1
|
Li X, Zheng J, Su J, Wang L, Luan L, Wang T, Bai F, Zhong Q, Gong Q. Myotubularin 2 interacts with SEC23A and negatively regulates autophagy at ER exit sites in Arabidopsis. Autophagy 2024:1-19. [PMID: 39177202 DOI: 10.1080/15548627.2024.2394302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Starvation- or stress-induced phosphatidylinositol 3-phosphate (PtdIns3P/PI3P) production at the endoplasmic reticulum (ER) subdomains organizes phagophore assembly and autophagosome formation. Coat protein complex II (COPII) vesicles budding from ER exit site (ERES) also contribute to autophagosome formation. Whether any PtdIns3P phosphatase functions at ERES to inhibit macroautophagy/autophagy is unknown. Here we report Myotubularin 2 (MTM2) of Arabidopsis as a PtdIns3P phosphatase that localizes to ERES and negatively regulates autophagy. MTM2 binds PtdIns3P with its PH-GRAM domain in vitro and acts toward PtdIns3P in vivo. Transiently expressed MTM2 colocalizes with ATG14b, a subunit of the phosphatidylinositol 3-kinase (PtdIns3K) complex, and overexpression of MTM2 blocks autophagic flux and causes over-accumulation of ATG18a, ATG5, and ATG8a. The mtm2 mutant has higher levels of autophagy and is more tolerant to starvation, whereas MTM2 overexpression leads to reduced autophagy and sensitivity to starvation. The phenotypes of mtm2 are suppressed by ATG2 mutation, suggesting that MTM2 acts upstream of ATG2. Importantly, MTM2 does not affect the endosomal functions of PtdIns3P. Instead, MTM2 specifically colocalizes with COPII coat proteins and is cradled by the ERES-defining protein SEC16. MTM2 interacts with SEC23A with its phosphatase domain and inhibits COPII-mediated protein secretion. Finally, a role for MTM2 in salt stress response is uncovered. mtm2 resembles the halophyte Thellungiella salsuginea in its efficient vacuolar compartmentation of Na+, maintenance of chloroplast integrity, and timely regulation of autophagy-related genes. Our findings reveal a balance between PtdIns3P synthesis and turnover in autophagosome formation, and provide a new link between autophagy and COPII function.Abbreviations: ATG: autophagy related; BFA: brefeldin A; BiFC: bimolecular fluorescence complementation; CHX: cycloheximide; ConA: concanamycin A; COPII: coat protein complex II; ER: endoplasmic reticulum; ERES: ER exit site; MS: Murashige and Skoog; MTM: myotubularin; MVB: multivesicular body; PAS: phagophore assembly site; PI: phosphoinositide; TEM: transmission electron microscopy; WT: wild-type.
Collapse
Affiliation(s)
- Xinjing Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jing Zheng
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Jing Su
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Lin Luan
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Taotao Wang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
2
|
Li W, Jiang L, Chen Y, Li C, Li P, Yang Y, Chen J, Liu Q. Transcriptome Analysis Unveiled the Intricate Interplay between Sugar Metabolism and Lipid Biosynthesis in Symplocos paniculate Fruit. PLANTS (BASEL, SWITZERLAND) 2023; 12:2703. [PMID: 37514317 PMCID: PMC10385272 DOI: 10.3390/plants12142703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Symplocos paniculate is an oil plant exhibiting tissue-specific variations in oil content and fatty acid composition across the whole fruit (mainly pulp and seed). And its oil synthesis is intricately linked to the accumulation and transformation of sugars. Nevertheless, there remains a dearth of understanding regarding how sugar metabolism impacts oil synthesis in S. paniculate fruit. To unravel the intricate mechanism underlying the impact of sugar metabolism on lipid biosynthesis in S. paniculata fruit, a comparative analysis was conducted on the transcriptome and metabolite content of pulp and seed throughout fruit development. The findings revealed that the impact of sugar metabolism on oil synthesis varied across different stages of fruit development. Notably, during the early fruit developmental stage (from 90 to 120 DAF), pivotal genes involved in sugar metabolism, such as PGK3, PKP1, PDH-E1, MDH, and malQ, along with key genes associated with oil synthesis like KAR, HAD, and PAP were predominantly expressed in the pulp. Consequently, this preferential expression led to earlier accumulation of oil in the pulp tissue compared to the seed. Whereas, during the fruit maturity stage (from 120 DAF to 140 DAF), these genes exhibited a high level of expression in seed, thereby facilitating the rapid and substantial accumulation of seed oil compared to pulp. The sugar metabolism activity in various parts of S. paniculata fruit plays a pivotal role in oil synthesis and is contingent upon the developmental stage. These findings can offer alternative genes for further gene enhancement through molecular biotechnology, thereby augmenting fruit oil yield and altering fatty acid composition.
Collapse
Affiliation(s)
- Wenjun Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Lijuan Jiang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yunzhu Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Peiwang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Yan Yang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Jingzhen Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Qiang Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
3
|
Seitz J, Reimann TM, Fritz C, Schröder C, Knab J, Weber W, Stadler R. How pollen tubes fight for food: the impact of sucrose carriers and invertases of Arabidopsis thaliana on pollen development and pollen tube growth. FRONTIERS IN PLANT SCIENCE 2023; 14:1063765. [PMID: 37469768 PMCID: PMC10352115 DOI: 10.3389/fpls.2023.1063765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/05/2023] [Indexed: 07/21/2023]
Abstract
Pollen tubes of higher plants grow very rapidly until they reach the ovules to fertilize the female gametes. This growth process is energy demanding, however, the nutrition strategies of pollen are largely unexplored. Here, we studied the function of sucrose transporters and invertases during pollen germination and pollen tube growth. RT-PCR analyses, reporter lines and knockout mutants were used to study gene expression and protein function in pollen. The genome of Arabidopsis thaliana contains eight genes that encode functional sucrose/H+ symporters. Apart from AtSUC2, which is companion cell specific, all other AtSUC genes are expressed in pollen tubes. AtSUC1 is present in developing pollen and seems to be the most important sucrose transporter during the fertilization process. Pollen of an Atsuc1 knockout plant contain less sucrose and have defects in pollen germination and pollen tube growth. The loss of other sucrose carriers affects neither pollen germination nor pollen tube growth. A multiple knockout line Atsuc1Atsuc3Atsuc8Atsuc9 shows a phenotype that is comparable to the Atsuc1 mutant line. Loss of AtSUC1 can`t be complemented by AtSUC9, suggesting a special function of AtSUC1. Besides sucrose carriers, pollen tubes also synthesize monosaccharide carriers of the AtSTP family as well as invertases. We could show that AtcwINV2 and AtcwINV4 are expressed in pollen, AtcwINV1 in the transmitting tissue and AtcwINV5 in the funiculi of the ovary. The vacuolar invertase AtVI2 is also expressed in pollen, and a knockout of AtVI2 leads to a severe reduction in pollen germination. Our data indicate that AtSUC1 mediated sucrose accumulation during late stages of pollen development and cleavage of vacuolar sucrose into monosaccharides is important for the process of pollen germination.
