wang Z, Yuan W, Zhao K. Comparative transcriptomic analysis of goose astrovirus genotype 1 and 2 in goose embryonic fibroblasts. Poult Sci 2024; 103:104347. [PMID: 39357233 PMCID: PMC11472713 DOI: 10.1016/j.psj.2024.104347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
Gout in goslings has become widespread and caused huge economic losses for the goose industry. Emerging evidence suggests that goose astrovirus (GAstV) is a prominent etiological factor of gout in goslings. At present, 2 genotypes of GAstV have been identified named GAstV-1 and GAstV-2. Here, we isolated the GAstV-1 HBLY strain and GAstV-2 XT1 strain from HeBei province of China. The genome and proliferation characteristics of GAstV-1 and GAstV-2 were analyzed and the results showed that the whole genome identity was 53.8% to 55.8%, especially the nucleotide and amino acids identity of ORF2 and Cap protein was only 49.5% to 50.5% and 19.6% to 22.6 %. Interestingly, GAstV-1 and GAstV-2 with such low homology both can cause gout in goslings. To further explore this phenomenon, the whole genomic expression profile of goose embryonic fibroblasts (GEFs) infected with GAstV-1 was investigated in comparison with GAstV-2. The results revealed that 126 differentially expressed genes (DEGs) were identified between GAstV-1-infected and uninfected cells at 48 h postinfection (hpi), and 262 DEGs between GAstV-2 and uninfected. Among these, there are 15 commonly up-regulated genes and 19 commonly down-regulated genes. Gene ontology (GO) enrichment analysis, Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and short time-series expression miner (STEM) analysis suggested that GAstV-1 can induce a higher innate immune response to GEFs, while GAstV-2 has a more pronounced effect on GEFs metabolic pathways. The transcriptomic analysis results significantly enhance our comprehension of the pathogenic mechanisms of GAstV.
Collapse
Affiliation(s)
- Jiashuang Ji
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Longhai Ji
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaofeng Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wei Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiangqin Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Junli Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | | | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
5
|
Li H, Su Q, Fu D, Huang H, Lu Z, Huang C, Chen Y, Tan M, Huang J, Kang Z, Wei Q, Guo X. Alteration of gut microbiome in goslings infected with goose astrovirus. Poult Sci 2024; 103:103869. [PMID: 38909510 PMCID: PMC11253677 DOI: 10.1016/j.psj.2024.103869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Goose astrovirus (GoAstV) is an emerging avian pathogen that induces gout in goslings with a mortality of up to 50%. Organ damage caused by GoAstV infection was considered the cause of gout, but it is still unclear whether other factors are involved. Human and murine studies have linked the gut microbiome-derived urate and gout, thus we hypothesized that gut microbiome may also play an important role in gout induced by GoAstV infection. This study tested the pathogenicity of our isolated GoAstV genotype 2 strain on goslings, while the appearance of clinical signs, histopathological changes, viral distribution and the blood level of cytokines were monitored for 18 d postinfection (dpi). The dynamics in the gut microbiome were profiled by 16S sequencing and then correlated with GoAstV infection. Results showed that this study successfully developed an experimental infection model for studying the pathogenicity of the GoAstV infection which induces typical symptoms of gout. GoAstV infection significantly altered the gut microbiome of goslings with the enrichment of potential proinflammatory bacteria and depletion of beneficial bacteria that can produce short-chain fatty acids. More importantly, the microbial pathway involved in urate production was significantly increased in goslings infected with GoAstV, suggesting that gut microbiome-derived urate may also contribute to the gout symptoms. Overall, this study demonstrated the role of gut microbiome in the pathogenesis of GoAstV infection, highlighting the potential of gut microbiome-based therapeutics against gout symptoms.
Collapse
Affiliation(s)
- Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Qi Su
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Duanfeng Fu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Haoyu Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhihua Lu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yunfeng Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Meifang Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
6
|
Mahomoodally MF, Coodian K, Hosenally M, Zengin G, Shariati MA, Abdalla AN, Alhazmi HA, Khuwaja G, Mohan S, Khalid A. Herbal remedies in the management of hyperuricemia and gout: A review of in vitro, in vivo and clinical evidences. Phytother Res 2024; 38:3370-3400. [PMID: 38655878 DOI: 10.1002/ptr.8211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Gout, or hyperuricemia is a multifactorial and multi-faceted metabolic disease that is quite difficult to manage and/or treat. Conventional therapies such as non-steroidal anti-inflammatory drugs (NSAIDs) such as allopurinol, corticosteroids and colchicine amongst others, have helped in its management and treatment to some extent. This study aimed to compile and analyze the different herbal remedies used in the management of hyperuricemia and gout. A literature search was conducted from key databases (PubMed, ScienceDirect, Cochrane Library, Google Scholar) using relevant keywords via the PRISMA model. Smilax riparia A.DC. from Traditional Chinese Medicine is used in many countries for its therapeutic effect on lowering serum urate levels. No single study was able to establish the efficacy of a specific traditionally used herb via in vitro, in vivo, and clinical studies. Patients were found to use a panoply of natural remedies, mainly plants to treat hyperuricemia and gout, which have been validated to some extent by in vitro, in vivo, and clinical studies. Nonetheless, further research is needed to better understand the ethnopharmacological relationship of such herbal remedies.
Collapse
Affiliation(s)
- Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Kaisavadee Coodian
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Muzzammil Hosenally
- Department of Economics and Statistics, Faculty of Social Sciences & Humanities, University of Mauritius, Réduit, Mauritius
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Mohammad Ali Shariati
- Semey Branch of the Institute, Kazakh Research Institute of Processing and Food Industry, Almaty, Kazakhstan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum, Sudan
| |
Collapse
|
7
|
Shen Q, Qian L, Chen Y, Bao Y, Wang J, Wang X, Liu Y, Yang S, Ji L, Shan T, Li H, Zhang W. Development of a label-free photoelectrochemical immunosensor for novel astrovirus detection. Mikrochim Acta 2024; 191:422. [PMID: 38922459 DOI: 10.1007/s00604-024-06514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Since 2017, an infectious goose gout disease characterized by urate precipitation in viscera, mainly caused by novel goose astrovirus (GoAstV) infection, has emerged in the main goose-producing region of China. The current challenge in managing goose gout disease is largely due to the absence of a rapid and efficient detection method for the GoAstV pathogen. Notably, the potential application of immunosensors in detecting GoAstV has not yet been explored. Herein, a label-free PEC immunosensor was fabricated by using purchased TiO2 as the photoactive material and antibody against GoAstV P2 proteins as the specific recognition element. First, we successfully expressed the capsid spike domain P2 protein of ORF2 from GoAstV CHSH01 by using the pET prokaryotic expression system. Meanwhile, the polyclonal antibody against GoAstV capsid P2 protein was produced by purified protein. To our knowledge, this is the first establishment and preliminary application of the label-free photoelectrochemical immunosensor method in the detection of AstV. The PEC immunosensor had a linear range of 1.83 fg mL-1 to 3.02 ng mL-1, and the limit of detection (LOD) was as low as 0.61 fg mL-1. This immunosensor exhibited high sensitivity, great specificity, and good stability in detecting GoAstV P2 proteins. To evaluate the practical application of the immunosensor in real-world sample detection, allantoic fluid from goose embryos was collected as test samples. The results indicated that of the eight positive samples, one false negative result was detected, while both negative samples were accurately detected, suggesting that the constructed PEC immunosensor had good applicability and practical application value, providing a platform for the qualitative detection of GoAstV.
Collapse
Affiliation(s)
- Quan Shen
- Institute of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Lingling Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yingying Bao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiangqiang Wang
- Intensive Care Unit, Jintan District Hospital of Traditional Chinese Medicine, Changzhou, 213299, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yuwei Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Henan Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Wen Zhang
- Institute of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
8
|
Chen L, Cui H, Li J, Zhang Y, Wang H, Yang Y, Wang X, Zhang C, Liu J. Epidemiological Investigation of Goose Astrovirus in Hebei Province, China, 2019-2021. Microorganisms 2024; 12:990. [PMID: 38792819 PMCID: PMC11123679 DOI: 10.3390/microorganisms12050990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The goose astrovirus (GAstV), a key pathogen causing visceral gout and high mortality in geese, has spread widely in China, with frequent outbreaks in recent years. Outbreaks and transmissions of this virus have been reported across China, causing considerable economic losses to the goose industry worldwide, with losses exceeding tens of billions in China alone. However, there is still no effective prevention strategy against this virus. Therefore, continuous monitoring of the genetic diversity of dominant GAstV strains is crucial for developing targeted vaccines and appropriate therapeutics. As a crucial region for goose breeding in China, Hebei Province has previously lacked reports on the epidemiology of GAstV. Hence, investigating the epidemiology of GAstV in Hebei Province is highly important. From January 2019 to December 2021, 474 samples suspected of having a GAstV infection were collected in Hebei Province in this study. Through detailed histological observations, pathological examinations, virus isolation and identification, and genetic diversity analysis, we found that GAstV-2 has become the predominant circulating genotype. However, the presence of GAstV-1 and mixed infections cannot be ignored and should receive increased attention. The findings of this study not only deepened our understanding of GAstV in waterfowl in China but also provided scientific evidence for developing effective prevention and control measures, thereby promoting the healthy development of the goose industry in China.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (L.C.); (H.C.); (J.L.); (Y.Z.); (H.W.); (Y.Y.); (X.W.)
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (L.C.); (H.C.); (J.L.); (Y.Z.); (H.W.); (Y.Y.); (X.W.)
| |
Collapse
|
9
|
Shi J, Jin Q, Zhang X, Zhao J, Li N, Dong B, Yu J, Yao L. The Development of a Sensitive Droplet Digital Polymerase Chain Reaction Test for Quantitative Detection of Goose Astrovirus. Viruses 2024; 16:765. [PMID: 38793646 PMCID: PMC11125696 DOI: 10.3390/v16050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Goose astrovirus (GAstV) is a novel emerging pathogen that causes significant economic losses in waterfowl farming. A convenient, sensitive, and specific detection method for GAstV in field samples is important in order to effectively control GAstV. Droplet digital polymerase chain reaction (ddPCR) is a novel, sensitive, good-precision, and absolute quantitation PCR technology which does not require calibration curves. (2) In this study, we developed a ddPCR system for the sensitive and accurate quantification of GAstV using the conserved region of the ORF2 gene. (3) The detection limit of ddPCR was 10 copies/µL, ~28 times greater sensitivity than quantitative real-time PCR (qPCR). The specificity of the test was determined by the failure of amplification of other avian viruses. Both ddPCR and qPCR tests showed good repeatability and linearity, and the established ddPCR method had high sensitivity and good specificity to GAstV. Clinical sample test results showed that the positive rate of ddPCR (88.89%) was higher than that of qPCR (58.33%). (4) As a result, our results suggest that the newly developed ddPCR method might offer improved analytical sensitivity and specificity in its GAstV measurements. The ddPCR could be widely applied in clinical tests for GAstV infections.
