1
|
Devi R, Goyal P, Verma B, Hussain S, Chowdhary F, Arora P, Gupta S. A transcriptome-wide identification of ATP-binding cassette (ABC) transporters revealed participation of ABCB subfamily in abiotic stress management of Glycyrrhiza glabra L. BMC Genomics 2024; 25:315. [PMID: 38532362 DOI: 10.1186/s12864-024-10227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Transcriptome-wide survey divulged a total of 181 ABC transporters in G. glabra which were phylogenetically classified into six subfamilies. Protein-Protein interactions revealed nine putative GgABCBs (-B6, -B14, -B15, -B25, -B26, -B31, -B40, -B42 &-B44) corresponding to five AtABCs orthologs (-B1, -B4, -B11, -B19, &-B21). Significant transcript accumulation of ABCB6 (31.8 folds), -B14 (147.5 folds), -B15 (17 folds), -B25 (19.7 folds), -B26 (18.31 folds), -B31 (61.89 folds), -B40 (1273 folds) and -B42 (51 folds) was observed under the influence of auxin. Auxin transport-specific inhibitor, N-1-naphthylphthalamic acid, showed its effectiveness only at higher (10 µM) concentration where it down regulated the expression of ABCBs, PINs (PIN FORMED) and TWD1 (TWISTED DWARF 1) genes in shoot tissues, while their expression was seen to enhance in the root tissues. Further, qRT-PCR analysis under various growth conditions (in-vitro, field and growth chamber), and subjected to abiotic stresses revealed differential expression implicating role of ABCBs in stress management. Seven of the nine genes were shown to be involved in the stress physiology of the plant. GgABCB6, 15, 25 and ABCB31 were induced in multiple stresses, while GgABCB26, 40 & 42 were exclusively triggered under drought stress. No study pertaining to the ABC transporters from G. glabra is available till date. The present investigation will give an insight to auxin transportation which has been found to be associated with plant growth architecture; the knowledge will help to understand the association between auxin transportation and plant responses under the influence of various conditions.
Collapse
Affiliation(s)
- Ritu Devi
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Goyal
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Bhawna Verma
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Fariha Chowdhary
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Suphla Gupta
- Plant Biotechnology Division, Jammu, India.
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Zhou Y, Wang Y, Zhang D, Liang J. Endomembrane-biased dimerization of ABCG16 and ABCG25 transporters determines their substrate selectivity in ABA-regulated plant growth and stress responses. MOLECULAR PLANT 2024; 17:478-495. [PMID: 38327051 DOI: 10.1016/j.molp.2024.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/28/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
ATP-binding cassette (ABC) transporters are integral membrane proteins that have evolved diverse functions fulfilled via the transport of various substrates. In Arabidopsis, the G subfamily of ABC proteins is particularly abundant and participates in multiple signaling pathways during plant development and stress responses. In this study, we revealed that two Arabidopsis ABCG transporters, ABCG16 and ABCG25, engage in ABA-mediated stress responses and early plant growth through endomembrane-specific dimerization-coupled transport of ABA and ABA-glucosyl ester (ABA-GE), respectively. We first revealed that ABCG16 contributes to osmotic stress tolerance via ABA signaling. More specifically, ABCG16 induces cellular ABA efflux in both yeast and plant cells. Using FRET analysis, we showed that ABCG16 forms obligatory homodimers for ABA export activity and that the plasma membrane-resident ABCG16 homodimers specifically respond to ABA, undergoing notable conformational changes. Furthermore, we demonstrated that ABCG16 heterodimerizes with ABCG25 at the endoplasmic reticulum (ER) membrane and facilitates the ER entry of ABA-GE in both Arabidopsis and tobacco cells. The specific responsiveness of the ABCG16-ABCG25 heterodimer to ABA-GE and the superior growth of their double mutant support an inhibitory role of these two ABCGs in early seedling establishment via regulation of ABA-GE translocation across the ER membrane. Our endomembrane-specific analysis of the FRET signals derived from the homo- or heterodimerized ABCG complexes allowed us to link endomembrane-biased dimerization to the translocation of distinct substrates by ABCG transporters, providing a prototypic framework for understanding the omnipotence of ABCG transporters in plant development and stress responses.
Collapse
Affiliation(s)
- Yeling Zhou
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China; Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Yuzhu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Dong Zhang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jiansheng Liang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China; Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| |
Collapse
|
3
|
Fu X, Zheng H, Wang Y, Liu H, Liu P, Li L, Zhao J, Sun X, Tang K. AaABCG20 transporter involved in cutin and wax secretion affects the initiation and development of glandular trichomes in Artemisia annua. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111959. [PMID: 38101619 DOI: 10.1016/j.plantsci.2023.111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/05/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Glandular trichomes are specialized structures found on the surface of plants to produce specific compounds, including terpenes, alkaloids, and other organic substances. Artemisia annua, commonly known as sweet wormwood, synthesizes and stores the antimalarial drug artemisinin in glandular trichomes. Previous research indicated that increasing the glandular trichome density could enhance artemisinin production, and the cuticle synthesis affected the initiation and development of glandular trichomes in A. annua. In this study, AaABCG12 and AaABCG20 were isolated from A. annua that exhibited similar expression patterns to artemisinin biosynthetic genes. Of the two, AaABCG20 acted as a specific transporter in glandular trichomes. Downregulating the expression of AaABCG20 resulted in a notable reduction in the density of glandular trichome, while overexpressing AaABCG20 resulted in an increase in glandular trichome density. GC-MS analysis demonstrated that AaABCG20 was responsible for the transport of cutin and wax in A. annua. These findings indicated that AaABCG20 influenced the initiation and development of glandular trichomes through transporting cutin and wax in A. annua. This glandular trichome specific half-size ABCG-type transporter is crucial in facilitating the transportation of cutin and wax components, ultimately contributing to the successful initiation and development of glandular trichomes.
Collapse
Affiliation(s)
- Xueqing Fu
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Zheng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuting Wang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pin Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingya Zhao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofen Sun
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Zhang Q, Wang S, Xie Q, Xia Y, Lu L, Wang M, Wang G, Long S, Cai Y, Xu L, Wang E, Jiang Y. Control of arbuscule development by a transcriptional negative feedback loop in Medicago. Nat Commun 2023; 14:5743. [PMID: 37717076 PMCID: PMC10505183 DOI: 10.1038/s41467-023-41493-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
Most terrestrial plants establish a symbiosis with arbuscular mycorrhizal fungi (AMF), which provide them with lipids and sugars in exchange for phosphorus and nitrogen. Nutrient exchange must be dynamically controlled to maintain a mutually beneficial relationship between the two symbiotic partners. The WRI5a and its homologues play a conserved role in lipid supply to AMF. Here, we demonstrate that the AP2/ERF transcription factor MtERM1 binds directly to AW-box and AW-box-like cis-elements in the promoters of MtSTR2 and MtSTR, which are required for host lipid efflux and arbuscule development. The EAR domain-containing transcription factor MtERF12 is also directly activated by MtERM1/MtWRI5a to negatively regulate arbuscule development, and the TOPLESS co-repressor is further recruited by MtERF12 through EAR motif to oppose MtERM1/MtWRI5a function, thereby suppressing arbuscule development. We therefore reveal an ERM1/WRI5a-ERF12-TOPLESS negative feedback loop that enables plants to flexibly control nutrient exchange and ensure a mutually beneficial symbiosis.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Shuangshuang Wang
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiujin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yuanjun Xia
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Lei Lu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Mingxing Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Gang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Siyu Long
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Yunfei Cai
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
| | - Yina Jiang
- School of Life Sciences, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
5
|
Radchuk V, Belew ZM, Gündel A, Mayer S, Hilo A, Hensel G, Sharma R, Neumann K, Ortleb S, Wagner S, Muszynska A, Crocoll C, Xu D, Hoffie I, Kumlehn J, Fuchs J, Peleke FF, Szymanski JJ, Rolletschek H, Nour-Eldin HH, Borisjuk L. SWEET11b transports both sugar and cytokinin in developing barley grains. THE PLANT CELL 2023; 35:2186-2207. [PMID: 36857316 DOI: 10.1093/plcell/koad055] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 05/30/2023]
Abstract
Even though Sugars Will Eventually be Exported Transporters (SWEETs) have been found in every sequenced plant genome, a comprehensive understanding of their functionality is lacking. In this study, we focused on the SWEET family of barley (Hordeum vulgare). A radiotracer assay revealed that expressing HvSWEET11b in African clawed frog (Xenopus laevis) oocytes facilitated the bidirectional transfer of not only just sucrose and glucose, but also cytokinin. Barley plants harboring a loss-of-function mutation of HvSWEET11b could not set viable grains, while the distribution of sucrose and cytokinin was altered in developing grains of plants in which the gene was knocked down. Sucrose allocation within transgenic grains was disrupted, which is consistent with the changes to the cytokinin gradient across grains, as visualized by magnetic resonance imaging and Fourier transform infrared spectroscopy microimaging. Decreasing HvSWEET11b expression in developing grains reduced overall grain size, sink strength, the number of endopolyploid endosperm cells, and the contents of starch and protein. The control exerted by HvSWEET11b over sugars and cytokinins likely predetermines their synergy, resulting in adjustments to the grain's biochemistry and transcriptome.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Zeinu M Belew
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Andre Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Simon Mayer
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Hilo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Goetz Hensel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Rajiv Sharma
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JGUK
| | - Kerstin Neumann
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Aleksandra Muszynska
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Christoph Crocoll
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Deyang Xu
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Iris Hoffie
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Joerg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Fritz F Peleke
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Jedrzej J Szymanski
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Hussam H Nour-Eldin
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| |
Collapse
|
6
|
Mi Y, Cao X, Zhu X, Chen W, Meng X, Wan H, Sun W, Wang S, Chen S. Characterization and co-expression analysis of ATP-binding cassette transporters provide insight into genes related to cannabinoid transport in Cannabis sativa L. Int J Biol Macromol 2023:124934. [PMID: 37224907 DOI: 10.1016/j.ijbiomac.2023.124934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Plant ATP-binding cassette (ABC) transporters contribute the transport of diverse secondary metabolites. However, their roles in cannabinoid trafficking are still unsolved in Cannabis sativa. In this study, 113 ABC transporters were identified and characterized in C. sativa from their physicochemical properties, gene structure, and phylogenic relationship, as well as spatial gene expression patterns. Eventually, seven core transporters were proposed including one member in ABC subfamily B (CsABCB8) and six ABCG members (CsABCG4, CsABCG10, CsABCG11, CsABCG32, CsABCG37, and CsABCG41), harboring potential in participating cannabinoid transport, by combining phylogenetic and co-expression analysis from the gene and metabolite level. The candidate genes exhibited a high correlation with cannabinoid biosynthetic pathway genes and the cannabinoid content, and they were highly expressed where cannabinoids appropriately biosynthesized and accumulated. The findings underpin further research on the function of ABC transporters in C. sativa, especially in unveiling the mechanisms of cannabinoid transport to boost systematic and targeted metabolic engineering.
