1
|
Voichek Y, Hristova G, Mollá-Morales A, Weigel D, Nordborg M. Widespread position-dependent transcriptional regulatory sequences in plants. Nat Genet 2024; 56:2238-2246. [PMID: 39266765 PMCID: PMC11525189 DOI: 10.1038/s41588-024-01907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Much of what we know about eukaryotic transcription stems from animals and yeast; however, plants evolved separately for over a billion years, leaving ample time for divergence in transcriptional regulation. Here we set out to elucidate fundamental properties of cis-regulatory sequences in plants. Using massively parallel reporter assays across four plant species, we demonstrate the central role of sequences downstream of the transcription start site (TSS) in transcriptional regulation. Unlike animal enhancers that are position independent, plant regulatory elements depend on their position, as altering their location relative to the TSS significantly affects transcription. We highlight the importance of the region downstream of the TSS in regulating transcription by identifying a DNA motif that is conserved across vascular plants and is sufficient to enhance gene expression in a dose-dependent manner. The identification of a large number of position-dependent enhancers points to fundamental differences in gene regulation between plants and animals.
Collapse
Affiliation(s)
- Yoav Voichek
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| | - Gabriela Hristova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Almudena Mollá-Morales
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
2
|
Go D, Lu B, Alizadeh M, Gazzarrini S, Song L. Voice from both sides: a molecular dialogue between transcriptional activators and repressors in seed-to-seedling transition and crop adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1416216. [PMID: 39166233 PMCID: PMC11333834 DOI: 10.3389/fpls.2024.1416216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/20/2024] [Indexed: 08/22/2024]
Abstract
High-quality seeds provide valuable nutrients to human society and ensure successful seedling establishment. During maturation, seeds accumulate storage compounds that are required to sustain seedling growth during germination. This review focuses on the epigenetic repression of the embryonic and seed maturation programs in seedlings. We begin with an extensive overview of mutants affecting these processes, illustrating the roles of core proteins and accessory components in the epigenetic machinery by comparing mutants at both phenotypic and molecular levels. We highlight how omics assays help uncover target-specific functional specialization and coordination among various epigenetic mechanisms. Furthermore, we provide an in-depth discussion on the Seed dormancy 4 (Sdr4) transcriptional corepressor family, comparing and contrasting their regulation of seed germination in the dicotyledonous species Arabidopsis and two monocotyledonous crops, rice and wheat. Finally, we compare the similarities in the activation and repression of the embryonic and seed maturation programs through a shared set of cis-regulatory elements and discuss the challenges in applying knowledge largely gained in model species to crops.
Collapse
Affiliation(s)
- Dongeun Go
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Gazzarrini
- Department of Biological Science, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Gazzarrini S, Song L. LAFL Factors in Seed Development and Phase Transitions. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:459-488. [PMID: 38657282 DOI: 10.1146/annurev-arplant-070623-111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada;
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
4
|
Chen J, Hu Y, Zhao T, Huang C, Chen J, He L, Dai F, Chen S, Wang L, Jin S, Zhang T. Comparative transcriptomic analysis provides insights into the genetic networks regulating oil differential production in oil crops. BMC Biol 2024; 22:110. [PMID: 38735918 PMCID: PMC11089805 DOI: 10.1186/s12915-024-01909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Plants differ more than threefold in seed oil contents (SOCs). Soybean (Glycine max), cotton (Gossypium hirsutum), rapeseed (Brassica napus), and sesame (Sesamum indicum) are four important oil crops with markedly different SOCs and fatty acid compositions. RESULTS Compared to grain crops like maize and rice, expanded acyl-lipid metabolism genes and relatively higher expression levels of genes involved in seed oil synthesis (SOS) in the oil crops contributed to the oil accumulation in seeds. Here, we conducted comparative transcriptomics on oil crops with two different SOC materials. In common, DIHYDROLIPOAMIDE DEHYDROGENASE, STEAROYL-ACYL CARRIER PROTEIN DESATURASE, PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE, and oil-body protein genes were both differentially expressed between the high- and low-oil materials of each crop. By comparing functional components of SOS networks, we found that the strong correlations between genes in "glycolysis/gluconeogenesis" and "fatty acid synthesis" were conserved in both grain and oil crops, with PYRUVATE KINASE being the common factor affecting starch and lipid accumulation. Network alignment also found a conserved clique among oil crops affecting seed oil accumulation, which has been validated in Arabidopsis. Differently, secondary and protein metabolism affected oil synthesis to different degrees in different crops, and high SOC was due to less competition of the same precursors. The comparison of Arabidopsis mutants and wild type showed that CINNAMYL ALCOHOL DEHYDROGENASE 9, the conserved regulator we identified, was a factor resulting in different relative contents of lignins to oil in seeds. The interconnection of lipids and proteins was common but in different ways among crops, which partly led to differential oil production. CONCLUSIONS This study goes beyond the observations made in studies of individual species to provide new insights into which genes and networks may be fundamental to seed oil accumulation from a multispecies perspective.
Collapse
Affiliation(s)
- Jinwen Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Yan Hu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, 572025, Hainan, China
| | - Ting Zhao
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Chujun Huang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Jiani Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Lu He
- Hainan Institute of Zhejiang University, Sanya, 572025, Hainan, China
| | - Fan Dai
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Shuqi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Luyao Wang
- Hainan Institute of Zhejiang University, Sanya, 572025, Hainan, China
| | - Shangkun Jin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Tianzhen Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China.
- Hainan Institute of Zhejiang University, Sanya, 572025, Hainan, China.
| |
Collapse
|
5
|
Ohm H, Saripella GV, Hofvander P, Grimberg Å. Spatio-temporal transcriptome and storage compound profiles of developing faba bean ( Vicia faba) seed tissues. FRONTIERS IN PLANT SCIENCE 2024; 15:1284997. [PMID: 38379954 PMCID: PMC10877042 DOI: 10.3389/fpls.2024.1284997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
Faba bean (Vicia faba) is a legume grown in diverse climate zones with a high potential for increased cultivation and use in food due to its nutritional seeds. In this study, we characterized seed tissue development in faba bean to identify key developmental processes; from embryo expansion at the expense of the endosperm to the maturing storage stages of the bean seed. A spatio-temporal transcriptome profiling analysis, combined with chemical nutrient analysis of protein, starch, and lipid, of endosperm and embryo tissues at different developmental stages, revealed gene expression patterns, transcriptional networks, and biochemical pathways in faba bean. We identified key players in the LAFL (LEC1, ABI3, FUS3, and LEC2) transcription factor network as well as their major repressors VAL1 and ASIL1. Our results showed that proteins accumulated not only in the embryo but also in the endosperm. Starch accumulated throughout seed development and oil content increased during seed development but at very low levels. The patterns of differentially expressed transcripts encoding proteins with functions in the corresponding metabolic pathways for the synthesis of these storage compounds, to a high extent, aligned with these findings. However, the early expression of transcripts encoding WRI1 combined with the late expression of oil body proteins indicated a not manifested high potential for lipid biosynthesis and oil storage. Altogether, this study contributes to increased knowledge regarding seed developmental processes applicable to future breeding methods and seed quality improvement for faba bean.
Collapse
Affiliation(s)
- Hannah Ohm
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden
| | | | | | - Åsa Grimberg
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden
| |
Collapse
|
6
|
Yu L, Liu D, Yin F, Yu P, Lu S, Zhang Y, Zhao H, Lu C, Yao X, Dai C, Yang QY, Guo L. Interaction between phenylpropane metabolism and oil accumulation in the developing seed of Brassica napus revealed by high temporal-resolution transcriptomes. BMC Biol 2023; 21:202. [PMID: 37775748 PMCID: PMC10543336 DOI: 10.1186/s12915-023-01705-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Brassica napus is an important oilseed crop providing high-quality vegetable oils for human consumption and non-food applications. However, the regulation between embryo and seed coat for the synthesis of oil and phenylpropanoid compounds remains largely unclear. RESULTS Here, we analyzed the transcriptomes in developing seeds at 2-day intervals from 14 days after flowering (DAF) to 64 DAF. The 26 high-resolution time-course transcriptomes are clearly clustered into five distinct groups from stage I to stage V. A total of 2217 genes including 136 transcription factors, are specifically expressed in the seed and show high temporal specificity by being expressed only at certain stages of seed development. Furthermore, we analyzed the co-expression networks during seed development, which mainly included master regulatory transcription factors, lipid, and phenylpropane metabolism genes. The results show that the phenylpropane pathway is prominent during seed development, and the key enzymes in the phenylpropane metabolic pathway, including TT5, BAN, and the transporter TT19, were directly or indirectly related to many key enzymes and transcription factors involved in oil accumulation. We identified candidate genes that may regulate seed oil content based on the co-expression network analysis combined with correlation analysis of the gene expression with seed oil content and seed coat content. CONCLUSIONS Overall, these results reveal the transcriptional regulation between lipid and phenylpropane accumulation during B. napus seed development. The established co-expression networks and predicted key factors provide important resources for future studies to reveal the genetic control of oil accumulation in B. napus seeds.