Collapse
Affiliation(s)
- Jianzhou Shi
- The Shennong Laboratory, Zhengzhou 450046, China;
- School of Life Science, Nanyang Normal University, Nanyang 473061, China
| | - Qianyue Jin
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Jinbing Zhao
- School of Life Science, Nanyang Normal University, Nanyang 473061, China
| | - Na Li
- School of Life Science, Nanyang Normal University, Nanyang 473061, China
| | - Bingxue Dong
- School of Life Science, Nanyang Normal University, Nanyang 473061, China
| | - Jinran Yu
- School of Life Science, Nanyang Normal University, Nanyang 473061, China
| | - Lunguang Yao
- School of Life Science, Nanyang Normal University, Nanyang 473061, China
- Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, Nanyang 473061, China
| |
Collapse
|
10
|
Xu L, Wu Z, He Y, Jiang B, Cheng Y, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Sun D, Cheng A, Chen S. Molecular characterization of a virulent goose astrovirus genotype-2 with high mortality in vitro and in vivo. Poult Sci 2024; 103:103585. [PMID: 38492247 PMCID: PMC10959697 DOI: 10.1016/j.psj.2024.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
Goose astrovirus (GAstV) is a newly identified viral pathogen threatening waterfowl, exhibiting a high prevalence across various regions in China. Notably, the Guanghan District of Deyang City, situated in Sichuan Province, has faced a outbreak of GAstV, resulting in significant mortality among goslings due to the induction of gout-like symptoms. In our research, we successfully isolated a GAstV strain known as GAstV SCG3. This strain exhibits efficient replication capabilities, proving virulent in goslings and goose embryos. Our study delved into the characteristics of GAstV SCG3 both in vitro and in vivo. Additionally, we examined tissue phagocytosis and the distribution of GAstV SCG3 in deceased goslings using H&E staining and IHC techniques. According to the classification established by the ICTV, GAstV SCG3 falls under the category of GAstV genotype-2. Notably, it demonstrates the highest homology with the published AHAU5 sequences, reaching an impressive 98%. Furthermore, our findings revealed that GAstV SCG3 exhibits efficient proliferation exclusively in goose embryos and in LMH cells, while not manifesting in seven other types of avian and mammalian cells. Significantly, the mortality of GAstV on goslings and goose embryos are 93.1 and 80%, respectively. Moreover, the viral load in the livers of infected goslings surpasses that in the kidneys when compared with the attenuated strain GAstV SCG2. The mortality of GAstV is usually between 20% and 50%, our study marks the first report of a virulent GAstV strain with such a high mortality.
Collapse
Affiliation(s)
- Linhua Xu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Yu He
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Bowen Jiang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Yao Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People's Republic of China, Chengdu 611130, China.
| |
Collapse
|
11
|
Ding R, Xu H, Huang H, Cao R, Lv Y. Effects of Goose Astrovirus Type 2 Infection on Peripheral Blood Lymphocyte and Macrophage Activity In Vitro. Viral Immunol 2024; 37:139-148. [PMID: 38574260 DOI: 10.1089/vim.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Goose astrovirus type 2 (GAstV-2) is a novel pathogen causing visceral gout in goslings; it not only causes necrosis of renal epithelial cells but also causes spleen damage, indicating that GAstV-2 induces immunosuppression in goslings. However, to date, the interaction between GAstV-2 and immune cells remains unclear. In this study, peripheral blood lymphocytes and macrophages were isolated from goslings without GAstV-2 infection and then inoculated in vitro with GAstV-2, and the virus localization in the lymphocytes and macrophages, proliferation and apoptosis of lymphocytes, and phagocytic activity, reactive oxygen species (ROS) and nitric oxide (NO) production, and cell polarity in macrophages were determined. The results showed that GAstV-2 was observed in the cytoplasm of CD4 and CD8 T cells and macrophages, indicating that GAstV-2 can infect both lymphocytes and macrophages. GAstV-2 infection reduced the lymphocyte proliferation induced by Concanavalin A and lipopolysaccharide stimulation and increased the lymphocyte apoptosis rate and mRNA expression of Fas, demonstrating that GAstV-2 causes damage to lymphocytes. Moreover, GAstV-2 infection enhanced phagocytic activity and production of ROS and NO and induced a proinflammatory phenotype in macrophages (M1 macrophages), indicating that macrophages play an antiviral role during GAstV-2 infection. In conclusion, these results demonstrate that GAstV-2 infection causes damages to lymphocytes, and host macrophages inhibit GAstV-2 invasion during infection.
Collapse
Affiliation(s)
- Rui Ding
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haoran Xu
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Han Huang
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruibing Cao
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingjun Lv
- Department of Animal Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Zhou Q, Cui Y, Wang C, Wu H, Xiong H, Qi K, Liu H. Characterization of natural co-infection with goose astrovirus genotypes I and II in gout affected goslings. Avian Pathol 2024; 53:146-153. [PMID: 38088166 DOI: 10.1080/03079457.2023.2295341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
RESEARCH HIGHLIGHTS Urate tophi were found in the kidneys, liver, spleen and lungs.IFA confirmed the co-expression of GoAstV-I and II antigens in the same kidney.
Collapse
Affiliation(s)
- Qian Zhou
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, People's Republic of China
| | - Yaqian Cui
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, People's Republic of China
| | - Chenxiao Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, People's Republic of China
| | - Hanwen Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, People's Republic of China
| | - Haifeng Xiong
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, People's Republic of China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, People's Republic of China
| | - Hongmei Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, People's Republic of China
| |
Collapse
|
13
|
Li Y, Luo J, Shang J, Zhang F, Deng C, Feng Y, Meng G, Jiang W, Yu X, Liu H. Epidemiological investigation and pathogenicity analysis of waterfowl astroviruses in some areas of China. Front Microbiol 2024; 15:1375826. [PMID: 38529177 PMCID: PMC10961457 DOI: 10.3389/fmicb.2024.1375826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Waterfowl astroviruses are mainly duck astroviruses and goose astroviruses, of which duck astroviruses (DAstV-3, -4), goose astroviruses (GoAstV-1, -2) are the four new waterfowl 21 astroviruses in recent years, which can lead to enteritis, viral hepatitis, gout and reduce the growth performance of waterfowl, affecting the healthy development of the waterfowl farming industry. Since no targeted drugs or vaccines on the market, studies on the epidemiology of the virus are necessary for vaccine development. In this study, we collected 1546 waterfowl samples from 13 provinces in China for epidemiological investigation. The results showed that 260 samples (16.8%) were positive. Four species of astrovirus were detected in 13 provinces except Fujian province. Among the four sites tested, the highest positive rates were found in farms and slaughterhouses. Cross-host and mixed infection were observed in four species of waterfowl astroviruses. The whole genome of 17 isolates was sequenced and compared with published sequences. Genetic evolution and homology analysis showed that the isolated strains had high similarity to their reference sequences. To assess the pathogenicity of GoAstV, 7-day-old goslings were inoculated with GoAstV-1 and GoAstV-2 by the intramuscular route, and infected geese showed similar clinical signs, such as anorexia, depression, and weight loss. Organ damage was seen after infection, with histopathological changes in the heart, liver, spleen, kidney, and intestine, and higher viral loads in throat and anal swabs. These findings increase our understanding of the pathogenicity of GoAstV-1 and GoAstV-2 in goslings and provide more references for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| |
Collapse
|
14
|
Xu L, Jiang B, Cheng Y, Gao Z, He Y, Wu Z, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Gao Q, Sun D, Cheng A, Chen S. Molecular epidemiology and virulence of goose astroviruses genotype-2 with different internal gene sequences. Front Microbiol 2023; 14:1301861. [PMID: 38143855 PMCID: PMC10740193 DOI: 10.3389/fmicb.2023.1301861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023] Open
Abstract
Goose astrovirus (GAstV) is a small, non-enveloped, single-stranded, positive-sense RNA virus. GAstV has rapidly spread across various regions in China since 2016. In Sichuan, out of 113 samples were collected from goose diseases between 2019 and 2022, 97 were positive for GAstV through PCR testing. Remarkably, over the past three years, GAstV outbreak in Sichuan has accounted for an astonishing 85.8% of all goose-origin viruses. Among these cases, 63.9% had single GAstV infections, 29.9% had dual infections, and 6.2% had quadruple infections. To comprehend the variations in virulence among distinct strains of GAstV. 12 representative strains of single GAstV infections were isolated. These strains exhibited distinct characteristics, such as prominent white urate depositions in organs and joints, as well as extensive tissues phagocytosis in major target organs' tissues. The conserved ORF1b genes and the variable ORF2 genes of these representative GAstV strains were sequenced, enabling the establishment of phylogenetic trees for GAstV. All GAstV strains were identified as belonging to genotype-2 with varying internal gene sequences. Experiments were conducted on GAstV genotype-2, both in vivo and in vitro, revealed significant variations in pathogenicity and virulence across susceptible cells, embryos, and goslings. This comprehensive study enhances researchers' understanding of the transmission characteristics and virulence of GAstV genotype-2, aiding in a better comprehension of their molecular epidemiology and pathogenic mechanism.
Collapse
Affiliation(s)
- Linhua Xu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Bowen Jiang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Yao Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Zhenjie Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Yu He
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
| |
Collapse
|
15
|
Li H, Zhu Y, Wan C, Wang Z, Liu L, Tan M, Zhang F, Zeng Y, Huang J, Wu C, Huang Y, Kang Z, Guo X. Rapid detection of goose astrovirus genotypes 2 using real-time reverse transcription recombinase polymerase amplification. BMC Vet Res 2023; 19:232. [PMID: 37936127 PMCID: PMC10629041 DOI: 10.1186/s12917-023-03790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Goose astrovirus (GoAstV) is an important pathogen that causes joint and visceral gout in goslings. It has been circulating in many provinces of China since 2017. Goose astrovirus genotypes 2 (GoAstV-2) is the main epidemic strain, and its high morbidity and mortality have caused huge economic losses to the goose industry. An accurate point-of-care detection for GoAstV-2 is of great significance. In this study, we developed a real-time reverse transcription recombinase polymerase amplification (RT-RPA) method for the on-site detection of GoAstV-2 infection. RESULTS The real-time RT-RPA reaction was carried out at a constant temperature of 39 °C, and the entire detection time from nucleic acid preparation to the end of amplification was only 25 min using the portable device. The results of a specificity analysis showed that no cross-reaction was observed with other related pathogens. The detection limit of the assay was 100 RNA copies/μL. The low coefficient of variation value indicated excellent repeatability. We used 270 clinical samples to evaluate the performance of our established method, the positive concordance rates with RT-qPCR were 99.6%, and the linear regression analysis revealed a strong correlation. CONCLUSIONS The established real-time RT-RPA assay showed high rapidity, specificity and sensitivity, which can be widely applied in the laboratory, field and especially in the resource-limited settings for GoAstV-2 point-of-care diagnosis.