Collapse
Affiliation(s)
- Yaolei Mi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Xue Cao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Xuewen Zhu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Sifan Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China; Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Zhao J, Deng X, Qian J, Liu T, Ju M, Li J, Yang Q, Zhu X, Li W, Liu CJ, Jin Z, Zhang K. Arabidopsis ABCG14 forms a homodimeric transporter for multiple cytokinins and mediates long-distance transport of isopentenyladenine-type cytokinins. PLANT COMMUNICATIONS 2023; 4:100468. [PMID: 36307987 PMCID: PMC10030318 DOI: 10.1016/j.xplc.2022.100468] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/29/2022] [Accepted: 10/23/2022] [Indexed: 05/04/2023]
Abstract
Cytokinins (CKs), primarily trans-zeatin (tZ) and isopentenyladenine (iP) types, play critical roles in plant growth, development, and various stress responses. Long-distance transport of tZ-type CKs meidated by Arabidopsis ATP-binding cassette transporter subfamily G14 (AtABCG14) has been well studied; however, less is known about the biochemical properties of AtABCG14 and its transporter activity toward iP-type CKs. Here we reveal the biochemical properties of AtABCG14 and provide evidence that it is also required for long-distance transport of iP-type CKs. AtABCG14 formed homodimers in human (Homo sapiens) HEK293T, tobacco (Nicotiana tabacum), and Arabidopsis cells. Transporter activity assays of AtABCG14 in Arabidopsis, tobacco, and yeast (Saccharomyces cerevisiae) showed that AtABCG14 may directly transport multiple CKs, including iP- and tZ-type species. AtABCG14 expression was induced by iP in a tZ-type CK-deficient double mutant (cypDM) of CYP735A1 and CYP735A2. The atabcg14 cypDM triple mutant exhibited stronger CK-deficiency phenotypes than cypDM. Hormone profiling, reciprocal grafting, and 2H6-iP isotope tracer experiments showed that root-to-shoot and shoot-to-root long-distance transport of iP-type CKs were suppressed in atabcg14 cypDM and atabcg14. These results suggest that AtABCG14 participates in three steps of the circular long-distance transport of iP-type CKs: xylem loading in the root for shootward transport, phloem unloading in the shoot for shoot distribution, and phloem unloading in the root for root distribution. We found that AtABCG14 displays transporter activity toward multiple CK species and revealed its versatile roles in circular long-distance transport of iP-type CKs. These findings provide new insights into the transport mechanisms of CKs and other plant hormones.
Collapse
Affiliation(s)
- Jiangzhe Zhao
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xiaojuan Deng
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jiayun Qian
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Ting Liu
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Min Ju
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Juan Li
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Qin Yang
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xiaoxian Zhu
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Weiqiang Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Zhigang Jin
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Kewei Zhang
- Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China.
| |
Collapse
|
8
|
Wang L, Yao W, Zhang X, Tang Y, Van Nocker S, Wang Y, Zhang C. The putative ABCG transporter VviABCG20 from grapevine ( Vitis vinifera) is strongly expressed in the seed coat of developing seeds and may participate in suberin biosynthesis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:23-34. [PMID: 36733832 PMCID: PMC9886760 DOI: 10.1007/s12298-022-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Half-size ATP binding cassette G (ABCG) transporters participate in many biological processes by transporting specific substrates. Our previous study showed that VviABCG20 was strongly expressed in the seeds of seeded grape and the silencing of VviABCG20 homolog gene in tomato led to a reduction in seed number. To reveal the molecular mechanism of VviABCG20 gene involved in grape seed development/abortion, the gene expression and functional analysis of VviABCG20 were further carried out in the grapevine. It was shown that the gene expression of VviABCG20 was higher in seeds of seeded grapes compared with seedless. Further the expression of VviABCG20 in the seed coat was significantly higher than in ovules (young seeds) and endosperm. VviABCG20 was also induced by exogenous hormones (especially MeJA) in grape leaves. Subcellular localization analysis showed that VviABCG20 is a membrane protein. In overexpressed VviABCG20 transgenic callus of Thompson seedless, expression of genes GPAT5, FAR1 and FAR5 was increased significantly. After treatment with suberin precursors, the transgenic callus reduced the sensitivity to three cinnamic acid derivatives (cis-ferulic acid, caffeic acid, coumaric acid), succinic acid, and glycerol. In suspension cells, expression of VviABCG20 was increased significantly after treatment with suberin precursors. Our research suggested that VviABCG20 may function in seed development in grapevine, at least in part by participating in suberin biosynthesis in the seed coat.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Wang Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Steve Van Nocker
- Department of Horticulture, Michigan State University, East Lansing, 48824 USA
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| |
Collapse
|
9
|
Characterization of the ABC Transporter G Subfamily in Pomegranate and Function Analysis of PgrABCG14. Int J Mol Sci 2022; 23:ijms231911661. [PMID: 36232964 PMCID: PMC9570063 DOI: 10.3390/ijms231911661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
ATP-binding cassette subfamily G (ABCG) proteins play important roles in plant growth and development by transporting metabolites across cell membranes. To date, the genetic characteristics and potential functions of pomegranate ABCG proteins (PgrABCGs) have remained largely unknown. In this study, we found that 47 PgrABCGs were divided into five groups according to a phylogenetic analysis; groups I, II, III, and IV members are half-size proteins, and group V members are full-size proteins. PgrABCG14, PgrABCG21, and PgrABCG47 were highly expressed in the inner seed coat but had very low expression levels in the outer seed coat, and the expression levels of these three PgrABCG genes in the inner seed coats of hard-seeded pomegranate ‘Dabenzi’ were higher than those of soft-seeded pomegranate ‘Tunisia’. In addition, the expression of these three PgrABCG genes was highly correlated with the expression of genes involved in lignin biosynthesis and hormone signaling pathways. The evolution of PgrABCG14 presents a highly similar trend to the origin and evolution of lignin biosynthesis during land plant evolution. Ectopic expression of PgrABCG14 in Arabidopsis promoted plant growth and lignin accumulation compared to wild type plants; meanwhile, the expression levels of lignin biosynthesis-related genes (CAD5, C4H, and Prx71) and cytokinin response marker genes (ARR5 and ARR15) were significantly upregulated in transgenic plants, which suggests the potential role of PgrABCG14 in promoting plant growth and lignin accumulation. Taken together, these findings not only provide insight into the characteristics and evolution of PgrABCGs, but also shed a light on the potential functions of PgrABCGs in seed hardness development.
Collapse
|
10
|
ATP-Binding Cassette G Transporters and Their Multiple Roles Especially for Male Fertility in Arabidopsis, Rice and Maize. Int J Mol Sci 2022; 23:ijms23169304. [PMID: 36012571 PMCID: PMC9409143 DOI: 10.3390/ijms23169304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette subfamily G (ABCG) transporters are extensive in plants and play essential roles in various processes influencing plant fitness, but the research progress varies greatly among Arabidopsis, rice and maize. In this review, we present a consolidated nomenclature and characterization of the whole 51 ABCG transporters in maize, perform a phylogenetic analysis and classification of the ABCG subfamily members in maize, and summarize the latest research advances in ABCG transporters for these three plant species. ABCG transporters are involved in diverse processes in Arabidopsis and rice, such as anther and pollen development, vegetative and female organ development, abiotic and biotic stress response, and phytohormone transport, which provide useful clues for the functional investigation of ABCG transporters in maize. Finally, we discuss the current challenges and future perspectives for the identification and mechanism analysis of substrates for plant ABCG transporters. This review provides a basic framework for functional research and the potential application of ABCG transporters in multiple plants, including maize.