Collapse
Affiliation(s)
- Jessica Seitz
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Theresa Maria Reimann
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Carolin Fritz
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Carola Schröder
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Johanna Knab
- Cell Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Walter Weber
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ruth Stadler
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
4
|
Bavnhøj L, Driller JH, Zuzic L, Stange AD, Schiøtt B, Pedersen BP. Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter. NATURE PLANTS 2023; 9:938-950. [PMID: 37188854 PMCID: PMC10281868 DOI: 10.1038/s41477-023-01421-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Sucrose import from photosynthetic tissues into the phloem is mediated by transporters from the low-affinity sucrose transporter family (SUC/SUT family). Furthermore, sucrose redistribution to other tissues is driven by phloem sap movement, the product of high turgor pressure created by this import activity. Additionally, sink organs such as fruits, cereals and seeds that accumulate high concentrations of sugar also depend on this active transport of sucrose. Here we present the structure of the sucrose-proton symporter, Arabidopsis thaliana SUC1, in an outward open conformation at 2.7 Å resolution, together with molecular dynamics simulations and biochemical characterization. We identify the key acidic residue required for proton-driven sucrose uptake and describe how protonation and sucrose binding are strongly coupled. Sucrose binding is a two-step process, with initial recognition mediated by the glucosyl moiety binding directly to the key acidic residue in a stringent pH-dependent manner. Our results explain how low-affinity sucrose transport is achieved in plants, and pinpoint a range of SUC binders that help define selectivity. Our data demonstrate a new mode for proton-driven symport with links to cation-driven symport and provide a broad model for general low-affinity transport in highly enriched substrate environments.
Collapse
Affiliation(s)
- Laust Bavnhøj
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan Heiner Driller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lorena Zuzic
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
5
|
da Fonseca-Pereira P, Monteiro-Batista RDC, Araújo WL, Nunes-Nesi A. Harnessing enzyme cofactors and plant metabolism: an essential partnership. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1014-1036. [PMID: 36861364 DOI: 10.1111/tpj.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 05/31/2023]
Abstract
Cofactors are fundamental to the catalytic activity of enzymes. Additionally, because plants are a critical source of several cofactors (i.e., including their vitamin precursors) within the context of human nutrition, there have been several studies aiming to understand the metabolism of coenzymes and vitamins in plants in detail. For example, compelling evidence has been brought forth regarding the role of cofactors in plants; specifically, it is becoming increasingly clear that an adequate supply of cofactors in plants directly affects their development, metabolism, and stress responses. Here, we review the state-of-the-art knowledge on the significance of coenzymes and their precursors with regard to general plant physiology and discuss the emerging functions attributed to them. Furthermore, we discuss how our understanding of the complex relationship between cofactors and plant metabolism can be used for crop improvement.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Rita de Cássia Monteiro-Batista
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
6
|
Prasad D, Jung WJ, Seo YW. Identification and molecular characterization of novel sucrose transporters in the hexaploid wheat (Triticum aestivum L.). Gene 2023; 860:147245. [PMID: 36736505 DOI: 10.1016/j.gene.2023.147245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Common wheat (Triticum aestivum) is a major cereal crop grown and consumed globally. Recent advances in sequencing technology have facilitated the exploration of large and repetitive genomes. Plant sucrose transporter (SUT) genes are vital components of energy transport systems that play prominent roles in various plant functions, such as signaling and stress regulation. In this study, we identified and analyzed five novel sucrose transporter genes in wheat. The wheat sucrose transporter genes were divided into five clades based on their phylogenetic relationships. Synteny analysis revealed that synteny in the genome is highly conserved between wheat and rye, barley, and Brachypodium. Furthermore, the cis-element analysis indicated that sucrose transporter genes might be regulated by light and some phytohormone-related transcriptional factors. Overall, plant tissue-specific gene expression revealed enhanced expression of the transporter genes in the root and stem, whereas they were differentially expressed under abiotic stress treatments (cold, heat, NaCl, PEG-6000, and sucrose). These results indicate that each TaSUT gene may play a crucial role in stabilizing plants under stress by actively regulating the energy demands of cells. The findings of this study may provide a basis for further research on sucrose transporters and their significant roles in plant energy metabolism as well as in abiotic stress response, signaling, and regulation.
Collapse
Affiliation(s)
- Depika Prasad
- Department of Plant Biotechnology, Korea University, Seoul 02841, South Korea
| | - Woo Joo Jung
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, South Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
7
|
Guo X, Yan N, Liu L, Yin X, Chen Y, Zhang Y, Wang J, Cao G, Fan C, Hu Z. Transcriptomic comparison of seeds and silique walls from two rapeseed genotypes with contrasting seed oil content. FRONTIERS IN PLANT SCIENCE 2023; 13:1082466. [PMID: 36714692 PMCID: PMC9880416 DOI: 10.3389/fpls.2022.1082466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Silique walls play pivotal roles in contributing photoassimilates and nutrients to fuel seed growth. However, the interaction between seeds and silique walls impacting oil biosynthesis is not clear during silique development. Changes in sugar, fatty acid and gene expression during Brassica napus silique development of L192 with high oil content and A260 with low oil content were investigated to identify key factors affecting difference of their seed oil content. During the silique development, silique walls contained more hexose and less sucrose than seeds, and glucose and fructose contents in seeds and silique walls of L192 were higher than that of A260 at 15 DAF, and sucrose content in the silique walls of L192 were lower than that of A260 at three time points. Genes related to fatty acid biosynthesis were activated over time, and differences on fatty acid content between the two genotypes occurred after 25 DAF. Genes related to photosynthesis expressed more highly in silique walls than in contemporaneous seeds, and were inhibited over time. Gene set enrichment analysis suggested photosynthesis were activated in L192 at 25 and 35 DAF in silique walls and at both 15 and 35 DAF in the seed. Expressions of sugar transporter genes in L192 was higher than that in A260, especially at 35 DAF. Expressions of genes related to fatty acid biosynthesis, such as BCCP2s, bZIP67 and LEC1s were higher in L192 than in A260, especially at 35 DAF. Meanwhile, genes related to oil body proteins were expressed at much lower levels in L192 than in A260. According to the WGCNA results, hub modules, such as ME.turquoise relative to photosynthesis, ME.green relative to embryo development and ME.yellow relative to lipid biosynthesis, were identified and synergistically regulated seed development and oil accumulation. Our results are helpful for understanding the mechanism of oil accumulation of seeds in oilseed rape for seed oil content improvement.
Collapse
Affiliation(s)
- Xupeng Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Na Yan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Linpo Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiangzhen Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Jingqiao Wang
- Institute of Economical Crops, Yunnan Agricultural Academy, Kunming, Yunnan, China
| | - Guozhi Cao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chengming Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Melkonian K, Stolze SC, Harzen A, Nakagami H. miniTurbo-based interactomics of two plasma membrane-localized SNARE proteins in Marchantia polymorpha. THE NEW PHYTOLOGIST 2022; 235:786-800. [PMID: 35396742 DOI: 10.1111/nph.18151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Marchantia polymorpha is a model liverwort and its overall low genetic redundancy is advantageous for dissecting complex pathways. Proximity-dependent in vivo biotin-labelling methods have emerged as powerful interactomics tools in recent years. However, interactomics studies applying proximity labelling are currently limited to angiosperm species in plants. Here, we established and evaluated a miniTurbo-based interactomics method in M. polymorpha using MpSYP12A and MpSYP13B, two plasma membrane-localized SNARE proteins, as baits. We show that our method yields a manifold of potential interactors of MpSYP12A and MpSYP13B compared to a coimmunoprecipitation approach. Our method could capture specific candidates for each SNARE. We conclude that a miniTurbo-based method is a feasible tool for interactomics in M. polymorpha and potentially applicable to other model bryophytes. Our interactome dataset on MpSYP12A and MpSYP13B will be a useful resource to elucidate the evolution of SNARE functions.