Collapse
Affiliation(s)
- Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi AgriculturalUniversity, Nanchang, China
| | - Yujun Zhu
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian, China
| | - Zhangzhang Wang
- Xingguo County Agricultural Technology Extension Center, Ganzhou, 341000, Jiangxi, China
| | - Lei Liu
- XinyuYushui District Center for Agricultural Sciences, Xinyu, 338000, Jiangxi, China
| | - Meifang Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Yanbing Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Chengcheng Wu
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian, China
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China.
| | - Xiaoqiao Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi AgriculturalUniversity, Nanchang, China.
| |
Collapse
|
16
|
Guo F, Yang J, Abd El-Aty AM, Wang R, Ju X. Base composition, adaptation, and evolution of goose astroviruses: codon-based investigation. Poult Sci 2023; 102:103029. [PMID: 37713803 PMCID: PMC10511809 DOI: 10.1016/j.psj.2023.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Goose astroviruses (GoAstVs) are causative agents that account for fatal infection of goslings characterized by visceral urate deposition, resulting in severe economic losses in major goose-producing regions in China since 2017. In this study, we sought to unravel the intrinsic properties associated with adaptation and evolution in the host environment of GoAstVs. Consistent results from phylogenetic analysis and correspondence analysis performed on the codon usage patterns (CUPs) reveal 2 clusters of GoAstVs, namely, GoAstV-1 and GoAstV-2. However, multiple similar compositional characteristics were found, despite the high divergence between GoAstV-1 and GoAstV-2. Studies on the base composition of GoAstVs reveal an A/U bias, indicating a compositional constraint, while natural selection prevailed in determining the CUPs in the virus genome based on our neutrality plot analysis, reflecting high adaptive pressure to fit the host environment. Codon adaptation index (CAI) analysis revealed a higher degree of fitness to the CUPs of the corresponding host for GoAstVs than avian influenza virus and betacoronaviruses, which may be a favorable factor contributing to the high pathogenicity and wide distribution of GoAstVs in goslings. In addition, GoAstVs were less adapted to ducks and chickens, with significantly lower CAI values than to geese, which may be a reason for the different prevalence of GoAstVs among these species. Extensive investigations on dinucleotide distribution revealed a significant suppression of the CpG and UpA motifs in the virus genome, which may facilitate adaptation to the host's innate immune system by evading surveillance. In addition, our study reported the trends of increasing fitness to the host's microenvironment for GoAstVs through increasing adaptation to host CUPs and ongoing reduction of CpG motifs in the virus genome. The present analysis deepens our understanding of the basic biology, pathogenesis, adaptation and evolutionary pattern of GoAstVs, and contributes to the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Fucheng Guo
- Department of Veterinary Medicine, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jinjin Yang
- Technology Center of Zhanjiang Customs District, Zhanjiang, 524000, Guangdong, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Ruichen Wang
- Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing 102206, China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, 524088, China; Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| |
Collapse
|
17
|
Wang A, Xie J, Wu Z, Liu L, Wu S, Feng Q, Dong H, Zhu S. Pathogenicity of a goose astrovirus 2 strain causing fatal gout in goslings. Microb Pathog 2023; 184:106341. [PMID: 37704061 DOI: 10.1016/j.micpath.2023.106341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Gosling gout has posed a serious threat to the development of the China's goose industry since the outbreak in mainland China in 2016; goose astrovirus (GAstV) was identified as the culprit pathogen. Two genotypes of this virus have been identified: GAstV-1 and GAstV-2, of which GAstV-2 is the main epidemic strain. Our current understanding of the pathogenic mechanisms of GAstV-2 remains limited. To assess pathogenicity, 1-day-old goslings were inoculated with the GAstV-2 YC20 strain via the subcutaneous, intranasal, and oral infection routes. All the goslings showed typical gout symptoms, with those in the oral infection group exhibiting earlier and more severe clinical symptoms, the highest mortality rate, and greatest weight loss. The blood biochemical indicators, viral loads in cloacal swabs and all representative tissues, and serum antibody titers of all infection groups increased significantly, and no significant differences in these parameters were observed among the three infection groups. Histopathological studies showed that the livers, kidneys, and spleens were the main damaged organs, and the pathological changes in the oral group were more severe than those in the other groups. Further analysis revealed that hepatic sinuses narrowed or became occluded as early as 1 day post-inoculation; urate deposition occurred in the renal tubules at 2 days post-inoculation (dpi), followed by necrosis of renal tubular epithelial cells; and lymphocytic infiltration appeared in the splenic tissue at 5 dpi. These results further our understanding of the pathogenic mechanisms of GAstV-2 and provide a reference for future studies.
Collapse
Affiliation(s)
- Anping Wang
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| | - Jun Xie
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| | - Zhi Wu
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| | - Li Liu
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| | - Shuang Wu
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| | - Qi Feng
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| | - Hongyan Dong
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| | - Shanyuan Zhu
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, PR China.
| |
Collapse
|
18
|
Wei F, Jiang X, He D, Diao Y, Tang Y. Localization and distribution of goose astrovirus 2 antigens in different tissues at different times. BMC Vet Res 2023; 19:173. [PMID: 37741982 PMCID: PMC10517483 DOI: 10.1186/s12917-023-03688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/07/2023] [Indexed: 09/25/2023] Open
Abstract
Goose astrovirus 2 (GAstV-2) causes visceral gout in goslings and has resulted in significant economic losses in the goose industry of China since its outbreak in 2017. To further investigate the distribution and localization of GAstV-2 in different tissues at different times, a monoclonal antibody (mAb)-based immunohistochemical (IHC) assay was developed to detect GAstV-2. A total of 80 1-day-old healthy goslings were inoculated with GAstV-2 via the oral (n = 40) and intramuscular routes (n = 40). GAstV-2 in the tissues of interest was detected using the established IHC assay. The results showed that positive signals were detected in most tissues at 1 day post-infection (dpi). Viral antigens were mainly distributed in the cytoplasm, and the staining intensity was higher in the renal tubular epithelial cells than in other cells. Taken together, our data demonstrated that GAstV-2 has a broad tissue tropism and primarily targets the kidneys. These results are likely to provide a scientific basis for further elucidation of the pathogenesis of GAstV-2.
Collapse
Affiliation(s)
- Feng Wei
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong Province, China
| | - Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong Province, China
| | - Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong Province, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong Province, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong Province, China.
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong Province, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong Province, China.
| |
Collapse
|
19
|
He D, Jiang X, Tian M, Niu X, Wei F, Wu B, Gao L, Tang Y, Diao Y. Pathogenicity of goose astrovirus genotype 2 in chickens. Poult Sci 2023; 102:102808. [PMID: 37302333 PMCID: PMC10404779 DOI: 10.1016/j.psj.2023.102808] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Goose astrovirus genotype 2 (GAstV-2) is the causative agent causing severe visceral gout and joint gout in goslings, with mortality rates of affected flocks up to 50%. To date, continuous GAstV-2 outbreaks still pose a great threat to goose industry in China. Although most researches on GAstV-2 have focused on its pathogenicity to geese and ducks, limited studies have been performed on chickens. Herein, we inoculated 1-day-old specific pathogen-free (SPF) White Leghorn line chickens with 0.6 mL of GAstV-2 culture supernatant (TCID50 10-5.14/0.1 mL) via orally, subcutaneously and intramuscularly, and then assessed the pathogenicity. The results revealed that the infected chickens presented depression, anorexia, diarrhea, and weight loss. The infected chickens also suffered from extensive organ damage and had histopathological changes in the heart, liver, spleen, kidney, and thymuses. The infected chickens also had high viral load in tissues and shed virus after the challenge. Overall, our research demonstrates that GAstV-2 can infect chickens and adversely affect the productivity of animals. And the viruses shed by infected chickens can pose a potential risk to the same or other domestic landfowls.
Collapse
Affiliation(s)
- Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Maoquan Tian
- Laoling Animal Husbandry Development Center, Dezhou, Shandong 253600, China
| | - Xing Niu
- Linyi Vocational University of Science and Technology, Linyi, Shandong 276000, China
| | - Feng Wei
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Bingrong Wu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Ling Gao
- Laoling Animal Husbandry Development Center, Dezhou, Shandong 253600, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China.
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| |
Collapse
|
20
|
Peng Z, Gao D, Song X, Huang H, Zhang X, Jiang Z, Qiao H, Bian C. Isolation and genomic characterization of one novel goose astrovirus causing acute gosling gout in China. Sci Rep 2023; 13:10565. [PMID: 37386083 PMCID: PMC10310827 DOI: 10.1038/s41598-023-37784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
Novel goose astrovirus (NGAstV) is a member of the genus Avain Avastrovirus (AAstV) and the family Astroviridae. NGAstV-associated gout disease has caused huge economic losses to the goose industry worldwide. Since early 2020, NGAstV infections characterized by articular and visceral gout emerged continuously in China. Herein, we isolated a GAstV strain from goslings with fatal gout disease and sequenced its complete genome nucleotide sequence. Then we conducted systematic genetic diversity and evolutionary analysis. The results demonstrated that two genotypic species of GAstV (GAstV-I and GAstV-II) were circulating in China, and GAstV-II sub-genotype IId had become the dominant one. Multiple alignments of amino acid sequences of GAstV capsid protein revealed that several characteristic mutations (E456D, A464N, and L540Q) in GAstV-II d strains, as well as additional residues in the newly identified isolate which varied over time. These findings enrich the understanding of the genetic diversity and evolution of GAstV and may facilitate the development of effective preventive strategies.
Collapse
Affiliation(s)
- Zhifeng Peng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou, 450046, Henan, China
| | - Dongsheng Gao
- Henan Dahenong Animal Husbandry Co. Ltd., Zhengzhou, 450000, China
| | - Xinghui Song
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou, 450046, Henan, China
| | - Huimin Huang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou, 450046, Henan, China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou, 450046, Henan, China
| | - Zenghai Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou, 450046, Henan, China
| | - Hongxing Qiao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou, 450046, Henan, China
| | - Chuanzhou Bian
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
21
|
Li H, Kang Z, Wan C, Zhang F, Tan M, Zeng Y, Wu C, Huang Y, Su Q, Guo X. Rapid diagnosis of different goose astrovirus genotypes with Taqman-based duplex real-time quantitative PCR. Poult Sci 2023; 102:102730. [PMID: 37167886 DOI: 10.1016/j.psj.2023.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
The epidemic of goose astrovirus (GoAstV) caused huge losses to the poultry industry. Epidemiological studies in China revealed 2 circulating genotypes of GoAstV, but there is a lack of differential diagnosis tools. By analyzing all published genomes of GoAstV, this study designed specific PCR primers and Taqman probes to recognize different genotypes of GoAstV. After optimization and verification, this study developed a Taqman-based real-time quantitative PCR method that is capable of differential diagnosis. The established qPCR exhibited detection limitations of 100 copies/μL or 10 copies/μL, respectively, for GoAstV genotype 1 and genotype 2, and showed no false positive for other common avian viruses. This method was then used to analyze 72 samples collected from different regions in Jiangxi, and the results were verified by genome sequencing and phylogenetic analysis. These results revealed a complex coinfection of GoAstV different genotypes in China, highlighting the importance of long-term focus on the prevalence and genome evolution of GoAstV.