Collapse
|
11
|
Ichino T, Yazaki K. Modes of secretion of plant lipophilic metabolites via ABCG transporter-dependent transport and vesicle-mediated trafficking. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102184. [PMID: 35217474 DOI: 10.1016/j.pbi.2022.102184] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Many lipophilic metabolites produced by terrestrial plants are deposited on plant surfaces to protect them from abiotic and biotic stresses. Plant-derived lipophilic metabolites include apoplastic biopolymers, such as wax, cutin, sporopollenin, suberin, and lignin, as well as low-molecular-weight secondary metabolites. These secreted molecules confer adaptive toughness and robustness on plants. The mechanisms responsible for the secretion of these lipophilic metabolites remain unclear, although two pathways, mediated by transporters and vesicles, have been proposed. Recent genetic and biochemical studies have shown that G-type ATP-binding cassette (ABCG) transporters and membrane trafficking factors are involved in the apoplastic accumulation of lipophilic metabolites in plants. These two distinctive modes of secretion may be either exclusive or collaborative. This review describes these transporter-dependent and vesicle-mediated mechanisms underlying the secretion of lipophilic metabolites.
Collapse
Affiliation(s)
- Takuji Ichino
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan.
| |
Collapse
|
12
|
Ma X, Yu L, Fatima M, Wadlington WH, Hulse-Kemp AM, Zhang X, Zhang S, Xu X, Wang J, Huang H, Lin J, Deng B, Liao Z, Yang Z, Ma Y, Tang H, Van Deynze A, Ming R. The spinach YY genome reveals sex chromosome evolution, domestication, and introgression history of the species. Genome Biol 2022; 23:75. [PMID: 35255946 PMCID: PMC8902716 DOI: 10.1186/s13059-022-02633-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Spinach (Spinacia oleracea L.) is a dioecious species with an XY sex chromosome system, but its Y chromosome has not been fully characterized. Our knowledge about the history of its domestication and improvement remains limited. Results A high-quality YY genome of spinach is assembled into 952 Mb in six pseudo-chromosomes. By a combination of genetic mapping, Genome-Wide Association Studies, and genomic analysis, we characterize a 17.42-Mb sex determination region (SDR) on chromosome 1. The sex chromosomes of spinach evolved when an insertion containing sex determination genes occurred, followed by a large genomic inversion about 1.98 Mya. A subsequent burst of SDR-specific repeats (0.1–0.15 Mya) explains the large size of this SDR. We identify a Y-specific gene, NRT1/PTR 6.4 which resides in this insertion, as a strong candidate for the sex determination or differentiation factor. Resequencing of 112 spinach genomes reveals a severe domestication bottleneck approximately 10.87 Kya, which dates the domestication of spinach 7000 years earlier than the archeological record. We demonstrate that a strong selection signal associated with internode elongation and leaf area expansion is associated with domestication of edibility traits in spinach. We find that several strong genomic introgressions from the wild species Spinacia turkestanica and Spinacia tetrandra harbor desirable alleles of genes related to downy mildew resistance, frost resistance, leaf morphology, and flowering-time shift, which likely contribute to spinach improvement. Conclusions Analysis of the YY genome uncovers evolutionary forces shaping nascent sex chromosome evolution in spinach. Our findings provide novel insights about the domestication and improvement of spinach. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02633-x.
Collapse
Affiliation(s)
- Xiaokai Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li'ang Yu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mahpara Fatima
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - William H Wadlington
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amanda M Hulse-Kemp
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.,USDA-ARS, Genomics and Bioinformatics Research Unit, North Carolina, 27695, Raleigh, USA
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shengcheng Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xindan Xu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjing Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huaxing Huang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ban Deng
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenyang Liao
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenhui Yang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanhong Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Allen Van Deynze
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
13
|
Yang Q, Zhang J, Kojima M, Takebayashi Y, Uragami T, Kiba T, Sakakibara H, Lee Y. ABCG11 modulates cytokinin responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:976267. [PMID: 35958217 PMCID: PMC9358225 DOI: 10.3389/fpls.2022.976267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 05/20/2023]
Abstract
The Arabidopsis ABC transporter ABCG11 transports lipidic precursors of surface coating polymers at the plasma membrane of epidermal cells. Mutants in ABCG11 exhibit severe developmental defects, suggesting that ABCG11 might also participate in phytohormone-mediated development. Here, we report that ABCG11 is involved in cytokinin-mediated development. The roots of abcg11 mutant seedlings failed to respond to cytokinins and accumulated more cytokinins than wild-type roots. When grown under short-day conditions, abcg11 exhibited longer roots and shorter hypocotyls compared to wild type, similar to abcg14, a knockout mutant in a cytokinin transporter. Treatment with exogenous trans-zeatin, which inhibits primary root elongation in the wild type, enhanced abcg11 primary root elongation. It also increased the expression of cytokinin-responsive Arabidopsis response regulator (ARR) genes, and the signal of the TCS::GFP reporter in abcg11 roots compared to wild-type roots, suggesting that cytokinin signaling was enhanced in abcg11 roots. When we treated only the roots of abcg11 with trans-zeatin, their shoots showed lower ARR induction than the wild type. The abcg14 abcg11 double mutant did not have additional root phenotypes compared to abcg11. Together, these results suggest that ABCG11 is necessary for normal cytokinin-mediated root development, likely because it contributes to cytokinin transport, either directly or indirectly.
Collapse
Affiliation(s)
- Qianying Yang
- Department of Life Sciences, POSTECH, Pohang, South Korea
| | - Jie Zhang
- Department of Life Sciences, POSTECH, Pohang, South Korea
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Takuya Uragami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Youngsook Lee
- Department of Life Sciences, POSTECH, Pohang, South Korea
- *Correspondence: Youngsook Lee,
| |
Collapse
|
14
|
Do THT, Martinoia E, Lee Y, Hwang JU. 2021 update on ATP-binding cassette (ABC) transporters: how they meet the needs of plants. PLANT PHYSIOLOGY 2021; 187:1876-1892. [PMID: 35235666 PMCID: PMC8890498 DOI: 10.1093/plphys/kiab193] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/10/2021] [Indexed: 05/02/2023]
Abstract
Recent developments in the field of ABC proteins including newly identified functions and regulatory mechanisms expand the understanding of how they function in the development and physiology of plants.
Collapse
Affiliation(s)
- Thanh Ha Thi Do
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
| | - Enrico Martinoia
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Department of Plant and Microbial Biology, University Zurich, Zurich 8008, Switzerland
| | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Department of Life Sciences, POSTECH, Pohang 37673, South Korea
| | - Jae-Ung Hwang
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Author for communication:
| |
Collapse
|
15
|
Kwon E, Basnet P, Roy NS, Kim JH, Heo K, Park KC, Um T, Kim NS, Choi IY. Identification of resurrection genes from the transcriptome of dehydrated and rehydrated Selaginella tamariscina. PLANT SIGNALING & BEHAVIOR 2021; 16:1973703. [PMID: 34839799 PMCID: PMC9208788 DOI: 10.1080/15592324.2021.1973703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Selaginella tamariscina is a lycophyta species that survives under extremely dry conditions via the mechanism of resurrection. This phenomenon involves the regulation of numerous genes that play vital roles in desiccation tolerance and subsequent rehydration. To identify resurrection-related genes, we analyzed the transcriptome between dehydration conditions and rehydration conditions of S. tamariscina. The de novo assembly generated 124,417 transcripts with an average size of 1,000 bp and 87,754 unigenes. Among these genes, 1,267 genes and 634 genes were up and down regulated by rehydration compared to dehydration. To understand gene function, we annotated Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The unigenes encoding early light-inducible protein (ELIP) were down-regulated, whereas pentatricopeptide repeat-containing protein (PPR), late embryogenesis abundant proteins (LEA), sucrose nonfermenting protein (SNF), trehalose phosphate phosphatase (TPP), trehalose phosphate synthase (TPS), and ABC transporter G family (ABCG) were significantly up-regulated in response to rehydration conditions by differentially expressed genes (DEGs) analysis. Several studies provide evidence that these genes play a role in stress environment. The ELIP and PPR genes are involved in chloroplast protection during dehydration and rehydration. LEA, SNF, and trehalose genes are known to be oxidant scavengers that protect the cell structure from the deleterious effect of drought. TPP and TPS genes were found in the starch and sucrose metabolism pathways, which are essential sugar-signaling metabolites regulating plant metabolism and other biological processes. ABC-G gene interacts with abscisic acid (ABA) phytohormone in the stomata opening during stress conditions. Our findings provide valuable information and candidate resurrection genes for future functional analysis aimed at improving the drought tolerance of crop plants.