Collapse
Affiliation(s)
- Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feifan Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pugang Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, 59717, USA
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| |
Collapse
|
7
|
Zhang Y, Hu Y, Wang Z, Lin X, Li Z, Ren Y, Zhao J. The translocase of the inner mitochondrial membrane 22-2 is required for mitochondrial membrane function during Arabidopsis seed development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4427-4448. [PMID: 37105529 DOI: 10.1093/jxb/erad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
The carrier translocase (also known as translocase of the inner membrane 22; TIM22 complex) is an important component of the mitochondrial protein import apparatus. However, the biological functions of AtTIM22-2 in Arabidopsis remain poorly defined. Here, we report studies on two tim22-2 mutants that exhibit defects in embryo and endosperm development, leading to seed abortion. AtTIM22-2, which was localized in mitochondria, was widely expressed in embryos and in various seedling organs. Loss of AtTIM22-2 function resulted in irregular mitochondrial cristae, decreased respiratory activity, and a lower membrane potential, together with changes in gene expression and enzyme activity related to reactive oxygen species (ROS) metabolism, leading to increased accumulation of ROS in the embryo. The levels of transcripts encoding mitochondrial protein import components were also altered in the tim22-2 mutants. Furthermore, mass spectrometry, bimolecular fluorescence complementation and co-immunoprecipitation assays revealed that AtTIM22-2 interacted with AtTIM23-2, AtB14.7 (a member of Arabidopsis OEP16 family encoded by At2G42210), and AT5G27395 (mitochondrial inner membrane translocase complex, subunit TIM44-related protein). Taken together, these results demonstrate that AtTIM22-2 is essential for maintaining mitochondrial membrane functions during seed development. These findings lay the foundations for a new model of the composition and functions of the TIM22 complex in higher plants.
Collapse
Affiliation(s)
- Yuqin Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuanyuan Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiqin Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaodi Lin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zihui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yafang Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Klajn N, Kapczyńska K, Pasikowski P, Glazińska P, Kugiel H, Kęsy J, Wojciechowski W. Regulatory Effects of ABA and GA on the Expression of Conglutin Genes and LAFL Network Genes in Yellow Lupine ( Lupinus luteus L.) Seeds. Int J Mol Sci 2023; 24:12380. [PMID: 37569754 PMCID: PMC10418516 DOI: 10.3390/ijms241512380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The maturation of seeds is a process of particular importance both for the plant itself by assuring the survival of the species and for the human population for nutritional and economic reasons. Controlling this process requires a strict coordination of many factors at different levels of the functioning of genetic and hormonal changes as well as cellular organization. One of the most important examples is the transcriptional activity of the LAFL gene regulatory network, which includes LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) and ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 (LEAFY COTYLEDON2), as well as hormonal homeostasis-of abscisic acid (ABA) and gibberellins (GA) in particular. From the nutritional point of view, the key to seed development is the ability of seeds to accumulate large amounts of proteins with different structures and properties. The world's food deficit is mainly related to shortages of protein, and taking into consideration the environmental changes occurring on Earth, it is becoming necessary to search for a way to obtain large amounts of plant-derived protein while maintaining the diversity of its origin. Yellow lupin, whose storage proteins are conglutins, is one of the plant species native to Europe that accumulates large amounts of this nutrient in its seeds. In this article we have shown the key changes occurring in the developing seeds of the yellow-lupin cultivar Taper by means of modern molecular biology techniques, including RNA-seq, chromatographic techniques and quantitative PCR analysis. We identified regulatory genes fundamental to the seed-filling process, as well as genes encoding conglutins. We also investigated how exogenous application of ABA and GA3 affects the expression of LlLEC2, LlABI3, LlFUS3, and genes encoding β- and δ-conglutins and whether it results in the amount of accumulated seed storage proteins. The research shows that for each species, even related plants, very specific changes can be identified. Thus the analysis and possibility of using such an approach to improve and stabilize yields requires even more detailed and extended research.
Collapse
Affiliation(s)
- Natalia Klajn
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (P.G.); (J.K.)
| | - Katarzyna Kapczyńska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland;
| | - Paweł Pasikowski
- Life Sciences and Biotechnology Center, Łukasiewicz Research Network–PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland;
- Captor Therapeutics S.A., Duńska 11, 54-427 Wroclaw, Poland
| | - Paulina Glazińska
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (P.G.); (J.K.)
| | - Hubert Kugiel
- LABcenter Life Agro Biotechnology Ltd., Gliniana 14, 97-300 Piotrków Trybunalski, Poland; (H.K.); (W.W.)
| | - Jacek Kęsy
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (P.G.); (J.K.)
| | - Waldemar Wojciechowski
- LABcenter Life Agro Biotechnology Ltd., Gliniana 14, 97-300 Piotrków Trybunalski, Poland; (H.K.); (W.W.)
| |
Collapse
|
9
|
Han Y, Georgii E, Priego-Cubero S, Wurm CJ, Hüther P, Huber G, Koller R, Becker C, Durner J, Lindermayr C. Arabidopsis histone deacetylase HD2A and HD2B regulate seed dormancy by repressing DELAY OF GERMINATION 1. FRONTIERS IN PLANT SCIENCE 2023; 14:1124899. [PMID: 37313253 PMCID: PMC10258333 DOI: 10.3389/fpls.2023.1124899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/06/2023] [Indexed: 06/15/2023]
Abstract
Seed dormancy is a crucial developmental transition that affects the adaption and survival of plants. Arabidopsis DELAY OF GERMINATION 1 (DOG1) is known as a master regulator of seed dormancy. However, although several upstream factors of DOG1 have been reported, the exact regulation of DOG1 is not fully understood. Histone acetylation is an important regulatory layer, controlled by histone acetyltransferases and histone deacetylases. Histone acetylation strongly correlates with transcriptionally active chromatin, whereas heterochromatin is generally characterized by hypoacetylated histones. Here we describe that loss of function of two plant-specific histone deacetylases, HD2A and HD2B, resulted in enhanced seed dormancy in Arabidopsis. Interestingly, the silencing of HD2A and HD2B caused hyperacetylation of the DOG1 locus and promoted the expression of DOG1 during seed maturation and imbibition. Knockout of DOG1 could rescue the seed dormancy and partly rescue the disturbed development phenotype of hd2ahd2b. Transcriptomic analysis of the hd2ahd2b line shows that many genes involved in seed development were impaired. Moreover, we demonstrated that HSI2 and HSL1 interact with HD2A and HD2B. In sum, these results suggest that HSI2 and HSL1 might recruit HD2A and HD2B to DOG1 to negatively regulate DOG1 expression and to reduce seed dormancy, consequently, affecting seed development during seed maturation and promoting seed germination during imbibition.
Collapse
Affiliation(s)
- Yongtao Han
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | | | - Christoph J. Wurm
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Patrick Hüther
- Genetics, LMU Biocenter, Ludwig-Maximilians-Universität München, München, Germany
| | - Gregor Huber
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Robert Koller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Claude Becker
- Genetics, LMU Biocenter, Ludwig-Maximilians-Universität München, München, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center for Lung Research, München, Germany
| |
Collapse
|
10
|
Smit ME, Vatén A, Mair A, Northover CAM, Bergmann DC. Extensive embryonic patterning without cellular differentiation primes the plant epidermis for efficient post-embryonic stomatal activities. Dev Cell 2023; 58:506-521.e5. [PMID: 36931268 DOI: 10.1016/j.devcel.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Plant leaves feature epidermal stomata that are organized in stereotyped patterns. How does the pattern originate? We provide transcriptomic, imaging, and genetic evidence that Arabidopsis embryos engage known stomatal fate and patterning factors to create regularly spaced stomatal precursor cells. Analysis of embryos from 36 plant species indicates that this trait is widespread among angiosperms. Embryonic stomatal patterning in Arabidopsis is established in three stages: first, broad SPEECHLESS (SPCH) expression; second, coalescence of SPCH and its targets into discrete domains; and third, one round of asymmetric division to create stomatal precursors. Lineage progression is then halted until after germination. We show that the embryonic stomatal pattern enables fast stomatal differentiation and photosynthetic activity upon germination, but it also guides the formation of additional stomata as the leaf expands. In addition, key stomatal regulators are prevented from driving the fate transitions they can induce after germination, identifying stage-specific layers of regulation that control lineage progression during embryogenesis.
Collapse
Affiliation(s)
- Margot E Smit
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Anne Vatén
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Andrea Mair
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Pan J, Zhang H, Zhan Z, Zhao T, Jiang D. A REF6-dependent H3K27me3-depleted state facilitates gene activation during germination in Arabidopsis. J Genet Genomics 2023; 50:178-191. [PMID: 36113770 DOI: 10.1016/j.jgg.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Seed germination is a critical developmental switch from a quiescent state to active growth, which involves extensive changes in metabolism, gene expression, and cellular identity. However, our understanding of epigenetic and transcriptional reprogramming during this process is limited. The histone H3 lysine 27 trimethylation (H3K27me3) plays a key role in regulating gene repression and cell fate specification. Here, we profile H3K27me3 dynamics and dissect the function of H3K27 demethylation during germination in Arabidopsis. Our temporal genome-wide profiling of H3K27me3 and transcription reveals delayed H3K27me3 reprogramming compared with transcriptomic changes during germination, with H3K27me3 changes mainly occurring when the embryo is entering into vegetative development. RELATIVE OF EARLY FLOWERING 6 (REF6)-mediated H3K27 demethylation is necessary for robust germination but does not significantly contribute to H3K27me3 dynamics during germination, but rather stably establishes an H3K27me3-depleted state that facilitates the activation of hormone-related and expansin-coding genes important for germination. We also show that the REF6 chromatin occupancy is gradually established during germination to counteract increased Polycomb repressive complex 2 (PRC2). Our study provides key insights into the H3K27me3 dynamics during germination and suggests the function of H3K27me3 in facilitating cell fate switch. Furthermore, we reveal the importance of H3K27 demethylation-established transcriptional competence in gene activation during germination and likely other developmental processes.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenping Zhan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Zhao T, Lu J, Zhang H, Xue M, Pan J, Ma L, Berger F, Jiang D. Histone H3.3 deposition in seed is essential for the post-embryonic developmental competence in Arabidopsis. Nat Commun 2022; 13:7728. [PMID: 36513677 PMCID: PMC9747979 DOI: 10.1038/s41467-022-35509-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The acquisition of germination and post-embryonic developmental ability during seed maturation is vital for seed vigor, an important trait for plant propagation and crop production. How seed vigor is established in seeds is still poorly understood. Here, we report the crucial function of Arabidopsis histone variant H3.3 in endowing seeds with post-embryonic developmental potentials. H3.3 is not essential for seed formation, but loss of H3.3 results in severely impaired germination and post-embryonic development. H3.3 exhibits a seed-specific 5' gene end distribution and facilitates chromatin opening at regulatory regions in seeds. During germination, H3.3 is essential for proper gene transcriptional regulation. Moreover, H3.3 is constantly loaded at the 3' gene end, correlating with gene body DNA methylation and the restriction of chromatin accessibility and cryptic transcription at this region. Our results suggest a fundamental role of H3.3 in initiating chromatin accessibility at regulatory regions in seed and licensing the embryonic to post-embryonic transition.