Collapse
Affiliation(s)
- Haiqin Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China; Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Meifang Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Yanbing Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Chengcheng Wu
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271000, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
22
|
Li H, Wan C, Wang Z, Tan J, Tan M, Zeng Y, Huang J, Huang Y, Su Q, Kang Z, Guo X. Rapid diagnosis of duck Tembusu virus and goose astrovirus with TaqMan-based duplex real-time PCR. Front Microbiol 2023; 14:1146241. [PMID: 37065126 PMCID: PMC10098182 DOI: 10.3389/fmicb.2023.1146241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
The mixed infection of duck Tembusu virus (DTMUV) and goose astrovirus (GoAstV) is an important problem that endangers the goose industry. Although quantitative PCR has been widely used in monitoring these two viruses, there is no reliable method to detect them at the same time. In this study, by analyzing the published genomes of DTMUV and goose astrovirus genotype 2 (GoAstV-2) isolated in China, we found that both viruses have high conservation, showing 96.5 to 99.5% identities within different strains of DTMUV and GoAstV, respectively. Subsequently, PCR primers and TaqMan probes were designed to identify DTMUV and GoAstV-2, and different fluorescent reporters were given to two probes for differential diagnosis. Through the optimization and verification, this study finally developed a duplex TaqMan qPCR method that can simultaneously detect the above two viruses. The lower limits of detection were 100 copies/μL and 10 copies/μL for DTMUV and GoAstV-2 under optimal condition. The assay was also highly specific in detecting one or two viruses in various combinations in specimens, and provide tool for clinical diagnosis of mixed infections of viruses in goose.
Collapse
Affiliation(s)
- Haiqin Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zhangzhang Wang
- Xingguo County Agricultural Technology Extension Center, Ganzhou, Jiangxi, China
| | - Jia Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Meifang Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Yanbing Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
- *Correspondence: Zhaofeng Kang, ; Xiaoquan Guo,
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Zhaofeng Kang, ; Xiaoquan Guo,
| |
Collapse
|
23
|
Ren D, Zhang X, Zhang W, Lian M, Meng X, Li T, Xie Q, Shao H, Wan Z, Qin A, Gao W, Ye J. A peptide-based ELISA for detection of antibodies against novel goose astrovirus type 1. J Virol Methods 2023; 312:114646. [PMID: 36356679 DOI: 10.1016/j.jviromet.2022.114646] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Goose gout disease is a high morbidity and mortality disease caused by novel serotype 1 goose astrovirus (GAstV-1), which has resulted in huge economic loss to the goose industry of China. However, few diagnostic methods have been developed for serological surveillance of GAstV-1. In our previous study, several novel B cell epitopes were identified in the ORF2 protein of GAstV-1. In this study, one novel peptide of 627-646 aa in the ORF2 recognized by monoclonal antibody (mAb) 6C6 was used as an antigen to develop an efficient peptide-based ELISA (pELISA) for detection of antibodies against GAstV-1. Specificity analysis showed that the pELISA only reacted with sera against GAstV-1, but not with sera against other pathogens tested. The sensitivity of the pELISA in detecting positive sera was higher than that of the IFA (Indirect immunofluorescence assay). The coefficients of variation (CV) of the intra-assay and inter-assay were both < 10%, indicating that the reproducibility of pELISA was good. For detection of clinical samples, the pELISA had 87.5% concordance with the IFA. Our data demonstrate that the pELISA generated here provides an accurate, rapid, and economical method for the detection antibodies against GAstV-1 for serological surveillance.
Collapse
Affiliation(s)
- Dan Ren
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Xinyun Zhang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd, Yangzhou, Jiangsu 225127, China.
| | - Mingjun Lian
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Sinopharm Yangzhou VAC Biological Engineering Co., Ltd, Yangzhou, Jiangsu 225127, China.
| | - Xianchen Meng
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Wei Gao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
24
|
Li Y, Li B, Liu F, Yang L, Wu Q, Wu Y, Ma Y, Xu D, Li Y. Characterization of circular RNA expression profiles in the age-related thymic involution of Magang goose. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104581. [PMID: 36283574 DOI: 10.1016/j.dci.2022.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The thymus is a vital immune organ, but its function gradually declines with age. Circular RNAs (circRNAs) are related to the development of tissues and organs. In this study, bioinformatics analysis showed that 1329, 755, and 417 circRNAs were differentially expressed between the comparison groups of 6-month age (M6) and 20-embryo age (E20), 3-day post-hatch (P3), and 3-month age (M3) Magang geese, respectively. Among them, 167 circRNAs were differentially co-expressed between thymic development (E20, P3, and M3) and involution (M6). Functional analysis showed significant enrichment of phosphorylation and positive regulation of GTPase activity. Furthermore, pathway analysis has shown that glycerolipid metabolism and the Wnt signaling pathway are critical pathways in the thymic involution process. Finally, we constructed the competitive endogenous RNA (ceRNA) network. The results of this study suggest that circRNAs may be involved in the age-related thymic involution of the Magang goose.
Collapse
Affiliation(s)
- Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bingxin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Fenfen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingru Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yingying Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Danning Xu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Xu L, Jiang B, Cheng Y, He Y, Wu Z, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Gao Q, Sun D, Cheng A, Chen S. Infection and innate immune mechanism of goose astrovirus. Front Microbiol 2023; 14:1121763. [PMID: 36778860 PMCID: PMC9909288 DOI: 10.3389/fmicb.2023.1121763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Goose astrovirus (GAstV, genus Avian Astrovirus, family Astrovirus) was first discovered in 2005, but was not considered as a pathogen of gosling gout until 2016. Since then, goose astrovirus has erupted in Chinese goslings, causing at most 50% of gosling deaths. By December 2022, the disease had become epidemic and prevailed in goose farms in Jiangsu, Shandong, Anhui, Henan, Guangdong, Liaoning, Sichuan and other places in China. The disease mainly affects goslings within 3 weeks old. The typical symptoms of goose astrovirus are large deposits of urate in the viscera, joint cavity and ureter surface of infected goslings. Goose astrovirus infection can trigger high levels of iNOS, limiting goose astrovirus replication. The ORF2 domain P2 of the goose astrovirus activates the OASL protein, limiting its replication. Goose astrovirus can also activate pattern recognition receptors (RIG-I, MDA-5, TLR-3), causing an increase in MHC-Ia, MHC-Ib and CD81 mRNA, activating humoral and cellular immunity, thereby hindering virus invasion. Goose astrovirus also regulates the activation of IFNs and other antiviral proteins (Mx1, IFITM3, and PKR) in the spleens and kidneys to inhibit viral replication. The innate immune response process in goslings also activates TGF-β, which may be closely related to the immune escape of goose astrovirus. Gaining insight into the infection and innate immune mechanism of goose astrovirus can help researchers study and prevent the severe disease in goslings better.
Collapse
Affiliation(s)
- Linhua Xu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Linhua Xu, ✉
| | - Bowen Jiang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yao Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhen Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,*Correspondence: Anchun Cheng, ✉
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Shun Chen, ✉
| |
Collapse
|
26
|
He D, Sun M, Jiang X, Zhang S, Wei F, Wu B, Diao Y, Tang Y. Development of an indirect competitive ELISA method based on ORF2 detecting the antibodies of novel goose astrovirus. J Virol Methods 2023; 311:114643. [PMID: 36332715 DOI: 10.1016/j.jviromet.2022.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/11/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Goose astrovirus (GAstV) characterized by articular and visceral gout, is an emerging pathogen with a wide distribution on mainland China, leading to serious economic losses in the goose-raising industry. Because vaccines to prevent GAstV infections are not available currently, early diagnosis is critical when treating symptomatic geese and in preventing GAstV transmission. In this context, a highly sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on a monoclonal antibody (mAb) to detect GAstV-specific antibodies from geese was developed, and the detections were optimized. A series of experiments proved that the ic-ELISA shows excellent diagnostic performance and discriminatory power with high sensitivity and specificity. The ic-ELISA for GAstV detection was applied on 67 field serum samples, and comparing the detection results with the virus neutralization test verified the accuracy of the ic-ELISA. The correlation coefficient between the ic-ELISA and the virus neutralization test was 80%, demonstrating the proposed ic-ELISA method could be a useful and effective tool for the diagnostic, serological epidemiological investigation and immune monitoring of the GAstV in goose-producing regions.
Collapse
Affiliation(s)
- Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Min Sun
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Shuai Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Feng Wei
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Bingrong Wu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China.
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China.
| |
Collapse
|
27
|
Xu J, Gao L, Zhu P, Chen S, Chen Z, Yan Z, Lin W, Yin L, Javed MT, Tang Z, Chen F. Isolation, identification, and pathogenicity analysis of newly emerging gosling astrovirus in South China. Front Microbiol 2023; 14:1112245. [PMID: 36922973 PMCID: PMC10008898 DOI: 10.3389/fmicb.2023.1112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Goose astroviruses (GoAstV) cause fatal gout and decrease product performance in the waterfowl industry across the world. Since no effective vaccines are available, studies on the epidemiology of the virus are necessary for vaccine development. In this study, we collected 94 gout samples from goose farms in the Guangdong Province of South China. Among them, 87 samples (92.6%) tested positive for GoAstV, out of which five GoAstV strains were isolated after four generations of blind transmission through healthy 13-day-old goose embryos. The whole genome of the isolates was sequenced and further analyzed by comparing the sequences with published sequences from China and other parts of the world. The results of the alignment analysis showed that nucleotide sequence similarities among the five GoAstV isolates were around 97.4-98.8%, 98.6-100%, 98.1-99.8%, and 96.7-100% for the whole genome, ORF1a, ORF1b, and ORF2, respectively. These results showed that the GoAstV isolates were highly similar to each other, although they were prevalent in five different regions of the Guangdong Province. The results of the phylogenetic analysis showed that the whole genome, along with the ORF1a, ORF1b, and ORF2 genes of the isolates, were clustered on a single branch, along with the recently published GoAstV-2, and were very distinct from the DNA sequences of the GoAstV-1 virus. In this study, we also reproduced the clinical symptoms of natural infection using the GoAstV-GD2101 isolates, confirming that the gout-causing pathogen in goslings was the goose astrovirus. These findings provided new insights into the pathogenicity and genetic evolution of GoAstV and laid the foundation for effectively controlling the disease.