Collapse
Affiliation(s)
- Eunchae Kwon
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Korea
| | - Prakash Basnet
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Korea
| | - Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Korea
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Korea
| | - Jong-Hwa Kim
- Department of Horticulture, Kangwon National University, Chuncheon, Korea
| | - Kweon Heo
- Department of Applied Plant Science, Kangwon National University, Chuncheon, Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Korea
| | - Taeyoung Um
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Korea
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Korea
- CONTACT Nam-Soo Kim Department of Molecular Bioscience, Kangwon National University, Chuncheon, Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Korea
- Ik-Young Choi Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
16
|
Purohit A, Ghosh S, Ganguly S, Negi MS, Tripathi SB, Chaudhuri RK, Chakraborti D. Comparative transcriptomic profiling of susceptible and resistant cultivars of pigeonpea demonstrates early molecular responses during Fusarium udum infection. Sci Rep 2021; 11:22319. [PMID: 34785701 PMCID: PMC8595609 DOI: 10.1038/s41598-021-01587-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Vascular wilt caused by Fusarium udum Butler is the most important disease of pigeonpea throughout the world. F. udum isolate MTCC 2204 (M1) inoculated pigeonpea plants of susceptible (ICP 2376) and resistant (ICP 8863) cultivars were taken at invasion stage of pathogenesis process for transcriptomic profiling to understand defense signaling reactions that interplay at early stage of this plant-pathogen encounter. Differential transcriptomic profiles were generated through cDNA-AFLP from M1 inoculated resistant and susceptible pigeonpea root tissues. Twenty five percent of transcript derived fragments (TDFs) were found to be pathogen induced. Among them 73 TDFs were re-amplified and sequenced. Homology search of the TDFs in available databases and thorough study of scientific literature identified several pathways, which could play crucial role in defense responses of the F. udum inoculated resistant plants. Some of the defense responsive pathways identified to be active during this interaction are, jasmonic acid and salicylic acid mediated defense responses, cell wall remodeling, vascular development and pattering, abscisic acid mediated responses, effector triggered immunity, and reactive oxygen species mediated signaling. This study identified important wilt responsive regulatory pathways in pigeonpea which will be helpful for further exploration of these resistant components for pigeonpea improvement.
Collapse
Affiliation(s)
- Arnab Purohit
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sanatan Ghosh
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Shreeparna Ganguly
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Madan Singh Negi
- Sustainable Agriculture Division, TERI, India Habitat Center Complex, Lodhi Road, New Delhi, 110003, India
| | - Shashi Bhushan Tripathi
- TERI-School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | | | - Dipankar Chakraborti
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
17
|
Li M, Yu G, Cao C, Liu P. Metabolism, signaling, and transport of jasmonates. PLANT COMMUNICATIONS 2021; 2:100231. [PMID: 34746762 PMCID: PMC8555440 DOI: 10.1016/j.xplc.2021.100231] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 05/16/2023]
Abstract
Biosynthesis/metabolism, perception/signaling, and transport are three essential aspects of the actions of phytohormones. Jasmonates (JAs), including jasmonic acid (JA) and related oxylipins, are implicated in the regulation of a range of ecological interactions, as well as developmental programs to integrate these interactions. Jasmonoyl-isoleucine (JA-Ile) is the most bioactive JAs, and perception of JA-Ile by its coreceptor, the Skp1-Cullin1-F-box-type (SCF) protein ubiquitin ligase complex SCFCOI1-JAZ, in the nucleus derepresses the transcriptional repression of target genes. The biosynthesis and metabolism of JAs occur in the plastid, peroxisome, cytosol, endoplasmic reticulum, and vacuole, whereas sensing of JA-Ile levels occurs in the nucleus. It is increasingly apparent that a number of transporters, particularly members of the jasmonates transporter (JAT) family, located at endomembranes as well as the plasma membrane, constitute a network for modulating and coordinating the metabolic flux and signaling of JAs. In this review, we discuss recent advances in the metabolism, signaling, and especially the transport of JAs, focusing on intracellular compartmentation of these processes. The roles of transporter-mediated cell-cell transport in driving long-distance transport and signaling of JAs are also discussed.
Collapse
Affiliation(s)
- Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Guanghui Yu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Congli Cao
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
- Corresponding author
| |
Collapse
|
18
|
Nedvěd D, Hošek P, Klíma P, Hoyerová K. Differential Subcellular Distribution of Cytokinins: How Does Membrane Transport Fit into the Big Picture? Int J Mol Sci 2021; 22:3428. [PMID: 33810428 PMCID: PMC8037549 DOI: 10.3390/ijms22073428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
Cytokinins are a class of phytohormones, signalling molecules specific to plants. They act as regulators of diverse physiological processes in complex signalling pathways. It is necessary for plants to continuously regulate cytokinin distribution among different organs, tissues, cells, and compartments. Such regulatory mechanisms include cytokinin biosynthesis, metabolic conversions and degradation, as well as cytokinin membrane transport. In our review, we aim to provide a thorough picture of the latter. We begin by summarizing cytokinin structures and physicochemical properties. Then, we revise the elementary thermodynamic and kinetic aspects of cytokinin membrane transport. Next, we review which membrane-bound carrier proteins and protein families recognize cytokinins as their substrates. Namely, we discuss the families of "equilibrative nucleoside transporters" and "purine permeases", which translocate diverse purine-related compounds, and proteins AtPUP14, AtABCG14, AtAZG1, and AtAZG2, which are specific to cytokinins. We also address long-distance cytokinin transport. Putting all these pieces together, we finally discuss cytokinin distribution as a net result of these processes, diverse in their physicochemical nature but acting together to promote plant fitness.
Collapse
Affiliation(s)
- Daniel Nedvěd
- The Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic; (D.N.); (P.H.)
- Department of Biochemistry, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Petr Hošek
- The Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic; (D.N.); (P.H.)
| | - Petr Klíma
- The Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic; (D.N.); (P.H.)
| | - Klára Hoyerová
- The Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic; (D.N.); (P.H.)
| |
Collapse
|
19
|
Li Q, Chakrabarti M, Taitano NK, Okazaki Y, Saito K, Al-Abdallat AM, van der Knaap E. Differential expression of SlKLUH controlling fruit and seed weight is associated with changes in lipid metabolism and photosynthesis-related genes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1225-1244. [PMID: 33159787 PMCID: PMC7904157 DOI: 10.1093/jxb/eraa518] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/02/2020] [Indexed: 05/21/2023]
Abstract
The sizes of plant organs such as fruit and seed are crucial yield components. Tomato KLUH underlies the locus fw3.2, an important regulator of fruit and seed weight. However, the mechanism by which the expression levels of KLUH affect organ size is poorly understood. We found that higher expression of SlKLUH increased cell proliferation in the pericarp within 5 d post-anthesis in tomato near-isogenic lines. Differential gene expression analyses showed that lower expression of SlKLUH was associated with increased expression of genes involved in lipid metabolism. Lipidomic analysis revealed that repression of SlKLUH mainly increased the contents of certain non-phosphorus glycerolipids and phospholipids and decreased the contents of four unknown lipids. Co-expression network analyses revealed that lipid metabolism was possibly associated with but not directly controlled by SlKLUH, and that this gene instead controls photosynthesis-related processes. In addition, many transcription factors putatively involved in the KLUH pathway were identified. Collectively, we show that SlKLUH regulates fruit and seed weight which is associated with altered lipid metabolism. The results expand our understanding of fruit and seed weight regulation and offer a valuable resource for functional studies of candidate genes putatively involved in regulation of organ size in tomato and other crops.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Manohar Chakrabarti
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Nathan K Taitano
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
- Department of Horticulture, University of Georgia, Athens, GA, USA
- Correspondence:
| |
Collapse
|
20
|
Niu L, Li H, Song Z, Dong B, Cao H, Liu T, Du T, Yang W, Amin R, Wang L, Yang Q, Meng D, Fu Y. The functional analysis of ABCG transporters in the adaptation of pigeon pea ( Cajanus cajan) to abiotic stresses. PeerJ 2021; 9:e10688. [PMID: 33552725 PMCID: PMC7821757 DOI: 10.7717/peerj.10688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/11/2020] [Indexed: 11/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are a class of proteins found in living organisms that mediate transmembrane transport by hydrolyzing ATP. They play a vital role in the physiological processes of growth and development in plants. The most numerous sub-type transporter in the ABC transporter family is the ABCG group and which have the most complex function in a plant’s response to abiotic stresses. Our study focused on the effect of ABCG transporters in the adaptation of the pigeon pea to adverse environments (such as drought, salt, temperature, etc.). We conducted a functional analysis of ABCG transporters in the pigeon pea and their role in response to abiotic stresses. A total of 51 ABCG genes (CcABCGs) were identified, and phylogenetic analysis was conducted. We also identified the physicochemical properties of the encoded proteins, predicted their subcellular localization, and identified of the conserved domains. Expression analysis showed that ABCG genes have different expression profiles with tissues and abiotic stresses. Our results showed that CcABCG28 was up-regulated at low temperatures, and CcABCG7 was up-regulated with drought and aluminum stress. The initial results revealed that ABCG transporters are more effective in the abiotic stress resistance of pigeon peas, which improves our understanding of their application in abiotic stress resistance.