Collapse
Affiliation(s)
- Ting Zhao
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingyun Lu
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Mande Xue
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jie Pan
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Ma
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Frédéric Berger
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Danhua Jiang
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Guo J, Liu H, Dai K, Yuan X, Guo P, Shi W, Zhou M. Identification of Brachypodium distachyon B3 genes reveals that BdB3-54 regulates primary root growth. FRONTIERS IN PLANT SCIENCE 2022; 13:1050171. [PMID: 36438129 PMCID: PMC9686306 DOI: 10.3389/fpls.2022.1050171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
B3 is a class of plant-specific transcription factors with important roles in plant development and growth. Here, we identified 69 B3 transcription factors in Brachypodium distachyon that were unevenly distributed across all five chromosomes. The ARF, REM, LAV, and RAV subfamilies were grouped based on sequence characteristics and phylogenetic relationships. The phylogenetically related members in the B3 family shared conserved domains and gene structures. Expression profiles showed that B3 genes were widely expressed in different tissues and varied in response to different abiotic stresses. BdB3-54 protein from the REM subfamily was located in the nucleus by subcellular localization and processed transcriptional activation activity. Overexpression of BdB3-54 in Arabidopsis increased primary root length. Our study provides a basis for further research on the functions of BdB3 genes.
Collapse
Affiliation(s)
- Jie Guo
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Hanxiao Liu
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Keli Dai
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Pingyi Guo
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Weiping Shi
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Meixue Zhou
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
| |
Collapse
|
14
|
Chen C, Du X. LEAFY COTYLEDONs: Connecting different stages of plant development. FRONTIERS IN PLANT SCIENCE 2022; 13:916831. [PMID: 36119568 PMCID: PMC9470955 DOI: 10.3389/fpls.2022.916831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The life of higher plants progresses successively through embryonic, juvenile, adult, and reproductive stages. LEAFY COTYLEDON (LEC) transcription factors, first discovered in Arabidopsis thaliana several decades ago, play a key role in regulating plant embryonic development, seed maturation, and subsequent growth. Existing studies have demonstrated that LECs together with other transcription factors form a huge and complex regulatory network to regulate many aspects of plant growth and development and respond to environmental stresses. Here, we focus on the role that has received little attention about the LECs linking different developmental stages and generational cycles in plants. We summarize the current fragmented research progress on the LECs role and molecular mechanism in connecting embryonic and vegetative growth periods and the reproductive stage. Furthermore, the possibility of LECs controlling the maintenance and transition of plant growth stages through epigenetic modifications is discussed.
Collapse
|
15
|
Kuczynski C, McCorkle S, Keereetaweep J, Shanklin J, Schwender J. An expanded role for the transcription factor WRINKLED1 in the biosynthesis of triacylglycerols during seed development. FRONTIERS IN PLANT SCIENCE 2022; 13:955589. [PMID: 35991420 PMCID: PMC9389262 DOI: 10.3389/fpls.2022.955589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/28/2022] [Indexed: 06/12/2023]
Abstract
The transcription factor WRINKLED1 (WRI1) is known as a master regulator of fatty acid synthesis in developing oilseeds of Arabidopsis thaliana and other species. WRI1 is known to directly stimulate the expression of many fatty acid biosynthetic enzymes and a few targets in the lower part of the glycolytic pathway. However, it remains unclear to what extent and how the conversion of sugars into fatty acid biosynthetic precursors is controlled by WRI1. To shortlist possible gene targets for future in-planta experimental validation, here we present a strategy that combines phylogenetic foot printing of cis-regulatory elements with additional layers of evidence. Upstream regions of protein-encoding genes in A. thaliana were searched for the previously described DNA-binding consensus for WRI1, the ASML1/WRI1 (AW)-box. For about 900 genes, AW-box sites were found to be conserved across orthologous upstream regions in 11 related species of the crucifer family. For 145 select potential target genes identified this way, affinity of upstream AW-box sequences to WRI1 was assayed by Microscale Thermophoresis. This allowed definition of a refined WRI1 DNA-binding consensus. We find that known WRI1 gene targets are predictable with good confidence when upstream AW-sites are phylogenetically conserved, specifically binding WRI1 in the in vitro assay, positioned in proximity to the transcriptional start site, and if the gene is co-expressed with WRI1 during seed development. When targets predicted in this way are mapped to central metabolism, a conserved regulatory blueprint emerges that infers concerted control of contiguous pathway sections in glycolysis and fatty acid biosynthesis by WRI1. Several of the newly predicted targets are in the upper glycolysis pathway and the pentose phosphate pathway. Of these, plastidic isoforms of fructokinase (FRK3) and of phosphoglucose isomerase (PGI1) are particularly corroborated by previously reported seed phenotypes of respective null mutations.
Collapse
|
16
|
Interaction Analysis between the Arabidopsis Transcription Repressor VAL1 and Transcription Coregulators SIN3-LIKEs (SNLs). Int J Mol Sci 2022; 23:ijms23136987. [PMID: 35805982 PMCID: PMC9266683 DOI: 10.3390/ijms23136987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/19/2023] Open
Abstract
VIVIPAROUS1/ABSCISIC ACID INSENSITIVE3-LIKE1 (VAL1) encodes a DNA-binding B3 domain protein and plays essential roles in seed maturation and flowering transition by repressing genes through epigenetic silencing in Arabidopsis. SWI-INDEPENDENT3 (SIN3)-LIKEs (SNLs), which encode scaffold proteins for the assembly of histone deacetylase complexes and have six SIN3 homologues (SNL1–SNL6) in Arabidopsis thaliana, directly repress gene expression to regulate seed maturation and flowering transition. However, it remains unclear whether VAL1 and SNLs work together in repressing the expression of related genes. In this study, yeast two-hybrid and firefly luciferase complementation imaging assays revealed that VAL1 interacts with SNLs, which can be attributed to its own zinc-finger CW (conserved Cys (C) and Trp (W) residues) domain and the PAH (Paired Amphipathic Helices) domains of SNLs. Furthermore, pull-down experiments confirmed that the CW domain of VAL1 interacts with both intact protein and the PAH domains of SNLs proteins, and the co-immunoprecipitation assays also confirmed the interaction between VAL1 and SNLs. In addition, quantitative real-time PCR (qRT-PCR) analysis showed that VAL1 and SNLs were expressed in seedlings, and transient expression assays showed that VAL1 and SNLs were localized in the nucleus. Considered together, these results reveal that VAL1 physically interacts with SNLs both in vitro and in vivo, and suggest that VAL1 and SNLs may work together to repress the expression of genes related to seed maturation and flowering transition in Arabidopsis.
Collapse
|
17
|
Kim DH, Lee SW, Moon H, Choi D, Kim S, Kang H, Kim J, Choi G, Huq E. ABI3- and PIF1-mediated regulation of GIG1 enhances seed germination by detoxification of methylglyoxal in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1578-1591. [PMID: 35365944 DOI: 10.1111/tpj.15755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Methylglyoxal (MG) is a toxic by-product of the glycolysis pathway in most living organisms and was previously shown to inhibit seed germination. MG is detoxified by glyoxalase I and II family proteins in plants. MG is abundantly produced during early embryogenesis in Arabidopsis seeds. However, the mechanism that alleviates the toxic effect of MG in maturing seeds is poorly understood. In this study, by T-DNA mutant population screening, we found that mutations in a glyoxalase I gene (named GERMINATION-IMPAIRED GLYOXALASE 1, GIG1) led to significantly impaired germination compared with wild-type seeds. Transformation of full-length GIG1 cDNA under the constitutively active cauliflower mosaic virus 35S promoter in the gig1 background completely recovered the seed germination phenotype. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses revealed that GIG1 is uniquely expressed in seeds and is upregulated by abscisic acid (ABA) and downregulated by gibberellic acid (GA) during seed germination. An ABA signaling component, ABI3, directly activated GIG1 in maturing seeds. In addition, PHYTOCHROME INTERACTING FACTOR 1 (PIF1) also plays cooperatively with ABI3 in the regulation of GIG1 expression in the early stage of imbibed seeds. Furthermore, GIG1 expression is stably silenced by epigenetic repressors such as polycomb repressor complexes. Altogether, our results indicate that light and ABA signaling cooperate to enhance seed germination by the upregulation of GIG1 to detoxify MG in maturing seeds.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Woo Lee
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heewon Moon
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dasom Choi
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sujeong Kim
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hajeong Kang
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jungtae Kim
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Enamul Huq
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
18
|
Yang Z, Liu X, Wang K, Li Z, Jia Q, Zhao C, Zhang M. ABA-INSENSITIVE 3 with or without FUSCA3 highly up-regulates lipid droplet proteins and activates oil accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2077-2092. [PMID: 34849730 DOI: 10.1093/jxb/erab524] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/26/2021] [Indexed: 05/25/2023]
Abstract
ABA-INSENSITIVE 3 (ABI3) has long been known for activation of storage protein accumulation. A role of ABI3 on oil accumulation was previously suggested based on a decrease of oil content in seeds of abi3 mutant. However, this conclusion could not exclude possibilities of indirect or pleiotropic effects, such as through mutual regulatory interactions with FUSCA3 (FUS3), an activator of oil accumulation. To identify that ABI3 functions independent of the effects of related seed transcription factors, we expressed ABI3 under the control of an inducible promoter in tobacco BY2 cells and Arabidopsis rosette leaves. Inducible expression of ABI3 activated oil accumulation in these non-seed cells, demonstrating a general role of ABI3 in regulation of oil biosynthesis. Further expressing ABI3 in rosette leaves of fus3 knockout mutant still caused up to 3-fold greater triacylglycerol accumulation, indicating ABI3 can activate lipid accumulation independently of FUS3. Transcriptome analysis revealed that LIPID DROPLET PROTEIN (LDP) genes, including OLEOSINs and CALEOSINs, were up-regulated up to 1000-fold by ABI3 in the absence of FUS3, while the expression of WRINKLED1 was doubled. Taken together, our results provide genetic evidence that ABI3 activates oil accumulation with or without FUS3, most likely through up-regulating LDPs and WRINKLED1.