Collapse
Affiliation(s)
- Jingyu Xu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Liguo Gao
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Puduo Zhu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sheng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zixian Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhuanqiang Yan
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lijuan Yin
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd., Yunfu, China
| | - M Tariq Javed
- Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
28
|
Wang A, Liu L, Zhang S, Ye W, Zheng T, Xie J, Wu S, Wu Z, Feng Q, Dong H, Zhu S. Development of a duplex real-time reverse transcription-polymerase chain reaction assay for the simultaneous detection of goose astrovirus genotypes 1 and 2. J Virol Methods 2022; 310:114612. [PMID: 36084767 DOI: 10.1016/j.jviromet.2022.114612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022]
Abstract
Goose astrovirus (GAstV) is a highly infectious pathogen that causes gout in goslings (<15 old) with typical symptoms of white urate disposition on the surface of the visceral organs and articular cavity, and a high mortality rate up to 50 %. To establish a real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay for the rapid detection of the two GastV genotypes(GAstV-1 and GAstV-2), two pairs of primers and a pair of matching TaqMan probes were designed based on conserved regions of the ORF1b gene. The established duplex rRT-PCR assay showed no cross-reactivity with 10 other common waterfowl pathogens. The minimum detection limit was 10 copies/reaction for both GAstV-1 and GAstV-2. To validate the assay, 36 cloacal swabs from experimentally infected goslings and 33 field clinical samples were tested. The assay results of the experimentally infected goslings matched the infection scheme. The positive rates of GAstV-1 and GAstV-2 in the field clinical samples were 36.36 % and 54.55 %, respectively, and the co-infection rate of the two viruses was 21.21 % based on the duplex rRT-PCR assay. In conclusion, the established assay represents a specific, sensitive, and convenient tool for detecting GAstV-1, GAstV-2, and their co-infections, and for conducting epidemiological surveys.
Collapse
Affiliation(s)
- Anping Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou 225300, PR China
| | - Li Liu
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou 225300, PR China
| | - Shuo Zhang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Wenhao Ye
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou 225300, PR China
| | - Tian Zheng
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou 225300, PR China
| | - Jun Xie
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou 225300, PR China
| | - Shuang Wu
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou 225300, PR China
| | - Zhi Wu
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou 225300, PR China
| | - Qi Feng
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou 225300, PR China
| | - Hongyan Dong
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou 225300, PR China
| | - Shanyuan Zhu
- Jiangsu Agri-Animal Husbandry Vocational College, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou 225300, PR China.
| |
Collapse
|
29
|
He D, Wang F, Zhao L, Jiang X, Zhang S, Wei F, Wu B, Wang Y, Diao Y, Tang Y. Epidemiological investigation of infectious diseases in geese on mainland China during 2018-2021. Transbound Emerg Dis 2022; 69:3419-3432. [PMID: 36088652 DOI: 10.1111/tbed.14699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 02/04/2023]
Abstract
Geese play an important role in agricultural economics, with China producing the vast majority of goose meat consumed worldwide annually. The variations in the avian viruses and co-infections result in substantial economic losses to the goose industry in China. To understand the evolutionary characteristics and co-infections of viruses, a broad epidemiological investigation of epizootic viruses of goose was carried out in nine provinces of China during 2018-2021. Here, the results indicated that, among the 1970 clinical samples, 50.81% (1001/1970) were positive for goose astrovirus (GAstV), 18.22% (359/1970) for avian orthoreovirus, 12.74% (251/1970) for goose parvovirus, 11.02% (217/1970) for H9N2 subtype avian influenza virus, 4.01% (79/1970) for Newcastle disease virus, and 2.08% (41/1970) for fowl adenovirus. Among the six viruses, co-infections comprised a large proportion (66.37%) in the field, of which the dual infection was more common. Additionally, phylogenetic analysis of GAstVs indicated that Chinese GAstVs had formed two distinct groups, that is, GAstV-1 and GAstV-2. GAstV-2 sub-genotype II-c had arisen as the dominant genotype in the whole country. Notably, all the H9N2-AIV isolated strains harboured the mammalian adaptation markers I155T, H183N, and Q226L (H3 numbering) in the HA gene, which promotes preferential binding to human-like α2-6-linked sialic acid receptors. And beyond that, we determined that the goose-origin Muscovy Duck Reovirus isolates, showing 51.7%-96% similarities to that of other waterfowl-origin orthoreovirus isolates in sequence homology analysis of the representative part of σC, are a new variant of waterfowl-origin orthoreovirus. These data provide valuable information about the prevalence of infectious diseases in geese on mainland China.
Collapse
Affiliation(s)
- Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Fangfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Liming Zhao
- Zibo Animal Disease Prevention and Control Center, Zibo, China
| | - Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Shuai Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Feng Wei
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Bingrong Wu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yan Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| |
Collapse
|
30
|
Yang K, Zhang W, Xu L, Liu Q, Song X, Shao Y, Tu J, Qi K. Facile, ultrasensitive, and highly specific diagnosis of goose astrovirus via reverse transcription-enzymatic recombinase amplification coupled with a CRISPR-Cas12a system detection. Poult Sci 2022; 101:102208. [PMID: 36279605 PMCID: PMC9597117 DOI: 10.1016/j.psj.2022.102208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/09/2023] Open
Abstract
Fatal gout in geese caused by goose astrovirus (GAstV) has been spreading rapidly in China since 2018, causing serious economic losses in the goose breeding industry. To achieve simple, convenient and sensitive detection of GAstV, a novel diagnostic test was developed by combining reverse transcription-enzymatic recombinase amplification (RT-ERA) and CRISPR-Cas12a technologies. RT-ERA primers were designed to pre-amplify the conserved region of the ORF2 gene of GAstV and the predefined target sequence detected using the Cas12a/crRNA complex at 37℃ for 30 min. Specific detection of GAstV was achieved with no cross-reaction with non-GAstV templates and a sensitivity detection limit of 2 copies. The experimental procedure could be completed within 1 h, including RNA extraction (15 min), RT-ERA reaction (20 min), CRISPR-Cas12a/crRNA detection (5 min) and result readout (within 2 min) steps. In conclusion, the combination of RT-ETA and CRISPR-Cas12a provides a rapid and specific method that should be effective for the control and surveillance of GAstV infections in farms from remote locations.
Collapse
Affiliation(s)
- Kankan Yang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Wuyin Zhang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Liang Xu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Qi Liu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Xiangjun Song
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Ying Shao
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Jian Tu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Kezong Qi
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
31
|
A Review of the Emerging Poultry Visceral Gout Disease Linked to Avian Astrovirus Infection. Int J Mol Sci 2022; 23:ijms231810429. [PMID: 36142340 PMCID: PMC9499687 DOI: 10.3390/ijms231810429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Avian astroviruses, including chicken astrovirus (CAstV), avian nephritisvirus (ANV), and goose astrovirus (GoAstV), are ubiquitous enteric RNA viruses associated with enteric disorders in avian species. Recent research has found that infection of these astroviruses usually cause visceral gout in chicken, duckling and gosling. However, the underlying mechanism remains unknown. In the current article, we review recent discoveries of genetic diversity and variation of these astroviruses, as well as pathogenesis after astrovirus infection. In addition, we discuss the relation between avian astrovirus infection and visceral gout in poultry. Our aim is to review recent discoveries about the prevention and control of the consequential visceral gout diseases in poultry, along with the attempt to reveal the possible producing process of visceral gout diseases in poultry.
Collapse
|
32
|
Zhu Q, Miao Y, Wang J, Bai W, Yang X, Yu S, Guo D, Sun D. Isolation, identification, and pathogenicity of a goose astrovirus causing fatal gout in goslings. Vet Microbiol 2022; 274:109570. [PMID: 36108347 DOI: 10.1016/j.vetmic.2022.109570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Since November 2016, severe infectious diseases characterized by gout and kidney swelling and caused by goose astrovirus (GoAstV) have affected goslings in major goose-producing areas in China. In 2021, a similar serious infectious disease broke out in commercial goose farms in Heilongjiang Province, China. In this study, strain HLJ2021 was successfully isolated from goose embryos. Electron microscopy showed that the viral particles are spherical, with a diameter of about 28 nm. The complete genomic length of strain HLJ2021 is 7210 nt, and it encodes three viral proteins. A phylogenetic analysis showed that strain HLJ2021 belongs to GoAstV-2 (G2). Compared with the two original GoAstV strains, amino acid site 540Q of the strain HLJ2021 spike domain has a mutation that affects the protein structure. One potential recombination event occurred between strains HLJ2021 and AstV/HB01/Goose/0123/19, which led to the generation of recombinant strain AstV/HN03/Goose/0402/19. Strain HLJ2021 also showed strong pathogenicity in goslings. Goslings infected with GoAstV began to die at 48 h post-infection (hpi), with a mortality rate of 83.3% at 240 hpi. At autopsy, visceral urate deposits, severe renal hemorrhage and swelling, and urate in the ureter were observed in the dead goslings. These findings extend our understanding of the evolution of GoAstV, which causes gout. The isolated GoAstV strain HLJ2021 provides a potential resource for the development of biological products for the prevention of goose gout.
Collapse
Affiliation(s)
- Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Yan Miao
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, PR China
| | - Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Wenfei Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Shiping Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China.
| |
Collapse
|
33
|
A Review of Emerging Goose Astrovirus Causing Gout. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1635373. [PMID: 36072471 PMCID: PMC9441354 DOI: 10.1155/2022/1635373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
In recent years, an infection in geese caused by goose astrovirus (GAstV) has repeatedly occurred in coastal areas of China and rapidly spread to inland provinces. The infection is characterized by joint and visceral gout and is fatal. The disease has caused huge economic losses to China's goose industry. GAstV is a nonenveloped, single-stranded, positive-sense RNA virus. As it is a novel virus, there is no specific classification. Here, we review the current understanding of GAstV. The virus structure, isolation, diagnosis and detection, innate immune regulation, and transmission route are discussed. In addition, since GAstV can cause gout in goslings, the possible role of GAstV in gout formation and uric acid metabolism is discussed. We hope that this review will inform researchers to rapidly develop effective methods to prevent and treat this disease.