Collapse
Affiliation(s)
- Katharina Melkonian
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Sara Christina Stolze
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Anne Harzen
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
9
|
Abstract
In angiosperms, double fertilization triggers the concomitant development of two closely juxtaposed tissues, the embryo and the endosperm. Successful seed development and germination require constant interactions between these tissues, which occur across their common interface. The embryo-endosperm interface is a complex and poorly understood compound apoplast comprising components derived from both tissues, across which nutrients transit to fuel embryo development. Interface properties, which affect molecular diffusion and thus communication, are themselves dynamically regulated by molecular and physical dialogues between the embryo and endosperm. We review the current understanding of embryo-endosperm interactions, with a focus on the structure, properties, and function of their shared interface. Concentrating on Arabidopsis, but with reference to other species, we aim to situate recent findings within the broader context of seed physiology, developmental biology, and genetic factors such as parental conflicts over resource allocation.
Collapse
Affiliation(s)
- Nicolas M Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium;
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, Université de Lyon 1, Lyon, France;
| |
Collapse
|
10
|
Mair A, Bergmann DC. Advances in enzyme-mediated proximity labeling and its potential for plant research. PLANT PHYSIOLOGY 2022; 188:756-768. [PMID: 34662401 PMCID: PMC8825456 DOI: 10.1093/plphys/kiab479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/21/2021] [Indexed: 06/12/2023]
Abstract
Cellular processes rely on the intimate interplay of different molecules, including DNA, RNA, proteins, and metabolites. Obtaining and integrating data on their abundance and dynamics at high temporal and spatial resolution are essential for our understanding of plant growth and development. In the past decade, enzymatic proximity labeling (PL) has emerged as a powerful tool to study local protein and nucleotide ensembles, discover protein-protein and protein-nucleotide interactions, and resolve questions about protein localization and membrane topology. An ever-growing number and continuous improvement of enzymes and methods keep broadening the spectrum of possible applications for PL and make it more accessible to different organisms, including plants. While initial PL experiments in plants required high expression levels and long labeling times, recently developed faster enzymes now enable PL of proteins on a cell type-specific level, even with low-abundant baits, and in different plant species. Moreover, expanding the use of PL for additional purposes, such as identification of locus-specific gene regulators or high-resolution electron microscopy may now be in reach. In this review, we give an overview of currently available PL enzymes and their applications in mammalian cell culture and plants. We discuss the challenges and limitations of PL methods and highlight open questions and possible future directions for PL in plants.
Collapse
Affiliation(s)
- Andrea Mair
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Dominique C Bergmann
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
11
|
Li B, Zeng Y, Cao W, Zhang W, Cheng L, Yin H, Wu Q, Wang X, Huang Y, Lau WCY, Yao ZP, Guo Y, Jiang L. A distinct giant coat protein complex II vesicle population in Arabidopsis thaliana. NATURE PLANTS 2021; 7:1335-1346. [PMID: 34621047 DOI: 10.1038/s41477-021-00997-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/29/2021] [Indexed: 05/20/2023]
Abstract
Plants live as sessile organisms with large-scale gene duplication events and subsequent paralogue divergence during evolution. Notably, plant paralogues are expressed tissue-specifically and fine-tuned by phytohormones during various developmental processes. The coat protein complex II (COPII) is a highly conserved vesiculation machinery mediating protein transport from the endoplasmic reticulum to the Golgi apparatus in eukaryotes1. Intriguingly, Arabidopsis COPII paralogues greatly outnumber those in yeast and mammals2-6. However, the functional diversity and underlying mechanism of distinct COPII paralogues in regulating protein endoplasmic reticulum export and coping with various adverse environmental stresses are poorly understood. Here we characterize a novel population of COPII vesicles produced in response to abscisic acid, a key phytohormone regulating abiotic stress responses in plants. These hormone-induced giant COPII vesicles are regulated by an Arabidopsis-specific COPII paralogue and carry stress-related channels/transporters for alleviating stresses. This study thus provides a new mechanism underlying abscisic acid-induced stress responses via the giant COPII vesicles and answers a long-standing question on the evolutionary significance of gene duplications in Arabidopsis.
Collapse
Affiliation(s)
- Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenxin Zhang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Lixin Cheng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medicine College of Ji'nan University, Shenzhen, China
| | - Haidi Yin
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Qian Wu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiangfeng Wang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Huang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wilson Chun Yu Lau
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Gibbs NM, Su S, Lopez‐Nieves S, Mann S, Alban C, Maeda HA, Masson PH. Cadaverine regulates biotin synthesis to modulate primary root growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1283-1298. [PMID: 34250670 PMCID: PMC8518694 DOI: 10.1111/tpj.15417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Cadaverine, a polyamine, has been linked to modification of root growth architecture and response to environmental stresses in plants. However, the molecular mechanisms that govern the regulation of root growth by cadaverine are largely unexplored. Here we conducted a forward genetic screen and isolated a mutation, cadaverine hypersensitive 3 (cdh3), which resulted in increased root-growth sensitivity to cadaverine, but not other polyamines. This mutation affects the BIO3-BIO1 biotin biosynthesis gene. Exogenous supply of biotin and a pathway intermediate downstream of BIO1, 7,8-diaminopelargonic acid, suppressed this cadaverine sensitivity phenotype. An in vitro enzyme assay showed cadaverine inhibits the BIO3-BIO1 activity. Furthermore, cadaverine-treated seedlings displayed reduced biotinylation of Biotin Carboxyl Carrier Protein 1 of the acetyl-coenzyme A carboxylase complex involved in de novo fatty acid biosynthesis, resulting in decreased accumulation of triacylglycerides. Taken together, these results revealed an unexpected role of cadaverine in the regulation of biotin biosynthesis, which leads to modulation of primary root growth of plants.
Collapse
Affiliation(s)
- Nicole M. Gibbs
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWI53706USA
- Present address:
Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCA92037USA
| | - Shih‐Heng Su
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | | | - Stéphane Mann
- Muséum National d'Histoire NaturelleUMR 7245CNRSMNHNMolécules de Communication et Adaptation des Micro‐organismesCP 5457 Rue CuvierParis75005France
| | - Claude Alban
- Université Grenoble AlpesINRAECEACNRSIRIGLPCVGrenoble38000France
| | - Hiroshi A. Maeda
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Patrick H. Masson
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWI53706USA
| |
Collapse
|
13
|
Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Temporal Control of Seed Development in Dicots: Molecular Bases, Ecological Impact and Possible Evolutionary Ramifications. Int J Mol Sci 2021; 22:ijms22179252. [PMID: 34502157 PMCID: PMC8430901 DOI: 10.3390/ijms22179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
14
|
Moseler A, Kruse I, Maclean AE, Pedroletti L, Franceschetti M, Wagner S, Wehler R, Fischer-Schrader K, Poschet G, Wirtz M, Dörmann P, Hildebrandt TM, Hell R, Schwarzländer M, Balk J, Meyer AJ. The function of glutaredoxin GRXS15 is required for lipoyl-dependent dehydrogenases in mitochondria. PLANT PHYSIOLOGY 2021; 186:1507-1525. [PMID: 33856472 PMCID: PMC8260144 DOI: 10.1093/plphys/kiab172] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 05/02/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe-S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe-S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe-S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe-S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe-S supply in grxs15 mutants.