Collapse
Affiliation(s)
- Lili Niu
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Hanghang Li
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Zhihua Song
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Biying Dong
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Hongyan Cao
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Tengyue Liu
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Tingting Du
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Wanlong Yang
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Rohul Amin
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Litao Wang
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Qing Yang
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Dong Meng
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China.,Key Laboratory of Forestry Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
21
|
Li L, Zhang Y, Zheng T, Zhuo X, Li P, Qiu L, Liu W, Wang J, Cheng T, Zhang Q. Comparative gene expression analysis reveals that multiple mechanisms regulate the weeping trait in Prunus mume. Sci Rep 2021; 11:2675. [PMID: 33514804 PMCID: PMC7846751 DOI: 10.1038/s41598-021-81892-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/13/2021] [Indexed: 11/23/2022] Open
Abstract
Prunus mume (also known as Mei) is an important ornamental plant that is popular with Asians. The weeping trait in P. mume has attracted the attention of researchers for its high ornamental value. However, the formation of the weeping trait of woody plants is a complex process and the molecular basis of weeping stem development is unclear. Here, the morphological and histochemical characteristics and transcriptome profiles of upright and weeping stems from P. mume were studied. Significant alterations in the histochemical characteristics of upright and weeping stems were observed, and the absence of phloem fibres and less xylem in weeping stems might be responsible for their inability to resist gravity and to grow downward. Transcriptome analysis showed that differentially expressed genes (DEGs) were enriched in phenylpropanoid biosynthesis and phytohormone signal transduction pathways. To investigate the differential responses to hormones, upright and weeping stems were treated with IAA (auxin) and GA3 (gibberellin A3), respectively, and the results revealed that weeping stems had a weaker IAA response ability and reduced upward bending angles than upright stems. On the contrary, weeping stems had increased upward bending angles than upright stems with GA3 treatment. Compared to upright stems, interestingly, DEGs associated with diterpenoid biosynthesis and phenylpropanoid biosynthesis were significantly enriched after being treated with IAA, and expression levels of genes associated with phenylpropanoid biosynthesis, ABC transporters, glycosylphosphatidylinositol (GPI)—anchor biosynthesis were altered after being treated with GA3 in weeping stems. Those results reveal that multiple molecular mechanisms regulate the formation of weeping trait in P. mume, which lays a theoretical foundation for the cultivation of new varieties.
Collapse
Affiliation(s)
- Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yichi Zhang
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Xiaokang Zhuo
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Like Qiu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Weichao Liu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
22
|
Gräfe K, Schmitt L. The ABC transporter G subfamily in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:92-106. [PMID: 32459300 DOI: 10.1093/jxb/eraa260] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/21/2020] [Indexed: 05/02/2023]
Abstract
ABC transporters are ubiquitously present in all kingdoms and mediate the transport of a large spectrum of structurally different compounds. Plants possess high numbers of ABC transporters in relation to other eukaryotes; the ABCG subfamily in particular is extensive. Earlier studies demonstrated that ABCG transporters are involved in important processes influencing plant fitness. This review summarizes the functions of ABCG transporters present in the model plant Arabidopsis thaliana. These transporters take part in diverse processes such as pathogen response, diffusion barrier formation, or phytohormone transport. Studies involving knockout mutations reported pleiotropic phenotypes of the mutants. In some cases, different physiological roles were assigned to the same protein. The actual transported substrate(s), however, still remain to be determined for the majority of ABCG transporters. Additionally, the proposed substrate spectrum of different ABCG proteins is not always reflected by sequence identities between ABCG members. Applying only reverse genetics is thereby insufficient to clearly identify the substrate(s). We therefore stress the importance of in vitro studies in addition to in vivo studies in order to (i) clarify the substrate identity; (ii) determine the transport characteristics including directionality; and (iii) identify dimerization partners of the half-size proteins, which might in turn affect substrate specificity.
Collapse
Affiliation(s)
- Katharina Gräfe
- Institute of Biochemistry and Cluster of Excellence on Plant Sciences CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry and Cluster of Excellence on Plant Sciences CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
23
|
Metabolic Engineering of the Native Monoterpene Pathway in Spearmint for Production of Heterologous Monoterpenes Reveals Complex Metabolism and Pathway Interactions. Int J Mol Sci 2020; 21:ijms21176164. [PMID: 32859057 PMCID: PMC7504178 DOI: 10.3390/ijms21176164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Spearmint produces and stores large amounts of monoterpenes, mainly limonene and carvone, in glandular trichomes and is the major natural source of these compounds. Towards producing heterologous monoterpenes in spearmint, we first reduced the flux into the native limonene pathway by knocking down the expression of limonene synthase (MsLS) by RNAi method. The MsLS RNAi lines exhibited a huge reduction in the synthesis of limonene and carvone. Detailed GC-MS and LC-MS analysis revealed that MsLS RNAi plants also showed an increase in sesquiterpene, phytosterols, fatty acids, flavonoids, and phenolic metabolites, suggesting an interaction between the MEP, MVA shikimate and fatty acid pathways in spearmint. Three different heterologous monoterpene synthases namely, linalool synthase and myrcene synthase from Picea abies and geraniol synthase from Cananga odorata were cloned and introduced independently into the MsLS RNAi mutant background. The expression of these heterologous terpene synthases resulted mainly in production of monoterpene derivatives. Of all the introduced monoterpenes geraniol showed the maximum number of derivatives. Our results provide new insights into MEP pathway interactions and regulation and reveals the existence of mechanisms for complex metabolism of monoterpenes in spearmint.
Collapse
|
24
|
Wang L, Xue J, Yan J, Liu M, Tang Y, Wang Y, Zhang C. Expression and functional analysis of VviABCG14 from Vitis vinifera suggest the role in cytokinin transport and the interaction with VviABCG7. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 153:1-10. [PMID: 32460212 DOI: 10.1016/j.plaphy.2020.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Cytokinins are important hormones involved in many aspects of plant growth and development. However, there remain many knowledge gaps with regard to their metabolism and transport mechanisms. Here, we characterise a half-size ATP binding cassette G (ABCG) transporter gene, also called white-brown complex transporter, VviABCG14, from grapevine (Vitis vinifera L. cv. Pinot noir). Quantitative real-time PCR analysis shows the expression of VviABCG14 gene is significantly increased after grape berries are treated with exogenous N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) and trans-zeatin (tZ). Significant differences in phenotype were observed between overexpressing VviABCG14 transgenic and wild-type Arabidopsis lines grown for 12 days. The fresh weight of transgenic Arabidopsis was greater than of wild-type plants, and root lengths were greater. After growing in soil for 26 days, the vegetative growth of transgenic lines significantly greater than the wild-type and the bolting rate was lower. Hormone content analysis indicates the levels of tZ in the shoots of overexpressing transgenes are higher than in wild-types. Using the split-ubiquitin yeast membrane system and bimolecular fluorescence complementation assay we show VviABCG14 and VviABCG7 transporter can form a heterodimer. Meanwhile, VviABCG7 is also significantly induced by exogenous CPPU and tZ in grape berries. Altogether, our results suggest VviABCG14 may affect the phenotype of Arabidopsis by transporting cytokinins and VviABCG14 interacts with VviABCG7 to form a heterodimer.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jingyi Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jing Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Meng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yujing Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
25
|
Shanmugarajah K, Linka N, Gräfe K, Smits SHJ, Weber APM, Zeier J, Schmitt L. ABCG1 contributes to suberin formation in Arabidopsis thaliana roots. Sci Rep 2019; 9:11381. [PMID: 31388073 DOI: 10.1007/978-94-007-7864-1_123-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/26/2019] [Indexed: 05/19/2023] Open
Abstract
Diffusion barriers enable plant survival under fluctuating environmental conditions. They control internal water potential and protect against biotic or abiotic stress factors. How these protective molecules are deposited to the extracellular environment is poorly understood. We here examined the role of the Arabidopsis ABC half-size transporter AtABCG1 in the formation of the extracellular root suberin layer. Quantitative analysis of extracellular long-chain fatty acids and aliphatic alcohols in the atabcg1 mutants demonstrated altered root suberin composition, specifically a reduction in longer chain dicarboxylic acids, fatty alcohols and acids. Accordingly, the ATP-hydrolyzing activity of heterologous expressed and purified AtABCG1 was strongly stimulated by fatty alcohols (C26-C30) and fatty acids (C24-C30) in a chain length dependent manner. These results are a first indication for the function of AtABCG1 in the transport of longer chain aliphatic monomers from the cytoplasm to the apoplastic space during root suberin formation.
Collapse
Affiliation(s)
- Kalpana Shanmugarajah
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Nicole Linka
- Institute of Plant Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Katharina Gräfe
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
26
|
Shanmugarajah K, Linka N, Gräfe K, Smits SHJ, Weber APM, Zeier J, Schmitt L. ABCG1 contributes to suberin formation in Arabidopsis thaliana roots. Sci Rep 2019; 9:11381. [PMID: 31388073 PMCID: PMC6684660 DOI: 10.1038/s41598-019-47916-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Diffusion barriers enable plant survival under fluctuating environmental conditions. They control internal water potential and protect against biotic or abiotic stress factors. How these protective molecules are deposited to the extracellular environment is poorly understood. We here examined the role of the Arabidopsis ABC half-size transporter AtABCG1 in the formation of the extracellular root suberin layer. Quantitative analysis of extracellular long-chain fatty acids and aliphatic alcohols in the atabcg1 mutants demonstrated altered root suberin composition, specifically a reduction in longer chain dicarboxylic acids, fatty alcohols and acids. Accordingly, the ATP-hydrolyzing activity of heterologous expressed and purified AtABCG1 was strongly stimulated by fatty alcohols (C26–C30) and fatty acids (C24–C30) in a chain length dependent manner. These results are a first indication for the function of AtABCG1 in the transport of longer chain aliphatic monomers from the cytoplasm to the apoplastic space during root suberin formation.
