1
|
Zhang Y, Liu H, Wang Y, Si X, Pan Y, Guo M, Wu M, Li Y, Liu H, Zhang X, Hou J, Li T, Hao C. TaFT-D1 positively regulates grain weight by acting as a coactivator of TaFDL2 in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40100647 DOI: 10.1111/pbi.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
FLOWERING LOCUS T (FT), a multifunctional regulator in crops, modulates multiple key agronomic traits such as flowering time or heading date and plant height; however, its role in grain development regulation is unclear. Herein, through genome-wide association studies (GWAS), we identified TaFT-D1, which encodes a phosphatidylethanolamine-binding protein (PEBP), as a candidate gene for grain weight in wheat. A one-bp insertion/deletion (InDel) (G/-) in the third exon of TaFT-D1, resulting in different protein lengths, was significantly associated with grain weight. TaFT-D1 knockout via the CRISPR-Cas9 system reduced grain size and weight, and TaFT-D1 increased grain size by promoting cell proliferation and starch synthesis. Transcriptome analysis revealed a significant decrease in the expression of cell cycle- and starch synthesis-related genes, including TaNAC019-3A, TaSWEET15-like-7B, TaCYCD4;1 and TaCYCD3;2, in the taft-d1 knockout line. TaFT-D1 interacted with the bZIP transcription factor TaFDL2, and the tafdl2 mutant presented relatively small grains, suggesting that TaFDL2 is a positive regulator of grain size. Moreover, TaFDL2 bound to the promoters of downstream cell cycle- and starch synthesis-related genes, activating their expression, whereas TaFT-D1 increased this activation via TaFDL2. Interaction assays demonstrated that TaFT-D1, Ta14-3-3A and TaFDL2 formed a regulatory complex. Furthermore, the TaFT-D1(G) allele was significantly correlated with greater thousand-grain weight and earlier heading. This favourable allele has undergone strong positive selection during wheat breeding in China. Our findings provide novel insights into how TaFT-D1 regulates grain weight and highlight its potential application for yield improvement in wheat.
Collapse
Affiliation(s)
- Yinhui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixia Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaojia Wang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemei Si
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxue Pan
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengjiao Guo
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meijuan Wu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanhao Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Hou
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Kan W, Gao Y, Zhu Y, Wang Z, Yang Z, Cheng Y, Guo J, Wang D, Tang C, Wu L. Genome-wide identification and expression analysis of TaFDL gene family responded to vernalization in wheat (Triticum aestivum L.). BMC Genomics 2025; 26:255. [PMID: 40091016 PMCID: PMC11912598 DOI: 10.1186/s12864-025-11436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND FLOWERING LOCUS D (FD) is a basic leucine zipper (bZIP) transcription factor known to be crucial in vernalization, flowering, and stress response across a variety of plants, including biennial and winter annual species. The TaFD-like (TaFDL) gene in wheat is the functional homologue of Arabidopsis FD, yet research on the TaFDL gene family in wheat is still lacking. RESULTS In this study, a total of 62 TaFDL gene family members were identified and classified into 4 main subfamilies, and these genes were located on 21 chromosomes. A comprehensive analysis of the basic physicochemical properties, gene structure, conservation motif, conserved domain, and advanced protein structure of TaFDL gene family revealed the conservation among its individual subfamily. The family members underwent purifying selection. The segmental duplication events were the main driving force behind the expansion of the TaFDL gene family. The TaFDL gene family underwent differentiation in the evolution of FD genes. Additionally, the subcellular localization and transcriptional activation activities of five key TaFDL members were demonstrated. Gene Ontology (GO) annotations and promoter cis-regulatory element analysis indicated that the TaFDL members may play potential roles in regulating flowering, hormone response, low-temperature response, light response, and stress response, which were verified by transcriptome data analysis. Specifically, quantitative real-time PCR (qRT-PCR) analysis revealed that five TaFDL genes exhibited differential responses to different vernalization conditions in winter wheat seeding. Finally, the homologous genes of the five key TaFDL genes across nine different wheat cultivars highlight significant genetic diversity. CONCLUSION These findings enrich the research on FD and its homologous genes, providing valuable insights into the TaFDL gene family's response to vernalization.
Collapse
Affiliation(s)
- Wenjie Kan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yameng Gao
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yan Zhu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ziqi Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhu Yang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yuan Cheng
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jianjun Guo
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Dacheng Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Caiguo Tang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| | - Lifang Wu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
- Zhongke Taihe Experimental Station, Taihe, Anhui, 236626, PR China.
| |
Collapse
|
3
|
Li Y, Xiong H, Guo H, Xie Y, Zhao L, Gu J, Li H, Zhao S, Ding Y, Zhou C, Fang Z, Liu L. A gain-of-function mutation at the C-terminus of FT-D1 promotes heading by interacting with 14-3-3A and FDL6 in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:20-35. [PMID: 39276323 DOI: 10.1111/pbi.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/17/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024]
Abstract
Vernalization and photoperiod pathways converging at FT1 control the transition to flowering in wheat. Here, we identified a gain-of-function mutation in FT-D1 that results in earlier heading date (HD), and shorter plant height and spike length in the gamma ray-induced eh1 wheat mutant. Knockout of the wild-type and overexpression of the mutated FT-D1 indicate that both alleles are functional to affect HD and plant height. Protein interaction assays demonstrated that the frameshift mutation in FT-D1eh1 exon 3 led to gain-of-function interactions with 14-3-3A and FDL6, thereby enabling the formation of florigen activation complex (FAC) and consequently activating a flowering-related transcriptomic programme. This mutation did not affect FT-D1eh1 interactions with TaNaKR5 or TaFTIP7, both of which could modulate HD, potentially via mediating FT-D1 translocation to the shoot apical meristem. Furthermore, the 'Segment B' external loop is essential for FT-D1 interaction with FDL6, while residue Y85 is required for interactions with TaNaKR5 and TaFTIP7. Finally, the flowering regulatory hub gene, ELF5, was identified as the FT-D1 regulatory target. This study illustrates FT-D1 function in determining wheat HD with a suite of interaction partners and provides genetic resources for tuning HD in elite wheat lines.
Collapse
Affiliation(s)
- Yuting Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Hongchun Xiong
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huijun Guo
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongdun Xie
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Linshu Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiayu Gu
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huiyuan Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shirong Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuping Ding
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunyun Zhou
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhengwu Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Luxiang Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
4
|
Zhang J, Burguener GF, Paraiso F, Dubcovsky J. Natural alleles of LEAFY and WAPO1 interact to regulate spikelet number per spike in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:257. [PMID: 39446157 PMCID: PMC11502542 DOI: 10.1007/s00122-024-04759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE Specific combinations of LFY and WAPO1 natural alleles maximize spikelet number per spike in wheat. Spikelet number per spike (SNS) is an important yield component in wheat that determines the maximum number of grains that can be formed in a wheat spike. In wheat, loss-of-function mutations in LEAFY (LFY) or its interacting protein WHEAT ORTHOLOG OF APO1 (WAPO1) significantly reduce SNS by reducing the rate of formation of spikelet meristems. In previous studies, we identified a natural amino acid change in WAPO1 (C47F) that significantly increases SNS in hexaploid wheat. In this study, we searched for natural variants in LFY that were associated with differences in SNS and detected significant effects in the LFY-B region in a nested association mapping population. We generated a large mapping population and confirmed that the LFY-B polymorphism R80S is linked with the differences in SNS, suggesting that LFY-B is the likely causal gene. A haplotype analysis revealed two amino acid changes P34L and R80S, which were both enriched during wheat domestication and breeding suggesting positive selection. We also explored the interactions between the LFY and WAPO1 natural variants for SNS using biparental populations and identified significant interaction, in which the positive effect of the 80S and 34L alleles from LFY-B was only detected in the WAPO-A1 47F background but not in the 47C background. Based on these results, we propose that the allele combination WAPO-A1-47F/LFY-B 34L 80S can be used in wheat breeding programs to maximize SNS and increase grain yield potential in wheat.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Germán F Burguener
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Francine Paraiso
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
5
|
Ga Z, Gao L, Quzong X, Mu W, Zhuoma P, Taba X, Jiao G, Dondup D, Namgyal L, Sang Z. Metabolomics, phytohormone and transcriptomics strategies to reveal the mechanism of barley heading date regulation to responds different photoperiod. BMC Genomics 2024; 25:879. [PMID: 39300396 DOI: 10.1186/s12864-024-10788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The correlation between heading date and flowering time significantly regulates grain filling and seed formation in barley and other crops, ultimately determining crop productivity. In this study, the transcriptome, hormone content detection, and metabolome analysis were performed systematically to analyze the regulatory mechanism of heading time in highland barley under different light conditions. The heading date of D18 (winter highland barley variety, Dongqing18) was later than that of K13 (vernal highland barley variety) under normal growth conditions or long-day (LD) treatment, while this situation will reverse with short-day (SD) treatment. RESULTS The circadian rhythm plant, plant hormone signaling transduction, starch and sucrose metabolism, and photosynthesis-related pathways are significantly enriched in barley under SD and LD to influence heading time. In the plant circadian rhythm pathway, the key genes GI (Gigantea), PRR (Pesudoresponseregulator), FKF1 (Flavin-binding kelch pepeat F-Box 1), and FT (Flowering locus T) are identified as highly expressed in D18SD3 and K13SD2, while they are significantly down-regulated in K13SD3. These genes play an important role in regulating the heading date of D18 earlier than that of K13 under SD conditions. In photosynthesis-related pathways, a-b binding protein and RBS were highly expressed in K13LD3, while NADP-dependent malic enzyme, phosphoenolpyruvate carboxylase, fructose-bisphosphate aldolase, and triosephosphate isomerase were significantly expressed in D18SD3. In the starch and sucrose metabolism pathway, 41 DEGs (differentially expressed genes) and related metabolites were identified as highly expressed and accumulated in D18SD3. The DEGs SAUR (Small auxin-up RNA), ARF (Auxin response factor), TIR1 (Transport inhibitor response 1), EIN3 (Ethylene-insensitive 3), ERS1 (Ethylene receptor gene), and JAZ1 (Jasmonate ZIM-domain) in the plant hormone pathway were significantly up-regulated in D18SD3. Compared with D18LD3, the content of N6-isopentenyladenine, indole-3-carboxylic acid, 1-aminocyclopropanecarboxylic acid, trans-zeatin, indole-3-carboxaldehyde, 1-O-indol-3-ylacetylglucose, and salicylic acid in D18SD3 also increased. The expression levels of vernalization genes (HvVRN1, HvVRN2, and HvVRN3), photoperiod genes (PPD), and PPDK (Pyruvate phosphate dikinase) that affect photosynthetic efficiency in barley are also analyzed, which play important regulatory roles in barley heading date. The WGCNA analysis of the metabolome data and circadian regulatory genes identified the key metabolites and candidate genes to regulate the heading time of barley in response to the photoperiod. CONCLUSION These studies will provide a reference for the regulation mechanism of flowering and the heading date of highland barley.
Collapse
Affiliation(s)
- Zhuo Ga
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Liyun Gao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Xiruo Quzong
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Wang Mu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Pubu Zhuoma
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Xiongnu Taba
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Guocheng Jiao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Dawa Dondup
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Lhundrup Namgyal
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Zha Sang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China.