Collapse
|
34
|
Zhu Q, Sun D. Goose Astrovirus in China: A Comprehensive Review. Viruses 2022; 14:v14081759. [PMID: 36016381 PMCID: PMC9416409 DOI: 10.3390/v14081759] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Goose astroviruses (GoAstVs) are small non-enveloped viruses with a genome consisting of a single-stranded positive-sense RNA molecule. A novel GoAstV was identified in Shandong in 2016 and quickly spread to other provinces in China, causing gout in goslings, with a mortality rate of approximately 50%. GoAstV can also cause gout in chickens and ducks, indicating its ability to cross the species barrier. GoAstV has only been reported in China, where it has caused serious losses to the goose-breeding industry. However, in view of its cross-species transmission ability and pathogenicity in chickens and ducks, GoAstV should be a concern to poultry breeding globally. As an emerging virus, there are few research reports concerning GoAstV. This review summarizes the current state of knowledge about GoAstV, including the epidemiology, evolution analysis, detection methods, pathogenicity, pathogenesis, and potential for cross-species transmission. We also discuss future outlooks and provide recommendations. This review can serve as a valuable reference for further research on GoAstV.
Collapse
|
35
|
Fu X, Hou Z, Liu W, Cao N, Liang Y, Li B, Jiang D, Li W, Xu D, Tian Y, Huang Y. Insight into the Epidemiology and Evolutionary History of Novel Goose Astrovirus-Associated Gout in Goslings in Southern China. Viruses 2022; 14:v14061306. [PMID: 35746777 PMCID: PMC9230684 DOI: 10.3390/v14061306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
A novel gout disease, characterized by visceral urate deposition with high-mortality, with outbreaks in goslings in China since 2016 was caused by a novel goose astrovirus (GoAstV) and resulted in serious economic loss. However, the epidemiology and variation of the GoAstV in goslings in southern China and its evolutionary history as well as the classification of the GoAstV are unclear. In the present study, systematic molecular epidemiology, and phylogenetic analyses of the GoAstV were conducted to address these issues. Our results showed that the GoAstV is widespread in goslings in southern China, and the genomes of six GoAstV strains were obtained. Two amino acid mutations (Y36H and E456D) were identified in capsid proteins in this study, which is the dominant antigen for the GoAstV. In addition, the GoAstV could be divided into two distinct clades, GoAstV-1 and GoAstV-2, and GoAstV-2 is responsible for gout outbreaks in goslings and could be classified into Avastrovirus 3 (AAstV-3), while GoAstV-1 belongs to Avastrovirus 1 (AAstV-1). Moreover, the emergence of GoAstV-2 in geese was estimated to have occurred in January 2010, approximately 12 years ago, while GoAstV-1 emerged earlier than GoAstV-2 and was estimated to have emerged in April 1985 based on Bayesian analysis. The mean evolutionary rate for the GoAstV was also calculated to be approximately 1.42 × 10−3 nucleotide substitutions per site per year. In conclusion, this study provides insight into the epidemiology of the GoAstV in goslings in southern China and is helpful for understanding the origin and evolutionary history as well as the classification of the GoAstV in geese.
Collapse
Affiliation(s)
- Xinliang Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.F.); (Z.H.); (W.L.); (N.C.); (Y.L.); (B.L.); (D.J.); (W.L.); (D.X.); (Y.T.)
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Zhanpeng Hou
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.F.); (Z.H.); (W.L.); (N.C.); (Y.L.); (B.L.); (D.J.); (W.L.); (D.X.); (Y.T.)
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.F.); (Z.H.); (W.L.); (N.C.); (Y.L.); (B.L.); (D.J.); (W.L.); (D.X.); (Y.T.)
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.F.); (Z.H.); (W.L.); (N.C.); (Y.L.); (B.L.); (D.J.); (W.L.); (D.X.); (Y.T.)
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Yu Liang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.F.); (Z.H.); (W.L.); (N.C.); (Y.L.); (B.L.); (D.J.); (W.L.); (D.X.); (Y.T.)
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Bingxin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.F.); (Z.H.); (W.L.); (N.C.); (Y.L.); (B.L.); (D.J.); (W.L.); (D.X.); (Y.T.)
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Danli Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.F.); (Z.H.); (W.L.); (N.C.); (Y.L.); (B.L.); (D.J.); (W.L.); (D.X.); (Y.T.)
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Wanyan Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.F.); (Z.H.); (W.L.); (N.C.); (Y.L.); (B.L.); (D.J.); (W.L.); (D.X.); (Y.T.)
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.F.); (Z.H.); (W.L.); (N.C.); (Y.L.); (B.L.); (D.J.); (W.L.); (D.X.); (Y.T.)
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.F.); (Z.H.); (W.L.); (N.C.); (Y.L.); (B.L.); (D.J.); (W.L.); (D.X.); (Y.T.)
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.F.); (Z.H.); (W.L.); (N.C.); (Y.L.); (B.L.); (D.J.); (W.L.); (D.X.); (Y.T.)
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
- Correspondence:
| |
Collapse
|
36
|
Extensive genetic heterogeneity and molecular characteristics of emerging astroviruses causing fatal gout in goslings. Poult Sci 2022; 101:101888. [PMID: 35550999 PMCID: PMC9108738 DOI: 10.1016/j.psj.2022.101888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
Since 2017, outbreaks of gosling astroviruses (GoAstV) causing the major symptoms related to gout in geese have posed a threat to China's poultry industry and caused huge economic losses. In this study, tissue samples from goslings with gout and urate deposition as the main symptoms were taken from 14 goose farms in different regions of China and screened for pathogen infection. The infection rate of GoAstV was 100%, whereas the infection rates of goose parvovirus, reovirus, Tembusu virus, and goose hemorrhagic polyomavirus were 2, 4, 0, and 0%, respectively. In total, 14 GoAstV strains were isolated and their complete genomes were sequenced. Based on the phylogenetic trees, the 14 isolated strains were classified as GoAstV (G-I) and were considered distant from strains belonging to GoAstV (G-II). The multiple sequence alignments indicated a tremendous amount of amino acid mutations in some parts of the encoding proteins of these strains; the main mutations were located in open reading frames (ORFs)—ORF1a and ORF2, such as M533V and F568S in ORF1a and A614T in ORF2. On the other hand, Further, 2 of the 14 GoAstV strains were possibly derived through inter-GoAstV-I recombination. Taken together, these findings indicate that GoAstVs are evolving in a more complex manner and have diverse transmission routes.
Collapse
|
37
|
Wang H, Zhu Y, Ye W, Hua J, Chen L, Ni Z, Yun T, Bao E, Zhang C. Genomic and Epidemiological Characteristics Provide Insights into the Phylogeographic Spread of Goose Astrovirus in China. Transbound Emerg Dis 2022; 69:e1865-e1876. [PMID: 35301812 DOI: 10.1111/tbed.14522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Goose astrovirus (GAstV) is an emerging pathogen with a wide distribution in China that causes visceral gout and leads to significant economic losses in the goose industry. Here, 10 GAstV strains were isolated from different farms in southeast China. We performed an integrated analysis of the full-genome sequences of these new strains alongside comprehensive epidemiological surveillance information from the database. Interestingly, the results showed two distinct genotypes of GAstV, which were evolutionarily distant from each other. Group I GAstVs were closely related to DAstV IV, and group II strains were classified with duck astrovirus (DAstV) II and turkey astrovirus (TAstV) II. Further investigation showed that among the GAstV I strains, ZJC14 and AHDY differed from FLX. Comparative analysis of 58 available genomes clustered the GAstV II strains into two subgroups. We identified two major mutation sites, 456 (E/D) and 540 (L/Q), in the capsid protein, which were related to distinct subgroups according to evolution. GAstV II subgroup 1a strains are the predominant strains in the current prevalent epidemiology. Phylogeographic analysis based on 90 reported cases from 13 provinces revealed the complexity and severity of GAstV epidemics in China, within which Henan, Anhui and Jiangsu provinces have suffered great impacts. According to these phylogeographic investigations, following the initial introduction of GAstV from Hunan Province, the dispersal of GAstV with different subgenotypes on a nationwide scale may be explained by the live gosling trade. Our findings have important implications for the evolution and dispersal of GAstV and will contribute to understanding the potential risk of GAstV. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongyu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinchu Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tao Yun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
38
|
Zhang F, Li H, Wei Q, Xie Q, Zeng Y, Wu C, Yang Q, Tan J, Tan M, Kang Z. Isolation and phylogenetic analysis of goose astrovirus type 1 from goslings with gout in Jiangxi province, China. Poult Sci 2022; 101:101800. [PMID: 35580375 PMCID: PMC9117930 DOI: 10.1016/j.psj.2022.101800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/29/2022] Open
Abstract
Goose astrovirus (GoAstV) is a new Avastrovirus of the genus astrovirus causing gout, hemorrhage, and swellings of kidneys that have affected goslings around the major goose-producing regions in China. The GoAstV is divided into goose astrovirus type 1 (GoAstV-1) and goose astrovirus type 2 (GoAstV-2). Although GoAstV-2 is known to be the causative agent of goose gout, little published information about the relationship between GoAstV-1 and goose gout is unknown. In this study, we investigated the presence of GoAstV-1 in 293 visceral tissue/dead embryos samples with gout on different farms in Jiangxi province, China. A survey result indicated that the mono-infection of GoAstV-1 (32.08%) and co-infection of GoAstV-1 (12.28%) with GoAstV-2 in gout goslings in Jiangxi, China. JXGZ, a GoAstV-1 strain, was effectively isolated from the visceral tissue of gosling gout and serially propagated for more than 25 passages in a goose embryo. The JXGZ strain's whole genome was sequenced and investigated. Phylogenetic analysis of complete genome and capsid protein sequences of JXGZ strain show that it was more closely related to GoAstV-1 strain than GoAstV-2 strain and was grouped within the GoAstV-1 cluster. These findings will aid in the development of efficient diagnostic reagents and possible vaccinations by providing insight into the prevalence and genetic evolution of GoAstV-1 in China.
