1
|
McLaughlin S, Himmighofen P, Khan SA, Siffert A, Robert CAM, Sasse J. Root Exudation: An In-Depth Experimental Guide. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39676732 DOI: 10.1111/pce.15311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Plants exude a wide variety of compounds into the rhizosphere, modulating soil functioning and diversity. The number of studies investigating exudation has exponentially increased over the past decades. Yet, the high inter-study variability of the results is slowing down our understanding of root-soil interactions. This variability is partly due to the absence of harmonized methodologies to collect and characterize exudation. Here, we discuss how various experimental aspects influence exudation profiles by performing a literature review, and we suggest best practices for different experimental setups. We discuss state-of-the-art of spatially resolved exudate collection, collection in controlled versus field conditions and plant growth setups ranging from hydroponics to soil. We highlight the importance of preparing experimental blanks, in situ versus ex situ exudate collection, various collection media and timing of collection, exudate storage and processing and analytical considerations. We summarize best practices for experimental setup and reporting of parameters in an easily accessible table format to facilitate discussion of best practices in the field. An increased standardization in the field together with the systematic studies suggested will improve our knowledge of how plant exudation shapes interactions with organisms in soil.
Collapse
Affiliation(s)
- Sarah McLaughlin
- Institute of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Paul Himmighofen
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Sheharyar A Khan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Alexandra Siffert
- Institute of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | | | - Joëlle Sasse
- Institute of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Berger A, Pérez-Valera E, Blouin M, Breuil MC, Butterbach-Bahl K, Dannenmann M, Besson-Bard A, Jeandroz S, Valls J, Spor A, Subramaniam L, Pétriacq P, Wendehenne D, Philippot L. Microbiota responses to mutations affecting NO homeostasis in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 244:2008-2023. [PMID: 39329426 DOI: 10.1111/nph.20159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Interactions between plants and microorganisms are pivotal for plant growth and productivity. Several plant molecular mechanisms that shape these microbial communities have been identified. However, the importance of nitric oxide (NO) produced by plants for the associated microbiota remains elusive. Using Arabidopsis thaliana isogenic mutants overproducing NO (nox1, NO overexpression) or down-producing NO (i.e. nia1nia2 impaired in the expression of both nitrate reductases NR1/NIA1 and NR2/NIA2; the 35s::GSNOR1 line overexpressing nitrosoglutathione reductase (GSNOR) and 35s::AHB1 line overexpressing haemoglobin 1 (AHB1)), we investigated how altered NO homeostasis affects microbial communities in the rhizosphere and in the roots, soil microbial activity and soil metabolites. We show that the rhizosphere microbiome was affected by the mutant genotypes, with the nox1 and nia1nia2 mutants causing opposite shifts in bacterial and fungal communities compared with the wild-type (WT) Col-0 in the rhizosphere and roots, respectively. These mutants also exhibited distinctive soil metabolite profiles than those from the other genotypes while soil microbial activity did not differ between the mutants and the WT Col-0. Our findings support our hypothesis that changes in NO production by plants can influence the plant microbiome composition with differential effects between fungal and bacterial communities.
Collapse
Affiliation(s)
- Antoine Berger
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Eduardo Pérez-Valera
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Manuel Blouin
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | | | - Klaus Butterbach-Bahl
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
- Land-CRAFT, Department of Agroecology, University of Aarhus, 8000, Aarhus, Denmark
| | - Michael Dannenmann
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Angélique Besson-Bard
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Sylvain Jeandroz
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Josep Valls
- Univ. Bordeaux, INRAE, UMR 1366 OENO - Axe Molécules À Intérêt Biologique, ISVV, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Aymé Spor
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Logapragasan Subramaniam
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR 1366 OENO - Axe Molécules À Intérêt Biologique, ISVV, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - David Wendehenne
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Laurent Philippot
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| |
Collapse
|
3
|
Bennett AA, Steininger-Mairinger T, Eroğlu ÇG, Gfeller A, Wirth J, Puschenreiter M, Hann S. Dual column chromatography combined with high-resolution mass spectrometry improves coverage of non-targeted analysis of plant root exudates. Anal Chim Acta 2024; 1327:343126. [PMID: 39266059 DOI: 10.1016/j.aca.2024.343126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Within the plant kingdom, there is an exceptional amount of chemical diversity that has yet to be annotated. It is for this reason that non-targeted analysis is of interest for those working in novel natural products. To increase the number and diversity of compounds observable in root exudate extracts, several workflows which differ at three key stages were compared: 1) sample extraction, 2) chromatography, and 3) data preprocessing. RESULTS Plants were grown in Hoagland's solution for two weeks, and exudates were initially extracted with water, followed by a 24-h regeneration period with subsequent extraction using methanol. Utilizing the second extraction showed improved results with less ion suppression and reduced retention time shifting compared to the first extraction. A single column method, utilizing a pentafluorophenyl column, paired with high-resolution mass spectrometry ionized and correctly identified 34 mock root exudate compounds, while the dual column method, incorporating a pentafluorophenyl column and a porous graphitic carbon column, retained and identified 43 compounds. In a pooled quality control sample of exudate extracts, the single column method detected 1,444 compounds. While the dual method detected fewer compounds overall (1,050), it revealed a larger number of small polar compounds. Three preprocessing methods (targeted, proprietary, and open source) successfully identified 43, 31, and 38 mock root exudate compounds to confidence level 1, respectively. SIGNIFICANCE Enhancing signal strength and analytical method stability involves removing the high ionic strength nutrient solution before sampling root exudate extracts. Despite signal intensity loss, a dual column method enhances compound coverage, particularly for small polar metabolites. Open-source software proves a viable alternative for non-targeted analysis, even surpassing proprietary software in peak picking.