Collapse
Affiliation(s)
- Zheng Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangling Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Kai Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhuowei Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingli Jia
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
19
|
Godwin J, Farrona S. The Importance of Networking: Plant Polycomb Repressive Complex 2 and Its Interactors. EPIGENOMES 2022; 6:epigenomes6010008. [PMID: 35323212 PMCID: PMC8948837 DOI: 10.3390/epigenomes6010008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2) is arguably the best-known plant complex of the Polycomb Group (PcG) pathway, formed by a group of proteins that epigenetically represses gene expression. PRC2-mediated deposition of H3K27me3 has amply been studied in Arabidopsis and, more recently, data from other plant model species has also been published, allowing for an increasing knowledge of PRC2 activities and target genes. How PRC2 molecular functions are regulated and how PRC2 is recruited to discrete chromatin regions are questions that have brought more attention in recent years. A mechanism to modulate PRC2-mediated activity is through its interaction with other protein partners or accessory proteins. Current evidence for PRC2 interactors has demonstrated the complexity of its protein network and how far we are from fully understanding the impact of these interactions on the activities of PRC2 core subunits and on the formation of new PRC2 versions. This review presents a list of PRC2 interactors, emphasizing their mechanistic action upon PRC2 functions and their effects on transcriptional regulation.
Collapse
|
20
|
Ruiz KA, Pelletier JM, Wang Y, Feng MJ, Behr JS, Ðào TQ, Li B, Kliebenstein D, Harada JJ, Jenik PD. A reevaluation of the role of the ASIL trihelix transcription factors as repressors of the seed maturation program. PLANT DIRECT 2021; 5:e345. [PMID: 34622120 PMCID: PMC8483069 DOI: 10.1002/pld3.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Developmental transitions are typically tightly controlled at the transcriptional level. Two of these transitions involve the induction of the embryo maturation program midway through seed development and its repression during the vegetative phase of plant growth. Very little is known about the factors responsible for this regulation during early embryogenesis, and only a couple of transcription factors have been characterized as repressors during the postgerminative phase. Arabidopsis 6b-INTERACTING PROTEIN-LIKE1 (ASIL1), a trihelix transcription factor, has been proposed to repress maturation both embryonically and postembryonically. Preliminary data also suggested that its closest paralog, ASIL2, might play a role as well. We used a transcriptomic approach, coupled with phenotypical observations, to test the hypothesis that ASIL1 and ASIL2 redundantly turn off maturation during both phases of growth. Our results indicate that, contrary to what was previously published, neither of the ASIL genes plays a role in the regulation of maturation, at any point during plant development. Analyses of gene ontology (GO)-enriched terms and published transcriptomic datasets suggest that these genes might be involved in responses during the vegetative phase to certain biotic and abiotic stresses.
Collapse
Affiliation(s)
- Kevin A. Ruiz
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
| | - Julie M. Pelletier
- Department of Plant Biology, College of Biological SciencesUniversity of CaliforniaDavisCAUSA
| | - Yuchi Wang
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
- Present address:
Chimera (Shanghai) Biotec Ltd.Shanghai CityChina
| | - Min Jun Feng
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
- Present address:
Medical University of South CarolinaCharlestonSCUSA
| | - Jacqueline S. Behr
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
- Present address:
Hoboken University Medical CenterHobokenNJUSA
| | - Thái Q. Ðào
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
- Present address:
Department of Botany and Plant Biology, College of Agricultural SciencesOregon State UniversityCorvallisORUSA
| | - Baohua Li
- Department of Plant Sciences, College of Agricultural and Environmental SciencesUniversity of CaliforniaDavisCAUSA
- Present address:
College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Daniel Kliebenstein
- Department of Plant Sciences, College of Agricultural and Environmental SciencesUniversity of CaliforniaDavisCAUSA
| | - John J. Harada
- Department of Plant Biology, College of Biological SciencesUniversity of CaliforniaDavisCAUSA
| | - Pablo D. Jenik
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
| |
Collapse
|
21
|
Genetic and Molecular Control of Somatic Embryogenesis. PLANTS 2021; 10:plants10071467. [PMID: 34371670 PMCID: PMC8309254 DOI: 10.3390/plants10071467] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022]
Abstract
Somatic embryogenesis is a method of asexual reproduction that can occur naturally in various plant species and is widely used for clonal propagation, transformation and regeneration of different crops. Somatic embryogenesis shares some developmental and physiological similarities with zygotic embryogenesis as it involves common actors of hormonal, transcriptional, developmental and epigenetic controls. Here, we provide an overview of the main signaling pathways involved in the induction and regulation of somatic embryogenesis with a focus on the master regulators of seed development, LEAFY COTYLEDON 1 and 2, ABSCISIC ACID INSENSITIVE 3 and FUSCA 3 transcription factors whose precise role during both zygotic and somatic embryogenesis remains to be fully elucidated.
Collapse
|
22
|
Ruan J, Chen H, Zhu T, Yu Y, Lei Y, Yuan L, Liu J, Wang ZY, Kuang JF, Lu WJ, Huang S, Li C. Brassinosteroids repress the seed maturation program during the seed-to-seedling transition. PLANT PHYSIOLOGY 2021; 186:534-548. [PMID: 33620498 PMCID: PMC8154094 DOI: 10.1093/plphys/kiab089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 05/27/2023]
Abstract
In flowering plants, repression of the seed maturation program is essential for the transition from the seed to the vegetative phase, but the underlying mechanisms remain poorly understood. The B3-domain protein VIVIPAROUS1/ABSCISIC ACID-INSENSITIVE3-LIKE 1 (VAL1) is involved in repressing the seed maturation program. Here we uncovered a molecular network triggered by the plant hormone brassinosteroid (BR) that inhibits the seed maturation program during the seed-to-seedling transition in Arabidopsis (Arabidopsis thaliana). val1-2 mutant seedlings treated with a BR biosynthesis inhibitor form embryonic structures, whereas BR signaling gain-of-function mutations rescue the embryonic structure trait. Furthermore, the BR-activated transcription factors BRI1-EMS-SUPPRESSOR 1 and BRASSINAZOLE-RESISTANT 1 bind directly to the promoter of AGAMOUS-LIKE15 (AGL15), which encodes a transcription factor involved in activating the seed maturation program, and suppress its expression. Genetic analysis indicated that BR signaling is epistatic to AGL15 and represses the seed maturation program by downregulating AGL15. Finally, we showed that the BR-mediated pathway functions synergistically with the VAL1/2-mediated pathway to ensure the full repression of the seed maturation program. Together, our work uncovered a mechanism underlying the suppression of the seed maturation program, shedding light on how BR promotes seedling growth.
Collapse
Affiliation(s)
- Jiuxiao Ruan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Huhui Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yawen Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liangbing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
23
|
Menichelli C, Guitard V, Martins RM, Lèbre S, Lopez-Rubio JJ, Lecellier CH, Bréhélin L. Identification of long regulatory elements in the genome of Plasmodium falciparum and other eukaryotes. PLoS Comput Biol 2021; 17:e1008909. [PMID: 33861755 PMCID: PMC8081344 DOI: 10.1371/journal.pcbi.1008909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/28/2021] [Accepted: 03/24/2021] [Indexed: 01/15/2023] Open
Abstract
Long regulatory elements (LREs), such as CpG islands, polydA:dT tracts or AU-rich elements, are thought to play key roles in gene regulation but, as opposed to conventional binding sites of transcription factors, few methods have been proposed to formally and automatically characterize them. We present here a computational approach named DExTER (Domain Exploration To Explain gene Regulation) dedicated to the identification of candidate LREs (cLREs) and apply it to the analysis of the genomes of P. falciparum and other eukaryotes. Our analyses show that all tested genomes contain several cLREs that are somewhat conserved along evolution, and that gene expression can be predicted with surprising accuracy on the basis of these long regions only. Regulation by cLREs exhibits very different behaviours depending on species and conditions. In P. falciparum and other Apicomplexan organisms as well as in Dictyostelium discoideum, the process appears highly dynamic, with different cLREs involved at different phases of the life cycle. For multicellular organisms, the same cLREs are involved in all tissues, but a dynamic behavior is observed along embryonic development stages. In P. falciparum, whose genome is known to be strongly depleted of transcription factors, cLREs are predictive of expression with an accuracy above 70%, and our analyses show that they are associated with both transcriptional and post-transcriptional regulation signals. Moreover, we assessed the biological relevance of one LRE discovered by DExTER in P. falciparum using an in vivo reporter assay. The source code (python) of DExTER is available at https://gite.lirmm.fr/menichelli/DExTER.