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China.
| |
Collapse
|
6
|
Paraiso F, Lin H, Li C, Woods DP, Lan T, Tumelty C, Debernardi JM, Joe A, Dubcovsky J. LEAFY and WAPO1 jointly regulate spikelet number per spike and floret development in wheat. Development 2024; 151:dev202803. [PMID: 39082949 PMCID: PMC11317094 DOI: 10.1242/dev.202803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024]
Abstract
In wheat, the transition of the inflorescence meristem to a terminal spikelet (IM→TS) determines the spikelet number per spike (SNS), an important yield component. In this study, we demonstrate that the plant-specific transcription factor LEAFY (LFY) physically and genetically interacts with WHEAT ORTHOLOG OF APO1 (WAPO1) to regulate SNS and floret development. Loss-of-function mutations in either or both genes result in significant and similar reductions in SNS, as a result of a reduction in the rate of spikelet meristem formation per day. SNS is also modulated by significant genetic interactions between LFY and the SQUAMOSA MADS-box genes VRN1 and FUL2, which promote the IM→TS transition. Single-molecule fluorescence in situ hybridization revealed a downregulation of LFY and upregulation of the SQUAMOSA MADS-box genes in the distal part of the developing spike during the IM→TS transition, supporting their opposite roles in the regulation of SNS in wheat. Concurrently, the overlap of LFY and WAPO1 transcription domains in the developing spikelets contributes to normal floret development. Understanding the genetic network regulating SNS is a necessary first step to engineer this important agronomic trait.
Collapse
Affiliation(s)
- Francine Paraiso
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Daniel P. Woods
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Tianyu Lan
- Institute for Plant Genetics, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Connor Tumelty
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Juan M. Debernardi
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Anna Joe
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
7
|
Colleoni PE, van Es SW, Winkelmolen T, Immink RGH, van Esse GW. Flowering time genes branching out. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4195-4209. [PMID: 38470076 PMCID: PMC11263490 DOI: 10.1093/jxb/erae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Plants are sessile by nature, and as such they have evolved to sense changes in seasonality and their surrounding environment, and adapt to these changes. One prime example of this is the regulation of flowering time in angiosperms, which is precisely timed by the coordinated action of two proteins: FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). Both of these regulators are members of the PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN (PEBP) family of proteins. These regulatory proteins do not interact with DNA themselves, but instead interact with transcriptional regulators, such as FLOWERING LOCUS D (FD). FT and TFL1 were initially identified as key regulators of flowering time, acting through binding with FD; however, PEBP family members are also involved in shaping plant architecture and development. In addition, PEBPs can interact with TCP transcriptional regulators, such as TEOSINTE BRANCHED 1 (TB1), a well-known regulator of plant architecture, and key domestication-related genes in many crops. Here, we review the role of PEBPs in flowering time, plant architecture, and development. As these are also key yield-related traits, we highlight examples from the model plant Arabidopsis as well as important food and feed crops such as, rice, barley, wheat, tomato, and potato.
Collapse
Affiliation(s)
- Pierangela E Colleoni
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Sam W van Es
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Ton Winkelmolen
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - G Wilma van Esse
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
8
|
Zhao JX, Wang S, Wen J, Zhou SZ, Jiang XD, Zhong MC, Liu J, Dong X, Deng Y, Hu JY, Li DZ. Evolution of FLOWERING LOCUS T-like genes in angiosperms: a core Lamiales-specific diversification. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3946-3958. [PMID: 38642399 DOI: 10.1093/jxb/erae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Plant life history is determined by two transitions, germination and flowering time, in which the phosphatidylethanolamine-binding proteins (PEBPs) FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) play key regulatory roles. Compared with the highly conserved TFL1-like genes, FT-like genes vary significantly in copy numbers in gymnosperms, and monocots within the angiosperms, while sporadic duplications can be observed in eudicots. Here, via a systematic analysis of the PEBPs in angiosperms with a special focus on 12 representative species featuring high-quality genomes in the order Lamiales, we identified a successive lineage-specific but systematic expansion of FT-like genes in the families of core Lamiales. The first expansion event generated FT1-like genes mainly via a core Lamiales-specific whole-genome duplication (cL-WGD), while a likely random duplication produced the FT2-like genes in the lineages containing Scrophulariaceae and the rest of the core Lamiales. Both FT1- and FT2-like genes were further amplified tandemly in some families. These expanded FT-like genes featured highly diverged expression patterns and structural variation, indicating functional diversification. Intriguingly, some core Lamiales contained the relict MOTHER OF FT AND TFL1 like 2 (MFT2) that probably expanded in the common ancestor of angiosperms. Our data showcase the highly dynamic lineage-specific expansion of the FT-like genes, and thus provide important and fresh evolutionary insights into the gene regulatory network underpinning flowering time diversity in Lamiales and, more generally, in angiosperms.
Collapse
Affiliation(s)
- Jiu-Xia Zhao
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shu Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Jing Wen
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Zhao Zhou
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Dong Jiang
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Mi-Cai Zhong
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jie Liu
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Dong
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunfei Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Jin-Yong Hu
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
9
|
Li Y, Jin L, Liu X, He C, Bi S, Saeed S, Yan W. Epigenetic control on transcription of vernalization genes and whole-genome gene expression profile induced by vernalization in common wheat. PLANT DIVERSITY 2024; 46:386-394. [PMID: 38798730 PMCID: PMC11119517 DOI: 10.1016/j.pld.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 02/27/2024] [Indexed: 05/29/2024]
Abstract
Vernalization is necessary for winter wheat to flower. However, it is unclear whether vernalization is also required for spring wheat, which is frequently sown in fall, and what molecular mechanisms underlie the vernalization response in wheat varieties. In this study, we examined the molecular mechanisms that regulate vernalization response in winter and spring wheat varieties. For this purpose, we determined how major vernalization genes (VRN1, VRN2, and VRN3) respond to vernalization in these varieties and whether modifications to histones play a role in changes in gene expression. We also identified genes that are differentially regulated in response to vernalization in winter and spring wheat varieties. We found that in winter wheat, but not in spring wheat, VRN1 expression decreases when returned to warm temperature following vernalization. This finding may be associated with differences between spring and winter wheat in the levels of tri-methylation of lysine 27 on histone H3 (H3K27me3) and tri-methylation of lysine 4 on histone H3 (H3K4me3) at the VRN1 gene. Analysis of winter wheat transcriptomes before and after vernalization revealed that vernalization influences the expression of several genes, including those involved in leucine catabolism, cysteine biosynthesis, and flavonoid biosynthesis. These findings provide new candidates for further study on the mechanism of vernalization regulation in wheat.
Collapse
Affiliation(s)
- Yunzhen Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liujie Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Siteng Bi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Sulaiman Saeed
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Tsuji H, Sato M. The Function of Florigen in the Vegetative-to-Reproductive Phase Transition in and around the Shoot Apical Meristem. PLANT & CELL PHYSIOLOGY 2024; 65:322-337. [PMID: 38179836 PMCID: PMC11020210 DOI: 10.1093/pcp/pcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Plants undergo a series of developmental phases throughout their life-cycle, each characterized by specific processes. Three critical features distinguish these phases: the arrangement of primordia (phyllotaxis), the timing of their differentiation (plastochron) and the characteristics of the lateral organs and axillary meristems. Identifying the unique molecular features of each phase, determining the molecular triggers that cause transitions and understanding the molecular mechanisms underlying these transitions are keys to gleaning a complete understanding of plant development. During the vegetative phase, the shoot apical meristem (SAM) facilitates continuous leaf and stem formation, with leaf development as the hallmark. The transition to the reproductive phase induces significant changes in these processes, driven mainly by the protein FT (FLOWERING LOCUS T) in Arabidopsis and proteins encoded by FT orthologs, which are specified as 'florigen'. These proteins are synthesized in leaves and transported to the SAM, and act as the primary flowering signal, although its impact varies among species. Within the SAM, florigen integrates with other signals, culminating in developmental changes. This review explores the central question of how florigen induces developmental phase transition in the SAM. Future research may combine phase transition studies, potentially revealing the florigen-induced developmental phase transition in the SAM.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Bioscience and Biotechnology Center, Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
11
|
Glenn P, Woods DP, Zhang J, Gabay G, Odle N, Dubcovsky J. Wheat bZIPC1 interacts with FT2 and contributes to the regulation of spikelet number per spike. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:237. [PMID: 37906302 PMCID: PMC10618405 DOI: 10.1007/s00122-023-04484-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
KEY MESSAGE The wheat transcription factor bZIPC1 interacts with FT2 and affects spikelet and grain number per spike. We identified a natural allele with positive effects on these two economically important traits. Loss-of-function mutations and natural variation in the gene FLOWERING LOCUS T2 (FT2) in wheat have previously been shown to affect spikelet number per spike (SNS). However, while other FT-like wheat proteins interact with bZIP-containing transcription factors from the A-group, FT2 does not interact with any of them. In this study, we used a yeast-two-hybrid screen with FT2 as bait and identified a grass-specific bZIP-containing transcription factor from the C-group, designated here as bZIPC1. Within the C-group, we identified four clades including wheat proteins that show Y2H interactions with different sets of FT-like and CEN-like encoded proteins. bZIPC1 and FT2 expression partially overlap in the developing spike, including the inflorescence meristem. Combined loss-of-function mutations in bZIPC-A1 and bZIPC-B1 (bzipc1) in tetraploid wheat resulted in a drastic reduction in SNS with a limited effect on heading date. Analysis of natural variation in the bZIPC-B1 (TraesCS5B02G444100) region revealed three major haplotypes (H1-H3), with the H1 haplotype showing significantly higher SNS, grain number per spike and grain weight per spike than both the H2 and H3 haplotypes. The favorable effect of the H1 haplotype was also supported by its increased frequency from the ancestral cultivated tetraploids to the modern tetraploid and hexaploid wheat varieties. We developed markers for the two non-synonymous SNPs that differentiate the bZIPC-B1b allele in the H1 haplotype from the ancestral bZIPC-B1a allele present in all other haplotypes. These diagnostic markers are useful tools to accelerate the deployment of the favorable bZIPC-B1b allele in pasta and bread wheat breeding programs.
Collapse
Affiliation(s)
- Priscilla Glenn
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Daniel P Woods
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Junli Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Gilad Gabay
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Natalie Odle
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
12
|
Chepurnov GY, Ovchinnikova ES, Blinov AG, Chikida NN, Belousova MK, Goncharov NP. Analysis of the Structural Organization and Expression of the Vrn-D1 Gene Controlling Growth Habit (Spring vs. Winter) in Aegilops tauschii Coss. PLANTS (BASEL, SWITZERLAND) 2023; 12:3596. [PMID: 37896059 PMCID: PMC10610194 DOI: 10.3390/plants12203596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
The duration of the vegetative period is an important agronomic characteristic of cereal crops. It is mainly influenced by the Vrn (response to vernalization) and Ppd (response to photoperiod) genes. In this work, we searched for alleles of several known genes of these two systems of response to external conditions in 15 accessions of Aegilops tauschii Coss. (syn. Ae. squarrosa L.), with the aim of studying the impact these alleles have on the vegetative period duration and growth habit. As a result, three allelic variants have been found for the Vrn-D1 gene: (i) one intact (winter type), (ii) one with a 5437 bp deletion in the first intron and (iii) one previously undescribed allele with a 3273 bp deletion in the first intron. It has been shown that the spring growth habit of Ae. tauschii can be developed due to the presence of a new allele of the Vrn-D1 gene. Significant differences in expression levels between the new allelic variant of the Vrn-D1 gene and the intact allele vrn-D1 were confirmed by qPCR. The new allele can be introgressed into common wheat to enhance the biodiversity of the spring growth habit and vegetative period duration of plants.