Collapse
Affiliation(s)
- Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
- Université de Lorraine, INRAE, IAM, Nancy 54000, France
| | - Inga Kruse
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Present address: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Andrew E Maclean
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Present address: Wellcome Trust Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Luca Pedroletti
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | | | - Stephan Wagner
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | - Regina Wehler
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Katrin Fischer-Schrader
- Department of Chemistry, Institute for Biochemistry, University of Cologne, 50674 Cologne, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | | | - Rüdiger Hell
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP)—Plant Energy Biology, University of Münster, 48143 Münster, Germany
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich, 52425 Jülich, Germany
- Author for communication:
| |
Collapse
|
15
|
Wang Y, Wang M, Ye X, Liu H, Takano T, Tsugama D, Liu S, Bu Y. Biotin plays an important role in Arabidopsis thaliana seedlings under carbonate stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110639. [PMID: 33180716 DOI: 10.1016/j.plantsci.2020.110639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Globally, many saline-alkali soils are rich in NaHCO3 and Na2CO3, which are characterized by a high pH Carbonate stress caused by this kind of soil severely damages plant cells and inhibits plant growth. Biotin and HCO3- participate in the first and rate-limiting reaction of the fatty acid biosynthesis pathway, but whether biotin contributes to plant responses to carbonate stress is unclear. In this study, we revealed that high carbonate and biotin concentrations inhibited Arabidopsis (Arabidopsis thaliana) seedling growth. However, specific concentrations of carbonate and biotin decreased the inhibitory effects of the other compound at the germination and seedling stages. Additionally, a carbonate treatment increased the endogenous biotin content and expression of AtBIO2, which encodes a biotin synthase. Moreover, phenotypic analyses indicated that the overexpression of AtBIO2 in Arabidopsis enhanced the tolerance to carbonate stress, whereas mutations to AtBIO2 had the opposite effect. Furthermore, the carbonate stress-induced accumulation of reactive oxygen species was lower in plants overexpressing AtBIO2 than in the wild-type and bio2 mutants. Accordingly, biotin, which is an essential vitamin for plants, can enhance the resistance to carbonate stress.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Min Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoxue Ye
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hua Liu
- Department of Silviculture, State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan
| | - Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan
| | - Shenkui Liu
- Department of Silviculture, State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, China.
| | - Yuanyuan Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
16
|
Qi W, Lu H, Zhang Y, Cheng J, Huang B, Lu X, Sheteiwy MSA, Kuang S, Shao H. Oil crop genetic modification for producing added value lipids. Crit Rev Biotechnol 2020; 40:777-786. [PMID: 32605455 DOI: 10.1080/07388551.2020.1785384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plant lipids, mainly stored in seeds and other plant parts, are not only a crucial resource for food and fodder but are also a promising alternative to fossil oils as a chemical industry feedstock. Oil crop cultivation and processing are always important parts of agriculture worldwide. Vegetable oils containing polyunsaturated fatty acids, very long chain fatty acids, conjugated fatty acids, hydroxy fatty acids and wax esters, have outstanding nutritional, lubricating, surfactant, and artificial-fibre-synthesis properties, amongst others. Enhancing the production of such specific lipid components is of economic interest. There has been a considerable amount of information reported about plant lipid biosynthesis, including identification of the pathway map of carbon flux, key enzymes (and the coding genes), and substrate affinities. Plant lipid biosynthesis engineering to produce special oil compounds has become feasible, although until now, only limited progress has been made in the laboratory. It is relatively easy to achieve the experimental objectives, for example, accumulating novel lipid compounds in given plant tissues facilitated by genetic modification. Applying such technologies to agricultural production is difficult, and the challenge is to make engineered crops economically attractive, which is impeded by only moderate success. To achieve this goal, more complicated and systematic strategies should be developed and discussed based on the relevant results currently available.
Collapse
Affiliation(s)
- Weicong Qi
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of Agriculture, PR China,Henan Provincial Key Laboratory for Oil Crops Improvement, Zheng Zhou, PR China
| | - Haiying Lu
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China
| | - Yang Zhang
- Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of Agriculture, PR China,Henan Provincial Key Laboratory for Oil Crops Improvement, Zheng Zhou, PR China
| | - Jihua Cheng
- Yuan Longping High-tech Agriculture Co., LTD, Changsha, PR China
| | - Bangquan Huang
- College of Life Sciences, Hubei University, Wuhan, PR China
| | - Xin Lu
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China
| | - Mohamed Salah Amr Sheteiwy
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, PR China
| | - Hongbo Shao
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, PR China.,Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, PR China
| |
Collapse
|
17
|
Ingram GC. Family plot: the impact of the endosperm and other extra-embryonic seed tissues on angiosperm zygotic embryogenesis. F1000Res 2020; 9. [PMID: 32055398 PMCID: PMC6961419 DOI: 10.12688/f1000research.21527.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
The zygotic embryos of angiosperms develop buried deep within seeds and surrounded by two main extra-embryonic tissues: the maternally derived seed coat tissues and the zygotic endosperm. Generally, these tissues are considered to play an important role in nurturing the developing embryo by acting as conduits for maternally derived nutrients. They are also critical for key seed traits (dormancy establishment and control, longevity, and physical resistance) and thus for seed and seedling survival. However, recent studies have highlighted the fact that extra-embryonic tissues in the seed also physically and metabolically limit embryonic development and that unique mechanisms may have evolved to overcome specific developmental and genetic constraints associated with the seed habit in angiosperms. The aim of this review is to illustrate how these studies have begun to reveal the highly complex physical and physiological relationship between extra-embryonic tissues and the developing embryo. Where possible I focus on Arabidopsis because of space constraints, but other systems will be cited where relevant.
Collapse
Affiliation(s)
- Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| |
Collapse
|
18
|
Suzuki M, Wu S, Mimura M, Alseekh S, Fernie AR, Hanson AD, McCarty DR. Construction and applications of a B vitamin genetic resource for investigation of vitamin-dependent metabolism in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:442-454. [PMID: 31520508 DOI: 10.1111/tpj.14535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 05/06/2023]
Abstract
The B vitamins provide essential co-factors for central metabolism in all organisms. In plants, B vitamins have surprising emerging roles in development, stress tolerance and pathogen resistance. Hence, there is a paramount interest in understanding the regulation of vitamin biosynthesis as well as the consequences of vitamin deficiency in crop species. To facilitate genetic analysis of B vitamin biosynthesis and functions in maize, we have mined the UniformMu transposon resource to identify insertional mutations in vitamin pathway genes. A screen of 190 insertion lines for seed and seedling phenotypes identified mutations in biotin, pyridoxine and niacin biosynthetic pathways. Importantly, isolation of independent insertion alleles enabled genetic confirmation of genotype-to-phenotype associations. Because B vitamins are essential for survival, null mutations often have embryo lethal phenotypes that prevent elucidation of subtle, but physiologically important, metabolic consequences of sub-optimal (functional) vitamin status. To circumvent this barrier, we demonstrate a strategy for refined genetic manipulation of vitamin status based on construction of heterozygotes that combine strong and hypomorphic mutant alleles. Dosage analysis of pdx2 alleles in endosperm revealed that endosperm supplies pyridoxine to the developing embryo. Similarly, a hypomorphic bio1 allele enabled analysis of transcriptome and metabolome responses to incipient biotin deficiency in seedling leaves. We show that systemic pipecolic acid accumulation is an early metabolic response to sub-optimal biotin status highlighting an intriguing connection between biotin, lysine metabolism and systemic disease resistance signaling. Seed-stocks carrying insertions for vitamin pathway genes are available for free, public distribution via the Maize Genetics Cooperation Stock Center.