Collapse
Affiliation(s)
| | - Vincent Guitard
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, Montpellier University, INSERM, Montpellier, France
| | - Rafael M. Martins
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, Montpellier University, INSERM, Montpellier, France
| | - Sophie Lèbre
- IMAG, Univ. Montpellier, CNRS, Montpellier, France
- Univ. Paul-Valéry-Montpellier 3, Montpellier, France
| | - Jose-Juan Lopez-Rubio
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, Montpellier University, INSERM, Montpellier, France
| | - Charles-Henri Lecellier
- LIRMM, Univ Montpellier, CNRS, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | | |
Collapse
|
24
|
Tang S, Zhao H, Lu S, Yu L, Zhang G, Zhang Y, Yang QY, Zhou Y, Wang X, Ma W, Xie W, Guo L. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. MOLECULAR PLANT 2021; 14:470-487. [PMID: 33309900 DOI: 10.1016/j.molp.2020.12.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/01/2020] [Accepted: 12/04/2020] [Indexed: 05/25/2023]
Abstract
Seed oil content (SOC) is a highly important and complex trait in oil crops. Here, we decipher the genetic basis of natural variation in SOC of Brassica napus by genome- and transcriptome-wide association studies using 505 inbred lines. We mapped reliable quantitative trait loci (QTLs) that control SOC in eight environments, evaluated the effect of each QTL on SOC, and analyzed selection in QTL regions during breeding. Six-hundred and ninety-two genes and four gene modules significantly associated with SOC were identified by analyzing population transcriptomes from seeds. A gene prioritization framework, POCKET (prioritizing the candidate genes by incorporating information on knowledge-based gene sets, effects of variants, genome-wide association studies, and transcriptome-wide association studies), was implemented to determine the causal genes in the QTL regions based on multi-omic datasets. A pair of homologous genes, BnPMT6s, in two QTLs were identified and experimentally demonstrated to negatively regulate SOC. This study provides rich genetic resources for improving SOC and valuable insights toward understanding the complex machinery that directs oil accumulation in the seeds of B. napus and other oil crops.
Collapse
Affiliation(s)
- Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qing-Yong Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
25
|
Li Q, Chakrabarti M, Taitano NK, Okazaki Y, Saito K, Al-Abdallat AM, van der Knaap E. Differential expression of SlKLUH controlling fruit and seed weight is associated with changes in lipid metabolism and photosynthesis-related genes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1225-1244. [PMID: 33159787 PMCID: PMC7904157 DOI: 10.1093/jxb/eraa518] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/02/2020] [Indexed: 05/21/2023]
Abstract
The sizes of plant organs such as fruit and seed are crucial yield components. Tomato KLUH underlies the locus fw3.2, an important regulator of fruit and seed weight. However, the mechanism by which the expression levels of KLUH affect organ size is poorly understood. We found that higher expression of SlKLUH increased cell proliferation in the pericarp within 5 d post-anthesis in tomato near-isogenic lines. Differential gene expression analyses showed that lower expression of SlKLUH was associated with increased expression of genes involved in lipid metabolism. Lipidomic analysis revealed that repression of SlKLUH mainly increased the contents of certain non-phosphorus glycerolipids and phospholipids and decreased the contents of four unknown lipids. Co-expression network analyses revealed that lipid metabolism was possibly associated with but not directly controlled by SlKLUH, and that this gene instead controls photosynthesis-related processes. In addition, many transcription factors putatively involved in the KLUH pathway were identified. Collectively, we show that SlKLUH regulates fruit and seed weight which is associated with altered lipid metabolism. The results expand our understanding of fruit and seed weight regulation and offer a valuable resource for functional studies of candidate genes putatively involved in regulation of organ size in tomato and other crops.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Manohar Chakrabarti
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Nathan K Taitano
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
- Department of Horticulture, University of Georgia, Athens, GA, USA
- Correspondence:
| |
Collapse
|
26
|
Besnard J, Sonawala U, Maharjan B, Collakova E, Finlayson SA, Pilot G, McDowell J, Okumoto S. Increased Expression of UMAMIT Amino Acid Transporters Results in Activation of Salicylic Acid Dependent Stress Response. FRONTIERS IN PLANT SCIENCE 2021; 11:606386. [PMID: 33574824 PMCID: PMC7870477 DOI: 10.3389/fpls.2020.606386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/17/2020] [Indexed: 05/29/2023]
Abstract
In addition to their role in the biosynthesis of important molecules such as proteins and specialized metabolites, amino acids are known to function as signaling molecules through various pathways to report nitrogen status and trigger appropriate metabolic and cellular responses. Moreover, changes in amino acid levels through altered amino acid transporter activities trigger plant immune responses. Specifically, loss of function of major amino acid transporter, over-expression of cationic amino acid transporter, or over-expression of the positive regulators of membrane amino acid export all lead to dwarfed phenotypes and upregulated salicylic acid (SA)-induced stress marker genes. However, whether increasing amino acid exporter protein levels lead to similar stress phenotypes has not been investigated so far. Recently, a family of transporters, namely USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTERS (UMAMITs), were identified as amino acid exporters. The goal of this study was to investigate the effects of increased amino acid export on plant development, growth, and reproduction to further examine the link between amino acid transport and stress responses. The results presented here show strong evidence that an increased expression of UMAMIT transporters induces stress phenotypes and pathogen resistance, likely due to the establishment of a constitutive stress response via a SA-dependent pathway.
Collapse
Affiliation(s)
- Julien Besnard
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, United States
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, United States
| | - Unnati Sonawala
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, United States
| | - Bal Maharjan
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, United States
| | - Eva Collakova
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Scott A. Finlayson
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, United States
- Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, United States
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - John McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Sakiko Okumoto
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, United States
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, United States
| |
Collapse
|
27
|
Yuan L, Song X, Zhang L, Yu Y, Liang Z, Lei Y, Ruan J, Tan B, Liu J, Li C. The transcriptional repressors VAL1 and VAL2 recruit PRC2 for genome-wide Polycomb silencing in Arabidopsis. Nucleic Acids Res 2021; 49:98-113. [PMID: 33270882 PMCID: PMC7797069 DOI: 10.1093/nar/gkaa1129] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/19/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022] Open
Abstract
The Polycomb repressive complex 2 (PRC2) catalyzes histone H3 Lys27 trimethylation (H3K27me3) to repress gene transcription in multicellular eukaryotes. Despite its importance in gene silencing and cellular differentiation, how PRC2 is recruited to target loci is still not fully understood. Here, we report genome-wide evidence for the recruitment of PRC2 by the transcriptional repressors VIVIPAROUS1/ABI3-LIKE1 (VAL1) and VAL2 in Arabidopsis thaliana. We show that the val1 val2 double mutant possesses somatic embryonic phenotypes and a transcriptome strikingly similar to those of the swn clf double mutant, which lacks the PRC2 catalytic subunits SWINGER (SWN) and CURLY LEAF (CLF). We further show that VAL1 and VAL2 physically interact with SWN and CLF in vivo. Genome-wide binding profiling demonstrated that they colocalize with SWN and CLF at PRC2 target loci. Loss of VAL1/2 significantly reduces SWN and CLF enrichment at PRC2 target loci and leads to a genome-wide redistribution of H3K27me3 that strongly affects transcription. Finally, we provide evidence that the VAL1/VAL2-RY regulatory system is largely independent of previously identified modules for Polycomb silencing in plants. Together, our work demonstrates an extensive genome-wide interaction between VAL1/2 and PRC2 and provides mechanistic insights into the establishment of Polycomb silencing in plants.
Collapse
Affiliation(s)
- Liangbing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lu Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.,Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yawen Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiuxiao Ruan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bin Tan
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510624, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
28
|
Sengupta S, Ray A, Mandal D, Nag Chaudhuri R. ABI3 mediated repression of RAV1 gene expression promotes efficient dehydration stress response in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194582. [DOI: 10.1016/j.bbagrm.2020.194582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023]
|
29
|
Tian R, Wang F, Zheng Q, Niza VMAGE, Downie AB, Perry SE. Direct and indirect targets of the arabidopsis seed transcription factor ABSCISIC ACID INSENSITIVE3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1679-1694. [PMID: 32445409 DOI: 10.1111/tpj.14854] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana ABSCISIC ACID INSENSITIVE3 (ABI3) is a transcription factor in the B3 domain family. ABI3, along with B3 domain transcription factors LEAFY COTYLEDON2 (LEC2) and FUSCA3 (FUS3), and LEC1, a subunit of the CCAAT box-binding complex, form the so-called LAFL network to control various aspects of seed development and maturation. ABI3 also contributes to the abscisic acid (ABA) response. We report on chromatin immunoprecipitation-tiling array experiments to map binding sites for ABI3 globally. We also assessed transcriptomes in response to ABI3 by comparing developing abi3-5 and wild-type seeds and combined this information to ascertain direct and indirect responsive ABI3 target genes. ABI3 can induce and repress its transcription of target genes directly and some intriguing differences exist in cis motifs between these groups of genes. Directly regulated targets reflect the role of ABI3 in seed maturation, desiccation tolerance, entry into a quiescent state and longevity. Interestingly, ABI3 directly represses a gene encoding a microRNA (MIR160B) that targets AUXIN RESPONSE FACTOR (ARF)10 and ARF16 that are involved in establishment of dormancy. In addition, ABI3, like FUS3, regulates genes encoding MIR156 but while FUS3 only induces genes encoding this product, ABI3 induces these genes during the early stages of seed development, but represses these genes during late development. The interplay between ABI3, the other LAFL genes, and the VP1/ABI3-LIKE (VAL) genes, which are involved in the transition to seedling development are examined and reveal complex interactions controlling development.