Collapse
Affiliation(s)
- Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yanbing Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Chengcheng Wu
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Qun Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Jia Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Meifang Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China.
| |
Collapse
|
39
|
Wei F, Wang Q, Yang J, Wang Y, Jiang X, He D, Diao Y, Tang Y. The isolation and characterization of Duck astrovirus type- 1remerging in China. Transbound Emerg Dis 2021; 69:2890-2897. [PMID: 34967987 DOI: 10.1111/tbed.14444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 11/29/2022]
Abstract
Since the first report from Cherry Valley ducks on a commercial duck farm in China (2008), duck astrovirus type 1(DAstV-1) -associated duck viral hepatitis (DVH) have been detected in several commercial duck flocks. A highly acute disease characterized by hepatitis broke out in ducklings in Shandong Province in March 2021, all diseased ducks have been immunized against duck viral hepatitis vaccine. One DAstV-1 strain, designated as DAstV-SDWF, was isolated from a diseased duckling. Here, the isolation, cultivation and characterization of DAstV-1 isolate are described. The isolated astrovirus grew well in the LMH cell line. To determine the entire genomic of the DAstV-SDWF isolate, next-generation sequencing (NGS) technique was conducted on Illumina HiSeq platform. Complete genome sequence analysis revealed that DAstV-SDWF isolate was 91.6%-98.6% homology with others DAstV-1 deposited in Genbank. Similar clinical symptoms were successful reproduced by experimental infection study using the DAstV-SDWF isolate. DAstV-SDWF is the first DAstV-1 strain whose experimental infection study has been conducted in China. Results of above data demonstrated the DAstV-1 could be one of the causative agents of the DVH occurring in China. The present works are likely to provide new insights into the pathogenicity and evolution of DAstV-1 in ducks. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Feng Wei
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China.,Shandong Provinecial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Qianqian Wang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China.,Shandong Provinecial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Jing Yang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China.,Shandong Provinecial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Yueming Wang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China.,Shandong Provinecial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China.,Shandong Provinecial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China.,Shandong Provinecial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China.,Shandong Provinecial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China.,Shandong Provinecial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| |
Collapse
|
40
|
Zhang M, Lv X, Wang B, Yu S, Lu Q, Kan Y, Wang X, Jia B, Bi Z, Wang Q, Zhu Y, Wang G. Development of a potential diagnostic monoclonal antibody against capsid spike protein VP27 of the novel goose astrovirus. Poult Sci 2021; 101:101680. [PMID: 35051673 PMCID: PMC8883067 DOI: 10.1016/j.psj.2021.101680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Goose astrovirus (GAstVs) is an emerging pathogen of goslings that causes fatal gout, kidney hemorrhages, renomegaly, and high mortality. The GAstVs VP27 protein is an important capsid protein and a candidate for the development of diagnostic reagents. The aim of this study was to clone and express the VP27 gene for preparation of a specific monoclonal antibody (mAb). The VP27 protein was expressed and purified in the supernatant of Escherichia coli BL21. Then, the mAb was obtained with the hybridoma technique and named 2AF11. It was differentiated as IgG1 with the help of immunoglobulin subclass tests. This mAb can specifically recognize the VP27 protein in GAstVs-infected cells, as evidenced by western blot analysis and immunofluorescent assay. Furthermore, this mAb could also detect the VP27 protein in GAstVs-infected tissues, as demonstrated by immunohistochemistry. These findings indicate that this mAb has high diagnostic potential. Therefore, the newly produced anti-VP27 mAb, 2AF11, could be a useful tool as a specific diagnostic marker for GAstVs.
Collapse
Affiliation(s)
- Miao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xuan Lv
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Bei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shengzu Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Lu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ying Kan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiqiang Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Beiping Jia
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhuangli Bi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qing Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingqi Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China.
| |
Collapse
|
41
|
Identification of three novel B cell epitopes in ORF2 protein of the emerging goose astrovirus and their application. Appl Microbiol Biotechnol 2021; 106:855-863. [PMID: 34921327 DOI: 10.1007/s00253-021-11711-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
The outbreak of goose gout disease caused by novel goose astrovirus type 1 (GAstV-1) has resulted in huge economic losses to the goose industry in China since 2017. However, little is known about the B cell epitopes in major antigen of GAstV-1 and the serological approach for detection of GAstV-1 is not available. In this study, three novel monoclonal antibodies (mAbs) against the ORF2 protein were first generated and designated as 3G6, 5H7, and 6C6, respectively. Epitope mapping revealed that mAb 3G6, 5H7, and 6C6 recognized 695AVRFEKGGHE704, 685EKALSAPQAG694, and 635DDDPLSDVTS644 in ORF2, respectively. Sequence alignments found that the three epitopes were highly conserved in GAstV-1 but not in other AAstV members. Moreover, a mAb-based sandwich ELISA for the detection of GAstV-1 was first developed using mAb 6C6. The sandwich ELISA only reacted with GAstV-1 but not with GAstV-2 and the other goose-associated viruses tested. The limit of the detection of the sandwich ELISA reaches 1.58 × 103 TCID50/mL of GAstV-1. Notably, mAb 6C6 could also efficiently react with the GAstV-1 in tissue frozen sections of the clinical infected goose through IFA. The mAbs generated in this study pave the way for further studying on the role of ORF2 in the infection and pathogenesis of GAstV, and the sandwich ELISA and the tissue frozen section-IFA approaches established here provide efficient and rapid serological diagnostic tools for detection of GAstV-1. KEY POINTS: • Three novel B cell epitopes were identified in ORF2 of GAstV-1. • mAb-based ELISA and IFA for detection of GAstV-1 were developed.
Collapse
|
42
|
Huang H, Ding R, Chen Z, Yi Z, Wang H, Lv Y, Bao E. Goose nephritic astrovirus infection increases autophagy, destroys intercellular junctions in renal tubular epithelial cells, and damages podocytes in the kidneys of infected goslings. Vet Microbiol 2021; 263:109244. [PMID: 34649010 DOI: 10.1016/j.vetmic.2021.109244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/19/2021] [Indexed: 01/21/2023]
Abstract
Goose nephritic astrovirus (GNAstV) has recently been identified, which causes kidney swelling and visceral gout in goslings. However, the pathological changes in kidney tissue due to GNAstV infection have not yet been described. In the study, fifty goslings were orally infected with GNAstV, and fifty goslings received PBS as a control. Kidney tissue was collected at different days following infection (dpi) to assess the injury. GNAstV infection reduced body weight, increased the relative weight of the kidney, and increased serum uric acid and creatinine levels. GNAstV was found within renal epithelial cells, and the viral load in the kidney peaked at 7 dpi. Pale and swollen kidney tissue was observed in infected goslings, especially at 5 and 7 dpi. GNAstV infection caused degeneration and necrosis of renal epithelial cells, structural destruction of the brush border, glycogen deposition in the glomerular mesangium, increased fibrosis, and infiltration of inflammatory cells into the renal interstitium. Moreover, swollen mitochondria, broken mitochondrial ridges, autophagosomes, and autophagolysosomes were observed under ultrahistopathological examination. GNAstV infection increased levels of LC3B, ATG5, and Beclin 1, and decreased p62, and downregulated WT1 mRNA and upregulated desmin mRNA. At early stages, GNAstV infection decreased expression of intercellular junction-related genes, including ZO-1, occludin, claudin-10, and catenin-α2. In conclusion, GNAstV infection causes renal epithelial cell autophagy, destruction of brush border and intercellular junctions, podocyte damage, and increased fibrosis, ultimately resulting in damage to the kidney.
Collapse
Affiliation(s)
- Han Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zongyan Chen
- National Engineering Research Center for Poultry, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai, 200241, China
| | - Zewen Yi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyu Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingjun Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Endong Bao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
43
|
Chen Q, Yu Z, Xu X, Ji J, Yao L, Kan Y, Bi Y, Xie Q. First report of a novel goose astrovirus outbreak in Muscovy ducklings in China. Poult Sci 2021; 100:101407. [PMID: 34438326 PMCID: PMC8383103 DOI: 10.1016/j.psj.2021.101407] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
A highly acute disease characterized as visceral gout broke out in Muscovy ducklings in Henan province (China) in June 2020, with a mortality rate of up to 61%. In this study, common pathogenic agents were screened using reverse-transcription polymerase chain reaction or polymerase chain reaction. The results found the novel goose astrovirus (GoAstV) to be the pathogenic agent. We isolated the GoAstV, which has been designated as HNNY0620, using the Leghorn male chicken hepatocellular carcinoma (LMH) cell line and sequenced the complete genome. The phylogenetic tree showed that the amino acid (aa) sequences of ORF1a and ORF2 and the completed nucleotide sequences of the HNNY0620 strain were clustered in the GoAstV-I clade. ORF1a aa and whole-genome sequences were genetically close to TAstV-2 and DHV-3, whereas the ORF2 aa sequences were clustered with TAstV-2 and DHV2. Both the duck-origin GoAstVs and HNNY0620 harbored some special mutations, but ORF1a in 700 (I/T), ORF1b in 288 (F/L), and ORF2 in 306 (A/T) were only found in HNNY0620. These results suggest that the host range of GoAstV is diffusing, which can potentially affect other waterfowl.
Collapse
Affiliation(s)
- Qinxi Chen
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China
| | - Zhengli Yu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China
| | - Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China.
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, 473061, PR China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
44
|
Isolation and characterization of a goose astrovirus 1 strain causing fatal gout in goslings, China. Poult Sci 2021; 100:101432. [PMID: 34547621 PMCID: PMC8463770 DOI: 10.1016/j.psj.2021.101432] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 01/21/2023] Open
Abstract
In recent years, goose gout, a severe infectious disease, has affected the development of the goose industry in China. Two different genotypes of goose astrovirus (GAstV), named as GAstV-1 and GAstV-2, were identified. GAstV-2 viruses are known to be the causative agent of goose gout; however, GAstV-1 has not been isolated, and the relationship between GAstV-1 and goose gout is unknown. One full genome sequence, designated as GAstV/CHN/TZ03/2019 (TZ03), was determined from the clinical tissue samples of a diseased gosling using next-generation sequencing. The complete genome of TZ03 was 7,262 nucleotides in length with typical genomic characteristics of avastroviruses. The TZ03 strain shares the highest identity (96.6%) with the GAstV-1 strain FLX, but only 51.5 to 61.3% identity with other astroviruses in Avastrovirus. Phylogenetic analysis revealed that the TZ03 strain clustered together with the GAstV-1 strains FLX and AHDY and was highly divergent from GAstV-2 viruses. The TZ03 strain was successfully isolated from goose embryos and caused 100% mortality of goose embryos after 5 passages. Electron microscopy showed that the virus particles were spherical with a diameter of ∼22 nm. The clinical symptoms were reproduced by experimental infection of healthy goslings, which were similar to those caused by GAstV-2 strains. Our data show that GAstV-1 is one of the causative agents of the ongoing goose gout disease in China. These findings enrich our understanding of the evolution of GAstVs that cause gout and provide potential options for developing biological products to treat goose gout.
Collapse
|
45
|
Yang X, Wei F, Tang Y, Diao Y. Development of immunochromatographic strip assay for rapid detection of novel goose astrovirus. J Virol Methods 2021; 297:114263. [PMID: 34391804 DOI: 10.1016/j.jviromet.2021.114263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
The novel goose astrovirus (GoAstV) is an emerging pathogenic virus that has resulted in large economic losses to the goose-rearing industry in China since 2016. The novel goose astrovirus cause gout in goslings with a mortality rate of around 50 %. Therefore, an effective diagnostic approach to monitor the spread of GoAstV is necessary. Here, a novel diagnostic immunochromatographic strip (ICS) assay was developed to detect GoAstV. A rapid immunochromatographic assay based on antibody colloidal gold nanoparticles specific to GoAstV was developed for the detection of GoAstV in goose allantoic fluid and supernatant of tissue homogenate. Monoclonal antibodies (Mabs) were prepared using the hybridoma technology, and the polyclonal antibodies (Pabs) were generated by immunizing the rabbits with recombinant ORF2 protein. In addition, the colloidal gold was prepared by reducing gold salt with sodium citrate coupled with Mabs against GoAstV. The optimal concentrations of the coating antibody and the capture antibody were examined as 1.6 mg/mL and 6 μg/mL. The optimal pH of the colloidal gold labeling was pH 8.0. With the visual observation, the lower limit of the ICS was reported to be approximately 1.2 μg/mL. Common diseases of goose were examined to assess the specificity of the ICS, and no cross-reaction was identified. 40 clinical positive samples were simultaneously detected by using the ICS and the PCR with a 92.5% coincidence rate between them. Furthermore, the mentioned samples could be stored at 25 °C and 4 °C for 4 and 6 months, respectively. It was proved that the ICS in this study was highly specific, sensitive, repeatable and more convenient to rapidly detect GoAstV in clinical samples.
