1
|
Xiao J, Li Z, Song X, Xie M, Tang Y, Lai Y, Sun B, Huang Z, Zheng Y, Li H. Functional characterization of CaSOC1 at low temperatures and its role in low-temperature escape. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109222. [PMID: 39437668 DOI: 10.1016/j.plaphy.2024.109222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Environmental factors such as light and temperature tightly regulate plant flowering time. Under stressful conditions, plants inhibit vegetative growth and accelerate flowering as an emergency response. This adaptive mechanism benefits the survival of species and enhances their reproductive success. This phenomenon is often referred to as stress escape. However, the signaling pathways between low-temperature signals and flowering time are poorly understood. In this study, the MIKC transcription factor, CaSOC1, was isolated from pepper (Capsicum annuum), which showed suppressed expression under low-temperature conditions. Silencing the expression of CaSOC1 in pepper plants resulted in reduced photosynthetic capacity, inhibited vegetative growth, and increased sensitivity to low temperatures. In contrast, overexpression of CaSOC1 increased the biomass of tomato plants under normal growth conditions but suppressed their antioxidant enzyme activity at low temperatures, which negatively regulated their cold tolerance. Furthermore, intermittent low-temperature treatment with CaSOC1 overexpression promoted early flowering in tomato plants. Our findings demonstrate that CaSOC1 reduced the cold tolerance of pepper plants under short term low-temperature conditions, whereas intermittent low-temperature treatment enhanced flower bud differentiation, enabling stress escape and adaptation to long low-temperature environments.
Collapse
Affiliation(s)
- Jiachang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zixuan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xueping Song
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Minghui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Wu W, Yang H, Xing P, Zhu G, Han X, Xue M, Min G, Ding H, Wu G, Liu Z. Brassica rapa BrICE1 and BrICE2 Positively Regulate the Cold Tolerance via CBF and ROS Pathways, Balancing Growth and Defense in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2625. [PMID: 39339599 PMCID: PMC11435425 DOI: 10.3390/plants13182625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Winter rapeseed (Brassica rapa) has a good chilling and freezing tolerance. inducer of CBF expression 1 (ICE1) plays a crucial role in cold signaling in plants; however, its role in Brassica rapa remains unclear. In this study, we identified 41 ICE1 homologous genes from six widely cultivated Brassica species. These genes exhibited high conservation, with evolutionary complexity between diploid and allotetraploid species. Cold stress induced ICE1 homolog expression, with differences between strongly and weakly cold-tolerant varieties. Two novel ICE1 paralogs, BrICE1 and BrICE2, were cloned from Brassica rapa Longyou 6. Subcellular localization assays showed that they localized to the nucleus, and low temperature did not affect their nuclear localization. The overexpression of BrICE1 and BrICE2 increased cold tolerance in transgenic Arabidopsis and enhanced reactive oxygen species' (ROS) scavenging ability. Furthermore, our data demonstrate that overexpression of BrICE1 and BrICE2 inhibited root growth in Arabidopsis, and low temperatures could induce the degradation of BrICE1 and BrICE2 via the 26S-proteasome pathway. In summary, ICE1 homologous genes exhibit complex evolutionary relationships in Brassica species and are involved in the C-repeat/DREB binding factor (CBF) pathway and ROS scavenging mechanism in response to cold stress; these regulating mechanisms might also be responsible for balancing the development and cold defense of Brassica rapa.
Collapse
Affiliation(s)
- Wangze Wu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Haobo Yang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Peng Xing
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Guoting Zhu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Xueyan Han
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Mei Xue
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Guotai Min
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Haijun Ding
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Guofan Wu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Zigang Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Li S, He L, Yang Y, Zhang Y, Han X, Hu Y, Jiang Y. INDUCER OF CBF EXPRESSION 1 promotes cold-enhanced immunity by directly activating salicylic acid signaling. THE PLANT CELL 2024; 36:2587-2606. [PMID: 38536743 PMCID: PMC11218786 DOI: 10.1093/plcell/koae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/01/2024] [Indexed: 07/04/2024]
Abstract
Cold stress affects plant immune responses, and this process may involve the salicylic acid (SA) signaling pathway. However, the underlying mechanism by which low-temperature signals coordinate with SA signaling to regulate plant immunity remains unclear. Here, we found that low temperatures enhanced the disease resistance of Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000. This process required INDUCER OF CBF EXPRESSION 1 (ICE1), the core transcription factor in cold-signal cascades. ICE1 physically interacted with NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1), the master regulator of the SA signaling pathway. Enrichment of ICE1 on the PATHOGENESIS-RELATED GENE 1 (PR1) promoter and its ability to transcriptionally activate PR1 were enhanced by NPR1. Further analyses revealed that cold stress signals cooperate with SA signals to facilitate plant immunity against pathogen attack in an ICE1-dependent manner. Cold treatment promoted interactions of NPR1 and TGACG-BINDING FACTOR 3 (TGA3) with ICE1 and increased the ability of the ICE1-TGA3 complex to transcriptionally activate PR1. Together, our results characterize a critical role of ICE1 as an indispensable regulatory node linking low-temperature-activated and SA-regulated immunity. Understanding this crucial role of ICE1 in coordinating multiple signals associated with immunity broadens our understanding of plant-pathogen interactions.
Collapse
Affiliation(s)
- Shaoqin Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
4
|
Shen Y, Wang G, Ran J, Li Y, Wang H, Ding Q, Li Y, Hou X. Regulation of the trade-off between cold stress and growth by glutathione S-transferase phi class 10 (BcGSTF10) in non-heading Chinese cabbage. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1887-1902. [PMID: 38079376 DOI: 10.1093/jxb/erad494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/10/2023] [Indexed: 03/28/2024]
Abstract
Cold stress is a serious threat to global crop production and food security, but plant cold resistance is accompanied by reductions in growth and yield. In this study, we determined that the novel gene BcGSTF10 in non-heading Chinese cabbage [NHCC; Brassica campestris (syn. Brassica rapa) ssp. chinensis] is implicated in resistance to cold stress. Biochemical and genetic analyses demonstrated that BcGSTF10 interacts with BcICE1 to induce C-REPEAT BINDING FACTOR (CBF) genes that enhance freezing tolerance in NHCC and in Arabidopsis. However, BcCBF2 represses BcGSTF10 and the latter promotes growth in NHCC and Arabidopsis. This dual function of BcGSTF10 indicates its pivotal role in balancing cold stress and growth, and this important understanding has the potential to inform the future development of strategies to breed crops that are both climate-resilient and high-yielding.
Collapse
Affiliation(s)
- Yunlou Shen
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangpeng Wang
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajun Ran
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiran Li
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiyu Wang
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Ding
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Xilin Hou
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| |
Collapse
|
5
|
Ying S, Scheible WR. REGULATOR OF FLOWERING AND STRESS manipulates stomatal density and size in Brachypodium. PHYSIOLOGIA PLANTARUM 2023; 175:e14008. [PMID: 37882269 DOI: 10.1111/ppl.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 10/27/2023]
Abstract
Stomata are crucial for gas exchange and water evaporation, and environmental stimuli influence their density (SD) and size (SS). Although genes and mechanisms underlying stomatal development have been elucidated, stress-responsive regulators of SD and SS are less well-known. Previous studies have shown that the stress-inducible Brachypodium RFS (REGULATOR OF FLOWERING AND STRESS, BdRFS) gene affects heading time and enhances drought tolerance by reducing leaf water loss. Here, we report that overexpression lines (OXs) of BdRFS have reduced SD and increased SS, regardless of soil water status. Furthermore, biomass and plant water content of OXs were significantly increased compared to wild type. CRISPR/Cas9-mediated BdRFS knockout mutant (KO) exhibited the opposite stomatal characteristics and biomass changes. Reverse transcription-quantitative polymerase chain reaction analysis revealed that expression of BdICE1 was reversely altered in OXs and KO, pointing to a potential cause for the observed changes in stomatal phenotypes. Stomatal and transcriptional changes were not observed in the Arabidopsis rfs double mutant. Taken together, RFS is a novel regulator of SD and SS and is a promising candidate for genetic engineering of climate-resilient crops.