Collapse
Affiliation(s)
- Ran Tian
- UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Fangfang Wang
- UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Qiaolin Zheng
- UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Venus M A G E Niza
- UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - A Bruce Downie
- UK Seed Biology Group, Department of Horticulture, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Sharyn E Perry
- UK Seed Biology Group, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
30
|
Liu Z, Ge XX, Wu XM, Xu Q, Atkinson RG, Guo WW. Genome-wide analysis of the citrus B3 superfamily and their association with somatic embryogenesis. BMC Genomics 2020; 21:305. [PMID: 32299363 PMCID: PMC7161213 DOI: 10.1186/s12864-020-6715-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/03/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND In citrus, genetic improvement via biotechnology is hindered by the obstacle of in vitro regeneration via somatic embryogenesis (SE). Although a few B3 transcription factors are reported to regulate embryogenesis, little is known about the B3 superfamily in citrus, and which members might be involved in SE. RESULTS Genome-wide sequence analysis identified 72 (CsB3) and 69 (CgB3) putative B3 superfamily members in the genomes of sweet orange (Citrus sinensis, polyembryonic) and pummelo (C. grandis, monoembryonic), respectively. Genome duplication analysis indicated that segmental and tandem duplication events contributed to the expansion of the B3 superfamily in citrus, and that the B3 superfamily evolved under the effect of purifying selection. Phylogenetic relationships were well supported by conserved gene structure and motifs outside the B3 domain, which allowed possible functions to be inferred by comparison with homologous genes from Arabidopsis. Expression analysis identified 23 B3 superfamily members that were expressed during SE in citrus and 17 that may play functional roles at late SE stages. Eight B3 genes were identified that were specific to the genome of polyembryonic sweet orange compared to monoembryonic pummelo. Of these eight B3 genes, CsARF19 was found to be specifically expressed at higher levels in embryogenic callus (EC), implying its possible involvement in EC initiation. CONCLUSIONS This study provides a genome-wide analysis of the citrus B3 superfamily, including its genome organization, evolutionary features and expression profiles, and identifies specific family members that may be associated with SE.
Collapse
Affiliation(s)
- Zheng Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiao-Xia Ge
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415 China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Ross G. Atkinson
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
31
|
Lin CT, Xu T, Xing SL, Zhao L, Sun RZ, Liu Y, Moore JP, Deng X. Weighted Gene Co-expression Network Analysis (WGCNA) Reveals the Hub Role of Protein Ubiquitination in the Acquisition of Desiccation Tolerance in Boea hygrometrica. PLANT & CELL PHYSIOLOGY 2019; 60:2707-2719. [PMID: 31410481 DOI: 10.1093/pcp/pcz160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 08/06/2019] [Indexed: 05/28/2023]
Abstract
Boea hygrometrica can survive extreme drought conditions and has been used as a model to study desiccation tolerance. A genome-wide transcriptome analysis of B. hygrometrica showed that the plant can survive rapid air-drying after experiencing a slow soil-drying acclimation phase. In addition, a weighted gene co-expression network analysis was used to study the transcriptomic datasets. A network comprising 22 modules was constructed, and seven modules were found to be significantly related to desiccation response using an enrichment analysis. Protein ubiquitination was observed to be a common process linked to hub genes in all the seven modules. Ubiquitin-modified proteins with diversified functions were identified using immunoprecipitation coupled with mass spectrometry. The lowest level of ubiquitination was noted at the full soil drying priming stage, which coincided the accumulation of dehydration-responsive gene BhLEA2. The highly conserved RY motif (CATGCA) was identified from the promoters of ubiquitin-related genes that were downregulated in the desiccated samples. An in silico gene expression analysis showed that the negative regulation of ubiquitin-related genes is potentially mediated via a B3 domain-containing transcription repressor VAL1. This study suggests that priming may involve the transcriptional regulation of several major processes, and the transcriptional regulation of genes in protein ubiquitination may play a hub role to deliver acclimation signals to posttranslational level in the acquisition of desiccation tolerance in B. hygrometrica.
Collapse
Affiliation(s)
- Chih-Ta Lin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Tao Xu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Shi-Lai Xing
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Li Zhao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Run-Ze Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Yang Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - John Paul Moore
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Matieland 7602, South Africa
| | - Xin Deng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
32
|
Evolution, Initiation, and Diversity in Early Plant Embryogenesis. Dev Cell 2019; 50:533-543. [DOI: 10.1016/j.devcel.2019.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/07/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022]
|
33
|
Huang Y, Jiang L, Liu BY, Tan CF, Chen DH, Shen WH, Ruan Y. Evolution and conservation of polycomb repressive complex 1 core components and putative associated factors in the green lineage. BMC Genomics 2019; 20:533. [PMID: 31253095 PMCID: PMC6599366 DOI: 10.1186/s12864-019-5905-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
Background Polycomb group (PcG) proteins play important roles in animal and plant development and stress response. Polycomb repressive complex 1 (PRC1) and PRC2 are the key epigenetic regulators of gene expression, and are involved in almost all developmental stages. PRC1 catalyzes H2A monoubiquitination resulting in transcriptional silencing or activation. The PRC1 components in the green lineage were identified and evolution and conservation was analyzed by bioinformatics techniques. RING Finger Protein 1 (RING1), B lymphoma Mo-MLV insertion region 1 homolog (BMI1), Like Heterochromatin Protein 1 (LHP1) and Embryonic Flower 1 (EMF1) are the PRC1 core components and Vernalization 1 (VRN1), VP1/ABI3-Like 1/2/3 (VAL1/2/3), Alfin-like 1–7 (AL1–7), Inhibitor of growth 1/2 (ING1/2), and Early Bolting in Short Days (EBS) / Short Life (SHL) are the associated factors. Results Each PRC1 subunit possesses special domain organizations, such as RING and the ring finger and WD40-associated ubiquitin-like (RAWUL) domains for RING1 and BMI1, chromatin organization modifier (CHROMO) and chromo shadow (ChSh) domains for LHP1, one or two B3 DNA binding domain(s) for VRN1, B3 and zf-CW domains for VAL1/2/3, Alfin and Plant HomeoDomain (PHD) domains for AL1–7, ING and PHD domains for ING1/2, Bromoadjacent homology (BAT) and PHD domains for EBS/SHL. Six new motifs are uncovered in EMF1. The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1–7, ING1/2, and EBS/SHL exist from alga to higher plants, whereas LHP1 only occurs in higher plants. EMF1 and VRN1 are present only in eudicots. PRC1 components undergo duplication in the plant evolution. Most of plants carry the homologous core component LHP1, the associated factor EMF1, and several homologs in RING1, BMI1, VRN1, AL1–7, ING1/2/3, and EBS/SHL. Cabbage, cotton, poplar, orange and maize often exhibit more gene copies than other species. Domain organization analysis shows that duplicated gene functions may be of diverse. Conclusions The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1–7, ING1/2, and EBS/SHL originate from algae. The core component LHP1 is from moss and the associated factors EMF1 and VRN1 are from dicotyledon. PRC1 components are of functional redundancy and diversity in evolution. Electronic supplementary material The online version of this article (10.1186/s12864-019-5905-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Huang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Ling Jiang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Bo-Yu Liu
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Cheng-Fang Tan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, 311300, China
| | - Wen-Hui Shen
- International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Institut de Biologie Mole'culaire des Plantes du CNRS, Universite' de Strasbourg, 12 rue du Ge'ne'ralZimmer, 67084, Strasbourg Cedex, France
| | - Ying Ruan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China. .,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China. .,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
34
|
Clermont K, Wang Y, Liu S, Yang Z, dePamphilis CW, Yoder JI, Collakova E, Westwood JH. Comparative Metabolomics of Early Development of the Parasitic Plants Phelipanche aegyptiaca and Triphysaria versicolor. Metabolites 2019; 9:E114. [PMID: 31200467 PMCID: PMC6630630 DOI: 10.3390/metabo9060114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 11/24/2022] Open
Abstract
Parasitic weeds of the family Orobanchaceae attach to the roots of host plants via haustoria capable of drawing nutrients from host vascular tissue. The connection of the haustorium to the host marks a shift in parasite metabolism from autotrophy to at least partial heterotrophy, depending on the level of parasite dependence. Species within the family Orobanchaceae span the spectrum of host nutrient dependency, yet the diversity of parasitic plant metabolism remains poorly understood, particularly during the key metabolic shift surrounding haustorial attachment. Comparative profiling of major metabolites in the obligate holoparasite Phelipanche aegyptiaca and the facultative hemiparasite Triphysaria versicolor before and after attachment to the hosts revealed several metabolic shifts implicating remodeling of energy and amino acid metabolism. After attachment, both parasites showed metabolite profiles that were different from their respective hosts. In P. aegyptiaca, prominent changes in metabolite profiles were also associated with transitioning between different tissue types before and after attachment, with aspartate levels increasing significantly after the attachment. Based on the results from 15N labeling experiments, asparagine and/or aspartate-rich proteins were enriched in host-derived nitrogen in T. versicolor. These results point to the importance of aspartate and/or asparagine in the early stages of attachment in these plant parasites and provide a rationale for targeting aspartate-family amino acid biosynthesis for disrupting the growth of parasitic weeds.