Collapse
Affiliation(s)
- Xiaotong Yang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Feng Wei
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| |
Collapse
|
46
|
Yan T, Guo L, Jiang X, Wang H, Yao Z, Zhu S, Diao Y, Tang Y. Discovery of a novel recombinant avian orthoreovirus in China. Vet Microbiol 2021; 260:109094. [PMID: 34271302 DOI: 10.1016/j.vetmic.2021.109094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/19/2021] [Indexed: 11/28/2022]
Abstract
In mid-2020, using next-generation sequencing (NGS) technology, we identified a recombinant cluster 2 avian orthoreovirus (ARV) variant named PHC-2020-0545, isolated from tendons of 33-day-old broilers with leg swelling in China. Complete genomic sequencing and analyses demonstrated that the isolate was genetically significantly distinct from known ARV strains in M1 and M3 genes and its σC coding gene had an extremely high variability, compared with the identified ARV strains grouped into other genotyping cluster. Further analysis showed that many base substitutions were silent and non-silent substitutions are most likely to occur in the first positions of codons. Multiple segmental recombination, intra-segmental recombination and accumulation of point mutations might contribute to the emergence of this isolate. The PHC-2020-0545 strain had a strong replication ability in 1-day-old broilers, and mainly affected the movement, digestion and metabolism of broilers. In addition, the infection route of the isolate is related to its pathogenicity to broilers. Therefore, combined with its unique genetic characteristics and potential origin, we determined that the PHC-2020-0545 field strain is a novel recombinant ARV strain, which has certain reference value for the preparation and evaluation of new vaccines.
Collapse
Affiliation(s)
- Tian Yan
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| | - Liuchuan Guo
- College of Animal Medicine, China Agricultural University, Beijing, 100094, China
| | - Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Hongzhi Wang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Zhonghui Yao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Siming Zhu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| |
Collapse
|
47
|
Zhang X, Deng T, Song Y, Liu J, Jiang Z, Peng Z, Guo Y, Yang L, Qiao H, Xia Y, Li X, Wang Z, Bian C. Identification and genomic characterization of emerging goose astrovirus in central China, 2020. Transbound Emerg Dis 2021; 69:1046-1055. [PMID: 33687791 DOI: 10.1111/tbed.14060] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 01/26/2023]
Abstract
Astroviruses are a non-enveloped virus with large host range breadth. AstV-associated gastroenteritis in human and animal, nephritis in chicken, gout in gosling and hepatitis in duckling pose great threats to public health and poultry industry. Since early 2020, continuous emergence of fatal goose astrovirus (GAstV) infections characterized by articular and visceral gout was reported in China. Here, we described two outbreaks of emerging gout disease in two different goose farms of central China. Two virulent GAstV strains, designated as HNKF-1/China/2020 and HNSQ-6/China/2020, were isolated, and the fifth passage of the isolates could cause urate crystals accumulated in the allantoic fluid and even deposited around great vessels and embryo bodies. Meanwhile, the source of these GAstV outbreaks was tracked to goose hatcheries. The prevalence of GAstV in the goose embryos with hatch failure was confirmed, and embryo-origin HNXX-6/China/2020 was further isolated. The complete genome of these three newly isolates was then sequenced and analysed. The results showed that Chinese GAstVs have formed two distinct groups, and the three GAstV isolates, as well as most of the Chinese GAstVs, belong to the G-I group. There are several amino acid mutations in the three newly identified GAstVs, such as A520T, S535R, V555I and A782T in ORF1a and Q229P in ORF2, suggesting the field stains, HNKF-1/China/2020 and HNSQ-6/China/2020, might derive from the weak goose embryo via vertical transmission. Moreover, the phylogenetic analysis of the complete viral genome and individual viral proteins revealed that Chinese GAstV strains have been constantly evolving towards more complicated and various directions. Our study reported the recently emerging GAstV outbreaks in central China, and further analysed the genetic characteristics of three virulent G-I GAstV isolates from commercial goose farms and goose hatchery, indicating the diverse transmission of the virus and providing a basis for developing effective preventive measures and control strategies.
Collapse
Affiliation(s)
- Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Tongwei Deng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yuzhen Song
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jian Liu
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zenghai Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhifeng Peng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yiwen Guo
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Lei Yang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Hongxing Qiao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yanxun Xia
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xinzheng Li
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chuanzhou Bian
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
48
|
Wei F, Yang J, Wang Y, Chen H, Diao Y, Tang Y. Isolation and characterization of a duck-origin goose astrovirus in China. Emerg Microbes Infect 2021; 9:1046-1054. [PMID: 32486971 PMCID: PMC7448921 DOI: 10.1080/22221751.2020.1765704] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In 2019, a new type of infectious disease characterized with haemorrhage and swellings of kidneys, occurred on commercial duck farms in Shandong province, China. Our systematic investigation led to the isolation of an astrovirus, designated AstV-SDTA strain and was isolated from a diseased duckling using LMH cells. Similar clinical symptoms were reproduced by experimental infection using the AstV-SDTA strain. The complete genome sequencing characterization of AstV-SDTA was conducted using next-generation sequencing (NGS) technique on Illumina HiSeq platform, and used polymerase chain reaction method to verify the NGS results for the obtained whole sequences. Phylogenetic analysis revealed that AstV-SDTA strain belongs to a novel goose astrovirus (GoAstV) branch of avian astroviruses, and the nucleotide homology based on the complete genome sequences among AstV-SDTA and other GoAstV strains deposited in Genbank was 97.2–98.8%. Taken together, these results suggest that the cross-species transmission of novel GoAstV between domestic waterfowl is possible. Further surveillance of novel GoAstV in poultry are needed in order to gain a better understanding of both the molecular and evolutionary characteristics of novel GoAstV.
Collapse
Affiliation(s)
- Feng Wei
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, People's Republic of China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, People's Republic of China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, People's Republic of China
| | - Jing Yang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, People's Republic of China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, People's Republic of China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, People's Republic of China
| | - Yueming Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, People's Republic of China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, People's Republic of China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, People's Republic of China
| | - Hao Chen
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, People's Republic of China.,College of Life Sciences, Qufu Normal University, Qufu, People's Republic of China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, People's Republic of China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, People's Republic of China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, People's Republic of China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, People's Republic of China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, People's Republic of China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, People's Republic of China
| |
Collapse
|
49
|
Yin D, Tian J, Yang J, Tang Y, Diao Y. Pathogenicity of novel goose-origin astrovirus causing gout in goslings. BMC Vet Res 2021; 17:40. [PMID: 33472629 PMCID: PMC7818743 DOI: 10.1186/s12917-020-02739-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
Background A novel goose-origin astrovirus (GoAstV) has broken out across China in recent years, causing gout in goslings with a mortality rate of around 50%. However, our understanding of the dynamic distribution, tissue tropism and pathogenesis of GoAstV is incomplete. In order to assess its pathogenicity, one-day-old goslings were inoculated separately with GoAstV via oral and subcutaneous injection routes. Results Clinical symptoms, gross and microscopic lesions, blood biochemical parameters and viral loads were detected and recorded for 20 days after infection. Typical gout was observed in experimental goslings. GoAstV can be replicated in tissues and cause pathological damage, especially in the kidney, liver, heart and spleen. Virus-specific genomic RNA was detected in blood, cloacal swabs and all representative tissues, and virus shedding was detected up to 20 days after inoculation, suggesting that GoAstV has a wide tissue tropism and spread systematically after inoculation. The viral copy numbers examined in kidney were the highest, followed by spleen and liver. Conclusion This experiment determined the accurate value of viral loads and biochemical indicators of GoAstV-induced goslings. These findings increase our understanding of the pathogenicity of GoAstV in goslings and provide more reference for future research.
Collapse
Affiliation(s)
- Dan Yin
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China
| | - Jiajun Tian
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China
| | - Jing Yang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China. .,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China.
| |
Collapse
|
50
|
Wu W, Qiu S, Huang H, Xu R, Bao E, Lv Y. Immune-related gene expression in the kidneys and spleens of goslings infected with goose nephritic astrovirus. Poult Sci 2021; 100:100990. [PMID: 33647718 PMCID: PMC7921877 DOI: 10.1016/j.psj.2021.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/18/2020] [Accepted: 01/02/2021] [Indexed: 01/01/2023] Open
Abstract
Goose nephritic astrovirus (GNAstV) was first isolated in 2018, causing great economic losses to the goose industry. However, little is known about host immune response to GNAstV infection. In this study, forty 2-day-old goslings were randomly divided into 2 groups: infection and negative control groups. Each gosling in the infection group was challenged with 0.5 mL GNAstV-JSHA intramuscularly, whereas the gosling in the negative control group was inoculated with the same amount of PBS. Histopathological changes and virus location in the spleen and kidney were examined, and the expression of immune-related genes was determined by qPCR at 7 and 14 d after infection. Our results showed that GNAstV infection induced degeneration and necrosis of splenic lymphocytes and renal epithelial cells, and these cells were positive for the virus. In addition, GNAstV infection induced the activation of pattern recognition receptors (RIG-I, MDA-5, and TLR3) and key adaptor molecules (MyD88, MAVS, and IRF7) in the spleen and kidney, and upregulated the gene expression of interferon-α in the spleen and antiviral proteins (MX1, OASL, and IFITM3) in the spleen and kidney. Moreover, high expression levels of interleukin (IL)-1β and IL-8 in the spleen and iNOS in the spleen and kidney were found. These results indicated that GNAstV infection activated host innate immune response. Furthermore, GNAstV infection increased the expression levels of CD8+, MHCI, and MHCII, indicating that adaptive immune response was activated. Besides, TGF-β was highly expressed in the spleen and kidney, which may be an immune evasion strategy of GNAstV to cause infection. Interestingly, both IL-1β and IL-6 mRNA levels were decreased in the kidney, which may help reduce kidney lesions. This is the first study to report changes in immune-related gene expression in response to GNAstV infection, and our results provide insights into viral pathogenesis.
Collapse
Affiliation(s)
- Wankun Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyu Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Endong Bao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjun Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|