Collapse
Affiliation(s)
- Grigory Yurievich Chepurnov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Ekaterina Sergeevna Ovchinnikova
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Alexander Genadevich Blinov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Nadezhda Nikolaevna Chikida
- Division of Wheat Genetic Resources, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia;
| | - Mariya Khasbulatovna Belousova
- Wheat Laboratory, Dagestan Experimental Station—The Branch of the Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Vavilovo Village, Derbent District, 368600 Saint Petersburg, Russia;
| | - Nikolay Petrovich Goncharov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| |
Collapse
|
13
|
Liu S, Chen S, Zhou Y, Shen Y, Qin Z, Wu L. VERNALIZATION1 represses FLOWERING PROMOTING FACTOR1-LIKE1 in leaves for timely flowering in Brachypodium distachyon. THE PLANT CELL 2023; 35:3697-3711. [PMID: 37378548 PMCID: PMC10533335 DOI: 10.1093/plcell/koad190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
FLOWERING PROMOTING FACTOR1 (FPF1), a small protein without any known domains, promotes flowering in several plants; however, its functional mechanism remains unknown. Here, we characterized 2 FPF1-like proteins, FPL1 and FPL7, which, in contrast, function as flowering repressors in Brachypodium distachyon. FPL1 and FPL7 interact with the components of the florigen activation complex (FAC) and inhibit FAC activity to restrict expression of its critical target, VERNALIZATION1 (VRN1), in leaves, thereby preventing overaccumulation of FLOWERING LOCUS T1 (FT1) at the juvenile stage. Further, VRN1 can directly bind to the FPL1 promoter and repress FPL1 expression; hence, as VRN1 gradually accumulates during the late vegetative stage, FAC is released. This accurate feedback regulation of FPL1 by VRN1 allows proper FT1 expression in leaves and ensures sufficient FAC formation in shoot apical meristems to trigger timely flowering. Overall, we define a sophisticated modulatory loop for flowering initiation in a temperate grass, providing insights toward resolving the molecular basis underlying fine-tuning flowering time in plants.
Collapse
Affiliation(s)
- Shu Liu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Siyi Chen
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yang Zhou
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuxin Shen
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhengrui Qin
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liang Wu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
14
|
Vicentini G, Biancucci M, Mineri L, Chirivì D, Giaume F, Miao Y, Kyozuka J, Brambilla V, Betti C, Fornara F. Environmental control of rice flowering time. PLANT COMMUNICATIONS 2023; 4:100610. [PMID: 37147799 PMCID: PMC10504588 DOI: 10.1016/j.xplc.2023.100610] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023]
Abstract
Correct measurement of environmental parameters is fundamental for plant fitness and survival, as well as for timing developmental transitions, including the switch from vegetative to reproductive growth. Important parameters that affect flowering time include day length (photoperiod) and temperature. Their response pathways have been best described in Arabidopsis, which currently offers a detailed conceptual framework and serves as a comparison for other species. Rice, the focus of this review, also possesses a photoperiodic flowering pathway, but 150 million years of divergent evolution in very different environments have diversified its molecular architecture. The ambient temperature perception pathway is strongly intertwined with the photoperiod pathway and essentially converges on the same genes to modify flowering time. When observing network topologies, it is evident that the rice flowering network is centered on EARLY HEADING DATE 1, a rice-specific transcriptional regulator. Here, we summarize the most important features of the rice photoperiodic flowering network, with an emphasis on its uniqueness, and discuss its connections with hormonal, temperature perception, and stress pathways.
Collapse
Affiliation(s)
- Giulio Vicentini
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Marco Biancucci
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Lorenzo Mineri
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Daniele Chirivì
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Francesca Giaume
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Yiling Miao
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Vittoria Brambilla
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Camilla Betti
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Fabio Fornara
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
15
|
Liu B, Wu W, Cui L, Zheng X, Li N, Zhang X, Duan G. A novel co-target of ACY1 governing plasma membrane translocation of SphK1 contributes to inflammatory and neuropathic pain. iScience 2023; 26:106989. [PMID: 37378314 PMCID: PMC10291574 DOI: 10.1016/j.isci.2023.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Previous studies validate that inhibiting sodium channel 1.8 (Nav1.8) effectively relieves inflammatory and neuropathic pain. However, Nav1.8 blockers have cardiac side effects in addition to analgesic effects. Here, we constructed a spinal differential protein expression profile using Nav1.8 knockout mice to screen common downstream proteins of Nav1.8 in inflammatory and neuropathic pain. We found that aminoacylase 1 (ACY1) expression was increased in wild-type mice compared to Nav1.8 knockout mice in both pain models. Moreover, spinal ACY1 overexpression induced mechanical allodynia in naive mice, while ACY1 suppression alleviated inflammatory and neuropathic pain. Further, ACY1 could interact with sphingosine kinase 1 and promote its membrane translocation, resulting in sphingosine-1-phosphate upregulation and the activation of glutamatergic neurons and astrocytes. In conclusion, ACY1 acts as a common downstream effector protein of Nav1.8 in inflammatory and neuropathic pain and could be a new and precise therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Baowen Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyao Wu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - LingLing Cui
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Wuhan third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xuemei Zheng
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ningbo Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Li Y, Xiong H, Guo H, Zhou C, Fu M, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Wang C, Irshad A, Liu L, Fang Z. Fine mapping and genetic analysis identified a C 2H 2-type zinc finger as a candidate gene for heading date regulation in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:140. [PMID: 37243757 DOI: 10.1007/s00122-023-04363-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/08/2023] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE A minor-effect QTL, Qhd.2AS, that affects heading date in wheat was mapped to a genomic interval of 1.70-Mb on 2AS, and gene analysis indicated that the C2H2-type zinc finger protein gene TraesCS2A02G181200 is the best candidate for Qhd.2AS. Heading date (HD) is a complex quantitative trait that determines the regional adaptability of cereal crops, and identifying the underlying genetic elements with minor effects on HD is important for improving wheat production in diverse environments. In this study, a minor QTL for HD that we named Qhd.2AS was detected on the short arm of chromosome 2A by Bulked Segregant Analysis and validated in a recombinant inbred population. Using a segregating population of 4894 individuals, Qhd.2AS was further delimited to an interval of 0.41 cM, corresponding to a genomic region spanning 1.70 Mb (from 138.87 to 140.57 Mb) that contains 16 high-confidence genes based on IWGSC RefSeq v1.0. Analyses of sequence variations and gene transcription indicated that TraesCS2A02G181200, which encodes a C2H2-type zinc finger protein, is the best candidate gene for Qhd.2AS that influences HD. Screening a TILLING mutant library identified two mutants with premature stop codons in TraesCS2A02G181200, both of which exhibited a delay in HD of 2-4 days. Additionally, variations in its putative regulatory sites were widely present in natural accession, and we also identified the allele which was positively selected during wheat breeding. Epistatic analyses indicated that Qhd.2AS-mediated HD variation is independent of VRN-B1 and environmental factors. Phenotypic investigation of homozygous recombinant inbred lines (RILs) and F2:3 families showed that Qhd.2AS has no negative effect on yield-related traits. These results provide important cues for refining HD and therefore improving yield in wheat breeding programs and will deepen our understanding of the genetic regulation of HD in cereal plants.
Collapse
Affiliation(s)
- Yuting Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongchun Xiong
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijun Guo
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyun Zhou
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiyu Fu
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongdun Xie
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Zhao
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiayu Gu
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shirong Zhao
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuping Ding
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaojie Wang
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ahsan Irshad
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Luxiang Liu
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhengwu Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
17
|
Alvarez MA, Li C, Lin H, Joe A, Padilla M, Woods DP, Dubcovsky J. EARLY FLOWERING 3 interactions with PHYTOCHROME B and PHOTOPERIOD1 are critical for the photoperiodic regulation of wheat heading time. PLoS Genet 2023; 19:e1010655. [PMID: 37163495 PMCID: PMC10171656 DOI: 10.1371/journal.pgen.1010655] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/04/2023] [Indexed: 05/12/2023] Open
Abstract
The photoperiodic response is critical for plants to adjust their reproductive phase to the most favorable season. Wheat heads earlier under long days (LD) than under short days (SD) and this difference is mainly regulated by the PHOTOPERIOD1 (PPD1) gene. Tetraploid wheat plants carrying the Ppd-A1a allele with a large deletion in the promoter head earlier under SD than plants carrying the wildtype Ppd-A1b allele with an intact promoter. Phytochromes PHYB and PHYC are necessary for the light activation of PPD1, and mutations in either of these genes result in the downregulation of PPD1 and very late heading time. We show here that both effects are reverted when the phyB mutant is combined with loss-of-function mutations in EARLY FLOWERING 3 (ELF3), a component of the Evening Complex (EC) in the circadian clock. We also show that the wheat ELF3 protein interacts with PHYB and PHYC, is rapidly modified by light, and binds to the PPD1 promoter in planta (likely as part of the EC). Deletion of the ELF3 binding region in the Ppd-A1a promoter results in PPD1 upregulation at dawn, similar to PPD1 alleles with intact promoters in the elf3 mutant background. The upregulation of PPD1 is correlated with the upregulation of the florigen gene FLOWERING LOCUS T1 (FT1) and early heading time. Loss-of-function mutations in PPD1 result in the downregulation of FT1 and delayed heading, even when combined with the elf3 mutation. Taken together, these results indicate that ELF3 operates downstream of PHYB as a direct transcriptional repressor of PPD1, and that this repression is relaxed both by light and by the deletion of the ELF3 binding region in the Ppd-A1a promoter. In summary, the regulation of the light mediated activation of PPD1 by ELF3 is critical for the photoperiodic regulation of wheat heading time.
Collapse
Affiliation(s)
- Maria Alejandra Alvarez
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Anna Joe
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Mariana Padilla
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Daniel P Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
18
|
Zhu Z, Esche F, Babben S, Trenner J, Serfling A, Pillen K, Maurer A, Quint M. An exotic allele of barley EARLY FLOWERING 3 contributes to developmental plasticity at elevated temperatures. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2912-2931. [PMID: 36449391 DOI: 10.1093/jxb/erac470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/28/2022] [Indexed: 06/06/2023]
Abstract
Increase in ambient temperatures caused by climate change affects various morphological and developmental traits of plants, threatening crop yield stability. In the model plant Arabidopsis thaliana, EARLY FLOWERING 3 (ELF3) plays prominent roles in temperature sensing and thermomorphogenesis signal transduction. However, how crop species respond to elevated temperatures is poorly understood. Here, we show that the barley ortholog of AtELF3 interacts with high temperature to control growth and development. We used heterogeneous inbred family (HIF) pairs generated from a segregating mapping population and systematically studied the role of exotic ELF3 variants in barley temperature responses. An exotic ELF3 allele of Syrian origin promoted elongation growth in barley at elevated temperatures, whereas plant area and estimated biomass were drastically reduced, resulting in an open canopy architecture. The same allele accelerated inflorescence development at high temperature, which correlated with early transcriptional induction of MADS-box floral identity genes BM3 and BM8. Consequently, barley plants carrying the exotic ELF3 allele displayed stable total grain number at elevated temperatures. Our findings therefore demonstrate that exotic ELF3 variants can contribute to phenotypic and developmental acclimation to elevated temperatures, providing a stimulus for breeding of climate-resilient crops.
Collapse
Affiliation(s)
- Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Finn Esche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Steve Babben
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Albrecht Serfling
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin-Baur-Str. 27, D-06484, Quedlinburg, Germany
| | - Klaus Pillen
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Andreas Maurer
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Puschstrasse 4, D-04103, Leipzig, Germany
| |
Collapse
|
19
|
Ye LX, Wu YM, Zhang JX, Zhang JX, Zhou H, Zeng RF, Zheng WX, Qiu MQ, Zhou JJ, Xie ZZ, Hu CG, Zhang JZ. A bZIP transcription factor (CiFD) regulates drought- and low-temperature-induced flowering by alternative splicing in citrus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:674-691. [PMID: 36250511 DOI: 10.1111/jipb.13390] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/13/2022] [Indexed: 05/20/2023]
Abstract
Drought and low temperature are two key environmental factors that induce adult citrus flowering. However, the underlying regulation mechanism is poorly understood. The bZIP transcription factor FD is a key component of the florigen activation complex (FAC) which is composed of FLOWERING LOCUS T (FT), FD, and 14-3-3 proteins. In this study, isolation and characterization of CiFD in citrus found that there was alternative splicing (AS) of CiFD, forming two different proteins (CiFDα and CiFDβ). Further investigation found that their expression patterns were similar in different tissues of citrus, but the subcellular localization and transcriptional activity were different. Overexpression of the CiFD DNA sequence (CiFD-DNA), CiFDα, or CiFDβ in tobacco and citrus showed early flowering, and CiFD-DNA transgenic plants were the earliest, followed by CiFDβ and CiFDα. Interestingly, CiFDα and CiFDβ were induced by low temperature and drought, respectively. Further analysis showed that CiFDα can form a FAC complex with CiFT, Ci14-3-3, and then bind to the citrus APETALA1 (CiAP1) promoter and promote its expression. However, CiFDβ can directly bind to the CiAP1 promoter independently of CiFT and Ci14-3-3. These results showed that CiFDβ can form a more direct and simplified pathway that is independent of the FAC complex to regulate drought-induced flowering through AS. In addition, a bHLH transcription factor (CibHLH96) binds to CiFD promoter and promotes the expression of CiFD under drought condition. Transgenic analysis found that CibHLH96 can promote flowering in transgenic tobacco. These results suggest that CiFD is involved in drought- and low-temperature-induced citrus flowering through different regulatory patterns.