Collapse
Affiliation(s)
- Sheng Ying
- Noble Research Institute LLC, Ardmore, Oklahoma, USA
| | | |
Collapse
|
6
|
Shan X, Yang Y, Wei S, Wang C, Shen W, Chen HB, Shen JY. Involvement of CBF in the fine-tuning of litchi flowering time and cold and drought stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1167458. [PMID: 37377797 PMCID: PMC10291182 DOI: 10.3389/fpls.2023.1167458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023]
Abstract
Litchi (Litchi chinensis) is an economically important fruit tree in southern China and is widely cultivated in subtropical regions. However, irregular flowering attributed to inadequate floral induction leads to a seriously fluctuating bearing. Litchi floral initiation is largely determined by cold temperatures, whereas the underlying molecular mechanisms have yet to be identified. In this study, we identified four CRT/DRE BINDING FACTORS (CBF) homologs in litchi, of which LcCBF1, LcCBF2 and LcCBF3 showed a decrease in response to the floral inductive cold. A similar expression pattern was observed for the MOTHER OF FT AND TFL1 homolog (LcMFT) in litchi. Furthermore, both LcCBF2 and LcCBF3 were found to bind to the promoter of LcMFT to activate its expression, as indicated by the analysis of yeast-one-hybrid (Y1H), electrophoretic mobility shift assays (EMSA), and dual luciferase complementation assays. Ectopic overexpression of LcCBF2 and LcCBF3 in Arabidopsis caused delayed flowering and increased freezing and drought tolerance, whereas overexpression of LcMFT in Arabidopsis had no significant effect on flowering time. Taken together, we identified LcCBF2 and LcCBF3 as upstream activators of LcMFT and proposed the contribution of the cold-responsive CBF to the fine-tuning of flowering time.
Collapse
|
7
|
Li X, Liao J, Bai H, Bei J, Li K, Luo M, Shen W, Yang C, Gao C. Arabidopsis flowering integrator SOC1 transcriptionally regulates autophagy in response to long-term carbon starvation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6589-6599. [PMID: 35852462 DOI: 10.1093/jxb/erac298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is a highly conserved, self-digestion process that is essential for plant adaptations to various environmental stresses. Although the core components of autophagy in plants have been well established, the molecular basis for its transcriptional regulation remains to be fully characterized. In this study, we demonstrate that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a MADS-box family transcription factor that determines flowering transition in Arabidopsis, functions as a transcriptional repressor of autophagy. EMSAs, ChIP-qPCR assays, and dual-luciferase receptor assays showed that SOC1 can bind to the promoters of ATG4b, ATG7, and ATG18c via the conserved CArG box. qRT-PCR analysis showed that the three ATG genes ATG4b, ATG7, and ATG18c were up-regulated in the soc1-2 mutant. In line with this, the mutant also displayed enhanced autophagy activity, as revealed by increased autophagosome formation and elevated autophagic flux compared with the wild type. More importantly, SOC1 negatively affected the tolerance of plants to long-term carbon starvation, and this process requires a functional autophagy pathway. Finally, we found that SOC1 was repressed upon carbon starvation at both the transcriptional and protein levels. Overall, our study not only uncovers an important transcriptional mechanism that contributes to the regulation of plant autophagy in response to nutrient starvation, but also highlights novel cellular functions of the flowering integrator SOC1.
Collapse
Affiliation(s)
- Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jieying Bei
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kailin Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ming Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
8
|
Lempe J, Peil A, Flachowsky H. Time-Resolved Analysis of Candidate Gene Expression and Ambient Temperature During Bud Dormancy in Apple. FRONTIERS IN PLANT SCIENCE 2022; 12:803341. [PMID: 35111181 PMCID: PMC8802299 DOI: 10.3389/fpls.2021.803341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Winter dormancy - a period of low metabolic activity and no visible growth - appears as an adaptation to harsh winter conditions and can be divided into different phases. It is tightly controlled by environmental cues, with ambient temperature playing a major role. During endodormancy, a cultivar-specific amount of cold needs to be perceived, and during ecodormancy, heat hours accumulate before bud burst and anthesis in spring. Expression analysis, performed in several key fruit tree species, proved to be very useful in elucidating the molecular control of onset and release of dormancy. However, the time resolution of these experiments has been limited. Therefore, in this study, dense time-series expression analysis was conducted for 40 candidate genes involved in dormancy control, under the cool-temperate climate conditions in Dresden. Samples were taken from the cultivars 'Pinova' and 'Gala,' which differ in flowering time. The set of candidate genes included well-established dormancy genes such as DAM genes, MdFLC-like, MdICE1, MdPRE 1, and MdPIF4. Furthermore, we tested genes from dormancy-associated pathways including the brassinosteroid, gibberellic acid, abscisic acid (ABA), cytokinin response, and respiratory stress pathways. The expression patterns of well-established dormancy genes were confirmed and could be associated with specific dormancy phases. In addition, less well-known transcription factors and genes of the ABA signaling pathway showed associations with dormancy progression. The three ABA signaling genes HAB1_chr15, HAI3, and ABF2 showed a local minimum of gene expression in proximity of the endodormancy to ecodormancy transition. The number of sampling points allowed us to correlate expression values with temperature data, which revealed significant correlations of ambient temperature with the expression of the Malus domestica genes MdICE1, MdPIF4, MdFLC-like, HAB1chr15, and the type-B cytokinin response regulator BRR9. Interestingly, the slope of the linear correlation of temperature with the expression of MdPIF4 differed between cultivars. Whether the strength of inducibility of MdPIF4 expression by low temperature differs between the 'Pinova' and 'Gala' alleles needs to be tested further.
Collapse
|
9
|
Verma RK, Kumar VVS, Yadav SK, Kumar TS, Rao MV, Chinnusamy V. Overexpression of Arabidopsis ICE1 enhances yield and multiple abiotic stress tolerance in indica rice. PLANT SIGNALING & BEHAVIOR 2020; 15:1814547. [PMID: 32924751 PMCID: PMC7664797 DOI: 10.1080/15592324.2020.1814547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/04/2023]
Abstract
ICE1 (Inducer of CBF Expression 1), a MYC-type bHLH transcription factor, is a regulator of cold tolerance in Arabidopsis. Indica rice, which occupies the major rice cultivated area, is highly sensitive to cold stress. Hence in this study, Arabidopsis ICE1 (AtICE1) was overexpressed in indica rice to analyze its role in reproductive stage cold and other abiotic stress tolerance to indica rice. AtICE1 was overexpressed by using stress inducible AtRD29A promoter in mega rice cv. MTU1010. Under cold stress conditions, AtICE1 overexpression lines showed lower accumulation of MDA and H2O2, higher membrane stability, and thus higher seedling survival rate than the WT plants. Expression levels of OsDREB1A, OsMYB3R2, and OsTPP1 were significantly higher in transgenics as compared with WT under cold stress conditions. AtICE1 transgenic rice plants produced 44-60% higher grain yield as compared with WT plants under control conditions in three independent experiments. Of the three AtICE1 overexpression lines, two lines produced significantly higher grain yield as compared with WT plants after recovery from cold, salt and drought stresses. AtICE1 overexpression lines showed significantly higher stomatal density and conductance under non-stress conditions. qRT-PCR analysis showed that expression levels of stomatal pathway genes viz., OsSPCH1, OsSPCH2, OsSCR1, OsSCRM1, OsSCRM2 and OsMUTE were significantly higher in AtICE1 transgenics as compared with WT plants. The components of water use viz., stomatal conductance, photosynthesis, and instantaneous WUE were higher in transgenics as compared with WT plants. The results showed that AtICE1 confers multiple stress tolerance to indica rice, and the role of ICE1 in stress tolerance and stomatal development is conserved across species.