Collapse
Affiliation(s)
- Kalpana Shanmugarajah
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Nicole Linka
- Institute of Plant Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Katharina Gräfe
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Heinrich-Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Heinrich-Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany. .,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
27
|
Vishwakarma K, Mishra M, Patil G, Mulkey S, Ramawat N, Pratap Singh V, Deshmukh R, Kumar Tripathi D, Nguyen HT, Sharma S. Avenues of the membrane transport system in adaptation of plants to abiotic stresses. Crit Rev Biotechnol 2019; 39:861-883. [DOI: 10.1080/07388551.2019.1616669] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kanchan Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Mitali Mishra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Gunvant Patil
- Department of Agronomy and Plant Genetics, University of Minnesota St. Paul, Minnesota, MN, USA
| | - Steven Mulkey
- Department of Agronomy and Plant Genetics, University of Minnesota St. Paul, Minnesota, MN, USA
| | - Naleeni Ramawat
- Amity Institute of Organic Agriculture, Amity University, Uttar Pradesh, Noida, India
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | | | - Henry T. Nguyen
- Department of Agronomy and Plant Genetics, University of Minnesota St. Paul, Minnesota, MN, USA
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
28
|
Wulf KE, Reid JB, Foo E. Auxin transport and stem vascular reconnection - has our thinking become canalized? ANNALS OF BOTANY 2019; 123:429-439. [PMID: 30380009 PMCID: PMC6377096 DOI: 10.1093/aob/mcy180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 09/03/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND The presence of a polar auxin transport stream has long been correlated with the differentiation and patterning of vascular cells across vascular plants. As our understanding of auxin transport and vascular development has grown, so too has evidence for the correlation between these processes. However, a clear understanding of the cellular and molecular mechanisms driving this correlation has not been elucidated. SCOPE This article examines the hypothesis that canalization via polar auxin transport regulates vascular reconnection and patterning in the stem after wounding or grafting. We examine the evidence for the causal nature of the relationship and the suggested role that other hormones may play. Data are presented indicating that in grafted plants the degree of auxin transport may not always correlate with vascular reconnection. Furthermore, data on grafting success using plants with a range of hormone-related mutations indicate that these hormones may not be critical for vascular reconnection. CONCLUSIONS In the past, excellent work examining elements of auxin synthesis, transport and response in relation to vascular development has been carried out. However, new experimental approaches are required to test more directly the hypothesis that auxin transport regulates stem vascular reconnection after wounding or grafting. This could include studies on the timing of the re-establishment of auxin transport and vascular reconnection after grafting and the influence of auxin transport mutants and inhibitors on these processes using live imaging.
Collapse
Affiliation(s)
- Kate E Wulf
- Discipline of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - James B Reid
- Discipline of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
29
|
Wang F, Yu G, Liu P. Transporter-Mediated Subcellular Distribution in the Metabolism and Signaling of Jasmonates. FRONTIERS IN PLANT SCIENCE 2019; 10:390. [PMID: 31001304 PMCID: PMC6454866 DOI: 10.3389/fpls.2019.00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/14/2019] [Indexed: 05/18/2023]
Abstract
Jasmonates (jasmonic acid and its relatives) are a group of oxylipin phytohormones that are implicated in the regulation of a range of developmental processes and responses to environmental stimuli in plants. The biosynthesis of JAs occur sequentially in various subcellular compartments including the chloroplasts, peroxisomes and the cytoplasm. The biologically active jasmonoyl-isoleucine (JA-Ile) activates the core JA signaling in the nucleus by binding with its coreceptor, SCFCOI1-JAZ. Five members of a clade of ATP-binding cassette G (ABCG) transporters of Arabidopsis thaliana were identified as the candidates of jasmonate transporters (JATs) in yeast cells. Among these JATs, AtJAT1/AtABCG16, has a dual localization in the plasma membrane and nuclear envelop and mediates the efflux of jasmonic acid (JA) across the plasma membrane and influx of JA-Ile into the nucleus. Genetic, cellular and biochemical analyses have demonstrated that AtJAT1/AtABCG16 is crucial for modulating JA-Ile concentration in the nucleus to orchestrate JA signaling. AtJAT1 could also be involved in modulating the biosynthesis of JA-Ile by regulating the distribution of JA and JA-Ile in the cytoplasm and nucleus, which would contribute to the highly dynamic JA signaling. Furthermore, other JAT members are localized in the plasma membrane and possibly in peroxisomes. Characterization of these JATs will provide further insights into a crucial role of transporter-mediated subcellular distribution in the metabolism and signaling of plant hormones, an emerging theme supported by the identification of increasing number of endomembrane-localized transporters.
Collapse
|
30
|
Huang J, Huang Z, Zhou X, Xia C, Imran M, Wang S, Xu C, Zha M, Liu Y, Zhang C. Tissue-specific transcriptomic profiling of Plantago major provides insights for the involvement of vasculature in phosphate deficiency responses. Mol Genet Genomics 2018; 294:159-175. [PMID: 30267144 DOI: 10.1007/s00438-018-1496-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/24/2018] [Indexed: 01/26/2023]
Abstract
The vasculature of higher plants is important with transport of both nutrient and information molecules. To understand the correspondence of this tissue in molecular responses under phosphate (Pi) deficiency, Plantago major, a model plant for vasculature biology study, was chosen in our analysis. After RNA-Seq and de novo transcriptome assembly of 24 libraries prepared from the vasculature of P. major, 37,309 unigenes with a mean length of 1571 base pairs were obtained. Upon 24 h of Pi deficiency, 237 genes were shown to be differentially expressed in the vasculature of P. major. Among these genes, only 27 have been previously identified to be specifically expressed in the vasculature tissues in other plant species. Temporal expression of several marker genes associated with Pi deficiency showed that the time period of first 24 h is at the beginning stage of more dynamic expression patterns. In this study, we found several physiological processes, e.g., "phosphate metabolism and remobilization", "sucrose metabolism, loading and synthesis", "plant hormone metabolism and signal transduction", "transcription factors", and "metabolism of other minerals", were mainly involved in early responses to Pi deficiency in the vasculature. A number of vasculature genes with promising roles in Pi deficiency adaptation have been identified and deserve further functional characterization. This study clearly demonstrated that plant vasculature is actively involved in Pi deficiency responses and understanding of this process may help to create plants proficient to offset Pi deficiency.
Collapse
Affiliation(s)
- Jing Huang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Xiangjun Zhou
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chao Xia
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Muhammad Imran
- Department of Soil and Environmental Sciences, University College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Shujuan Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Congshan Xu
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Manrong Zha
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan Liu
- The Institute of Sericulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
31
|
Capote T, Barbosa P, Usié A, Ramos AM, Inácio V, Ordás R, Gonçalves S, Morais-Cecílio L. ChIP-Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak (Quercus suber). BMC PLANT BIOLOGY 2018; 18:198. [PMID: 30223777 PMCID: PMC6142680 DOI: 10.1186/s12870-018-1403-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 08/30/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Gene activity is largely controlled by transcriptional regulation through the action of transcription factors and other regulators. QsMYB1 is a member of the R2R3-MYB transcription factor family related to secondary growth, and in particular, with the cork development process. In order to identify the putative gene targets of QsMYB1 across the cork oak genome we developed a ChIP-Seq strategy. RESULTS Results provide direct evidence that QsMY1B targets genes encoding for enzymes involved in the lignin and suberin pathways as well as gene encoding for ABCG transporters and LTPs implicated in the transport of monomeric suberin units across the cellular membrane. These results highlight the role of QsMYB1 as a regulator of lignin and suberin biosynthesis, transport and assembly. CONCLUSION To our knowledge, this work constitutes the first ChIP-Seq experiment performed in cork oak, a non-model plant species with a long-life cycle, and these results will contribute to deepen the knowledge about the molecular mechanisms of cork formation and differentiation.
Collapse
Affiliation(s)
- Tiago Capote
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
- Linking Landscape, Environment, Agriculture and Food (LEAF) Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal
| | - Pedro Barbosa
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - Ana Usié
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - António Marcos Ramos
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - Vera Inácio
- Linking Landscape, Environment, Agriculture and Food (LEAF) Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal
| | - Ricardo Ordás
- Departamento BOS, Escuela Politécnica de Mieres, Oviedo University, Oviedo, Spain
| | - Sónia Gonçalves
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Present Address: Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB101SA UK
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF) Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
32
|
Hu Y, Zhu Z, Nielsen J, Siewers V. Heterologous transporter expression for improved fatty alcohol secretion in yeast. Metab Eng 2018; 45:51-58. [DOI: 10.1016/j.ymben.2017.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/01/2017] [Accepted: 11/18/2017] [Indexed: 11/25/2022]
|
33
|
Kuromori T, Sugimoto E, Ohiraki H, Yamaguchi-Shinozaki K, Shinozaki K. Functional relationship of AtABCG21 and AtABCG22 in stomatal regulation. Sci Rep 2017; 7:12501. [PMID: 28970576 PMCID: PMC5624933 DOI: 10.1038/s41598-017-12643-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/13/2017] [Indexed: 01/27/2023] Open
Abstract
Stomatal regulation is important for water transpiration from plants. Stomatal opening and closing are controlled by many transporter proteins in guard cells. AtABCG22 is a member of the ATP-binding cassette (ABC) transporters and is a stomatal regulator; however, the function of AtABCG22 has not yet been determined fully, although a mutant phenotype included a significant effect on stomatal status. Here, we further investigated the function of the AtABCG22 gene and its functional relationships with other subfamily genes. Among close family members, we found a functional relationship of stomatal phenotypes with AtABCG21, which is also expressed specifically in guard cells. Based on an analysis of double mutants, adding the atabcg21 mutation to atabcg22 mutant partially suppressed the open-stomata phenotype of atabcg22. Multiple-mutant analyses indicated that this suppression was independent of abscisic acid signaling in guard cells. We also found that atabcg22 mutant showed a unique time course-dependent phenotype, being defective in maintenance of stomatal status after initial stomatal opening elicited by light signaling. The function of AtABCG22 and its relationship with AtABCG21 in stomatal regulation are considered.