Collapse
Affiliation(s)
- Li-Xia Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yan-Mei Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Xia Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Xin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei-Xuan Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Qi Qiu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Jing Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zong-Zhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
20
|
A Fijivirus Major Viroplasm Protein Shows RNA-Stimulated ATPase Activity by Adopting Pentameric and Hexameric Assemblies of Dimers. mBio 2023; 14:e0002323. [PMID: 36786587 PMCID: PMC10128069 DOI: 10.1128/mbio.00023-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Fijiviruses replicate and package their genomes within viroplasms in a process involving RNA-RNA and RNA-protein interactions. Here, we demonstrate that the 24 C-terminal residues (C-arm) of the P9-1 major viroplasm protein of the mal de Río Cuarto virus (MRCV) are required for its multimerization and the formation of viroplasm-like structures. Using an integrative structural approach, the C-arm was found to be dispensable for P9-1 dimer assembly but essential for the formation of pentamers and hexamers of dimers (decamers and dodecamers), which favored RNA binding. Although both P9-1 and P9-1ΔC-arm catalyzed ATP with similar activities, an RNA-stimulated ATPase activity was only detected in the full-length protein, indicating a C-arm-mediated interaction between the ATP catalytic site and the allosteric RNA binding sites in the (do)decameric assemblies. A stronger preference to bind phosphate moieties in the decamer was predicted, suggesting that the allosteric modulation of ATPase activity by RNA is favored in this structural conformation. Our work reveals the structural versatility of a fijivirus major viroplasm protein and provides clues to its mechanism of action. IMPORTANCE The mal de Río Cuarto virus (MRCV) causes an important maize disease in Argentina. MRCV replicates in several species of Gramineae plants and planthopper vectors. The viral factories, also called viroplasms, have been studied in detail in animal reovirids. This work reveals that a major viroplasm protein of MRCV forms previously unidentified structural arrangements and provides evidence that it may simultaneously adopt two distinct quaternary assemblies. Furthermore, our work uncovers an allosteric communication between the ATP and RNA binding sites that is favored in the multimeric arrangements. Our results contribute to the understanding of plant reovirids viroplasm structure and function and pave the way for the design of antiviral strategies for disease control.
Collapse
|
21
|
Chirivì D, Betti C. Molecular Links between Flowering and Abiotic Stress Response: A Focus on Poaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:331. [PMID: 36679044 PMCID: PMC9866591 DOI: 10.3390/plants12020331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Extreme temperatures, drought, salinity and soil pollution are the most common types of abiotic stresses crops can encounter in fields; these variations represent a general warning to plant productivity and survival, being more harmful when in combination. Plant response to such conditions involves the activation of several molecular mechanisms, starting from perception to signaling, transcriptional reprogramming and protein modifications. This can influence the plant's life cycle and development to different extents. Flowering developmental transition is very sensitive to environmental stresses, being critical to reproduction and to agricultural profitability for crops. The Poacee family contains some of the most widespread domesticated plants, such as wheat, barley and rice, which are commonly referred to as cereals and represent a primary food source. In cultivated Poaceae, stress-induced modifications of flowering time and development cause important yield losses by directly affecting seed production. At the molecular level, this reflects important changes in gene expression and protein activity. Here, we present a comprehensive overview on the latest research investigating the molecular pathways linking flowering control to osmotic and temperature extreme conditions in agronomically relevant monocotyledons. This aims to provide hints for biotechnological strategies that can ensure agricultural stability in ever-changing climatic conditions.
Collapse
|
22
|
Liu H, Liu X, Chang X, Chen F, Lin Z, Zhang L. Large-scale analyses of angiosperm Flowering Locus T genes reveal duplication and functional divergence in monocots. FRONTIERS IN PLANT SCIENCE 2023; 13:1039500. [PMID: 36684773 PMCID: PMC9847362 DOI: 10.3389/fpls.2022.1039500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
FLOWERING LOCUS T (FT) are well-known key genes for initiating flowering in plants. Delineating the evolutionary history and functional diversity of FT genes is important for understanding the diversification of flowering time and how plants adapt to the changing surroundings. We performed a comprehensive phylogenetic analysis of FT genes in 47 sequenced flowering plants and the 1,000 Plant Transcriptomes (1KP) database with a focus on monocots, especially cereals. We revealed the evolutionary history of FT genes. The FT genes in monocots can be divided into three clades (I, II, and III), whereas only one monophyletic group was detected in early angiosperms, magnoliids, and eudicots. Multiple rounds of whole-genome duplications (WGD) events followed by gene retention contributed to the expansion and variation of FT genes in monocots. Amino acid sites in the clade II and III genes were preferentially under high positive selection, and some sites located in vital domain regions are known to change functions when mutated. Clade II and clade III genes exhibited high variability in important regions and functional divergence compared with clade I genes; thus, clade I is more conserved than clade II and III. Genes in clade I displayed higher expression levels in studied organs and tissues than the clade II and III genes. The co-expression modules showed that some of the FT genes might have experienced neofunctionalization and subfunctionalization, such as the acquisition of environmental resistance. Overall, FT genes in monocots might form three clades by the ancient gene duplication, and each clade was subsequently subjected to different selection pressures and amino acid substitutions, which eventually led to different expression patterns and functional diversification. Our study provides a global picture of FT genes' evolution in monocots, paving a road for investigating FT genes' function in future.
Collapse
Affiliation(s)
- Hongling Liu
- Hainan Institute of Zhejiang University, Sanya, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xing Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojun Chang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fei Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St Louis, MO, United States
| | - Liangsheng Zhang
- Hainan Institute of Zhejiang University, Sanya, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
|
24
|
Jing S, Sun X, Yu L, Wang E, Cheng Z, Liu H, Jiang P, Qin J, Begum S, Song B. Transcription factor StABI5-like 1 binding to the FLOWERING LOCUS T homologs promotes early maturity in potato. PLANT PHYSIOLOGY 2022; 189:1677-1693. [PMID: 35258599 PMCID: PMC9237700 DOI: 10.1093/plphys/kiac098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/26/2022] [Indexed: 05/06/2023]
Abstract
Potato (Solanum tuberosum L.) maturity involves several important traits, including the onset of tuberization, flowering, leaf senescence, and the length of the plant life cycle. The timing of flowering and tuberization in potato is mediated by seasonal fluctuations in photoperiod and is thought to be separately controlled by the FLOWERING LOCUS T-like (FT-like) genes SELF-PRUNING 3D (StSP3D) and SELF-PRUNING 6A (StSP6A). However, the biological relationship between these morphological transitions that occur almost synchronously remains unknown. Here, we show that StABI5-like 1 (StABL1), a transcription factor central to abscisic acid (ABA) signaling, is a binding partner of StSP3D and StSP6A, forming an alternative florigen activation complex and alternative tuberigen activation complex in a 14-3-3-dependent manner. Overexpression of StABL1 results in the early initiation of flowering and tuberization as well as a short life cycle. Using genome-wide chromatin immunoprecipitation sequencing and RNA-sequencing, we demonstrate that AGAMOUS-like and GA 2-oxidase 1 genes are regulated by StABL1. Phytohormone profiling indicates an altered gibberellic acid (GA) metabolism and that StABL1-overexpressing plants are insensitive to the inhibitory effect of GA with respect to tuberization. Collectively, our results suggest that StABL1 functions with FT-like genes to promote flowering and tuberization and consequently life cycle length in potato, providing insight into the pleiotropic functioning of the FT gene.
Collapse
Affiliation(s)
- Shenglin Jing
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaomeng Sun
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Liu Yu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Enshuang Wang
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhengnan Cheng
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huimin Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Jiang
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jun Qin
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shahnewaz Begum
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | |
Collapse
|
25
|
Genomic Survey of PEBP Gene Family in Rice: Identification, Phylogenetic Analysis, and Expression Profiles in Organs and under Abiotic Stresses. PLANTS 2022; 11:plants11121576. [PMID: 35736727 PMCID: PMC9228618 DOI: 10.3390/plants11121576] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Phosphatidylethanolamine-binding-protein (PEBP) domain-containing proteins play important roles in multiple developmental processes of plants; however, functions of few members in the PEBP gene family have been elucidated in rice and other crops. In this study, we found that twenty OsPEBPs genes identified in rice are not evenly distributed on the chromosomes. Four colinear pairs are identified, suggesting the duplication of OsPEBPs during evolution. The OsPEBPs are classified into six subgroups by phylogenetic analysis. The structure of all the OsPEBP genes and encoded proteins are similar. The 262 PEBP domain-containing proteins from crops are divided into six groups. The number of colinear pairs varies between rice and other crops. More than thirty cis-acting elements in the promoter region of OsPEBPs are discovered. Expression profiles of OsPEBP genes are differential. Most of the OsPEBPs expression can be regulated by NaCl, ABA, JA, and light, indicating that OsPEBPs may be involved in the control of the response to the environmental signals. These results lay sound foundation to further explore their functions in development of rice and crops.
Collapse
|
26
|
Moraes TS, Immink RGH, Martinelli AP, Angenent GC, van Esse W, Dornelas MC. Passiflora organensis FT/TFL1 gene family and their putative roles in phase transition and floral initiation. PLANT REPRODUCTION 2022; 35:105-126. [PMID: 34748087 DOI: 10.1007/s00497-021-00431-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Comprehensive analysis of the FT/TFL1 gene family in Passiflora organensis results in understanding how these genes might be involved in the regulation of the typical plant architecture presented by Passiflora species. Passion fruit (Passiflora spp) is an economic tropical fruit crop, but there is hardly any knowledge available about the molecular control of phase transition and flower initiation in this species. The florigen agent FLOWERING LOCUS T (FT) interacts with the bZIP protein FLOWERING LOCUS D (FD) to induce flowering in the model species Arabidopsis thaliana. Current models based on research in rice suggest that this interaction is bridged by 14-3-3 proteins. We identified eight FT/TFL1 family members in Passiflora organensis and characterized them by analyzing their phylogeny, gene structure, expression patterns, protein interactions and putative biological roles by heterologous expression in Arabidopsis. PoFT was highest expressed during the adult vegetative phase and it is supposed to have an important role in flowering induction. In contrast, its paralogs PoTSFs were highest expressed in the reproductive phase. While ectopic expression of PoFT in transgenic Arabidopsis plants induced early flowering and inflorescence determinacy, the ectopic expression of PoTSFa caused a delay in flowering. PoTFL1-like genes were highest expressed during the juvenile phase and their ectopic expression caused delayed flowering in Arabidopsis. Our protein-protein interaction studies indicate that the flowering activation complexes in Passiflora might deviate from the hexameric complex found in the model system rice. Our results provide insights into the potential functions of FT/TFL1 gene family members during floral initiation and their implications in the special plant architecture of Passiflora species, contributing to more detailed studies on the regulation of passion fruit reproduction.