Collapse
Affiliation(s)
- Rakesh Kumar Verma
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Department of Botany, School of Life Sciences, Bharathidasan University Tiruchirappalli, Tiruchirappalli, India
| | - Vinjamuri Venkata Santosh Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Department of Botany, School of Life Sciences, Bharathidasan University Tiruchirappalli, Tiruchirappalli, India
| | - Shashank Kumar Yadav
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Thiruppathi Senthil Kumar
- Department of Botany, School of Life Sciences, Bharathidasan University Tiruchirappalli, Tiruchirappalli, India
| | - Mandali Venkateswara Rao
- Department of Botany, School of Life Sciences, Bharathidasan University Tiruchirappalli, Tiruchirappalli, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
10
|
Rychel-Bielska S, Plewiński P, Kozak B, Galek R, Ksia̧żkiewicz M. Photoperiod and Vernalization Control of Flowering-Related Genes: A Case Study of the Narrow-Leafed Lupin ( Lupinus angustifolius L.). FRONTIERS IN PLANT SCIENCE 2020; 11:572135. [PMID: 33193508 PMCID: PMC7663182 DOI: 10.3389/fpls.2020.572135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) is a moderate-yielding legume crop known for its high grain protein content and contribution to soil improvement. It is cultivated under photoperiods ranging from 9 to 17 h, as a spring-sown (in colder locations) or as an autumn-sown crop (in warmer regions). Wild populations require a prolonged cold period, called vernalization, to induce flowering. The key achievement of L. angustifolius domestication was the discovery of two natural mutations (named Ku and Jul) conferring vernalization independence. These mutations are overlapping deletion variants in the promoter of LanFTc1, a homolog of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene. The third deletion, named here as Pal, was recently found in primitive germplasm. In this study, we genotyped L. angustifolius germplasm that differs in domestication status and geographical origin for LanFTc1 alleles, which we then phenotyped to establish flowering time and vernalization responsiveness. The Ku and Jul lines were vernalization-independent and early flowering, wild (ku) lines were vernalization-dependent and late flowering, whereas the Pal line conferred intermediate phenotype. Three lines representing ku, Pal, and Ku alleles were subjected to gene expression surveys under 8- and 16-h photoperiods. FT homologs (LanFTa1, LanFTa2, LanFTc1, and LanFTc2) and some genes selected by recent expression quantitative trait loci mapping were analyzed. Expression profiles of LanFTc1 and LanAGL8 (AGAMOUS-like 8) matched observed differences in flowering time between genotypes, highlighted by high induction after vernalization in the ku line. Moreover, these genes revealed altered circadian clock control in Pal line under short days. LanFD (FD) and LanCRLK1 (CALCIUM/CALMODULIN-REGULATED RECEPTOR-LIKE KINASE 1) were negatively responsive to vernalization in Ku and Pal lines but positively responsive or variable in ku, whereas LanUGT85A2 (UDP-GLUCOSYL TRANSFERASE 85A2) was significantly suppressed by vernalization in all lines. Such a pattern suggests the opposite regulation of these gene pairs in the vernalization pathway. LanCRLK1 and LanUGT85A2 are homologs of A. thaliana genes involved in the FLOWERING LOCUS C (FLC) vernalization pathway. Lupins, like many other legumes, do not have any FLC homologs. Therefore, candidate genes surveyed in this study, namely LanFTc1, LanAGL8, LanCRLK1, and LanUGT85A2, may constitute anchors for further elucidation of molecular components contributing to vernalization response in legumes.
Collapse
Affiliation(s)
- Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Plewiński
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Renata Galek
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Michał Ksia̧żkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
11
|
Chen T, Zhang W, Yang G, Chen JH, Chen BX, Sun R, Zhang H, An LZ. TRANSTHYRETIN-LIKE and BYPASS1-LIKE co-regulate growth and cold tolerance in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:332. [PMID: 32664862 PMCID: PMC7362626 DOI: 10.1186/s12870-020-02534-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/28/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cold stress inhibits normal physiological metabolism in plants, thereby seriously affecting plant development. Meanwhile, plants also actively adjust their metabolism and development to adapt to changing environments. Several cold tolerance regulators have been found to participate in the regulation of plant development. Previously, we reported that BYPASS1-LIKE (B1L), a DUF793 family protein, participates in the regulation of cold tolerance, at least partly through stabilizing C-REPEAT BINDING FACTORS (CBFs). In this study, we found that B1L interacts with TRANSTHYRETIN-LIKE (TTL) protein, which is involved in brassinosteroid (BR)-mediated plant growth and catalyses the synthesis of S-allantoin, and both proteins participate in modulating plant growth and cold tolerance. RESULTS The results obtained with yeast two hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that B1L directly interacted with TTL. Similar to the ttl-1 and ttl-2 mutants, the b1l mutant displayed a longer hypocotyl and greater fresh weight than wild type, whereas B1L-overexpressing lines exhibited a shorter hypocotyl and reduced fresh weight. Moreover, ttl-1 displayed freezing tolerance to cold treatment compared with WT, whereas the b1l mutant and TTL-overexpressing lines were freezing-sensitive. The b1l ttl double mutant had a developmental phenotype and freezing tolerance that were highly similar to those of ttl-1 compared to b1l, indicating that TTL is important for B1L function. Although low concentrations of brassinolide (0.1 or 1 nM) displayed similarly promoted hypocotyl elongation of WT and b1l under normal temperature, it showed less effect to the hypocotyl elongation of b1l than to that of WT under cold conditions. In addition, the b1l mutant also contained less amount of allantoin than Col-0. CONCLUSION Our results indicate that B1L and TTL co-regulate development and cold tolerance in Arabidopsis, and BR and allantoin may participate in these processes through B1L and TTL.
Collapse
Affiliation(s)
- Tao Chen
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wei Zhang
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Gang Yang
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jia-Hui Chen
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Bi-Xia Chen
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rui Sun
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hua Zhang
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Li-Zhe An
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- School of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
12
|
Perrella G, Vellutini E, Zioutopoulou A, Patitaki E, Headland LR, Kaiserli E. Let it bloom: cross-talk between light and flowering signaling in Arabidopsis. PHYSIOLOGIA PLANTARUM 2020; 169:301-311. [PMID: 32053223 PMCID: PMC7383826 DOI: 10.1111/ppl.13073] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 05/12/2023]
Abstract
The terrestrial environment is complex, with many parameters fluctuating on daily and seasonal basis. Plants, in particular, have developed complex sensory and signaling networks to extract and integrate information about their surroundings in order to maximize their fitness and mitigate some of the detrimental effects of their sessile lifestyles. Light and temperature each provide crucial insights on the surrounding environment and, in combination, allow plants to appropriately develop, grow and adapt. Cross-talk between light and temperature signaling cascades allows plants to time key developmental decisions to ensure they are 'in sync' with their environment. In this review, we discuss the major players that regulate light and temperature signaling, and the cross-talk between them, in reference to a crucial developmental decision faced by plants: to bloom or not to bloom?
Collapse
Affiliation(s)
- Giorgio Perrella
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
- ENEA – Trisaia Research Centre 75026MateraItaly
| | - Elisa Vellutini
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Anna Zioutopoulou
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Eirini Patitaki
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Lauren R. Headland
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
13
|
Zheng X, Shi M, Wang J, Yang N, Wang K, Xi J, Wu C, Xi T, Zheng J, Zhang J. Isoform Sequencing Provides Insight Into Freezing Response of Common Wheat ( Triticum aestivum L.). Front Genet 2020; 11:462. [PMID: 32595694 PMCID: PMC7300213 DOI: 10.3389/fgene.2020.00462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
The objective of the study is to reveal the freezing tolerance mechanisms of wheat by combining the emerging single-molecule real-time (SMRT) sequencing technology PacBio Sequel and Illumina sequencing. Commercial semiwinter wheat Zhoumai 18 was exposed to -6°C for 4 h at the four-leave stage. Leaves of the control group and freezing-treated group were used to perform cDNA library construction. PacBio SMRT sequencing yielded 51,570 high-quality isoforms from leaves of control sample of Zhoumai 18, encoded by 20,366 gene loci. In total, 73,695 transcript isoforms, corresponding to 23,039 genes, were identified from the freezing-treated leaves. Compared with transcripts from the International Wheat Genome Sequencing Consortium RefSeq v1.1, 57,667 novel isoforms were discovered, which were annotated 21,672 known gene loci, as well as 3,399 novel gene loci. Transcriptome characterization including alterative spliced events, alternative polydenylation sites, transcription factors, and fusion transcripts were also analyzed. Freezing-responsive genes and signals were uncovered and proved that the ICE-ERF-COR pathway and ABA signal transduction play a vital role in the freezing response of wheat. In this study, PacBio sequencing and Illumina sequencing were applied to investigate the freezing tolerance in common wheat, and the transcriptome results provide insights into the molecular regulation mechanisms under freezing treatment.