Collapse
Affiliation(s)
- Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Manaki Mimura
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology, 4000, Plovdiv, Bulgaria
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
19
|
Niño-González M, Novo-Uzal E, Richardson DN, Barros PM, Duque P. More Transporters, More Substrates: The Arabidopsis Major Facilitator Superfamily Revisited. MOLECULAR PLANT 2019; 12:1182-1202. [PMID: 31330327 DOI: 10.1016/j.molp.2019.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
The Major Facilitator Superfamily (MFS) is ubiquitous in living organisms and represents the largest group of secondary active membrane transporters. In plants, significant research efforts have focused on the role of specific families within the MFS, particularly those transporting macronutrients (C, N, and P) that constitute the vast majority of the members of this superfamily. Other MFS families remain less explored, although a plethora of additional substrates and physiological functions have been uncovered. Nevertheless, the lack of a systematic approach to analyzing the MFS as a whole has obscured the high diversity and versatility of these transporters. Here, we present a phylogenetic analysis of all annotated MFS domain-containing proteins encoded in the Arabidopsis thaliana genome and propose that this superfamily of transporters consists of 218 members, clustered in 22 families. In reviewing the available information regarding the diversity in biological functions and substrates of Arabidopsis MFS members, we provide arguments for intensified research on these membrane transporters to unveil the breadth of their physiological relevance, disclose the molecular mechanisms underlying their mode of action, and explore their biotechnological potential.
Collapse
Affiliation(s)
| | | | | | - Pedro M Barros
- Genomics of Plant Stress Unit, ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
20
|
Baroux C, Grossniklaus U. Seeds-An evolutionary innovation underlying reproductive success in flowering plants. Curr Top Dev Biol 2018; 131:605-642. [PMID: 30612632 DOI: 10.1016/bs.ctdb.2018.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
"Seeds nourish, seeds unite, seeds endure, seeds defend, seeds travel," explains the science writer Thor Hanson in his book The Triumph of Seeds (2015). The seed is an ultimate product of land plant evolution. The nursing and protective organization of the seed enable a unique parental care of the progeny that has fueled seed plant radiation. Seeds promote dispersal and optimize offspring production and thus reproductive fitness through biological adaptations that integrate environmental and developmental cues. The composite structure of seeds, uniting tissues that originate from three distinct organisms, enables the partitioning of tasks during development, maturation, and storage, while a sophisticated interplay between the compartments allows the fine-tuning of embryonic growth, as well as seed maturation, dormancy, and germination. In this review, we will highlight peculiarities in the development and evolution of the different seed compartments and focus on the molecular mechanisms underlying the interactions between them.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Aguirre M, Kiegle E, Leo G, Ezquer I. Carbohydrate reserves and seed development: an overview. PLANT REPRODUCTION 2018; 31:263-290. [PMID: 29728792 DOI: 10.1007/s00497-018-0336-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Seeds are one of the most important food sources, providing humans and animals with essential nutrients. These nutrients include carbohydrates, lipids, proteins, vitamins and minerals. Carbohydrates are one of the main energy sources for both plant and animal cells and play a fundamental role in seed development, human nutrition and the food industry. Many studies have focused on the molecular pathways that control carbohydrate flow during seed development in monocot and dicot species. For this reason, an overview of seed biodiversity focused on the multiple metabolic and physiological mechanisms that govern seed carbohydrate storage function in the plant kingdom is required. A large number of mutants affecting carbohydrate metabolism, which display defective seed development, are currently available for many plant species. The physiological, biochemical and biomolecular study of such mutants has led researchers to understand better how metabolism of carbohydrates works in plants and the critical role that these carbohydrates, and especially starch, play during seed development. In this review, we summarize and analyze the newest findings related to carbohydrate metabolism's effects on seed development, pointing out key regulatory genes and enzymes that influence seed sugar import and metabolism. Our review also aims to provide guidelines for future research in the field and in this way to assist seed quality optimization by targeted genetic engineering and classical breeding programs.
Collapse
Affiliation(s)
- Manuel Aguirre
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
- FNWI, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Edward Kiegle
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Giulia Leo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
22
|
Karmann J, Müller B, Hammes UZ. The long and winding road: transport pathways for amino acids in Arabidopsis seeds. PLANT REPRODUCTION 2018; 31:253-261. [PMID: 29549431 DOI: 10.1007/s00497-018-0334-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/07/2018] [Indexed: 05/02/2023]
Abstract
Pathways for assimilates. During their life cycle, plants alternate between a haploid stage, the gametophyte, and a diploid stage, the sporophyte. In higher plants, meiosis generates the gametophyte deeply embedded in the maternal tissue of the flower. The megaspore mother cell undergoes meiosis, and then, the surviving megaspore of the four megaspores produced undergoes mitotic divisions and finally gives rise to the female gametophyte, consisting of the egg cell, two synergids, the central cell, which due to the fusion of two nuclei is diploid (double haploid) in Arabidopsis and most angiosperms and the antipods, whose number is not fixed and varies significantly between species (Yadegari and Drews in Plant Cell 16(Suppl):S133-S141, 2004). The maternal tissues that harbor the female gametophyte and the female gametophyte are referred to as the ovule (Fig. 1). Double fertilization of the egg cell and the central cell by the two generative nuclei of the pollen leads to the diploid embryo and the endosperm, respectively (Hamamura et al. in Curr Opin Plant Biol 15:70-77, 2012). Upon fertilization, the ovule is referred to as the seed. Seeds combine two purposes: to harbor storage compounds for use by the embryo upon germination and to protect the embryo until the correct conditions for germination are encountered. As a consequence, seeds are the plant tissue that is of highest nutritional value and the human diet, by a considerable amount, consists of seeds or seed-derived products. Amino acids are of special interest, because plants serve as the main source for the so-called essential amino acids, that animals cannot synthesize de novo and are therefore often a limiting factor for human growth and development (WHO in Protein and amino acid requirements in human nutrition. WHO technical report series, WHO, Geneva, 2007). The plant embryo needs amino acids for general protein synthesis, and additionally they are used to synthesize storage proteins in the seeds of certain plants, e.g., legumes as a resource to support the growth of the seedling after germination. The support of the embryo depends on transport processes that occur between the mother plant and the seed tissues including the embryo. In this review, we will focus on the processes of unloading amino acids from the phloem and their post-phloem transport. We will further highlight similarities between amino acid transport and the transport of the main assimilate and osmolyte, sucrose. Finally, we will discuss similarities and differences between different plant species in terms of structural aspects but for the molecular aspects we are almost exclusively focusing on Arabidopsis. Fig. 1 Vascularization of the Arabidopsis ovule and seed. Plants expressing ER-localized mCherry under control of the companion cell-specific SUC2 promoter and ER-localized GFP under control of the sieve element marker PD1 as described (Müller et al. 2015) are shown to visualize the phloem in the funiculus and the chalazal regions. a Overview over an ovule. FG: female gametophyte. b A magnification of the region marked by a square in panel a. c Overview over a seed. ES: endosperm; E: embryo. d A magnification of the region marked by a square in panel c. The arrows in b and d point to the terminal companion cell and arrowheads to terminal sieve elements.