Collapse
Affiliation(s)
- Tatiana S Moraes
- Plant Biotechnology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
| | - Richard G H Immink
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Adriana P Martinelli
- Plant Biotechnology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Gerco C Angenent
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Wilma van Esse
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Marcelo C Dornelas
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
27
|
Debernardi JM, Woods DP, Li K, Li C, Dubcovsky J. MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat. PLoS Genet 2022; 18:e1010157. [PMID: 35468125 PMCID: PMC9037917 DOI: 10.1371/journal.pgen.1010157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022] Open
Abstract
Plants possess regulatory mechanisms that allow them to flower under conditions that maximize reproductive success. Selection of natural variants affecting those mechanisms has been critical in agriculture to modulate the flowering response of crops to specific environments and to increase yield. In the temperate cereals, wheat and barley, the photoperiod and vernalization pathways explain most of the natural variation in flowering time. However, other pathways also participate in fine-tuning the flowering response. In this work, we integrate the conserved microRNA miR172 and its targets APETALA2-like (AP2L) genes into the temperate grass flowering network involving VERNALIZATION 1 (VRN1), VRN2 and FLOWERING LOCUS T 1 (FT1 = VRN3) genes. Using mutants, transgenics and different growing conditions, we show that miR172 promotes flowering in wheat, while its target genes AP2L1 (TaTOE1) and AP2L5 (Q) act as flowering repressors. Moreover, we reveal that the miR172-AP2L pathway regulates FT1 expression in the leaves, and that this regulation is independent of VRN2 and VRN1. In addition, we show that the miR172-AP2L module and flowering are both controlled by plant age through miR156 in spring cultivars. However, in winter cultivars, flowering and the regulation of AP2L1 expression are decoupled from miR156 downregulation with age, and induction of VRN1 by vernalization is required to repress AP2L1 in the leaves and promote flowering. Interestingly, the levels of miR172 and both AP2L genes modulate the flowering response to different vernalization treatments in winter cultivars. In summary, our results show that conserved and grass specific gene networks interact to modulate the flowering response, and that natural or induced mutations in AP2L genes are useful tools for fine-tuning wheat flowering time in a changing environment.
Collapse
Affiliation(s)
- Juan M. Debernardi
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Daniel P. Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Kun Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
28
|
Glenn P, Zhang J, Brown-Guedira G, DeWitt N, Cook JP, Li K, Akhunov E, Dubcovsky J. Identification and characterization of a natural polymorphism in FT-A2 associated with increased number of grains per spike in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:679-692. [PMID: 34825926 PMCID: PMC8866389 DOI: 10.1007/s00122-021-03992-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 05/16/2023]
Abstract
We discovered a natural FT-A2 allele that increases grain number per spike in both pasta and bread wheat with limited effect on heading time. Increases in wheat grain yield are necessary to meet future global food demands. A previous study showed that loss-of-function mutations in FLOWERING LOCUS T2 (FT2) increase spikelet number per spike (SNS), an important grain yield component. However, these mutations were also associated with reduced fertility, offsetting the beneficial effect of the increases in SNS on grain number. Here, we report a natural mutation resulting in an aspartic acid to alanine change at position 10 (D10A) associated with significant increases in SNS and no negative effects on fertility. Using a high-density genetic map, we delimited the SNS candidate region to a 5.2-Mb region on chromosome 3AS including 28 genes. Among them, only FT-A2 showed a non-synonymous polymorphism (D10A) present in two different populations segregating for the SNS QTL on chromosome arm 3AS. These results, together with the known effect of the ft-A2 mutations on SNS, suggest that variation in FT-A2 is the most likely cause of the observed differences in SNS. We validated the positive effects of the A10 allele on SNS, grain number, and grain yield per spike in near-isogenic tetraploid wheat lines and in an hexaploid winter wheat population. The A10 allele is present at very low frequency in durum wheat and at much higher frequency in hexaploid wheat, particularly in winter and fall-planted spring varieties. These results suggest that the FT-A2 A10 allele may be particularly useful for improving grain yield in durum wheat and fall-planted common wheat varieties.
Collapse
Affiliation(s)
- Priscilla Glenn
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Junli Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | | | - Noah DeWitt
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jason P Cook
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Kun Li
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
29
|
Li K, Debernardi JM, Li C, Lin H, Zhang C, Jernstedt J, von Korff M, Zhong J, Dubcovsky J. Interactions between SQUAMOSA and SHORT VEGETATIVE PHASE MADS-box proteins regulate meristem transitions during wheat spike development. THE PLANT CELL 2021; 33:3621-3644. [PMID: 34726755 PMCID: PMC8643710 DOI: 10.1093/plcell/koab243] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 05/20/2023]
Abstract
Inflorescence architecture is an important determinant of crop productivity. The number of spikelets produced by the wheat inflorescence meristem (IM) before its transition to a terminal spikelet (TS) influences the maximum number of grains per spike. Wheat MADS-box genes VERNALIZATION 1 (VRN1) and FRUITFULL 2 (FUL2) (in the SQUAMOSA-clade) are essential to promote the transition from IM to TS and for spikelet development. Here we show that SQUAMOSA genes contribute to spikelet identity by repressing MADS-box genes VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2), SHORT VEGETATIVE PHASE 1 (SVP1), and SVP3 in the SVP clade. Constitutive expression of VRT2 resulted in leafy glumes and lemmas, reversion of spikelets to spikes, and downregulation of MADS-box genes involved in floret development, whereas the vrt2 mutant reduced vegetative characteristics in spikelets of squamosa mutants. Interestingly, the vrt2 svp1 mutant showed similar phenotypes to squamosa mutants regarding heading time, plant height, and spikelets per spike, but it exhibited unusual axillary inflorescences in the elongating stem. We propose that SQUAMOSA-SVP interactions are important to promote heading, formation of the TS, and stem elongation during the early reproductive phase, and that downregulation of SVP genes is then necessary for normal spikelet and floral development. Manipulating SVP and SQUAMOSA genes can contribute to engineering spike architectures with improved productivity.
Collapse
Affiliation(s)
| | | | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Chaozhong Zhang
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Judy Jernstedt
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Maria von Korff
- Institute for Plant Genetics, Heinrich Heine University, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Sciences “SMART Plants for Tomorrow’s Needs”, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Jinshun Zhong
- Institute for Plant Genetics, Heinrich Heine University, Düsseldorf 40225, Germany
| | | |
Collapse
|
30
|
Cai F, Shao C, Zhang Y, Shi G, Bao Z, Bao M, Zhang J. Two FD homologs from London plane (Platanus acerifolia) are associated with floral initiation and flower morphology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110971. [PMID: 34315589 DOI: 10.1016/j.plantsci.2021.110971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The flowering-time gene FD encodes a bZIP transcription factor that interacts with FLOWERING LOCUS T (FT) to induce flowering in Arabidopsis. Previous research has identified two FT homologs of Platanus acerifolia, PaFT and PaFTL, which each have different expression patterns and are involved in diverse developmental processes. However, it is not known whether such FT/FD complexes participate in the flowering processes in P. acerifolia. Therefore, we isolated two closely related FD homologs, PaFDL1 and PaFDL2, and investigated their functions through the analysis of expression profiles, transgenic phenotypes, their interactions with different FT proteins, and potential cis-regulatory elements in their promoters. The PaFDL genes were found to display their maximal expression levels during the stage of floral transition, and subsequent expression patterns were also seen to be related to inflorescence developmental stage. In addition, both PaFDL1 and PaFDL2 were found to be subject to post-transcriptional alternative splicing, each gene producing two transcript forms. Transgenic tobacco overexpressing each of the four resulting transcript types displayed accelerated floral initiation and produced abnormal flowers. The results suggested that the complete PaFDL proteins may interact with different PaFT/PaFTL proteins in order to fulfill both conservative and diverse functions in floral initiation and floral development.
Collapse
Affiliation(s)
- Fangfang Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Plant Genomics & Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| | - Changsheng Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yanping Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Gehui Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Zhiru Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
31
|
Asymmetric expansions of FT and TFL1 lineages characterize differential evolution of the EuPEBP family in the major angiosperm lineages. BMC Biol 2021; 19:181. [PMID: 34465318 PMCID: PMC8408984 DOI: 10.1186/s12915-021-01128-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background In flowering plants, precise timing of the floral transition is crucial to maximize chances of reproductive success, and as such, this process has been intensively studied. FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) have been identified as closely related eukaryotic phosphatidylethanolamine-binding proteins (‘EuPEBPs’) that integrate multiple environmental stimuli, and act antagonistically to determine the optimal timing of the floral transition. Extensive research has demonstrated that FT acts similar to hormonal signals, being transported in the phloem from its primary site of expression in leaves to its primary site of action in the shoot meristem; TFL1 also appears to act as a mobile signal. Recent work implicates FT, TFL1, and the other members of the EuPEBP family, in the control of other important processes, suggesting that the EuPEBP family may be key general regulators of developmental transitions in flowering plants. In eudicots, there are a small number of EuPEBP proteins, but in monocots, and particularly grasses, there has been a large, but uncharacterized expansion of EuPEBP copy number, with unknown consequences for the EuPEBP function. Results To systematically characterize the evolution of EuPEBP proteins in flowering plants, and in land plants more generally, we performed a high-resolution phylogenetic analysis of 701 PEBP sequences from 208 species. We refine previous models of EuPEBP evolution in early land plants, demonstrating the algal origin of the family, and pin-pointing the origin of the FT/TFL1 clade at the base of monilophytes. We demonstrate how a core set of genes (MFT1, MFT2, FT, and TCB) at the base of flowering plants has undergone differential evolution in the major angiosperm lineages. This includes the radical expansion of the FT family in monocots into 5 core lineages, further re-duplicated in the grass family to 12 conserved clades. Conclusions We show that many grass FT proteins are strongly divergent from other FTs and are likely neo-functional regulators of development. Our analysis shows that monocots and eudicots have strongly divergent patterns of EuPEBP evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01128-8.
Collapse
|
32
|
Peng Q, Zhu C, Liu T, Zhang S, Feng S, Wu C. Phosphorylation of OsFD1 by OsCIPK3 promotes the formation of RFT1-containing florigen activation complex for long-day flowering in rice. MOLECULAR PLANT 2021; 14:1135-1148. [PMID: 33845208 DOI: 10.1016/j.molp.2021.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Heading date is a critical trait that determines the regional adaptability and grain productivity of many crops. Although rice is a facultative short-day plant, its domestication led to the Ghd7-Ehd1-Hd3a/RFT1 pathway for adaptation to long-day conditions (LDs). The formation of the "florigen activation complex" (FAC) containing florigen Hd3a has been characterized. However, the molecular composition of the FAC that contains RFT1 for long-day flowering is unclear. We show here that RFT1 forms a ternary FAC with 14-3-3 proteins and OsFD1 to promote flowering under LDs. We identified a calcineurin B-like-interacting protein kinase, OsCIPK3, which directly interacts with and phosphorylates OsFD1, thereby facilitating the localization of the FAC to the nucleus. Mutation in OsCIPK3 results in a late heading date under LDs but a normal heading date under short-day conditions. Collectively, our results suggest that OsCIPK3 phosphorylates OsFD1 to promote RFT1-containing FAC formation and consequently induce flowering in rice under LDs.