Collapse
Affiliation(s)
- Xingwei Zheng
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Mengmeng Shi
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jian Wang
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Na Yang
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Ke Wang
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Jilong Xi
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Caixia Wu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Tianyuan Xi
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jiancheng Zhang
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| |
Collapse
|
14
|
Liu Y, Hao X, Lu Q, Zhang W, Zhang H, Wang L, Yang Y, Xiao B, Wang X. Genome-wide identification and expression analysis of flowering-related genes reveal putative floral induction and differentiation mechanisms in tea plant (Camellia sinensis). Genomics 2020; 112:2318-2326. [PMID: 31923617 DOI: 10.1016/j.ygeno.2020.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 11/26/2022]
Abstract
The tea leaf is economically important, while reproductive growth reduce tea output. However, little is known about flowering mechanisms in tea plants. Here, we determined the approximate times of floral induction, floral transition and floral organ differentiation by morphological observation. We identified 401 and 356 flowering-related genes from the genomes of Camellia sinensis var. sinensis and Camellia sinensis var. assamica, respectively. Then, we compared the expression profiles of flowering-related genes in floriferous and oliganthous cultivars, the result showed that PRR7, GI, GID1B and GID1C expression is correlated with the floral induction; LFY, PNF and PNY expression was correlated with floral bud formation. Transcriptome analysis also showed that GI, PRR7 and GID1 were correlated with stress-induced flowering. Thus, we proposed putative mechanisms of flowering in tea plants. This study provides new insights into flowering and a theoretical basis for balancing vegetative and reproductive growth in tea plants and other economical plants.
Collapse
Affiliation(s)
- Ying Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China
| | - Xinyuan Hao
- Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China
| | - Qinhua Lu
- Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China
| | - Weifu Zhang
- Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China
| | - Haojie Zhang
- Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China
| | - Lu Wang
- Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China
| | - Yajun Yang
- Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China.
| | - Bin Xiao
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Xinchao Wang
- Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China.
| |
Collapse
|
15
|
Rychel-Bielska S, Plewiński P, Kozak B, Galek R, Ksia Żkiewicz M. Photoperiod and Vernalization Control of Flowering-Related Genes: A Case Study of the Narrow-Leafed Lupin ( Lupinus angustifolius L.). FRONTIERS IN PLANT SCIENCE 2020; 11:572135. [PMID: 33193508 DOI: 10.3389/fpls.2020.572135/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/24/2020] [Indexed: 05/18/2023]
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) is a moderate-yielding legume crop known for its high grain protein content and contribution to soil improvement. It is cultivated under photoperiods ranging from 9 to 17 h, as a spring-sown (in colder locations) or as an autumn-sown crop (in warmer regions). Wild populations require a prolonged cold period, called vernalization, to induce flowering. The key achievement of L. angustifolius domestication was the discovery of two natural mutations (named Ku and Jul) conferring vernalization independence. These mutations are overlapping deletion variants in the promoter of LanFTc1, a homolog of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene. The third deletion, named here as Pal, was recently found in primitive germplasm. In this study, we genotyped L. angustifolius germplasm that differs in domestication status and geographical origin for LanFTc1 alleles, which we then phenotyped to establish flowering time and vernalization responsiveness. The Ku and Jul lines were vernalization-independent and early flowering, wild (ku) lines were vernalization-dependent and late flowering, whereas the Pal line conferred intermediate phenotype. Three lines representing ku, Pal, and Ku alleles were subjected to gene expression surveys under 8- and 16-h photoperiods. FT homologs (LanFTa1, LanFTa2, LanFTc1, and LanFTc2) and some genes selected by recent expression quantitative trait loci mapping were analyzed. Expression profiles of LanFTc1 and LanAGL8 (AGAMOUS-like 8) matched observed differences in flowering time between genotypes, highlighted by high induction after vernalization in the ku line. Moreover, these genes revealed altered circadian clock control in Pal line under short days. LanFD (FD) and LanCRLK1 (CALCIUM/CALMODULIN-REGULATED RECEPTOR-LIKE KINASE 1) were negatively responsive to vernalization in Ku and Pal lines but positively responsive or variable in ku, whereas LanUGT85A2 (UDP-GLUCOSYL TRANSFERASE 85A2) was significantly suppressed by vernalization in all lines. Such a pattern suggests the opposite regulation of these gene pairs in the vernalization pathway. LanCRLK1 and LanUGT85A2 are homologs of A. thaliana genes involved in the FLOWERING LOCUS C (FLC) vernalization pathway. Lupins, like many other legumes, do not have any FLC homologs. Therefore, candidate genes surveyed in this study, namely LanFTc1, LanAGL8, LanCRLK1, and LanUGT85A2, may constitute anchors for further elucidation of molecular components contributing to vernalization response in legumes.
Collapse
Affiliation(s)
- Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Plewiński
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Renata Galek
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Michał Ksia Żkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
16
|
Wang T, Wei L, Wang J, Xie L, Li YY, Ran S, Ren L, Lu K, Li J, Timko MP, Liu L. Integrating GWAS, linkage mapping and gene expression analyses reveals the genetic control of growth period traits in rapeseed ( Brassica napus L.). BIOTECHNOLOGY FOR BIOFUELS 2020; 13:134. [PMID: 32774455 PMCID: PMC7397576 DOI: 10.1186/s13068-020-01774-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/24/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Brassica napus is one of the most important oilseed crops, and also an important biofuel plant due to its low air pollution and renewability. Growth period are important traits that affect yield and are crucial for its adaptation to different environments in B. napus. RESULTS To elucidate the genetic basis of growth period traits, genome-wide association analysis (GWAS) and linkage mapping were employed to detect the quantitative trait loci (QTL) for days to initial flowering (DIF), days to final flowering (DFF), flowering period (FP), maturity time (MT), and whole growth period (GP). A total of 146 SNPs were identified by association mapping, and 83 QTLs were identified by linkage mapping using the RIL population. Among these QTLs, 19 were pleiotropic SNPs related to multiple traits, and six (q18DFF.A03-2, q18MT.A03-2, q17DFF.A05-1, q18FP.C04, q17DIF.C05 and q17GP.C09) were consistently detected using both mapping methods. Additionally, we performed RNA sequencing to analyze the differential expression of gene (DEG) transcripts between early- and late-flowering lines selected from the RIL population, and the DEGs were integrated with association mapping and linkage analysis to confirm their roles in the growth period. Consequently, 12 candidate genes associated with growth period traits were identified in B. napus. Among these genes, seven have polymorphic sites in the coding sequence and the upstream 2-kb sequence based on the resequencing data. The haplotype BnaSOC1.A05-Haplb and BnaLNK2.C06-Hapla showed more favorable phenotypic traits. CONCLUSIONS The candidate genes identified in this study will contribute to our genetic understanding of growth period traits and can be used as targets for target mutations or marker-assisted breeding for rapeseed adapted to different environments.