Collapse
Affiliation(s)
- Julia Karmann
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany
| | - Benedikt Müller
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany
| | - Ulrich Z Hammes
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany.
| |
Collapse
|
23
|
Rottmann TM, Fritz C, Lauter A, Schneider S, Fischer C, Danzberger N, Dietrich P, Sauer N, Stadler R. Protoplast-Esculin Assay as a New Method to Assay Plant Sucrose Transporters: Characterization of AtSUC6 and AtSUC7 Sucrose Uptake Activity in Arabidopsis Col-0 Ecotype. FRONTIERS IN PLANT SCIENCE 2018; 9:430. [PMID: 29740457 PMCID: PMC5925572 DOI: 10.3389/fpls.2018.00430] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/20/2018] [Indexed: 05/20/2023]
Abstract
The best characterized function of sucrose transporters of the SUC family in plants is the uptake of sucrose into the phloem for long-distance transport of photoassimilates. This important step is usually performed by one specific SUC in every species. However, plants possess small families of several different SUCs which are less well understood. Here, we report on the characterization of AtSUC6 and AtSUC7, two members of the SUC family in Arabidopsis thaliana. Heterologous expression in yeast (Saccharomyces cerevisiae) revealed that AtSUC6Col-0 is a high-affinity H+-symporter that mediates the uptake of sucrose and maltose across the plasma membrane at exceptionally low pH values. Reporter gene analyses revealed a strong expression of AtSUC6Col-0 in reproductive tissues, where the protein product might contribute to sugar uptake into pollen tubes and synergid cells. A knockout of AtSUC6 did not interfere with vegetative development or reproduction, which points toward physiological redundancy of AtSUC6Col-0 with other sugar transporters. Reporter gene analyses showed that AtSUC7Col-0 is expressed in roots and pollen tubes and that this sink specific expression of AtSUC7Col-0 is regulated by intragenic regions. Transport activity of AtSUC7Col-0 could not be analyzed in baker's yeast or Xenopus oocytes because the protein was not correctly targeted to the plasma membrane in both heterologous expression systems. Therefore, a novel approach to analyze sucrose transporters in planta was developed. Plasma membrane localized SUCs including AtSUC6Col-0 and also sucrose specific SWEETs were able to mediate transport of the fluorescent sucrose analog esculin in transformed mesophyll protoplasts. In contrast, AtSUC7Col-0 is not able to mediate esculin transport across the plasma membrane which implicates that AtSUC7Col-0 might be a non-functional pseudogene. The novel protoplast assay provides a useful tool for the quick and quantitative analysis of sucrose transporters in an in planta expression system.
Collapse
|
24
|
Zuma B, Dana MB, Wang D. Prolonged Expression of a Putative Invertase Inhibitor in Micropylar Endosperm Suppressed Embryo Growth in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:61. [PMID: 29441087 PMCID: PMC5797552 DOI: 10.3389/fpls.2018.00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/12/2018] [Indexed: 05/21/2023]
Abstract
Proper seed development requires coordinated growth among the three genetically distinct components, the embryo, the endosperm, and the seed coat. In Arabidopsis, embryo growth rate accelerates after endosperm cellularization, which requires a chromatin-remodeling complex, the FIS2-Polycomb Repressive Complex 2 (PRC2). After cellularization, the endosperm ceases to grow and is eventually absorbed by the embryo. This sequential growth pattern displayed by the endosperm and the embryo suggests a possibility that the supply of sugar might be shifted from the endosperm to the embryo upon endosperm cellularization. Since invertases and invertase inhibitors play an important role in sugar partition, we investigated their expression pattern during early stages of seed development in Arabidopsis. Two putative invertase inhibitors (InvINH1 and InvINH2) were identified as being preferentially expressed in the micropylar endosperm that surrounds the embryo. After endosperm cellularization, InvINH1 and InvINH2 were down-regulated in a FIS2-dependent manner. We hypothesized that FIS2-PRC2 complex either directly or indirectly represses InvINH1 and InvINH2 to increase invertase activity around the embryo, making more hexose available to support the accelerated embryo growth after endosperm cellularization. In support of our hypothesis, embryo growth was delayed in transgenic lines that ectopically expressed InvINH1 in the cellularized endosperm. Our data suggested a novel mechanism for the FIS2-PRC2 complex to control embryo growth rate via the regulation of invertase activity in the endosperm.
Collapse
|
25
|
Zhang Z, Ruan YL, Zhou N, Wang F, Guan X, Fang L, Shang X, Guo W, Zhu S, Zhang T. Suppressing a Putative Sterol Carrier Gene Reduces Plasmodesmal Permeability and Activates Sucrose Transporter Genes during Cotton Fiber Elongation. THE PLANT CELL 2017; 29:2027-2046. [PMID: 28747422 PMCID: PMC5590508 DOI: 10.1105/tpc.17.00358] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/14/2017] [Accepted: 07/25/2017] [Indexed: 05/18/2023]
Abstract
Plasmodesmata (PDs) play vital roles in cell-to-cell communication and plant development. Emerging evidence suggests that sterols are involved in PD activity during cytokinesis. However, whether sterols contribute to PD gating between established cells remains unknown. Here, we isolated GhSCP2D, a putative sterol carrier protein gene from elongating cotton (Gossypium hirsutum) fibers. In contrast to wild-type fiber PDs, which opened at 5 to 10 d postanthesis (DPA) and closed only at 15 to 25 DPA, plants with suppressed GhSCP2D expression had reduced sterol contents and closed PDs at 5 through 25 DPA The GhSCP2D-suppressed fibers exhibited callose deposition at the PDs, likely due to reduced expression of GhPdBG3-2A/D, which encodes a PD-targeting β-1,3-glucanase. Both GhPdBG3-2A/D expression and callose deposition were sensitive to a sterol biosynthesis inhibitor. Moreover, suppressing GhSCP2D upregulated a cohort of SUT and SWEET sucrose transporter genes in fiber cells. Collectively, our results indicate that (1) GhSCP2D is required for GhPdBG3-2A/D expression to degrade callose at the PD, thereby contributing to the establishment of the symplasmic pathway; and (2) blocking the symplasmic pathway by downregulating GhSCP2D activates or increases the expression of SUTs and SWEETs, leading to the switch from symplasmic to apoplasmic pathways.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310029, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, NSW 2308, Australia
| | - Na Zhou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fang Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xueying Guan
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310029, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lei Fang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310029, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaoguang Shang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wangzhen Guo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Shuijin Zhu
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310029, China
| | - Tianzhen Zhang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310029, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
26
|
Li D, Jin C, Duan S, Zhu Y, Qi S, Liu K, Gao C, Ma H, Zhang M, Liao Y, Chen M. MYB89 Transcription Factor Represses Seed Oil Accumulation. PLANT PHYSIOLOGY 2017; 173:1211-1225. [PMID: 27932421 PMCID: PMC5291041 DOI: 10.1104/pp.16.01634] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/06/2016] [Indexed: 05/18/2023]
Abstract
In many higher plants, seed oil accumulation is precisely controlled by intricate multilevel regulatory networks, among which transcriptional regulation mainly influences oil biosynthesis. In Arabidopsis (Arabidopsis thaliana), the master positive transcription factors, WRINKLED1 (WRI1) and LEAFY COTYLEDON1-LIKE (L1L), are important for seed oil accumulation. We found that an R2R3-MYB transcription factor, MYB89, was expressed predominantly in developing seeds during maturation. Oil and major fatty acid biosynthesis in seeds was significantly promoted by myb89-1 mutation and MYB89 knockdown; thus, MYB89 was an important repressor during seed oil accumulation. RNA sequencing revealed remarkable up-regulation of numerous genes involved in seed oil accumulation in myb89 seeds at 12 d after pollination. Posttranslational activation of a MYB89-glucocorticoid receptor fusion protein and chromatin immunoprecipitation assays demonstrated that MYB89 inhibited seed oil accumulation by directly repressing WRI1 and five key genes and by indirectly suppressing L1L and 11 key genes involved in oil biosynthesis during seed maturation. These results help us to understand the novel function of MYB89 and provide new insights into the regulatory network of transcriptional factors controlling seed oil accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Dong Li
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China (D.L., C.J., S.D., S.Q., K.L., C.G., H.M., M.Z., Y.L., M.C.); and
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (Y.Z.)