Collapse
Affiliation(s)
- Qiang Peng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Chunmei Zhu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shuo Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shijing Feng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
33
|
Fernández-Calleja M, Casas AM, Igartua E. Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1867-1897. [PMID: 33969431 PMCID: PMC8263424 DOI: 10.1007/s00122-021-03824-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/24/2021] [Indexed: 05/10/2023]
Abstract
This review summarizes the allelic series, effects, interactions between genes and with the environment, for the major flowering time genes that drive phenological adaptation of barley. The optimization of phenology is a major goal of plant breeding addressing the production of high-yielding varieties adapted to changing climatic conditions. Flowering time in cereals is regulated by genetic networks that respond predominately to day length and temperature. Allelic diversity at these genes is at the basis of barley wide adaptation. Detailed knowledge of their effects, and genetic and environmental interactions will facilitate plant breeders manipulating flowering time in cereal germplasm enhancement, by exploiting appropriate gene combinations. This review describes a catalogue of alleles found in QTL studies by barley geneticists, corresponding to the genetic diversity at major flowering time genes, the main drivers of barley phenological adaptation: VRN-H1 (HvBM5A), VRN-H2 (HvZCCTa-c), VRN-H3 (HvFT1), PPD-H1 (HvPRR37), PPD-H2 (HvFT3), and eam6/eps2 (HvCEN). For each gene, allelic series, size and direction of QTL effects, interactions between genes and with the environment are presented. Pleiotropic effects on agronomically important traits such as grain yield are also discussed. The review includes brief comments on additional genes with large effects on phenology that became relevant in modern barley breeding. The parallelisms between flowering time allelic variation between the two most cultivated Triticeae species (barley and wheat) are also outlined. This work is mostly based on previously published data, although we added some new data and hypothesis supported by a number of studies. This review shows the wide variety of allelic effects that provide enormous plasticity in barley flowering behavior, which opens new avenues to breeders for fine-tuning phenology of the barley crop.
Collapse
Affiliation(s)
- Miriam Fernández-Calleja
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ana M Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
34
|
Comparative Transcriptomic Analysis of Differentially Expressed Transcripts Associated with Flowering Time of Loquat (Eriobotya japonica Lindl.). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flowering is an important phenophase of plant species, however, knowledge about the regulatory mechanism controlling flowering cues in loquat is limited. To identify candidate genes regulating flowering time in loquat, we used RNA-Seq technology to conduct a comparative transcriptome analysis of differentiating apical buds collected from the early-flowering variety ‘Baiyu’ and the late-flowering variety ‘Huoju’. A total of 28,842 differentially expressed transcripts (DETs) were identified. Of these, 42 DETs controlled flowering time while 17 other DETs were associated with the ABA signaling pathway. Compared with those in ‘Huoju’, EjFT, EjFY, EjFLK, and EjCAL1-like were significantly upregulated in ‘Baiyu’. Moreover, transcripts of the ABA 8′-hydroxylases (EjABH2, EjABH4, and EjABH4-like2), the ABA receptors (EjPYL4/8), and the bZIP transcription factor EjABI5-like were upregulated in ‘Baiyu’ compared with ‘Huoju’. Hence, they might regulate loquat flowering time. There was no significant difference between ‘Baiyu’ and ‘Huoju’ in terms of IAA content. However, the ABA content was about ten-fold higher in the apical buds of ‘Baiyu’ than in those of ‘Huoju’. The ABA:IAA ratio sharply rose and attained a peak during bud differentiation. Thus, ABA is vital in regulating floral bud formation in loquat. The results of the present study help clarify gene transcription during loquat flowering.
Collapse
|
35
|
Kuusk A, Boyd H, Chen H, Ottmann C. Small-molecule modulation of p53 protein-protein interactions. Biol Chem 2021; 401:921-931. [PMID: 32049643 DOI: 10.1515/hsz-2019-0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 12/22/2022]
Abstract
Small-molecule modulation of protein-protein interactions (PPIs) is a very promising but also challenging area in drug discovery. The tumor suppressor protein p53 is one of the most frequently altered proteins in human cancers, making it an attractive target in oncology. 14-3-3 proteins have been shown to bind to and positively regulate p53 activity by protecting it from MDM2-dependent degradation or activating its DNA binding affinity. PPIs can be modulated by inhibiting or stabilizing specific interactions by small molecules. Whereas inhibition has been widely explored by the pharmaceutical industry and academia, the opposite strategy of stabilizing PPIs still remains relatively underexploited. This is rather interesting considering the number of natural compounds like rapamycin, forskolin and fusicoccin that exert their activity by stabilizing specific PPIs. In this review, we give an overview of 14-3-3 interactions with p53, explain isoform specific stabilization of the tumor suppressor protein, explore the approach of stabilizing the 14-3-3σ-p53 complex and summarize some promising small molecules inhibiting the p53-MDM2 protein-protein interaction.
Collapse
Affiliation(s)
- Ave Kuusk
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, NL-5600MB Eindhoven, The Netherlands
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, S-43183 Mölndal, Sweden
| | - Helen Boyd
- Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | - Hongming Chen
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Science Park, Guangzhou 510530, China
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, NL-5600MB Eindhoven, The Netherlands
- Department of Chemistry, University of Duisburg-Essen, D-45141 Essen, Germany
| |
Collapse
|
36
|
Cao S, Luo X, Xu D, Tian X, Song J, Xia X, Chu C, He Z. Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals. THE NEW PHYTOLOGIST 2021; 230:1731-1745. [PMID: 33586137 DOI: 10.1111/nph.17276] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/20/2021] [Indexed: 05/23/2023]
Abstract
Timely flowering is essential for optimum crop reproduction and yield. To determine the best flowering-time genes (FTGs) relevant to local adaptation and breeding, it is essential to compare the interspecific genetic architecture of flowering in response to light and temperature, the two most important environmental cues in crop breeding. However, the conservation and variations of FTGs across species lack systematic dissection. This review summarizes current knowledge on the genetic architectures underlying light and temperature-mediated flowering initiation in Arabidopsis, rice, and temperate cereals. Extensive comparative analyses show that most FTGs are conserved, whereas functional variations in FTGs may be species specific and confer local adaptation in different species. To explore evolutionary dynamics underpinning the conservation and variations in FTGs, domestication and selection of some key FTGs are further dissected. Based on our analyses of genetic control of flowering time, a number of key issues are highlighted. Strategies for modulation of flowering behavior in crop breeding are also discussed. The resultant resources provide a wealth of reference information to uncover molecular mechanisms of flowering in plants and achieve genetic improvement in crops.
Collapse
Affiliation(s)
- Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xumei Luo
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dengan Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuling Tian
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- International Maize and Wheat Improvement Center China Office, c/o Chinese Academy Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
37
|
Cai M, Zhu S, Wu M, Zheng X, Wang J, Zhou L, Zheng T, Cui S, Zhou S, Li C, Zhang H, Chai J, Zhang X, Jin X, Cheng Z, Zhang X, Lei C, Ren Y, Lin Q, Guo X, Zhao L, Wang J, Zhao Z, Jiang L, Wang H, Wan J. DHD4, a CONSTANS-like family transcription factor, delays heading date by affecting the formation of the FAC complex in rice. MOLECULAR PLANT 2021; 14:330-343. [PMID: 33246053 DOI: 10.1016/j.molp.2020.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 05/21/2023]
Abstract
Heading date (or flowering time) is one of the most important agronomic traits in rice, influencing its regional adaptability and crop yield. Many major-effect genes for rice heading date have been identified, but in practice they are difficult to be used for rice molecular breeding because of their dramatic effects on heading date. Genes with minor effects on heading date, which are more desirable for fine-tuning flowering time without significant yield penalty, were seldom reported. In this study, we identified a new minor-effect heading date repressor, Delayed Heading Date 4 (DHD4). The dhd4 mutant shows a slightly earlier flowering phenotype without a notable yield penalty compared with wild-type plants under natural long-day conditions. DHD4 encodes a CONSTANS-like transcription factor localized in the nucleus. Molecular, biochemical, and genetic assays show that DHD4 can compete with 14-3-3 to interact with OsFD1, thus affecting the formation of the Hd3a-14-3-3-OsFD1 tri-protein FAC complex, resulting in reduced expression of OsMADS14 and OsMADS15, and ultimately delaying flowering. Taken together, these results shed new light on the regulation of flowering time in rice and provide a promising target for fine-tuning flowering time to improve the regional adaptability of rice.
Collapse
Affiliation(s)
- Maohong Cai
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiachang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianhui Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Cui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Juntao Chai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyue Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Jin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
38
|
Pieper R, Tomé F, Pankin A, von Korff M. FLOWERING LOCUS T4 delays flowering and decreases floret fertility in barley. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:107-121. [PMID: 33048122 PMCID: PMC7816854 DOI: 10.1093/jxb/eraa466] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/07/2020] [Indexed: 05/04/2023]
Abstract
FLOWERING LOCUS T-like (FT-like) genes control the photoperiodic regulation of flowering in many angiosperm plants. The family of FT-like genes is characterized by extensive gene duplication and subsequent diversification of FT functions which occurred independently in modern angiosperm lineages. In barley, there are 12 known FT-like genes (HvFT), but the function of most of them remains uncharacterized. This study aimed to characterize the role of HvFT4 in flowering time control and development in barley. The overexpression of HvFT4 in the spring cultivar Golden Promise delayed flowering time under long-day conditions. Microscopic dissection of the shoot apical meristem revealed that overexpression of HvFT4 specifically delayed spikelet initiation and reduced the number of spikelet primordia and grains per spike. Furthermore, ectopic overexpression of HvFT4 was associated with floret abortion and with the down-regulation of the barley MADS-box genes VRN-H1, HvBM3, and HvBM8 which promote floral development. This suggests that HvFT4 functions as a repressor of reproductive development in barley. Unraveling the genetic basis of FT-like genes can contribute to the identification of novel breeding targets to modify reproductive development and thereby spike morphology and grain yield.
Collapse
Affiliation(s)
- Rebecca Pieper
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Filipa Tomé
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, ‘SMART Plants for Tomorrow’s Needs’, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Artem Pankin
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, ‘SMART Plants for Tomorrow’s Needs’, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria von Korff
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, ‘SMART Plants for Tomorrow’s Needs’, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
39
|
Cerise M, Giaume F, Galli M, Khahani B, Lucas J, Podico F, Tavakol E, Parcy F, Gallavotti A, Brambilla V, Fornara F. OsFD4 promotes the rice floral transition via florigen activation complex formation in the shoot apical meristem. THE NEW PHYTOLOGIST 2021; 229:429-443. [PMID: 32737885 DOI: 10.1111/nph.16834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
In rice, the florigens Heading Date 3a (Hd3a) and Rice Flowering Locus T 1 (RFT1), OsFD-like basic leucine zipper (bZIP) transcription factors, and Gf14 proteins assemble into florigen activation/repressor complexes (FACs/FRCs), which regulate transition to flowering in leaves and apical meristem. Only OsFD1 has been described as part of complexes promoting flowering at the meristem, and little is known about the role of other bZIP transcription factors, the combinatorial complexity of FAC formation, and their DNA-binding properties. Here, we used mutant analysis, protein-protein interaction assays and DNA affinity purification (DAP) sequencing coupled to in silico prediction of binding syntaxes to study several bZIP proteins that assemble into FACs or FRCs. We identified OsFD4 as a component of a FAC promoting flowering at the shoot apical meristem, downstream of OsFD1. The osfd4 mutants are late flowering and delay expression of genes promoting inflorescence development. Protein-protein interactions indicate an extensive network of contacts between several bZIPs and Gf14 proteins. Finally, we identified genomic regions bound by bZIPs with promotive and repressive effects on flowering. We conclude that distinct bZIPs orchestrate floral induction at the meristem and that FAC formation is largely combinatorial. While binding to the same consensus motif, their DNA-binding syntax is different, suggesting discriminatory functions.