Collapse
Affiliation(s)
- Tengyue Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Jia Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Ling Xie
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Yang Yang Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Shuyao Ran
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Lanyang Ren
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Michael P. Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904 USA
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| |
Collapse
|
17
|
Zuo ZF, Kang HG, Park MY, Jeong H, Sun HJ, Song PS, Lee HY. Zoysia japonica MYC type transcription factor ZjICE1 regulates cold tolerance in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110254. [PMID: 31623785 DOI: 10.1016/j.plantsci.2019.110254] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 05/21/2023]
Abstract
ICE1 (Inducer of CBF Expression 1) is a regulator of cold-induced transcriptome, which plays an important role in plant cold response pathway. To enhance the cold tolerance of Zoysia japonica, one of the warm-season turfgrasses, it is helpful to understand the cold response mechanism in Zoysia japonica. We identified stress-responsive ZjICE1 from Zoysia japonica and characterized its function in cold stress. Our results showed that ZjICE1 shared the typical feature of ICE homolog proteins belonging to a nucleic protein. Transactivation activity assay revealed that ZjICE1 bound to the MYC cis-element in the ZjDREB1's promotor. The ZjICE1 overexpressed transgenic Arabidopsis showed enhanced tolerance to cold stress with an increases in SOD, POD, and free proline content and reduction in MDA content. They also induced the transcripts abundance of cold-responsive genes (CBF1, CBF2, CBF3, COR47A, KIN1, and RD29A) after cold treatment. These results suggest that ZjICE1 is a positive regulator in Zoysia japonica plant during cold stress and can be a useful gene for the molecular breeding program to develop the cold tolerant zoysiagrass. Furthermore, the ZjICE1 also conferred resistance to salt and drought stresses, providing the better understanding of the basic helix-loop-helix (bHLH) gene family in abiotic stress responses.
Collapse
Affiliation(s)
- Zhi-Fang Zuo
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea; Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Hong-Gyu Kang
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea.
| | - Mi-Young Park
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Hana Jeong
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Pill-Soon Song
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Hyo-Yeon Lee
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea; Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea.
| |
Collapse
|
18
|
Plewiński P, Książkiewicz M, Rychel-Bielska S, Rudy E, Wolko B. Candidate Domestication-Related Genes Revealed by Expression Quantitative Trait Loci Mapping of Narrow-Leafed Lupin ( Lupinus angustifolius L.). Int J Mol Sci 2019; 20:ijms20225670. [PMID: 31726789 PMCID: PMC6888189 DOI: 10.3390/ijms20225670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022] Open
Abstract
The last century has witnessed rapid domestication of the narrow-leafed lupin (Lupinus angustifolius L.) as a grain legume crop, exploiting discovered alleles conferring low-alkaloid content (iucundus), vernalization independence (Ku and Julius), and reduced pod shattering (lentus and tardus). In this study, a L. angustifolius mapping population was subjected to massive analysis of cDNA ends (MACE). The MACE yielded 4185 single nucleotide polymorphism (SNP) markers for linkage map improvement and 30,595 transcriptomic profiles for expression quantitative trait loci (eQTL) mapping. The eQTL highlighted a high number of cis- and trans-regulated alkaloid biosynthesis genes with gene expression orchestrated by a regulatory agent localized at iucundus locus, supporting the concept that ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR RAP2-7 may control low-alkaloid phenotype. The analysis of Ku shed light on the vernalization response via FLOWERING LOCUS T and FD regulon in L. angustifolius, providing transcriptomic evidence for the contribution of several genes acting in C-repeat binding factor (CBF) cold responsiveness and in UDP-glycosyltransferases pathways. Research on lentus selected a DUF1218 domain protein as a candidate gene controlling the orientation of the sclerified endocarp and a homolog of DETOXIFICATION14 for purplish hue of young pods. An ABCG transporter was identified as a hypothetical contributor to sclerenchyma fortification underlying tardus phenotype.
Collapse
|
19
|
Teng Y, Liang Y, Wang M, Mai H, Ke L. Nitrate Transporter 1.1 is involved in regulating flowering time via transcriptional regulation of FLOWERING LOCUS C in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:30-36. [PMID: 31084876 DOI: 10.1016/j.plantsci.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 05/23/2023]
Abstract
Nitrate Transporter 1.1 (NRT1.1) is a nitrate transporter and sensor that modulates plant metabolism and growth. It has previously been shown that NRT1.1 is involved in the regulation of flowering time in Arabidopsis thaliana. In this study, we mainly used genetic and molecular methods to reveal the key flowering pathway that NRT1.1 may be involved in. Mutant alleles of CO and FLC, two crucial components in the flowering pathway, were introduced into the NRT1.1 defective mutant background by crossing. When the CO mutation was introduced into chl1-5 plants, the double mutant had delayed flowering time, and the CO transcription levels did not change in the chl1-5 plants. These results indicate that the CO-dependent photoperiod may be not associated with the delayed flowering shown by chl1-5. However, FLC loss of function could rescue the late flowering phenotype of the chl1-5 mutant, and FLC expression levels significantly increased in the NRT1.1 defective mutant plants. The FT expression levels in the chl1-5flc-3 double mutant plants recovered when the FLC mutation was introduced into chl1-5 plants and the up-regulation of FLC transcripts in the chl1-5 mutant plants was not related to nitrate availability. Our findings suggest that NRT1.1 affects flowering time via interaction with the FLC-dependent flowering pathway to influence its target gene FT, and that NRT1.1 may be included in an additional signaling pathway that represses the expression of FLC in a nitrate-independent manner.
Collapse
Affiliation(s)
- Yibo Teng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China.
| | - Yi Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Mengyun Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Huacheng Mai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Liping Ke
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China.
| |
Collapse
|
20
|
Putarjunan A, Ruble J, Srivastava A, Zhao C, Rychel AL, Hofstetter AK, Tang X, Zhu JK, Tama F, Zheng N, Torii KU. Bipartite anchoring of SCREAM enforces stomatal initiation by coupling MAP kinases to SPEECHLESS. NATURE PLANTS 2019; 5:742-754. [PMID: 31235876 PMCID: PMC6668613 DOI: 10.1038/s41477-019-0440-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/03/2019] [Indexed: 05/18/2023]
Abstract
Cell fate in eukaryotes is controlled by mitogen-activated protein kinases (MAPKs) that translate external cues into cellular responses. In plants, two MAPKs-MPK3 and MPK6-regulate diverse processes of development, environmental response and immunity. However, the mechanism that bridges these shared signalling components with a specific target remains unresolved. Focusing on the development of stomata-epidermal valves that are essential for gas exchange and transpiration-here, we report that the basic helix-loop-helix protein SCREAM functions as a scaffold that recruits MPK3/6 to downregulate SPEECHLESS, a transcription factor that initiates stomatal cell lineages. SCREAM directly binds to MPK3/6 through an evolutionarily conserved, yet unconventional, bipartite motif. Mutations in this motif abrogate association, phosphorylation and degradation of SCREAM, unmask hidden non-redundancies between MPK3 and MPK6, and result in uncontrolled stomatal differentiation. Structural analyses of MPK6 with a resolution of 2.75 Å showed bipartite binding of SCREAM to MPK6 that is distinct from an upstream MAPKK. Our findings elucidate, at the atomic resolution, the mechanism that directly links extrinsic signals to transcriptional reprogramming during the establishment of stomatal cell fate, and highlight a unique substrate-binding mode adopted by plant MAPKs.
Collapse
Affiliation(s)
- Aarthi Putarjunan
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Jim Ruble
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Amanda L Rychel
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Alex K Hofstetter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Xiaobo Tang
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Florence Tama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
- Computational Structural Biology Team, Center for Computational Science, Kobe, Japan
| | - Ning Zheng
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
| | - Keiko U Torii
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
- Department of Biology, University of Washington, Seattle, WA, USA.