Collapse
Affiliation(s)
- Takashi Kuromori
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan.
| | - Eriko Sugimoto
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Haruka Ohiraki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
34
|
Li Q, Zheng J, Li S, Huang G, Skilling SJ, Wang L, Li L, Li M, Yuan L, Liu P. Transporter-Mediated Nuclear Entry of Jasmonoyl-Isoleucine Is Essential for Jasmonate Signaling. MOLECULAR PLANT 2017; 10:695-708. [PMID: 28179150 DOI: 10.1016/j.molp.2017.01.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 05/22/2023]
Abstract
To control gene expression by directly responding to hormone concentrations, both animal and plant cells have exploited comparable mechanisms to sense small-molecule hormones in nucleus. Whether nuclear entry of these hormones is actively transported or passively diffused, as conventionally postulated, through the nuclear pore complex, remains enigmatic. Here, we identified and characterized a jasmonate transporter in Arabidopsis thaliana, AtJAT1/AtABCG16, which exhibits an unexpected dual localization at the nuclear envelope and plasma membrane. We show that AtJAT1/AtABCG16 controls the cytoplasmic and nuclear partition of jasmonate phytohormones by mediating both cellular efflux of jasmonic acid (JA) and nuclear influx of jasmonoyl-isoleucine (JA-Ile), and is essential for maintaining a critical nuclear JA-Ile concentration to activate JA signaling. These results illustrate that transporter-mediated nuclear entry of small hormone molecules is a new mechanism to regulate nuclear hormone signaling. Our findings provide an avenue to develop pharmaceutical agents targeting the nuclear entry of small molecules.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Jian Zheng
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Shuaizhang Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Guanrong Huang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Stephen J Skilling
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Lijian Wang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Ling Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Lixing Yuan
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
35
|
Legay S, Guerriero G, André C, Guignard C, Cocco E, Charton S, Boutry M, Rowland O, Hausman JF. MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins. THE NEW PHYTOLOGIST 2016; 212:977-991. [PMID: 27716944 DOI: 10.1111/nph.14170] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/05/2016] [Indexed: 05/19/2023]
Abstract
A comparison of the transcriptomes of russeted vs nonrusseted apple skins previously highlighted a tight relationship between a gene encoding an MYB-type transcription factor, MdMYB93, and some key suberin biosynthetic genes. The present work assesses the role of this transcription factor in the suberization process. A phylogenetic analysis of MdMYB93 and Arabidopsis thaliana MYBs was performed and the function of MdMYB93 was further investigated using Agrobacterium-mediated transient overexpression in Nicotiana benthamiana leaves. An RNA-Seq analysis was performed to highlight the MdMYB93-regulated genes. Ultraperformance liquid chromatography-triple time-of-flight (UPLC-TripleTOF) and GC-MS were used to investigate alterations in phenylpropanoid, soluble-free lipid and lipid polyester contents. A massive accumulation of suberin and its biosynthetic precursors in MdMYB93 agroinfiltrated leaves was accompanied by a remobilization of phenylpropanoids and an increased amount of lignin precursors. Gene expression profiling displayed a concomitant alteration of lipid and phenylpropanoid metabolism, cell wall development, and extracellular transport, with a large number of induced transcripts predicted to be involved in suberin deposition. The present work supports a major role of MdMYB93 in the regulation of suberin deposition in russeted apple skins, from the synthesis of monomeric precursors, their transport, polymerization, and final deposition as suberin in primary cell wall.
Collapse
Affiliation(s)
- Sylvain Legay
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, Esch/Alzette, L-4362, Luxembourg
- Institut des Sciences de la Vie, UCLouvain, Louvain-la-Neuve, B-1348, Belgium
| | - Gea Guerriero
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, Esch/Alzette, L-4362, Luxembourg
| | - Christelle André
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, Esch/Alzette, L-4362, Luxembourg
| | - Cédric Guignard
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, Esch/Alzette, L-4362, Luxembourg
| | - Emmanuelle Cocco
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, Esch/Alzette, L-4362, Luxembourg
| | - Sophie Charton
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, Esch/Alzette, L-4362, Luxembourg
| | - Marc Boutry
- Institut des Sciences de la Vie, UCLouvain, Louvain-la-Neuve, B-1348, Belgium
| | - Owen Rowland
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Jean-Francois Hausman
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, Esch/Alzette, L-4362, Luxembourg
| |
Collapse
|
36
|
Shitan N. Secondary metabolites in plants: transport and self-tolerance mechanisms. Biosci Biotechnol Biochem 2016; 80:1283-93. [DOI: 10.1080/09168451.2016.1151344] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Plants produce a host of secondary metabolites with a wide range of biological activities, including potential toxicity to eukaryotic cells. Plants generally manage these compounds by transport to the apoplast or specific organelles such as the vacuole, or other self-tolerance mechanisms. For efficient production of such bioactive compounds in plants or microbes, transport and self-tolerance mechanisms should function cooperatively with the corresponding biosynthetic enzymes. Intensive studies have identified and characterized the proteins responsible for transport and self-tolerance. In particular, many transporters have been isolated and their physiological functions have been proposed. This review describes recent progress in studies of transport and self-tolerance and provides an updated inventory of transporters according to their substrates. Application of such knowledge to synthetic biology might enable efficient production of valuable secondary metabolites in the future.
Collapse
Affiliation(s)
- Nobukazu Shitan
- Laboratory of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
37
|
Li N, Xu C, Li-Beisson Y, Philippar K. Fatty Acid and Lipid Transport in Plant Cells. TRENDS IN PLANT SCIENCE 2016; 21:145-158. [PMID: 26616197 DOI: 10.1016/j.tplants.2015.10.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioenergy and Bioremediation (RCBB), College of Resources and Environment, Southwest University, Beibei District, Chongqing, 400715, P.R. China
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973-5000, USA
| | - Yonghua Li-Beisson
- Institute of Environmental Biology and Biotechnology, The French Atomic and Alternative Energy Commission, Unité Mixte de Recherche 7265, Commissariat à l'Energie Atomique (CEA) Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Katrin Philippar
- Department of Biology I, Ludwig-Maximilians-University München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
38
|
Zhao G, Shi J, Liang W, Zhang D. ATP binding cassette G transporters and plant male reproduction. PLANT SIGNALING & BEHAVIOR 2016; 11:e1136764. [PMID: 26906115 PMCID: PMC4883977 DOI: 10.1080/15592324.2015.1136764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 05/18/2023]
Abstract
The function of ATP Binding Cassette G (ABCG) transporters in the regulation of plant vegetative organs development has been well characterized in various plant species. In contrast, their function in reproductive development particularly male reproductive development received considerably less attention till some ABCG transporters was reported to be associated with anther and pollen wall development in Arabidopsis thaliana and rice (Oryza sativa) during the past decade. This mini-review summarizes current knowledge of ABCG transporters regarding to their roles in male reproduction and underlying genetic and biochemical mechanisms, which makes it evident that ABCG transporters represent one of those conserved and divergent components closely related to male reproduction in plants. This mini-review also discusses the current challenges and future perspectives in this particular field.
Collapse
Affiliation(s)
- Guochao Zhao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, South Australia, Australia
- Correspondence to: Guochao Zhao,
| |
Collapse
|
39
|
Clarke VC, Loughlin PC, Gavrin A, Chen C, Brear EM, Day DA, Smith PMC. Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins. Mol Cell Proteomics 2015; 14:1301-22. [PMID: 25724908 PMCID: PMC4424401 DOI: 10.1074/mcp.m114.043166] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/25/2015] [Indexed: 12/21/2022] Open
Abstract
Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Victoria C Clarke
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Patrick C Loughlin
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Aleksandr Gavrin
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Chi Chen
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Ella M Brear
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - David A Day
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia; §Flinders University, School of Biological Sciences, Adelaide Australia
| | - Penelope M C Smith
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia;
| |
Collapse
|
40
|
Zhiyi N, Guijuan K, Yu L, Longjun D, Rizhong Z. Whole-transcriptome survey of the putative ATP-binding cassette (ABC) transporter family genes in the latex-producing laticifers of Hevea brasiliensis. PLoS One 2015; 10:e0116857. [PMID: 25615936 PMCID: PMC4304824 DOI: 10.1371/journal.pone.0116857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
The ATP-binding cassette (ABC) proteins or transporters constitute a large protein family in plants and are involved in many different cellular functions and processes, including solute transportation, channel regulation and molecular switches, etc. Through transcriptome sequencing, a transcriptome-wide survey and expression analysis of the ABC protein genes were carried out using the laticiferous latex from Hevea brasiliensis (rubber tree). A total of 46 putative ABC family proteins were identified in the H. brasiliensis latex. These consisted of 12 ‘full-size’, 21 ‘half-size’ and 13 other putative ABC proteins, and all of them showed strong conservation with their Arabidopsis thaliana counterparts. This study indicated that all eight plant ABC protein paralog subfamilies were identified in the H. brasiliensis latex, of which ABCB, ABCG and ABCI were the most abundant. Real-time quantitative reverse transcription-polymerase chain reaction assays demonstrated that gene expression of several latex ABC proteins was regulated by ethylene, jasmonic acid or bark tapping (a wound stress) stimulation, and that HbABCB15, HbABCB19, HbABCD1 and HbABCG21 responded most significantly of all to the abiotic stresses. The identification and expression analysis of the latex ABC family proteins could facilitate further investigation into their physiological involvement in latex metabolism and rubber biosynthesis by H. brasiliensis.