| | - Changyu Jin
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China (D.L., C.J., S.D., S.Q., K.L., C.G., H.M., M.Z., Y.L., M.C.); and
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (Y.Z.)
| | - Shaowei Duan
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China (D.L., C.J., S.D., S.Q., K.L., C.G., H.M., M.Z., Y.L., M.C.); and
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (Y.Z.)
| | - Yana Zhu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China (D.L., C.J., S.D., S.Q., K.L., C.G., H.M., M.Z., Y.L., M.C.); and
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (Y.Z.)
| | - Shuanghui Qi
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China (D.L., C.J., S.D., S.Q., K.L., C.G., H.M., M.Z., Y.L., M.C.); and
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (Y.Z.)
| | - Kaige Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China (D.L., C.J., S.D., S.Q., K.L., C.G., H.M., M.Z., Y.L., M.C.); and
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (Y.Z.)
| | - Chenhao Gao
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China (D.L., C.J., S.D., S.Q., K.L., C.G., H.M., M.Z., Y.L., M.C.); and
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (Y.Z.)
| | - Haoli Ma
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China (D.L., C.J., S.D., S.Q., K.L., C.G., H.M., M.Z., Y.L., M.C.); and
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (Y.Z.)
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China (D.L., C.J., S.D., S.Q., K.L., C.G., H.M., M.Z., Y.L., M.C.); and
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (Y.Z.)
| | - Yuncheng Liao
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China (D.L., C.J., S.D., S.Q., K.L., C.G., H.M., M.Z., Y.L., M.C.); and
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (Y.Z.)
| | - Mingxun Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China (D.L., C.J., S.D., S.Q., K.L., C.G., H.M., M.Z., Y.L., M.C.); and
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (Y.Z.)
| |
Collapse
|
27
|
Baetz U, Eisenach C, Tohge T, Martinoia E, De Angeli A. Vacuolar Chloride Fluxes Impact Ion Content and Distribution during Early Salinity Stress. PLANT PHYSIOLOGY 2016; 172:1167-1181. [PMID: 27503602 PMCID: PMC5047071 DOI: 10.1104/pp.16.00183] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/21/2016] [Indexed: 05/24/2023]
Abstract
The ability to control the cytoplasmic environment is a prerequisite for plants to cope with changing environmental conditions. During salt stress, for instance, Na+ and Cl- are sequestered into the vacuole to help maintain cytosolic ion homeostasis and avoid cellular damage. It has been observed that vacuolar ion uptake is tied to fluxes across the plasma membrane. The coordination of both transport processes and relative contribution to plant adaptation, however, is still poorly understood. To investigate the link between vacuolar anion uptake and whole-plant ion distribution during salinity, we used mutants of the only vacuolar Cl- channel described to date: the Arabidopsis (Arabidopsis thaliana) ALMT9. After 24-h NaCl treatment, almt9 knock-out mutants had reduced shoot accumulation of both Cl- and Na+ In contrast, almt9 plants complemented with a mutant variant of ALMT9 that exhibits enhanced channel activity showed higher Cl- and Na+ accumulation. The altered shoot ion contents were not based on differences in transpiration, pointing to a vacuolar function in regulating xylem loading during salinity. In line with this finding, GUS staining demonstrated that ALMT9 is highly expressed in the vasculature of shoots and roots. RNA-seq analysis of almt9 mutants under salinity revealed specific expression profiles of transporters involved in long-distance ion translocation. Taken together, our study uncovers that the capacity of vacuolar Cl- loading in vascular cells plays a crucial role in controlling whole-plant ion movement rapidly after onset of salinity.
Collapse
Affiliation(s)
- Ulrike Baetz
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland (U.B., C.E., E.M.);Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (T.T.); and Institut de Biologie Intégrative de la Cellule, CNRS, 91190 Gif-Sur-Yvette, France (A.D.A.)
| | - Cornelia Eisenach
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland (U.B., C.E., E.M.);Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (T.T.); and Institut de Biologie Intégrative de la Cellule, CNRS, 91190 Gif-Sur-Yvette, France (A.D.A.)
| | - Takayuki Tohge
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland (U.B., C.E., E.M.);Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (T.T.); and Institut de Biologie Intégrative de la Cellule, CNRS, 91190 Gif-Sur-Yvette, France (A.D.A.)
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland (U.B., C.E., E.M.);Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (T.T.); and Institut de Biologie Intégrative de la Cellule, CNRS, 91190 Gif-Sur-Yvette, France (A.D.A.)
| | - Alexis De Angeli
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland (U.B., C.E., E.M.);Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (T.T.); and Institut de Biologie Intégrative de la Cellule, CNRS, 91190 Gif-Sur-Yvette, France (A.D.A.)
| |
Collapse
|
28
|
Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, Londoño A, Samuels AL, Frommer WB. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. THE PLANT CELL 2015; 27:607-19. [PMID: 25794936 PMCID: PMC4558658 DOI: 10.1105/tpc.114.134585] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 05/18/2023]
Abstract
Developing plant embryos depend on nutrition from maternal tissues via the seed coat and endosperm, but the mechanisms that supply nutrients to plant embryos have remained elusive. Sucrose, the major transport form of carbohydrate in plants, is delivered via the phloem to the maternal seed coat and then secreted from the seed coat to feed the embryo. Here, we show that seed filling in Arabidopsis thaliana requires the three sucrose transporters SWEET11, 12, and 15. SWEET11, 12, and 15 exhibit specific spatiotemporal expression patterns in developing seeds, but only a sweet11;12;15 triple mutant showed severe seed defects, which include retarded embryo development, reduced seed weight, and reduced starch and lipid content, causing a "wrinkled" seed phenotype. In sweet11;12;15 triple mutants, starch accumulated in the seed coat but not the embryo, implicating SWEET-mediated sucrose efflux in the transfer of sugars from seed coat to embryo. This cascade of sequentially expressed SWEETs provides the feeding pathway for the plant embryo, an important feature for yield potential.
Collapse
Affiliation(s)
- Li-Qing Chen
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - I Winnie Lin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 Department of Biology, Stanford University, Stanford, California 94305
| | - Xiao-Qing Qu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Davide Sosso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Heather E McFarlane
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Alejandra Londoño
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| |
Collapse
|
29
|
Reuscher S, Akiyama M, Yasuda T, Makino H, Aoki K, Shibata D, Shiratake K. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. PLANT & CELL PHYSIOLOGY 2014; 55:1123-41. [PMID: 24833026 DOI: 10.1093/pcp/pcu052] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The mobility of sugars between source and sink tissues in plants depends on sugar transport proteins. Studying the corresponding genes allows the manipulation of the sink strength of developing fruits, thereby improving fruit quality for human consumption. Tomato (Solanum lycopersicum) is both a major horticultural crop and a model for the development of fleshy fruits. In this article we provide a comprehensive inventory of tomato sugar transporters, including the SUCROSE TRANSPORTER family, the SUGAR TRANSPORTER PROTEIN family, the SUGAR FACILITATOR PROTEIN family, the POLYOL/MONOSACCHARIDE TRANSPORTER family, the INOSITOL TRANSPORTER family, the PLASTIDIC GLUCOSE TRANSLOCATOR family, the TONOPLAST MONOSACCHARIDE TRANSPORTER family and the VACUOLAR GLUCOSE TRANSPORTER family. Expressed sequence tag (EST) sequencing and phylogenetic analyses established a nomenclature for all analyzed tomato sugar transporters. In total we identified 52 genes in tomato putatively encoding sugar transporters. The expression of 29 sugar transporter genes in vegetative tissues and during fruit development was analyzed. Several sugar transporter genes were expressed in a tissue- or developmental stage-specific manner. This information will be helpful to better understand source to sink movement of photoassimilates in tomato. Identification of fruit-specific sugar transporters might be a first step to find novel genes contributing to tomato fruit sugar accumulation.