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.
| |
Collapse
|
21
|
Miotto YE, Tessele C, Czermainski ABC, Porto DD, Falavigna VDS, Sartor T, Cattani AM, Delatorre CA, de Alencar SA, da Silva-Junior OB, Togawa RC, Costa MMDC, Pappas GJ, Grynberg P, de Oliveira PRD, Kvitschal MV, Denardi F, Buffon V, Revers LF. Spring Is Coming: Genetic Analyses of the Bud Break Date Locus Reveal Candidate Genes From the Cold Perception Pathway to Dormancy Release in Apple ( Malus × domestica Borkh.). FRONTIERS IN PLANT SCIENCE 2019; 10:33. [PMID: 30930909 PMCID: PMC6423911 DOI: 10.3389/fpls.2019.00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/10/2019] [Indexed: 05/26/2023]
Abstract
Chilling requirement (CR) for bud dormancy completion determines the time of bud break in apple (Malus × domestica Borkh.). The molecular control of bud dormancy is highly heritable, suggesting a strong genetic control of the trait. An available Infinium II SNP platform for genotyping containing 8,788 single nucleotide polymorphic markers was employed, and linkage maps were constructed in a F1 cross from the low CR M13/91 and the moderate CR cv. Fred Hough. These maps were used to identify quantitative trait loci (QTL) for bud break date as a trait related to dormancy release. A major QTL for bud break was detected at the beginning of linkage group 9 (LG9). This QTL remained stable during seven seasons in two different growing sites. To increase mapping efficiency in detecting contributing genes underlying this QTL, 182 additional SNP markers located at the locus for bud break were used. Combining linkage mapping and structural characterization of the region, the high proportion of the phenotypic variance in the trait explained by the QTL is related to the coincident positioning of Arabidopsis orthologs for ICE1, FLC, and PRE1 protein-coding genes. The proximity of these genes from the most explanatory markers of this QTL for bud break suggests potential genetic additive effects, reinforcing the hypothesis of inter-dependent mechanisms controlling dormancy induction and release in apple trees.
Collapse
Affiliation(s)
- Yohanna Evelyn Miotto
- Department of Crop Science, Agronomy School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina Tessele
- Department of Crop Science, Agronomy School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Vítor da Silveira Falavigna
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Sartor
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Malvessi Cattani
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Andrea Delatorre
- Department of Crop Science, Agronomy School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sérgio Amorim de Alencar
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | | | | | | | | | | | | | - Marcus Vinícius Kvitschal
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina – Epagri – Estação Experimental de Caçador, Caçador, Brazil
| | - Frederico Denardi
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina – Epagri – Estação Experimental de Caçador, Caçador, Brazil
| | | | - Luís Fernando Revers
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
22
|
Choudhary S, Thakur S, Jaitak V, Bhardwaj P. Gene and metabolite profiling reveals flowering and survival strategies in Himalayan Rhododendron arboreum. Gene 2019; 690:1-10. [DOI: 10.1016/j.gene.2018.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/13/2018] [Indexed: 12/23/2022]
|
23
|
Baier M, Bittner A, Prescher A, van Buer J. Preparing plants for improved cold tolerance by priming. PLANT, CELL & ENVIRONMENT 2019; 42:782-800. [PMID: 29974962 DOI: 10.1111/pce.13394] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 05/26/2023]
Abstract
Cold is a major stressor, which limits plant growth and development in many parts of the world, especially in the temperate climate zones. A large number of experimental studies has demonstrated that not only acclimation and entrainment but also the experience of single short stress events of various abiotic or biotic kinds (priming stress) can improve the tolerance of plants to chilling temperatures. This process, called priming, depends on a stress "memory". It does not change cold sensitivity per se but beneficially modifies the response to cold and can last for days, months, or even longer. Elicitor factors and antagonists accumulate due to increased biosynthesis or decreased degradation either during or after the priming stimulus. Comparison of priming studies investigating improved tolerance to chilling temperatures highlighted key regulatory functions of ROS/RNS and antioxidant enzymes, plant hormones, especially jasmonates, salicylates, and abscisic acid, and signalling metabolites, such as β- and γ-aminobutyric acid (BABA and GABA) and melatonin. We conclude that these elicitors and antagonists modify local and systemic cold tolerance by integration into cold-induced signalling cascades.
Collapse
Affiliation(s)
- Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andras Bittner
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andreas Prescher
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Jörn van Buer
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| |
Collapse
|
24
|
Qin T, Liu S, Zhang Z, Sun L, He X, Lindsey K, Zhu L, Zhang X. GhCyP3 improves the resistance of cotton to Verticillium dahliae by inhibiting the E3 ubiquitin ligase activity of GhPUB17. PLANT MOLECULAR BIOLOGY 2019; 99:379-393. [PMID: 30671725 DOI: 10.1007/s11103-019-00824-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 01/12/2019] [Indexed: 05/02/2023]
Abstract
A U-box E3 ubiquitin ligase GhPUB17 is inhibited by GhCyP3 with antifungal activity and acts as a negative regulator involved in cotton resistance to Verticillium dahliae. E3 ubiquitin ligases, the key component enzymes of the ubiquitin-proteasome system, which contains the most diverse structural and functional members involved in the determination of target specificity and the regulation of metabolism, have been well documented in previous studies. Here, we identify GhPUB17, a U-box E3 ligase in cotton that has ubiquitination activity and is involved in the cotton immune response to Verticillium dahliae. The expression level of GhPUB17 is downregulated in the ssn mutant with a constitutively activated immune response (Sun et al., Nat Commun 5:5372, 2014). Infection with V. dahliae or exogenous hormone treatment, including jasmonic acid and salicylic acid, significantly upregulated GhPUB17 in cotton roots, which suggested a possible role for this E3 ligase in the plant immune response to pathogens. Moreover, GhPUB17-knockdown cotton plants are more resistant to V. dahliae, whereas GhPUB17-overexpressing plants are more susceptible to the pathogen, which indicated that GhPUB17 is a negative regulator of cotton resistance to V. dahliae. A yeast two-hybrid (Y2H) assay identified GhCyP3 as a protein that interacts with GhPUB17, and this finding was confirmed by further protein interaction assays. The downregulation of GhCyP3 in cotton seedlings attenuated the plants' resistance to V. dahliae. In addition, GhCyP3 showed antifungal activity against V. dahliae, and the E3 ligase activity of GhPUB17 was repressed by GhCyP3 in vitro. These results suggest that GhPUB17 negatively regulates cotton immunity to V. dahliae and that the antifungal protein GhCyP3 likely interacts with and inhibits the ligase activity of GhPUB17 and plays an important role in the cotton-Verticillium interaction.
Collapse
Affiliation(s)
- Tao Qin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhennan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Longqing Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
25
|
Chen T, Chen JH, Zhang W, Yang G, Yu LJ, Li DM, Li B, Sheng HM, Zhang H, An LZ. BYPASS1-LIKE, A DUF793 Family Protein, Participates in Freezing Tolerance via the CBF Pathway in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:807. [PMID: 31297122 PMCID: PMC6607965 DOI: 10.3389/fpls.2019.00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/05/2019] [Indexed: 05/13/2023]
Abstract
The C-REPEAT BINDING FACTOR signaling pathway is strictly modulated by numerous factors and is essential in the cold response of plants. Here, we show that the DUF793 family gene BYPASS1-LIKE modulates freezing tolerance through the CBFs in Arabidopsis. The expression of B1L was rapidly induced under cold treatment. Comparing to wild type, B1L knockout mutants were more sensitive to freezing treatment, whereas B1L-overexpressing lines were more tolerant. The expression of CBFs and CBF target genes was significantly decreased in b1l mutant. Using yeast two-hybrid screening system, 14-3-3λ was identified as one of proteins interacting with B1L. The interaction was confirmed with bimolecular fluorescence complementation assay and co-immunoprecipitation assay. Biochemical assays revealed that b1l mutation promoted the degradation of CBF3 compared to wild type, whereas 14-3-3κλ mutant and b1l 14-3-3κλ mutant suppressed the degradation of CBF3. Consistently, 14-3-3κλ and b1l 14-3-3κλ mutants showed enhanced freezing tolerance compared to wild type. These results indicate that B1L enhances the freezing tolerance of plants, at least partly through stabilizing CBF. Our findings improve our understanding of the regulation of CBF in response to cold stress.