Collapse
Affiliation(s)
- Kristen Clermont
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Yaxin Wang
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Siming Liu
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Zhenzhen Yang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Claude W dePamphilis
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - John I Yoder
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Eva Collakova
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - James H Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
35
|
Lee J, Heath LS, Grene R, Li S. Comparing time series transcriptome data between plants using a network module finding algorithm. PLANT METHODS 2019; 15:61. [PMID: 31164912 PMCID: PMC6544932 DOI: 10.1186/s13007-019-0440-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/17/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Comparative transcriptome analysis is the comparison of expression patterns between homologous genes in different species. Since most molecular mechanistic studies in plants have been performed in model species, including Arabidopsis and rice, comparative transcriptome analysis is particularly important for functional annotation of genes in diverse plant species. Many biological processes, such as embryo development, are highly conserved between different plant species. The challenge is to establish one-to-one mapping of the developmental stages between two species. RESULTS In this manuscript, we solve this problem by converting the gene expression patterns into co-expression networks and then apply network module finding algorithms to the cross-species co-expression network. We describe how such analyses are carried out using bash scripts for preliminary data processing followed by using the R programming language for module finding with a simulated annealing method. We also provide instructions on how to visualize the resulting co-expression networks across species. CONCLUSIONS We provide a comprehensive pipeline from installing software and downloading raw transcriptome data to predicting homologous genes and finding orthologous co-expression networks. From the example provided, we demonstrate the application of our method to reveal functional conservation and divergence of genes in two plant species.
Collapse
Affiliation(s)
- Jiyoung Lee
- Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Ruth Grene
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Song Li
- Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| |
Collapse
|
36
|
Tao Z, Hu H, Luo X, Jia B, Du J, He Y. Embryonic resetting of the parental vernalized state by two B3 domain transcription factors in Arabidopsis. NATURE PLANTS 2019; 5:424-435. [PMID: 30962525 DOI: 10.1038/s41477-019-0402-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/06/2019] [Indexed: 05/02/2023]
Abstract
Some overwintering plants acquire competence to flower, after experiencing prolonged cold in winter, through a process termed vernalization. In the crucifer plant Arabidopsis thaliana, prolonged cold induces chromatin-mediated silencing of the potent floral repressor FLOWERING LOCUS C (FLC) by Polycomb proteins. This vernalized state is epigenetically maintained or 'memorized' in warm rendering plants competent to flower in spring, but is reset in the next generation. Here, we show that in early embryogenesis, two homologous B3 domain transcription factors LEAFY COTYLEDON 2 (LEC2) and FUSCA3 (FUS3) compete against two repressive B3-containing epigenome readers and Polycomb partners known as VAL1 and VAL2 for the cis-regulatory cold memory element (CME) of FLC to disrupt Polycomb silencing. Consistently, crystal structures of B3-CME complexes show that B3FUS3, B3LEC2 and B3VAL1 employ a nearly identical binding interface for CME. We further found that LEC2 and FUS3 recruit the scaffold protein FRIGIDA in association with active chromatin modifiers to establish an active chromatin state at FLC, which results in resetting of the silenced FLC to active and erasing the epigenetic parental memory of winter cold in early embryos. Following embryo development, LEC2 and FUS3 are developmentally silenced throughout post-embryonic stages, enabling VALs to bind to the CME again at seedling stages at which plants experience winter cold. Our findings illustrate how overwintering crucifer annuals or biennials in temperate climates employ a subfamily of B3 domain proteins to switch on, off and on again the expression of a key flowering gene in the embryo-to-plant-to-embryo cycle, and thus to synchronize growth and development with seasonal temperature changes in their life cycles.
Collapse
Affiliation(s)
- Zeng Tao
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongmiao Hu
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Luo
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Bei Jia
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jiamu Du
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China.
| | - Yuehui He
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China.
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
37
|
Hofmann F, Schon MA, Nodine MD. The embryonic transcriptome of Arabidopsis thaliana. PLANT REPRODUCTION 2019; 32:77-91. [PMID: 30610360 DOI: 10.1007/s00497-018-00357-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/14/2018] [Indexed: 05/09/2023]
Abstract
Arabidopsis embryos possess unique transcriptomes relative to other plant tissues including somatic embryos, and can be partitioned into four transcriptional phases with characteristic biological processes. Cellular differentiation is associated with changes in transcript populations. Accurate quantification of transcriptomes during development can thus provide global insights into differentiation processes including the fundamental specification and differentiation events operating during plant embryogenesis. However, multiple technical challenges have limited the ability to obtain high-quality early embryonic transcriptomes, namely the low amount of RNA obtainable and contamination from surrounding endosperm and seed-coat tissues. We compared the performance of three low-input mRNA sequencing (mRNA-seq) library preparation kits on 0.1 to 5 nanograms (ng) of total RNA isolated from Arabidopsis thaliana (Arabidopsis) embryos and identified a low-cost method with superior performance. This mRNA-seq method was then used to profile the transcriptomes of Arabidopsis embryos across eight developmental stages. By comprehensively comparing embryonic and post-embryonic transcriptomes, we found that embryonic transcriptomes do not resemble any other plant tissue we analyzed. Moreover, transcriptome clustering analyses revealed the presence of four distinct phases of embryogenesis which are enriched in specific biological processes. We also compared zygotic embryo transcriptomes with publicly available somatic embryo transcriptomes. Strikingly, we found little resemblance between zygotic embryos and somatic embryos derived from late-staged zygotic embryos suggesting that somatic and zygotic embryo transcriptomes are distinct from each other. In addition to the biological insights gained from our systematic characterization of the Arabidopsis embryonic transcriptome, we provide a data-rich resource for the community to explore.
Collapse
Affiliation(s)
- Falko Hofmann
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Michael A Schon
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
38
|
Fang Q, Wang Q, Mao H, Xu J, Wang Y, Hu H, He S, Tu J, Cheng C, Tian G, Wang X, Liu X, Zhang C, Luo K. AtDIV2, an R-R-type MYB transcription factor of Arabidopsis, negatively regulates salt stress by modulating ABA signaling. PLANT CELL REPORTS 2018; 37:1499-1511. [PMID: 30014159 DOI: 10.1007/s00299-018-2321-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/10/2018] [Indexed: 05/15/2023]
Abstract
AtDIV2 integrates ABA signaling to negatively regulate salt stress in Arabidopsis. AmDIV (DIVARICATA) is a functional MYB transcription factor (TF) that regulates ventral identity during floral development in Antirrhinum. There are six members of DIV homologs in Arabidopsis; however, the functions of these proteins are largely unknown. Here, we characterized an R-R-type MYB TF AtDIV2, which is involved in salt stress responses and abscisic acid (ABA) signaling. Although universally expressed in tissues, the nuclear-localized AtDIV2 appeared not to be involved in seedling development processes. However, upon exposure to salt stress and exogenous ABA, the transcripts of AtDIV2 are markedly increased in wild-type (Wt) plants. The loss-of-function mutant div2 displayed much more tolerance to salt stress, and several salt-responsive genes were up-regulated. In addition, the div2 mutant showed higher sensitivity to ABA during seed germination. And the germination variance between the Wt and div2 mutant cannot be rectified by treatment with both ABA and sodium tungstate at the same time. ELISA results showed that the endogenous ABA content in the div2 mutant is clearly increased than that in Wt plants. Furthermore, the transcriptional expressions of several ABA-related genes, including ABA1 and ABI3, were elevated. Taken together, our results suggest that the R-R-type MYB TF AtDIV2 plays negative roles in salt stress and is required for ABA signaling in Arabidopsis.
Collapse
Affiliation(s)
- Qing Fang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China.
| | - Qiong Wang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Hui Mao
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Jing Xu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Ying Wang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Hao Hu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Shuai He
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Junchu Tu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Chao Cheng
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Guozheng Tian
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Xianqiang Wang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Institute of Resources Botany, School of Life Sciences, Ministry of Education Chongqing, Southwest University, Chongqing, 400715, China
| | - Xiaopeng Liu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Chi Zhang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 445000, China
| | - Keming Luo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Institute of Resources Botany, School of Life Sciences, Ministry of Education Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
39
|
Lepiniec L, Devic M, Roscoe TJ, Bouyer D, Zhou DX, Boulard C, Baud S, Dubreucq B. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. PLANT REPRODUCTION 2018; 31:291-307. [PMID: 29797091 DOI: 10.1007/s00497-018-0337-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
The LAFL (i.e. LEC1, ABI3, FUS3, and LEC2) master transcriptional regulators interact to form different complexes that induce embryo development and maturation, and inhibit seed germination and vegetative growth in Arabidopsis. Orthologous genes involved in similar regulatory processes have been described in various angiosperms including important crop species. Consistent with a prominent role of the LAFL regulators in triggering and maintaining embryonic cell fate, their expression appears finely tuned in different tissues during seed development and tightly repressed in vegetative tissues by a surprisingly high number of genetic and epigenetic factors. Partial functional redundancies and intricate feedback regulations of the LAFL have hampered the elucidation of the underpinning molecular mechanisms. Nevertheless, genetic, genomic, cellular, molecular, and biochemical analyses implemented during the last years have greatly improved our knowledge of the LALF network. Here we summarize and discuss recent progress, together with current issues required to gain a comprehensive insight into the network, including the emerging function of LEC1 and possibly LEC2 as pioneer transcription factors.