Collapse
Affiliation(s)
- Martina Cerise
- Department of Biosciences, University of Milan, Milan, 20123, Italy
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Francesca Giaume
- Department of Biosciences, University of Milan, Milan, 20123, Italy
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Bahman Khahani
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Jérémy Lucas
- CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, University Grenoble Alpes, 17 avenue des martyrs, Grenoble, F-38054, France
| | - Federico Podico
- Department of Biosciences, University of Milan, Milan, 20123, Italy
| | - Elahe Tavakol
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - François Parcy
- CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, University Grenoble Alpes, 17 avenue des martyrs, Grenoble, F-38054, France
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Vittoria Brambilla
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, 20123, Italy
| | - Fabio Fornara
- Department of Biosciences, University of Milan, Milan, 20123, Italy
| |
Collapse
|
40
|
Yang Q, Islam MA, Cai K, Tian S, Liu Y, Kang Z, Guo J. TaClpS1, negatively regulates wheat resistance against Puccinia striiformis f. sp. tritici. BMC PLANT BIOLOGY 2020; 20:555. [PMID: 33302867 PMCID: PMC7730799 DOI: 10.1186/s12870-020-02762-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/01/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND The degradation of intracellular proteins plays an essential role in plant responses to stressful environments. ClpS1 and E3 ubiquitin ligase function as adaptors for selecting target substrates in caseinolytic peptidase (Clp) proteases pathways and the 26S proteasome system, respectively. Currently, the role of E3 ubiquitin ligase in the plant immune response to pathogens is well defined. However, the role of ClpS1 in the plant immune response to pathogens remains unknown. RESULTS Here, wheat (Triticum aestivum) ClpS1 (TaClpS1) was studied and resulted to encode 161 amino acids, containing a conserved ClpS domain and a chloroplast transit peptide (1-32 aa). TaClpS1 was found to be specifically localized in the chloroplast when expressed transiently in wheat protoplasts. The transcript level of TaClpS1 in wheat was significantly induced during infection by Puccinia striiformis f. sp. tritici (Pst). Knockdown of TaClpS1 via virus-induced gene silencing (VIGS) resulted in an increase in wheat resistance against Pst, accompanied by an increase in the hypersensitive response (HR), accumulation of reactive oxygen species (ROS) and expression of TaPR1 and TaPR2, and a reduction in the number of haustoria, length of infection hypha and infection area of Pst. Furthermore, heterologous expression of TaClpS1 in Nicotiana benthamiana enhanced the infection by Phytophthora parasitica. CONCLUSIONS These results suggest that TaClpS1 negatively regulates the resistance of wheat to Pst.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Md Ashraful Islam
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Kunyan Cai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Shuxin Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Yan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China.
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China.
| |
Collapse
|
41
|
Islam MA, Guo J, Peng H, Tian S, Bai X, Zhu H, Kang Z, Guo J. TaYS1A, a Yellow Stripe-Like Transporter Gene, Is Required for Wheat Resistance to Puccinia striiformis f. sp. Tritici. Genes (Basel) 2020; 11:E1452. [PMID: 33287151 PMCID: PMC7761651 DOI: 10.3390/genes11121452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/28/2022] Open
Abstract
Yellow stripe-like (YSL) transporters are required for the transportation of metal-phytosiderophores and are structurally related to metal-nicotianamine complexes. Some studies also reported the involvement of YSL transporters in pathogen-induced defense. However, the molecular mechanisms of YSL genes involved in biotic stress responses are still not clear, especially in cereal crops. This study aimed to functionally characterize TaYS1A during the interaction of wheat and Puccinia striiformis f. sp. tritici (Pst), the causal agent of stripe rust disease. TaYS1A was localized in the cell membrane of wheat protoplasts and Nicotiana benthamiana cells. TaYS1A was significantly up-regulated in wheat leaves after being infected with the avirulent Pst isolate CYR23 and after treatment with salicylic acid (SA). Silencing of TaYS1A by the virus-induced gene silencing method enhanced the susceptibility of wheat to Pst accompanied by reducing the accumulation of SA and H2O2 and down-regulating the transcriptions of TaPR1 and TaPR2. In addition, TaYS1A was found to interact with TaNH2, a homolog of OsNH2, by yeast-two-hybrid assay, and silencing of TaYS1A diminished the expression of TaNH2. Our findings suggested the existence of positive regulation of TaYS1A in providing resistance against Pst by modulating SA-induced signaling and offered new insight into the biological role of YSL in wheat against pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A and F University, Yangling 712100, China; (M.A.I.); (J.G.); (H.P.); (S.T.); (X.B.); (H.Z.); (J.G.)
| | | |
Collapse
|
42
|
Rychel-Bielska S, Plewiński P, Kozak B, Galek R, Ksia̧żkiewicz M. Photoperiod and Vernalization Control of Flowering-Related Genes: A Case Study of the Narrow-Leafed Lupin ( Lupinus angustifolius L.). FRONTIERS IN PLANT SCIENCE 2020; 11:572135. [PMID: 33193508 PMCID: PMC7663182 DOI: 10.3389/fpls.2020.572135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) is a moderate-yielding legume crop known for its high grain protein content and contribution to soil improvement. It is cultivated under photoperiods ranging from 9 to 17 h, as a spring-sown (in colder locations) or as an autumn-sown crop (in warmer regions). Wild populations require a prolonged cold period, called vernalization, to induce flowering. The key achievement of L. angustifolius domestication was the discovery of two natural mutations (named Ku and Jul) conferring vernalization independence. These mutations are overlapping deletion variants in the promoter of LanFTc1, a homolog of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene. The third deletion, named here as Pal, was recently found in primitive germplasm. In this study, we genotyped L. angustifolius germplasm that differs in domestication status and geographical origin for LanFTc1 alleles, which we then phenotyped to establish flowering time and vernalization responsiveness. The Ku and Jul lines were vernalization-independent and early flowering, wild (ku) lines were vernalization-dependent and late flowering, whereas the Pal line conferred intermediate phenotype. Three lines representing ku, Pal, and Ku alleles were subjected to gene expression surveys under 8- and 16-h photoperiods. FT homologs (LanFTa1, LanFTa2, LanFTc1, and LanFTc2) and some genes selected by recent expression quantitative trait loci mapping were analyzed. Expression profiles of LanFTc1 and LanAGL8 (AGAMOUS-like 8) matched observed differences in flowering time between genotypes, highlighted by high induction after vernalization in the ku line. Moreover, these genes revealed altered circadian clock control in Pal line under short days. LanFD (FD) and LanCRLK1 (CALCIUM/CALMODULIN-REGULATED RECEPTOR-LIKE KINASE 1) were negatively responsive to vernalization in Ku and Pal lines but positively responsive or variable in ku, whereas LanUGT85A2 (UDP-GLUCOSYL TRANSFERASE 85A2) was significantly suppressed by vernalization in all lines. Such a pattern suggests the opposite regulation of these gene pairs in the vernalization pathway. LanCRLK1 and LanUGT85A2 are homologs of A. thaliana genes involved in the FLOWERING LOCUS C (FLC) vernalization pathway. Lupins, like many other legumes, do not have any FLC homologs. Therefore, candidate genes surveyed in this study, namely LanFTc1, LanAGL8, LanCRLK1, and LanUGT85A2, may constitute anchors for further elucidation of molecular components contributing to vernalization response in legumes.
Collapse
Affiliation(s)
- Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Plewiński
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Renata Galek
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Michał Ksia̧żkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
43
|
Huang J, Shen L, Yang S, Guan D, He S. CaASR1 promotes salicylic acid- but represses jasmonic acid-dependent signaling to enhance the resistance of Capsicum annuum to bacterial wilt by modulating CabZIP63. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6538-6554. [PMID: 32720981 DOI: 10.1093/jxb/eraa350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/22/2020] [Indexed: 05/22/2023]
Abstract
CabZIP63 acts positively in the resistance of pepper (Capsicum annuum) to bacterial wilt caused by Ralstonia solanacearum or tolerance to high-temperature/high-humidity stress, but it is unclear how CabZIP63 achieves its functional specificity against R. solanacearum. Here, CaASR1, an abscisic acid-, stress-, and ripening-inducible protein of C. annuum, was functionally characterized in modulating the functional specificity of CabZIP63 during the defense response of pepper to R. solanacearum. In pepper plants inoculated with R. solanacearum, CaASR1 was up-regulated before 24 h post-inoculation but down-regulated thereafter, and was down-regulated by high-temperature/high-humidity stress. Data from gene silencing and transient overexpression experiments indicated that CaASR1 acts as a positive regulator in the immunity of pepper against R. solanacearum and a negative regulator of thermotolerance. Pull-down combined with mass spectrometry revealed that CaASR1 interacted with CabZIP63 upon R. solanacearum infection; the interaction was confirmed by microscale thermophoresis and bimolecular fluorescence complementation assays.CaASR1 silencing upon R. solanacearum inoculation repressed CabZIP63-mediated transcription from the promoters of the salicylic acid (SA)-dependent CaPR1 and CaNPR1, but derepressed transcription of CaHSP24 and the jasmonic acid (JA)-dependent CaDEF1. Our findings suggest that CaASR1 acts as a positive regulator of the defense response of pepper to R. solanacearum by interacting with CabZIP63, enabling it to promote SA-dependent but repress JA-dependent immunity and thermotolerance during the early stages of infection.
Collapse
Affiliation(s)
- Jinfeng Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
44
|
Jacott CN, Boden SA. Feeling the heat: developmental and molecular responses of wheat and barley to high ambient temperatures. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5740-5751. [PMID: 32667992 PMCID: PMC7540836 DOI: 10.1093/jxb/eraa326] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/10/2020] [Indexed: 05/22/2023]
Abstract
The increasing demand for global food security in the face of a warming climate is leading researchers to investigate the physiological and molecular responses of cereals to rising ambient temperatures. Wheat and barley are temperate cereals whose yields are adversely affected by high ambient temperatures, with each 1 °C increase above optimum temperatures reducing productivity by 5-6%. Reproductive development is vulnerable to high-temperature stress, which reduces yields by decreasing grain number and/or size and weight. In recent years, analysis of early inflorescence development and genetic pathways that control the vegetative to floral transition have elucidated molecular processes that respond to rising temperatures, including those involved in the vernalization- and photoperiod-dependent control of flowering. In comparison, our understanding of genes that underpin thermal responses during later developmental stages remains poor, thus highlighting a key area for future research. This review outlines the responses of developmental genes to warmer conditions and summarizes our knowledge of the reproductive traits of wheat and barley influenced by high temperatures. We explore ways in which recent advances in wheat and barley research capabilities could help identify genes that underpin responses to rising temperatures, and how improved knowledge of the genetic regulation of reproduction and plant architecture could be used to develop thermally resilient cultivars.
Collapse
Affiliation(s)
- Catherine N Jacott
- Department of Crop Genetics, John Innes Centre, Colney Lane, Norwich, UK
| | - Scott A Boden
- Department of Crop Genetics, John Innes Centre, Colney Lane, Norwich, UK
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, Australia
- Correspondence:
| |
Collapse
|
45
|
Tyurin AA, Suhorukova AV, Kabardaeva KV, Goldenkova-Pavlova IV. Transient Gene Expression is an Effective Experimental Tool for the Research into the Fine Mechanisms of Plant Gene Function: Advantages, Limitations, and Solutions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1187. [PMID: 32933006 PMCID: PMC7569937 DOI: 10.3390/plants9091187] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
A large data array on plant gene expression accumulated thanks to comparative omic studies directs the efforts of researchers to the specific or fine effects of the target gene functions and, as a consequence, elaboration of relatively simple and concurrently effective approaches allowing for the insight into the physiological role of gene products. Numerous studies have convincingly demonstrated the efficacy of transient expression strategy for characterization of the plant gene functions. The review goals are (i) to consider the advantages and limitations of different plant systems and methods of transient expression used to find out the role of gene products; (ii) to summarize the current data on the use of the transient expression approaches for the insight into fine mechanisms underlying the gene function; and (iii) to outline the accomplishments in efficient transient expression of plant genes. In general, the review discusses the main and critical steps in each of the methods of transient gene expression in plants; areas of their application; main results obtained using plant objects; their contribution to our knowledge about the fine mechanisms of the plant gene functions underlying plant growth and development; and clarification of the mechanisms regulating complex metabolic pathways.