Collapse
Affiliation(s)
- Tao Chen
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Jia-Hui Chen
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Wei Zhang
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Gang Yang
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Li-Juan Yu
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Dong-Ming Li
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bo Li
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Hong-Mei Sheng
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Hua Zhang
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- *Correspondence: Hua Zhang,
| | - Li-Zhe An
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- School of Forestry, Beijing Forestry University, Beijing, China
- Li-Zhe An,
| |
Collapse
|
26
|
Wei D, Liu M, Chen H, Zheng Y, Liu Y, Wang X, Yang S, Zhou M, Lin J. INDUCER OF CBF EXPRESSION 1 is a male fertility regulator impacting anther dehydration in Arabidopsis. PLoS Genet 2018; 14:e1007695. [PMID: 30286083 PMCID: PMC6191155 DOI: 10.1371/journal.pgen.1007695] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/16/2018] [Accepted: 09/13/2018] [Indexed: 11/23/2022] Open
Abstract
INDUCER OF CBF EXPRESSION 1 (ICE1) encodes a MYC-like basic helix-loop-helix (bHLH) transcription factor playing a critical role in plant responses to chilling and freezing stresses and leaf stomata development. However, no information connecting ICE1 and reproductive development has been reported. In this study, we show that ICE1 controls plant male fertility via impacting anther dehydration. The loss-of-function mutation in ICE1 gene in Arabidopsis caused anther indehiscence and decreased pollen viability as well as germination rate. Further analysis revealed that the anthers in the mutant of ICE1 (ice1-2) had the structure of stomium, though the epidermis did not shrink to dehisce. The anther indehiscence and influenced pollen viability as well as germination in ice1-2 were due to abnormal anther dehydration, for most of anthers dehisced with drought treatment and pollen grains from those dehydrated anthers had similar viability and germination rates compared with wild type. Accordingly, the sterility of ice1-2 could be rescued by ambient dehydration treatments. Likewise, the stomatal differentiation of ice1-2 anther epidermis was disrupted in a different manner compared with that in leaves. ICE1 specifically bound to MYC-recognition elements in the promoter of FAMA, a key regulator of guard cell differentiation, to activate FAMA expression. Transcriptome profiling in the anther tissues further exhibited ICE1-modulated genes associated with water transport and ion exchange in the anther. Together, this work reveals the key role of ICE1 in male fertility control and establishes a regulatory network mediated by ICE1 for stomata development and water movement in the anther.
Collapse
Affiliation(s)
- Donghui Wei
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Mingjia Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hu Chen
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ye Zheng
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuxiao Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mingqi Zhou
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Juan Lin
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Wang Z, Yang C, Chen H, Wang P, Wang P, Song C, Zhang X, Wang D. Multi-gene co-expression can improve comprehensive resistance to multiple abiotic stresses in Brassica napus L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:410-419. [PMID: 30080629 DOI: 10.1016/j.plantsci.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/08/2018] [Accepted: 06/17/2018] [Indexed: 05/04/2023]
Abstract
Rapeseed (Brassica napus L.) is an important oil crop worldwide. For current B. napus production, it is urgent to develop new varieties with higher seed productivity and increased stress tolerance for better adaptation to the abiotic stresses as a result of global climate change. Genetic engineering, to some extent, can overcome the limitations of genetic exchange in conventional breeding. Consequently, it considered as an effective method for improving modern crop breeding for B. napus. Since crop stress resistance is a polygenic complex trait, only by multi-gene synergistic effects can effectively achieve the comprehensive stress resistance of crops. Hence, in the present study, five stress resistance genes, NCED3, ABAR, CBF3, LOS5, and ICE1 were transferred into B. napus. Compared with wildtype (WT) plants, the multi-gene transformants K15 exhibited pronounced growth advantage under both normal growth and stress conditions. Additionally, K15 plants also showed significantly higher resistance response to multiple stresses at seed germination and seedling stages than WT plants. Furthermore, K15 plants had significantly higher leaf temperature and significantly lower stomatal aperture and water loss rate than WT plants, which indicated that the water-holding capacity of K15 plants was significantly superior to that of WT plants after stress treatment. In addition, K15 plants had significantly higher abscisic acid (ABA) content and significantly lower malondialdehyde (MDA) content than WT plants. In conclusion, the above results suggested that multi-gene co-expression could rapidly trigger plant stress resistance, reduce the stress injury on plants and synergistically improve the comprehensive resistance of B. napus.
Collapse
Affiliation(s)
- Zaiqing Wang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Cuiling Yang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hao Chen
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Pei Wang
- School of Mathematics and Statistics, Henan University, Kaifeng, Henan, 475004, China
| | - Pengtao Wang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chunpeng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao Zhang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Daojie Wang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
28
|
Jin Y, Zhai S, Wang W, Ding X, Guo Z, Bai L, Wang S. Identification of genes from the ICE-CBF-COR pathway under cold stress in Aegilops- Triticum composite group and the evolution analysis with those from Triticeae. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018. [PMID: 29515316 PMCID: PMC5834981 DOI: 10.1007/s12298-017-0495-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adverse environmental conditions limit various aspects of plant growth, productivity, and ecological distribution. To get more insights into the signaling pathways under low temperature, we identified 10 C-repeat binding factors (CBFs), 9 inducer of CBF expression (ICEs) and 10 cold-responsive (CORs) genes from Aegilops-Triticum composite group under cold stress. Conserved amino acids analysis revealed that all CBF, ICE, COR contained specific and typical functional domains. Phylogenetic analysis of CBF proteins from Triticeae showed that these CBF homologs were divided into 11 groups. CBFs from Triticum were found in every group, which shows that these CBFs generated prior to the divergence of the subfamilies of Triticeae. The evolutionary relationship among the ICE and COR proteins in Poaceae were divided into four groups with high multispecies specificity, respectively. Moreover, expression analysis revealed that mRNA accumulation was altered by cold treatment and the genes of three types involved in the ICE-CBF-COR signaling pathway were induced by cold stress. Together, the results make CBF, ICE, COR genes family in Triticeae more abundant, and provide a starting point for future studies on transcriptional regulatory network for improvement of chilling tolerance in crop.
Collapse
Affiliation(s)
- Ya’nan Jin
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Shanshan Zhai
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Wenjia Wang
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Xihan Ding
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Zhifu Guo
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Liping Bai
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866 Liaoning China
| |
Collapse
|
29
|
Gene Regulatory Networks Mediating Cold Acclimation: The CBF Pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:3-22. [PMID: 30288701 DOI: 10.1007/978-981-13-1244-1_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Under low nonfreezing temperature conditions, plants from temperate climates undergo physiological and biochemical adjustments that increase their tolerance to freezing temperatures. This response, termed cold acclimation, is largely regulated by changes in gene expression. Molecular and genetic studies have identified a small family of transcription factors, called C-repeat binding factors (CBFs), as key regulators of the transcriptomic rearrangement that leads to cold acclimation. The function of these proteins is tightly controlled, and an inadequate supply of CBF activity may be detrimental to the plant. Accumulated evidence has revealed an extremely intricate network of positive and negative regulators of cold acclimation that coalesce at the level of CBF promoters constituting a central hub where multiple internal and external signals are integrated. Moreover, CBF expression is also controlled at posttranscriptional and posttranslational levels further refining CBF regulation. Recently, natural variation studies in Arabidopsis have demonstrated that mutations resulting in changes in CBF expression have an adaptive value for wild populations. Intriguingly, CBF genes are also present in plant species that do not cold acclimate, which suggest that they may also have additional functions. For instance, CBFs are required for some cold-related abiotic stress responses. In addition, their involvement in plant development deserves further study. Although more studies are necessary to fully harness CBF biotechnological potential, these transcription factors are meant to be key for a rational design of crops with enhanced tolerance to abiotic stress.
Collapse
|
30
|
Wang DZ, Jin YN, Ding XH, Wang WJ, Zhai SS, Bai LP, Guo ZF. Gene Regulation and Signal Transduction in the ICE-CBF-COR Signaling Pathway during Cold Stress in Plants. BIOCHEMISTRY (MOSCOW) 2017; 82:1103-1117. [PMID: 29037131 DOI: 10.1134/s0006297917100030] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Low temperature is an abiotic stress that adversely affects the growth and production of plants. Resistance and adaptation of plants to cold stress is dependent upon the activation of molecular networks and pathways involved in signal transduction and the regulation of cold-stress related genes. Because it has numerous and complex genes, regulation factors, and pathways, research on the ICE-CBF-COR signaling pathway is the most studied and detailed, which is thought to be rather important for cold resistance of plants. In this review, we focus on the function of each member, interrelation among members, and the influence of manipulators and repressors in the ICE-CBF-COR pathway. In addition, regulation and signal transduction concerning plant hormones, circadian clock, and light are discussed. The studies presented provide a detailed picture of the ICE-CBF-COR pathway.