Collapse
Affiliation(s)
- Stefan Reuscher
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 JapanThese authors contributed equally to this work
| | - Masahito Akiyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 JapanThese authors contributed equally to this work
| | - Tomohide Yasuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Haruko Makino
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, 599-8531 Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, Kazusa-kamatari, Kisarazu, 292-0818 Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| |
Collapse
|
30
|
Lafon-Placette C, Köhler C. Embryo and endosperm, partners in seed development. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:64-9. [PMID: 24507496 DOI: 10.1016/j.pbi.2013.11.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/16/2013] [Accepted: 11/02/2013] [Indexed: 05/21/2023]
Abstract
Angiosperm seeds are the major source of human calories, generating a pressing need to understand the underlying processes governing seed growth and development. They are composed of the two fertilization products, embryo and endosperm surrounded by the maternally derived seed coat. The successful interaction of all three seed components is a requirement for seeds to complete their development and to produce viable embryos that are competent to establish a new sporophytic generation. Here, we review recent reports investigating signal exchange between embryo and endosperm, focusing in particular on the transport of metabolites and small RNAs between both fertilization products.
Collapse
Affiliation(s)
- Clément Lafon-Placette
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, 750 07 Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, 750 07 Uppsala, Sweden.
| |
Collapse
|
31
|
Xu K, Huang X, Wu M, Wang Y, Chang Y, Liu K, Zhang J, Zhang Y, Zhang F, Yi L, Li T, Wang R, Tan G, Li C. A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. PLoS One 2014; 9:e83556. [PMID: 24416168 PMCID: PMC3885512 DOI: 10.1371/journal.pone.0083556] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/05/2013] [Indexed: 01/12/2023] Open
Abstract
Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale.
Collapse
Affiliation(s)
- Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Xiaohui Huang
- Department of Life Science, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Manman Wu
- Department of Life Science, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Yan Wang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, People's Republic of China
- College of Life Science, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Yunxia Chang
- Department of Life Science, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Kun Liu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Ju Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Fuli Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Liming Yi
- Department of Life Science, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Tingting Li
- Department of Life Science, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Ruiyue Wang
- Department of Life Science, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Guangxuan Tan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Chengwei Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, People's Republic of China
| |
Collapse
|
32
|
Song QX, Li QT, Liu YF, Zhang FX, Ma B, Zhang WK, Man WQ, Du WG, Wang GD, Chen SY, Zhang JS. Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4329-41. [PMID: 23963672 PMCID: PMC3808315 DOI: 10.1093/jxb/ert238] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Soybean is one of most important oil crops and a significant increase in lipid content in soybean seeds would facilitate vegetable oil production in the world. Although the pathways for lipid biosynthesis in higher plants have been uncovered, our understanding of regulatory mechanism controlling lipid accumulation is still limited. In this study, we identified 87 transcription factor genes with a higher abundance at the stage of lipid accumulation in soybean seeds. One of these genes, GmbZIP123, was selected to further study its function in regulation of lipid accumulation. Overexpression of GmbZIP123 enhanced lipid content in the seeds of transgenic Arabidopsis thaliana plants. The GmbZIP123 transgene promoted expression of two sucrose transporter genes (SUC1 and SUC5) and three cell-wall invertase genes (cwINV1, cwINV3, and cwINV6) by binding directly to the promoters of these genes. Consistently, the cell-wall invertase activity and sugar translocation were all enhanced in siliques of GmbZIP123 transgenic plants. Higher levels of glucose, fructose, and sucrose were also found in seeds of GmbZIP123 transgenic plants. These results suggest that GmbZIP123 may participate in regulation of lipid accumulation in soybean seeds by controlling sugar transport into seeds from photoautotrophic tissues. This study provides novel insights into the regulatory mechanism for lipid accumulation in seeds and may facilitate improvements in oil production in soybean and other oil crops through genetic manipulation of the GmbZIP123 gene.
Collapse
Affiliation(s)
- Qing-Xin Song
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yun-Feng Liu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Feng-Xia Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei-Qun Man
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Wei-Guang Du
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Guo-Dong Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
33
|
Babu Y, Musielak T, Henschen A, Bayer M. Suspensor length determines developmental progression of the embryo in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1448-58. [PMID: 23709666 PMCID: PMC3707531 DOI: 10.1104/pp.113.217166] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/23/2013] [Indexed: 05/20/2023]
Abstract
The first structure that differentiates during plant embryogenesis is the extra-embryonic suspensor that positions the embryo in the lumen of the seed. A central role in nutrient transport has been ascribed to the suspensor in species with prominent suspensor structures. Little is known, however, about what impact the size of the rather simple Arabidopsis (Arabidopsis thaliana) suspensor has on embryogenesis. Here, we describe mutations in the predicted exo-polygalacturonase gene NIMNA (NMA) that lead to cell elongation defects in the early embryo and markedly reduced suspensor length. Mutant nma embryos develop slower than wild-type embryos, and we could observe a similar developmental delay in another mutant with shorter suspensors. Interestingly, for both genes, the paternal allele has a stronger influence on the embryonic phenotype. We conclude that the length of the suspensor is crucial for fast developmental progression of the embryo in Arabidopsis.
Collapse
|
34
|
Ludewig F, Flügge UI. Role of metabolite transporters in source-sink carbon allocation. FRONTIERS IN PLANT SCIENCE 2013; 4:231. [PMID: 23847636 PMCID: PMC3698459 DOI: 10.3389/fpls.2013.00231] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/13/2013] [Indexed: 05/18/2023]
Abstract
Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves as net photoassimilate exporters, and net importers, the sinks, e.g., roots, flowers, small leaves, and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartmentalized. Photoassimilates are allocated to distinct compartments of these tissues in all organs, requiring a set of metabolite transporters mediating this intercompartmental transfer. The general route of photoassimilates can be briefly described as follows. Upon fixation of carbon dioxide in chloroplasts of mesophyll cells, triose phosphates either enter the cytosol for mainly sucrose formation or remain in the stroma to form transiently stored starch which is degraded during the night and enters the cytosol as maltose or glucose to be further metabolized to sucrose. In both cases, sucrose enters the phloem for long distance transport or is transiently stored in the vacuole, or can be degraded to hexoses which also can be stored in the vacuole. In the majority of plant species, sucrose is actively loaded into the phloem via the apoplast. Following long distance transport, it is released into sink organs, where it enters cells as source of carbon and energy. In storage organs, sucrose can be stored, or carbon derived from sucrose can be stored as starch in plastids, or as oil in oil bodies, or - in combination with nitrogen - as protein in protein storage vacuoles and protein bodies. Here, we focus on transport proteins known for either of these steps, and discuss the implications for yield increase in plants upon genetic engineering of respective transporters.
Collapse
Affiliation(s)
- Frank Ludewig
- *Correspondence: Frank Ludewig, Botanical Institute II, Cologne Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany e-mail:
| | | |
Collapse
|