Collapse
Affiliation(s)
| | | | | | - Irina V. Goldenkova-Pavlova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences (IPP RAS), Moscow 127276, Russia; (A.A.T.); (A.V.S.); (K.V.K.)
| |
Collapse
|
46
|
Shaw LM, Li C, Woods DP, Alvarez MA, Lin H, Lau MY, Chen A, Dubcovsky J. Epistatic interactions between PHOTOPERIOD1, CONSTANS1 and CONSTANS2 modulate the photoperiodic response in wheat. PLoS Genet 2020; 16:e1008812. [PMID: 32658893 PMCID: PMC7394450 DOI: 10.1371/journal.pgen.1008812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
In Arabidopsis, CONSTANS (CO) integrates light and circadian clock signals to promote flowering under long days (LD). In the grasses, a duplication generated two paralogs designated as CONSTANS1 (CO1) and CONSTANS2 (CO2). Here we show that in tetraploid wheat plants grown under LD, combined loss-of-function mutations in the A and B-genome homeologs of CO1 and CO2 (co1 co2) result in a small (3 d) but significant (P<0.0001) acceleration of heading time both in PHOTOPERIOD1 (PPD1) sensitive (Ppd-A1b, functional ancestral allele) and insensitive (Ppd-A1a, functional dominant allele) backgrounds. Under short days (SD), co1 co2 mutants headed 13 d earlier than the wild type (P<0.0001) in the presence of Ppd-A1a. However, in the presence of Ppd-A1b, spikes from both genotypes failed to emerge by 180 d. These results indicate that CO1 and CO2 operate mainly as weak heading time repressors in both LD and SD. By contrast, in ppd1 mutants with loss-of-function mutations in both PPD1 homeologs, the wild type Co1 allele accelerated heading time >60 d relative to the co1 mutant allele under LD. We detected significant genetic interactions among CO1, CO2 and PPD1 genes on heading time, which were reflected in complex interactions at the transcriptional and protein levels. Loss-of-function mutations in PPD1 delayed heading more than combined co1 co2 mutations and, more importantly, PPD1 was able to perceive and respond to differences in photoperiod in the absence of functional CO1 and CO2 genes. Similarly, CO1 was able to accelerate heading time in response to LD in the absence of a functional PPD1. Taken together, these results indicate that PPD1 and CO1 are able to respond to photoperiod in the absence of each other, and that interactions between these two photoperiod pathways at the transcriptional and protein levels are important to fine-tune the flowering response in wheat.
Collapse
Affiliation(s)
- Lindsay M. Shaw
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Currently at Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Daniel P. Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Maria A. Alvarez
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Mei Y. Lau
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Andrew Chen
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
47
|
Kippes N, VanGessel C, Hamilton J, Akpinar A, Budak H, Dubcovsky J, Pearce S. Effect of phyB and phyC loss-of-function mutations on the wheat transcriptome under short and long day photoperiods. BMC PLANT BIOLOGY 2020; 20:297. [PMID: 32600268 PMCID: PMC7325275 DOI: 10.1186/s12870-020-02506-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/18/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Photoperiod signals provide important cues by which plants regulate their growth and development in response to predictable seasonal changes. Phytochromes, a family of red and far-red light receptors, play critical roles in regulating flowering time in response to changing photoperiods. A previous study showed that loss-of-function mutations in either PHYB or PHYC result in large delays in heading time and in the differential regulation of a large number of genes in wheat plants grown in an inductive long day (LD) photoperiod. RESULTS We found that under non-inductive short-day (SD) photoperiods, phyB-null and phyC-null mutants were taller, had a reduced number of tillers, longer and wider leaves, and headed later than wild-type (WT) plants. The delay in heading between WT and phy mutants was greater in LD than in SD, confirming the importance of PHYB and PHYC in accelerating heading date in LDs. Both mutants flowered earlier in SD than LD, the inverse response to that of WT plants. In both SD and LD photoperiods, PHYB regulated more genes than PHYC. We identified subsets of differentially expressed and alternatively spliced genes that were specifically regulated by PHYB and PHYC in either SD or LD photoperiods, and a smaller set of genes that were regulated in both photoperiods. We found that photoperiod had a contrasting effect on transcript levels of the flowering promoting genes VRN-A1 and PPD-B1 in phyB and phyC mutants compared to the WT. CONCLUSIONS Our study confirms the major role of both PHYB and PHYC in flowering promotion in LD conditions. Transcriptome characterization revealed an unexpected reversion of the wheat LD plants into SD plants in the phyB-null and phyC-null mutants and identified flowering genes showing significant interactions between phytochromes and photoperiod that may be involved in this phenomenon. Our RNA-seq data provides insight into light signaling pathways in inductive and non-inductive photoperiods and a set of candidate genes to dissect the underlying developmental regulatory networks in wheat.
Collapse
Affiliation(s)
- Nestor Kippes
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
- Current address: Department of Plant Biology, UC Davis Genome Center, University of California, Davis, CA 95616 USA
| | - Carl VanGessel
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - James Hamilton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | | | | | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
48
|
Cao S, Luo X, Xie L, Gao C, Wang D, Holt BF, Lin H, Chu C, Xia X. The florigen interactor BdES43 represses flowering in the model temperate grass Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:262-275. [PMID: 31782581 DOI: 10.1111/tpj.14622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
FLOWERING LOCUS T (FT) protein, physiologically florigen, has been identified as a system integrator of numerous flowering time pathways in many studies, and its homologs are found throughout the plant lineage. It is important to uncover how precisely florigenic homologs contribute to flowering initiation and how these factors interact genetically. Here we dissected the function of Brachypodium FT orthologs BdFTL1 and BdFTL2 using overexpression and gene-editing experiments. Transgenic assays showed that both BdFTL1 and BdFTL2 could promote flowering, whereas BdFTL2 was essential for flowering initiation. Notably, BdFTL1 is subject to alternative splicing (AS), and its transcriptional level and AS are significantly affected by BdFTL2. Additionally, BdFTL2 could bind with the PHD-containing protein BdES43, an H3K4me3 reader. Furthermore, BdES43 was antagonistic to BdFTL2 in flowering initiation in a transcription-dependent manner and significantly affected BdFTL1 expression. BdFTL2, BdES43 and H3K4me3 also had highly similar distribution patterns within the BdFTL1 locus, indicating their interplay in regulating target genes. Taken together, florigen BdFTL2 functions as a potential epigenetic effector of BdFTL1 by interacting with a BdES43-H3K4me3 complex. This finding provides an additional insight for the regulatory mechanism underlying the multifaceted roles of florigen.
Collapse
Affiliation(s)
- Shuanghe Cao
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xumei Luo
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Li Xie
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Caixia Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Daowen Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Ben F Holt
- Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK, 73019, USA
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chengcai Chu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
49
|
Rychel-Bielska S, Plewiński P, Kozak B, Galek R, Ksia Żkiewicz M. Photoperiod and Vernalization Control of Flowering-Related Genes: A Case Study of the Narrow-Leafed Lupin ( Lupinus angustifolius L.). FRONTIERS IN PLANT SCIENCE 2020; 11:572135. [PMID: 33193508 DOI: 10.3389/fpls.2020.572135/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/24/2020] [Indexed: 05/18/2023]
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) is a moderate-yielding legume crop known for its high grain protein content and contribution to soil improvement. It is cultivated under photoperiods ranging from 9 to 17 h, as a spring-sown (in colder locations) or as an autumn-sown crop (in warmer regions). Wild populations require a prolonged cold period, called vernalization, to induce flowering. The key achievement of L. angustifolius domestication was the discovery of two natural mutations (named Ku and Jul) conferring vernalization independence. These mutations are overlapping deletion variants in the promoter of LanFTc1, a homolog of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene. The third deletion, named here as Pal, was recently found in primitive germplasm. In this study, we genotyped L. angustifolius germplasm that differs in domestication status and geographical origin for LanFTc1 alleles, which we then phenotyped to establish flowering time and vernalization responsiveness. The Ku and Jul lines were vernalization-independent and early flowering, wild (ku) lines were vernalization-dependent and late flowering, whereas the Pal line conferred intermediate phenotype. Three lines representing ku, Pal, and Ku alleles were subjected to gene expression surveys under 8- and 16-h photoperiods. FT homologs (LanFTa1, LanFTa2, LanFTc1, and LanFTc2) and some genes selected by recent expression quantitative trait loci mapping were analyzed. Expression profiles of LanFTc1 and LanAGL8 (AGAMOUS-like 8) matched observed differences in flowering time between genotypes, highlighted by high induction after vernalization in the ku line. Moreover, these genes revealed altered circadian clock control in Pal line under short days. LanFD (FD) and LanCRLK1 (CALCIUM/CALMODULIN-REGULATED RECEPTOR-LIKE KINASE 1) were negatively responsive to vernalization in Ku and Pal lines but positively responsive or variable in ku, whereas LanUGT85A2 (UDP-GLUCOSYL TRANSFERASE 85A2) was significantly suppressed by vernalization in all lines. Such a pattern suggests the opposite regulation of these gene pairs in the vernalization pathway. LanCRLK1 and LanUGT85A2 are homologs of A. thaliana genes involved in the FLOWERING LOCUS C (FLC) vernalization pathway. Lupins, like many other legumes, do not have any FLC homologs. Therefore, candidate genes surveyed in this study, namely LanFTc1, LanAGL8, LanCRLK1, and LanUGT85A2, may constitute anchors for further elucidation of molecular components contributing to vernalization response in legumes.
Collapse
Affiliation(s)
- Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Plewiński
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Renata Galek
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Michał Ksia Żkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
50
|
Matyszczak I, Tominska M, Zakhrabekova S, Dockter C, Hansson M. Analysis of early-flowering genes at barley chromosome 2H expands the repertoire of mutant alleles at the Mat-c locus. PLANT CELL REPORTS 2020; 39:47-61. [PMID: 31541262 PMCID: PMC6960220 DOI: 10.1007/s00299-019-02472-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/08/2019] [Indexed: 05/31/2023]
Abstract
Analyses of barley mat-c loss of function mutants reveal deletions, splice-site mutations and nonsynonymous substitutions in a key gene regulating early flowering. Optimal timing of flowering is critical for reproductive success and crop yield improvement. Several major quantitative trait loci for flowering time variation have been identified in barley. In the present study, we analyzed two near-isogenic lines, BW507 and BW508, which were reported to carry two independent early-flowering mutant loci, mat-b.7 and mat-c.19, respectively. Both introgression segments are co-localized in the pericentromeric region of chromosome 2H. We mapped the mutation in BW507 to a 31 Mbp interval on chromosome 2HL and concluded that BW507 has a deletion of Mat-c, which is an ortholog of Antirrhinum majus CENTRORADIALIS (AmCEN) and Arabidopsis thaliana TERMINAL FLOWER1 (AtTFL1). Contrary to previous reports, our data showed that both BW507 and BW508 are Mat-c deficient and none of them are mat-b.7 derived. This work complements previous studies by identifying the uncharacterized mat-c.19 mutant and seven additional mat-c mutants. Moreover, we explored the X-ray structure of AtTFL1 for prediction of the functional effects of nonsynonymous substitutions caused by mutations in Mat-c.
Collapse
Affiliation(s)
- Izabela Matyszczak
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Marta Tominska
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
- Department of Plant Physiology, Faculty of Biology and Environment Protection, University of Silesia, 40-032, Katowice, Poland
| | - Shakhira Zakhrabekova
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
- Department of Biology, Lund University, Sölvegatan 35, SE-22362, Lund, Sweden
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Mats Hansson
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark.
- Department of Biology, Lund University, Sölvegatan 35, SE-22362, Lund, Sweden.
| |
Collapse
|