Collapse
Affiliation(s)
- Da-Zhi Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
He R, Li X, Zhong M, Yan J, Ji R, Li X, Wang Q, Wu D, Sun M, Tang D, Lin J, Li H, Liu B, Liu H, Liu X, Zhao X, Lin C. A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:788-801. [PMID: 28608936 DOI: 10.1111/tpj.13607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/08/2017] [Accepted: 05/13/2017] [Indexed: 05/09/2023]
Abstract
Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and developmental status; however, the molecular mechanisms underlying the interactions between different genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F-box of flowering 2) negatively regulates flowering. FOF2 encodes a putative F-box protein that interacts specifically with ASK14, and its overexpression results in later flowering under both long-day and short-day photoperiods. Conversely, transgenic plants expressing the F-box domain deletion mutant of FOF2 (FOF2ΔF), or double loss of function mutant of FOF2 and FOL1 (FOF2-LIKE 1) present early flowering phenotypes. The late flowering phenotype of the FOF2 overexpression lines is suppressed by the flc-3 loss-of-function mutation. Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark conditions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light conditions and the autonomous floral promotion pathway in Arabidopsis.
Collapse
Affiliation(s)
- Reqing He
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Xinmei Li
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Ming Zhong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Jindong Yan
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Ronghuan Ji
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qin Wang
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Dan Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Mengsi Sun
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Dongying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Jianzhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Hongyu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaoying Zhao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
32
|
Yao W, Wang L, Wang J, Ma F, Yang Y, Wang C, Tong W, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. VpPUB24, a novel gene from Chinese grapevine, Vitis pseudoreticulata, targets VpICE1 to enhance cold tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2933-2949. [PMID: 28486617 DOI: 10.1093/jxb/erx136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ubiquitination system plays important roles in the degradation and modification of substrate proteins. In this study, we characterize a putative U-box type E3 ubiquitin ligase gene, VpPUB24 (plant U-box protein 24), from Chinese wild grapevine, Vitis pseudoreticulata accession Baihe-35-1. We show that VpPUB24 is induced by a number of stresses, especially cold treatment. Real-time PCR analysis indicated that the PUB24 transcripts were increased after cold stress in different grapevine species, although the relative expression level was different. In grapevine protoplasts, we found that VpPUB24 was expressed at a low level at 22 °C but accumulated rapidly following cold treatment. A yeast two-hybrid assay revealed that VpPUB24 interacted physically with VpICE1. Further experiments indicated that VpICE1 is targeted for degradation via the 26S proteasome and that the degradation is accelerated by VpHOS1, and not by VpPUB24. Immunoblot analyses indicated that VpPUB24 promotes the accumulation of VpICE1 and suppresses the expression of VpHOS1 to regulate the abundance of VpICE1. Furthermore, VpICE1 promotes transcription of VpPUB24 at low temperatures. We also found that VpPUB24 interacts with VpHOS1 in a yeast two-hybrid assay. Additionally, over-expression of VpPUB24 in Arabidopsis thaliana enhanced cold tolerance. Collectively, our results suggest that VpPUB24 interacts with VpICE1 to play a role in cold stress.
Collapse
Affiliation(s)
- Wenkong Yao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Lei Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jie Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Fuli Ma
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yazhou Yang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chen Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Weihuo Tong
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chaohong Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
33
|
Cvetkovic J, Müller K, Baier M. The effect of cold priming on the fitness of Arabidopsis thaliana accessions under natural and controlled conditions. Sci Rep 2017; 7:44055. [PMID: 28276450 PMCID: PMC5343467 DOI: 10.1038/srep44055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/02/2017] [Indexed: 12/14/2022] Open
Abstract
Priming improves an organism's performance upon a future stress. To test whether cold priming supports protection in spring and how it is affected by cold acclimation, we compared seven Arabidopsis accessions with different cold acclimation potentials in the field and in the greenhouse for growth, photosynthetic performance and reproductive fitness in March and May after a 14 day long cold-pretreatment at 4 °C. In the plants transferred to the field in May, the effect of the cold pretreatment on the seed yield correlated with the cold acclimation potential of the accessions. In the March transferred plants, the reproductive fitness was most supported by the cold pretreatment in the accessions with the weakest cold acclimation potential. The fitness effect was linked to long-term effects of the cold pretreatment on photosystem II activity stabilization and leaf blade expansion. The study demonstrated that cold priming stronger impacts on plant fitness than cold acclimation in spring in accessions with intermediate and low cold acclimation potential.
Collapse
Affiliation(s)
- Jelena Cvetkovic
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Klaus Müller
- Meterology, Freie Universität Berlin, 12165 Berlin, Germany
| | - Margarete Baier
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
34
|
Leng L, Liang Q, Jiang J, Zhang C, Hao Y, Wang X, Su W. A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2017; 130:349-363. [PMID: 28004282 DOI: 10.1007/s10265-016-0900-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/14/2016] [Indexed: 05/20/2023]
Abstract
Members of the HSP70 family function as molecular chaperones to maintain cellular homeostasis and help plants cope with environmental stimuli. However, due to functional redundancy and lack of effective chemical inhibitors, our knowledge of functions of individual HSP70s has remained limited. Here, we confirmed a subclass of HSP70s, including HSP70-1, -2, -3, -4, and -5, localized to the cytosol and nucleus in Arabidopsis thaliana. Histochemical analyses of promoter:GUS reporter lines showed that HSP70-1, -2, -3, and -4 genes were widely expressed, but HSP70-5 was not. In addition, individual HSP70 showed not only similar but also distinct transcriptions when treated by different abiotic stresses and phytohormones. No apparent phenotype was observed when individual HSP70 genes were overexpressed or knocked-out/down, but the double mutant hsp70-1 hsp70-4 and triple mutant hsp70-2 hsp70-4 hsp70-5 plants exhibited developmental phenotypes with shortened specific growth periods, curly and round leaves, twisted petioles, thin stems, and short siliques. Moreover, both mutants were hypersensitive to heat, cold, high glucose, salt and osmotic stress, but hyposensitive to abscisic acid. Genes related to flowering, and the cytokinin, brassinosteroid, and abscisic acid signaling pathways were differentially expressed in both mutants. Our studies suggest that, the individual HSP70 possibly performs both redundant and specific functions with the other members in the cytosolic/nuclear HSP70 subclass, and apart from enabling plants to cope with abiotic stresses, this subclass of cytosolic/nuclear HSP70 proteins also participates in diverse developmental processes and signaling pathways.
Collapse
Affiliation(s)
- Linna Leng
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Room 421, School of Life Science Building, No. 2005, Songhu Road, Shanghai, 200438, China
| | - Qianqian Liang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Room 421, School of Life Science Building, No. 2005, Songhu Road, Shanghai, 200438, China
| | - Jianjun Jiang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Room 421, School of Life Science Building, No. 2005, Songhu Road, Shanghai, 200438, China
| | - Chi Zhang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Room 421, School of Life Science Building, No. 2005, Songhu Road, Shanghai, 200438, China
| | - Yuhan Hao
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Room 421, School of Life Science Building, No. 2005, Songhu Road, Shanghai, 200438, China
| | - Xuelu Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Su
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Room 421, School of Life Science Building, No. 2005, Songhu Road, Shanghai, 200438, China.
| |
Collapse
|
35
|
Li M, Du W, Shao F, Wang W. Cognitive dysfunction and epigenetic alterations of the BDNF gene are induced by social isolation during early adolescence. Behav Brain Res 2016; 313:177-183. [DOI: 10.1016/j.bbr.2016.07.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/11/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
|