Collapse
Affiliation(s)
- L Lepiniec
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France.
| | - M Devic
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - T J Roscoe
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - D Bouyer
- Institut de Biologie de l'ENS, CNRS UMR8197, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris Cedex 05, France
| | - D-X Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Sud 11, Université Paris-Saclay, 91405, Orsay, France
| | - C Boulard
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - S Baud
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - B Dubreucq
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| |
Collapse
|
40
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
41
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 19:ijms19092506. [PMID: 30149541 PMCID: PMC6165531 DOI: 10.3390/ijms19092506] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
42
|
Boulard C, Fatihi A, Lepiniec L, Dubreucq B. Regulation and evolution of the interaction of the seed B3 transcription factors with NF-Y subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1069-1078. [PMID: 28866096 DOI: 10.1016/j.bbagrm.2017.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
The LAFL genes (LEC2, ABI3, FUS3, LEC1) encode transcription factors that regulate different aspects of seed development, from early to late embryogenesis and accumulation of storage compounds. These transcription factors form a complex network, with members able to interact with various other players to control the switch between embryo development and seed maturation and, at a later stage in the plant life cycle, between the mature seed and germination. In this review, we first summarize our current understanding of the role of each member in the network in the light of recent advances regarding their regulation and structure/function relationships. In a second part, we discuss new insights concerning the evolution of the LAFL genes to address the more specific question of the conservation of LEAFY COTYLEDONS 2 in both dicots and monocots and the putative origin of the network. Last we examine the current major limitations to current knowledge and future prospects to improve our understanding of this regulatory network.
Collapse
Affiliation(s)
- C Boulard
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - A Fatihi
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - L Lepiniec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - B Dubreucq
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France.
| |
Collapse
|
43
|
Lynch TJ, Erickson BJ, Miller DR, Finkelstein RR. ABI5-binding proteins (AFPs) alter transcription of ABA-induced genes via a variety of interactions with chromatin modifiers. PLANT MOLECULAR BIOLOGY 2017; 93:403-418. [PMID: 27942958 DOI: 10.1007/s11103-016-0569-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/28/2016] [Indexed: 05/29/2023]
Abstract
Overexpression of ABI5/ABF binding proteins (AFPs) results in extreme ABA resistance of seeds via multiple mechanisms repressing ABA response, including interactions with histone deacetylases and the co-repressor TOPLESS. Several ABI5/ABF binding proteins (AFPs) inhibit ABA response, resulting in extreme ABA resistance in transgenic Arabidopsis overexpression lines, but their mechanism of action has remained obscure. By analogy to the related Novel Interactor of JAZ (NINJA) protein, it was suggested that the AFPs interact with the co-repressor TOPLESS to inhibit ABA-regulated gene expression. This study shows that the AFPs that inhibit ABA response have intrinsic repressor activity in a heterologous system, which does not depend on the domain involved in the interaction with TOPLESS. This domain is also not essential for repressing ABA response in transgenic plants, but does contribute to stronger ABA resistance. Additional interactions between some AFPs and histone deacetylase subunits were observed in yeast two-hybrid and bimolecular fluorescence assays, consistent with a more direct mechanism of AFP-mediated repression of gene expression. Chemical inhibition of histone deacetylase activity by trichostatin A suppressed AFP effects on a small fraction of the ABI5-regulated genes tested. Collectively, these results suggest that the AFPs participate in multiple mechanisms modulating ABA response, including both TOPLESS-dependent and -independent chromatin modification.
Collapse
Affiliation(s)
- Tim J Lynch
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - B Joy Erickson
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Dusty R Miller
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
- Chemistry Department, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ruth R Finkelstein
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
44
|
Carbonero P, Iglesias-Fernández R, Vicente-Carbajosa J. The AFL subfamily of B3 transcription factors: evolution and function in angiosperm seeds. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:871-880. [PMID: 28007955 DOI: 10.1093/jxb/erw458] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Seed development follows zygotic embryogenesis; during the maturation phase reserves accumulate and desiccation tolerance is acquired. This is tightly regulated at the transcriptional level and the AFL (ABI3/FUS3/LEC2) subfamily of B3 transcription factors (TFs) play a central role. They alter hormone biosynthesis, mainly in regards to abscisic acid and gibberellins, and also regulate the expression of other TFs and/or modulate their downstream activity via protein-protein interactions. This review deals with the origin of AFL TFs, which can be traced back to non-vascular plants such as Physcomitrella patens and achieves foremost expansion in the angiosperms. In green algae, like the unicellular Chlamydomonas reinhardtii or the pluricellular Klebsormidium flaccidum, a single B3 gene and four B3 paralogous genes are annotated, respectively. However, none of them present with the structural features of the AFL subfamily, with the exception of the B3 DNA-binding domain. Phylogenetic analysis groups the AFL TFs into four Major Clusters of Ortologous Genes (MCOGs). The origin and function of these genes is discussed in view of their expression patterns and in the context of major regulatory interactions in seeds of monocotyledonous and dicotyledonous species.
Collapse
Affiliation(s)
- Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| |
Collapse
|
45
|
Ni Y, Aghamirzaie D, Elmarakeby H, Collakova E, Li S, Grene R, Heath LS. A Machine Learning Approach to Predict Gene Regulatory Networks in Seed Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1936. [PMID: 28066488 PMCID: PMC5179539 DOI: 10.3389/fpls.2016.01936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/06/2016] [Indexed: 05/29/2023]
Abstract
Gene regulatory networks (GRNs) provide a representation of relationships between regulators and their target genes. Several methods for GRN inference, both unsupervised and supervised, have been developed to date. Because regulatory relationships consistently reprogram in diverse tissues or under different conditions, GRNs inferred without specific biological contexts are of limited applicability. In this report, a machine learning approach is presented to predict GRNs specific to developing Arabidopsis thaliana embryos. We developed the Beacon GRN inference tool to predict GRNs occurring during seed development in Arabidopsis based on a support vector machine (SVM) model. We developed both global and local inference models and compared their performance, demonstrating that local models are generally superior for our application. Using both the expression levels of the genes expressed in developing embryos and prior known regulatory relationships, GRNs were predicted for specific embryonic developmental stages. The targets that are strongly positively correlated with their regulators are mostly expressed at the beginning of seed development. Potential direct targets were identified based on a match between the promoter regions of these inferred targets and the cis elements recognized by specific regulators. Our analysis also provides evidence for previously unknown inhibitory effects of three positive regulators of gene expression. The Beacon GRN inference tool provides a valuable model system for context-specific GRN inference and is freely available at https://github.com/BeaconProjectAtVirginiaTech/beacon_network_inference.git.
Collapse
Affiliation(s)
- Ying Ni
- Department of Computer Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Delasa Aghamirzaie
- Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Haitham Elmarakeby
- Department of Computer Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Song Li
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| |
Collapse
|
46
|
Aghamirzaie D, Collakova E, Li S, Grene R. CoSpliceNet: a framework for co-splicing network inference from transcriptomics data. BMC Genomics 2016; 17:845. [PMID: 27793091 PMCID: PMC5086072 DOI: 10.1186/s12864-016-3172-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Alternative splicing has been proposed to increase transcript diversity and protein plasticity in eukaryotic organisms, but the extent to which this is the case is currently unclear, especially with regard to the diversification of molecular function. Eukaryotic splicing involves complex interactions of splicing factors and their targets. Inference of co-splicing networks capturing these types of interactions is important for understanding this crucial, highly regulated post-transcriptional process at the systems level. Results First, several transcript and protein attributes, including coding potential of transcripts and differences in functional domains of proteins, were compared between splice variants and protein isoforms to assess transcript and protein diversity in a biological system. Alternative splicing was shown to increase transcript and function-related protein diversity in developing Arabidopsis embryos. Second, CoSpliceNet, which integrates co-expression and motif discovery at splicing regulatory regions to infer co-splicing networks, was developed. CoSpliceNet was applied to temporal RNA sequencing data to identify candidate regulators of splicing events and predict RNA-binding motifs, some of which are supported by prior experimental evidence. Analysis of inferred splicing factor targets revealed an unexpected role for the unfolded protein response in embryo development. Conclusions The methods presented here can be used in any biological system to assess transcript diversity and protein plasticity and to predict candidate regulators, their targets, and RNA-binding motifs for splicing factors. CoSpliceNet is freely available at http://delasa.github.io/co-spliceNet/. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3172-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Delasa Aghamirzaie
- Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Song Li
- Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA.,Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ruth Grene
- Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA.,Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
47
|
Fatihi A, Boulard C, Bouyer D, Baud S, Dubreucq B, Lepiniec L. Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:198-204. [PMID: 27457996 DOI: 10.1016/j.plantsci.2016.06.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 05/11/2023]
Abstract
Increasing yield and quality of seed storage compounds in a sustainable way is a key challenge for our societies. Genome-wide analyses conducted in both monocot and dicot angiosperms emphasized drastic transcriptional switches that occur during seed development. In Arabidopsis thaliana, a reference species, genetic and molecular analyses have demonstrated the key role of LAFL (LEC1, ABI3, FUS3, and LEC2) transcription factors (TFs), in controlling gene expression programs essential to accomplish seed maturation and the accumulation of storage compounds. Here, we summarize recent progress obtained in the characterization of these LAFL proteins, their regulation, partners and target genes. Moreover, we illustrate how these evolutionary conserved TFs can be used to engineer new crops with altered seed compositions and point out the current limitations. Last, we discuss about the interest of investigating further the environmental and epigenetic regulation of this network for the coming years.
Collapse
Affiliation(s)
- Abdelhak Fatihi
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France.
| | - Céline Boulard
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Daniel Bouyer
- Institut de Biologie de l'ENS, CNRS UMR8197, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex 05, France
| | - Sébastien Baud
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Bertrand Dubreucq
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Loïc Lepiniec
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France.
| |
Collapse
|