Collapse
Affiliation(s)
- Nie Zhiyi
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Kang Guijuan
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Li Yu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Dai Longjun
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Zeng Rizhong
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
- * E-mail:
| |
Collapse
|
41
|
Yadav V, Molina I, Ranathunge K, Castillo IQ, Rothstein SJ, Reed JW. ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis. THE PLANT CELL 2014; 26:3569-88. [PMID: 25217507 PMCID: PMC4213157 DOI: 10.1105/tpc.114.129049] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/02/2014] [Accepted: 08/19/2014] [Indexed: 05/17/2023]
Abstract
Effective regulation of water balance in plants requires localized extracellular barriers that control water and solute movement. We describe a clade of five Arabidopsis thaliana ABCG half-transporters that are required for synthesis of an effective suberin barrier in roots and seed coats (ABCG2, ABCG6, and ABCG20) and for synthesis of an intact pollen wall (ABCG1 and ABCG16). Seed coats of abcg2 abcg6 abcg20 triple mutant plants had increased permeability to tetrazolium red and decreased suberin content. The root system of triple mutant plants was more permeable to water and salts in a zone complementary to that affected by the Casparian strip. Suberin of mutant roots and seed coats had distorted lamellar structure and reduced proportions of aliphatic components. Root wax from the mutant was deficient in alkylhydroxycinnamate esters. These mutant plants also had few lateral roots and precocious secondary growth in primary roots. abcg1 abcg16 double mutants defective in the other two members of the clade had pollen with defects in the nexine layer of the tapetum-derived exine pollen wall and in the pollen-derived intine layer. Mutant pollen collapsed at the time of anther desiccation. These mutants reveal transport requirements for barrier synthesis as well as physiological and developmental consequences of barrier deficiency.
Collapse
Affiliation(s)
- Vandana Yadav
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste Marie, Ontario P6A 2G4, Canada
| | - Kosala Ranathunge
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jason W Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280
| |
Collapse
|
42
|
Matsuda S, Nagasawa H, Yamashiro N, Yasuno N, Watanabe T, Kitazawa H, Takano S, Tokuji Y, Tani M, Takamure I, Kato K. Rice RCN1/OsABCG5 mutation alters accumulation of essential and nonessential minerals and causes a high Na/K ratio, resulting in a salt-sensitive phenotype. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:103-111. [PMID: 24908511 DOI: 10.1016/j.plantsci.2014.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
Mineral balance and salt stress are major factors affecting plant growth and yield. Here, we characterized the effects of rice (Oryza sativa L.) reduced culm number1 (rcn1), encoding a G subfamily ABC transporter (OsABCG5) involved in accumulation of essential and nonessential minerals, the Na/K ratio, and salt tolerance. Reduced potassium and elevated sodium in field-grown plants were evident in rcn1 compared to original line 'Shiokari' and four independent rcn mutants, rcn2, rcn4, rcn5 and rcn6. A high Na/K ratio was evident in the shoots and roots of rcn1 under K starvation and salt stress in hydroponically cultured plants. Downregulation of SKC1/OsHKT1;5 in rcn1 shoots under salt stress demonstrated that normal function of RCN1/OsABCG5 is essential for upregulation of SKC1/OsHKT1;5 under salt stress. The accumulation of various minerals in shoots and roots was also altered in the rcn1 mutant compared to 'Shiokari' under control conditions, potassium starvation, and salt and d-sorbitol treatments. The rcn1 mutation resulted in a salt-sensitive phenotype. We concluded that RCN1/OsABCG5 is a salt tolerance factor that acts via Na/K homeostasis, at least partly by regulation of SKC1/OsHKT1;5 in shoots.
Collapse
Affiliation(s)
- Shuichi Matsuda
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Hidetaka Nagasawa
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Nobuhiro Yamashiro
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Naoko Yasuno
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Toshihiro Watanabe
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Hideyuki Kitazawa
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Sho Takano
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Yoshihiko Tokuji
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Masayuki Tani
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Itsuro Takamure
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Kiyoaki Kato
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
43
|
Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci U S A 2014; 111:7150-5. [PMID: 24778257 DOI: 10.1073/pnas.1321519111] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cytokinins are phytohormones that induce cytokinesis and are essential for diverse developmental and physiological processes in plants. Cytokinins of the trans-zeatin type are mainly synthesized in root vasculature and transported to the shoot, where they regulate shoot growth. However, the mechanism of long-distance transport of cytokinin was hitherto unknown. Here, we report that the Arabidopsis ATP-binding cassette (ABC) transporter subfamily G14 (AtABCG14) is mainly expressed in roots and plays a major role in delivering cytokinins to the shoot. Loss of AtABCG14 expression resulted in severe shoot growth retardation, which was rescued by exogenous trans-zeatin application. Cytokinin content was decreased in the shoots of atabcg14 plants and increased in the roots, with consistent changes in the expression of cytokinin-responsive genes. Grafting of atabcg14 scions onto wild-type rootstocks restored shoot growth, whereas wild-type scions grafted onto atabcg14 rootstocks exhibited shoot growth retardation similar to that of atabcg14. Cytokinin concentrations in the xylem are reduced by ∼90% in the atabcg14 mutant. These results indicate that AtABCG14 is crucial for the translocation of cytokinin to the shoot. Our results provide molecular evidence for the long-distance transport of cytokinin and show that this transport is necessary for normal shoot development.
Collapse
|
44
|
Tohge T, Fernie AR. Lignin, mitochondrial family, and photorespiratory transporter classification as case studies in using co-expression, co-response, and protein locations to aid in identifying transport functions. FRONTIERS IN PLANT SCIENCE 2014; 5:75. [PMID: 24672529 PMCID: PMC3955873 DOI: 10.3389/fpls.2014.00075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
Whole genome sequencing and the relative ease of transcript profiling have facilitated the collection and data warehousing of immense quantities of expression data. However, a substantial proportion of genes are not yet functionally annotated a problem which is particularly acute for transport proteins. In Arabidopsis, for example, only a minor fraction of the estimated 700 intracellular transporters have been identified at the molecular genetic level. Furthermore it is only within the last couple of years that critical genes such as those encoding the final transport step required for the long distance transport of sucrose and the first transporter of the core photorespiratory pathway have been identified. Here we will describe how transcriptional coordination between genes of known function and non-annotated genes allows the identification of putative transporters on the premise that such co-expressed genes tend to be functionally related. We will additionally extend this to include the expansion of this approach to include phenotypic information from other levels of cellular organization such as proteomic and metabolomic data and provide case studies wherein this approach has successfully been used to fill knowledge gaps in important metabolic pathways and physiological processes.
Collapse
Affiliation(s)
- Takayuki Tohge
- *Correspondence: Takayuki Tohge, Department 1 (Willmitzer), Central Metabolism, Max Planck Institute for Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany e-mail:
| | | |
Collapse
|
45
|
Choi H, Ohyama K, Kim YY, Jin JY, Lee SB, Yamaoka Y, Muranaka T, Suh MC, Fujioka S, Lee Y. The role of Arabidopsis ABCG9 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat. THE PLANT CELL 2014; 26:310-24. [PMID: 24474628 PMCID: PMC3963578 DOI: 10.1105/tpc.113.118935] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/11/2013] [Accepted: 01/09/2014] [Indexed: 05/17/2023]
Abstract
The pollen coat protects pollen grains from harmful environmental stresses such as drought and cold. Many compounds in the pollen coat are synthesized in the tapetum. However, the pathway by which they are transferred to the pollen surface remains obscure. We found that two Arabidopsis thaliana ATP binding cassette transporters, ABCG9 and ABCG31, were highly expressed in the tapetum and are involved in pollen coat deposition. Upon exposure to dry air, many abcg9 abcg31 pollen grains shriveled up and collapsed, and this phenotype was restored by complementation with ABCG9pro:GFP:ABCG9. GFP-tagged ABCG9 or ABCG31 localized to the plasma membrane. Electron microscopy revealed that the mutant pollen coat resembled the immature coat of the wild type, which contained many electron-lucent structures. Steryl glycosides were reduced to about half of wild-type levels in the abcg9 abcg31 pollen, but no differences in free sterols or steryl esters were observed. A mutant deficient in steryl glycoside biosynthesis, ugt80A2 ugt80B1, exhibited a similar phenotype. Together, these results indicate that steryl glycosides are critical for pollen fitness, by supporting pollen coat maturation, and that ABCG9 and ABCG31 contribute to the accumulation of this sterol on the surface of pollen.
Collapse
Affiliation(s)
- Hyunju Choi
- Pohang University of Science and Technology–University of Zurich Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kiyoshi Ohyama
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 244-0045, Japan
- Department of Chemistry and Materials Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Yu-Young Kim
- Pohang University of Science and Technology–University of Zurich Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jun-Young Jin
- Pohang University of Science and Technology–University of Zurich Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Saet Buyl Lee
- Department of Bioenergy Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Yasuyo Yamaoka
- Pohang University of Science and Technology–University of Zurich Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Toshiya Muranaka
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 244-0045, Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | - Shozo Fujioka
- RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198, Japan
| | - Youngsook Lee
- Pohang University of Science and Technology–University of Zurich Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
- Address correspondence to
| |
Collapse
|