Collapse
Affiliation(s)
- Alexandra A Bennett
- BOKU University, Department of Chemistry, Institute of Analytical Chemistry, 1190, Vienna, Austria
| | | | - Çağla Görkem Eroğlu
- Agroscope, Herbology in Field Crops, Plant Production Systems, Nyon, Switzerland
| | - Aurélie Gfeller
- Agroscope, Herbology in Field Crops, Plant Production Systems, Nyon, Switzerland
| | - Judith Wirth
- Agroscope, Herbology in Field Crops, Plant Production Systems, Nyon, Switzerland
| | - Markus Puschenreiter
- BOKU University, Department of Forest and Soil Sciences, Institute of Soil Research, 3430, Tulln, Austria
| | - Stephan Hann
- BOKU University, Department of Chemistry, Institute of Analytical Chemistry, 1190, Vienna, Austria
| |
Collapse
|
4
|
Baker NR, Zhalnina K, Yuan M, Herman D, Ceja-Navarro JA, Sasse J, Jordan JS, Bowen BP, Wu L, Fossum C, Chew A, Fu Y, Saha M, Zhou J, Pett-Ridge J, Northen TR, Firestone MK. Nutrient and moisture limitations reveal keystone metabolites linking rhizosphere metabolomes and microbiomes. Proc Natl Acad Sci U S A 2024; 121:e2303439121. [PMID: 39093948 PMCID: PMC11317588 DOI: 10.1073/pnas.2303439121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Plants release a wealth of metabolites into the rhizosphere that can shape the composition and activity of microbial communities in response to environmental stress. The connection between rhizodeposition and rhizosphere microbiome succession has been suggested, particularly under environmental stress conditions, yet definitive evidence is scarce. In this study, we investigated the relationship between rhizosphere chemistry, microbiome dynamics, and abiotic stress in the bioenergy crop switchgrass grown in a marginal soil under nutrient-limited, moisture-limited, and nitrogen (N)-replete, phosphorus (P)-replete, and NP-replete conditions. We combined 16S rRNA amplicon sequencing and LC-MS/MS-based metabolomics to link rhizosphere microbial communities and metabolites. We identified significant changes in rhizosphere metabolite profiles in response to abiotic stress and linked them to changes in microbial communities using network analysis. N-limitation amplified the abundance of aromatic acids, pentoses, and their derivatives in the rhizosphere, and their enhanced availability was linked to the abundance of bacterial lineages from Acidobacteria, Verrucomicrobia, Planctomycetes, and Alphaproteobacteria. Conversely, N-amended conditions increased the availability of N-rich rhizosphere compounds, which coincided with proliferation of Actinobacteria. Treatments with contrasting N availability differed greatly in the abundance of potential keystone metabolites; serotonin and ectoine were particularly abundant in N-replete soils, while chlorogenic, cinnamic, and glucuronic acids were enriched in N-limited soils. Serotonin, the keystone metabolite we identified with the largest number of links to microbial taxa, significantly affected root architecture and growth of rhizosphere microorganisms, highlighting its potential to shape microbial community and mediate rhizosphere plant-microbe interactions.
Collapse
Affiliation(s)
- Nameer R. Baker
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| | - Kateryna Zhalnina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Mengting Yuan
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| | - Don Herman
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| | - Javier A. Ceja-Navarro
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ86011
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Joelle Sasse
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Institute for Plant and Microbial Biology, University of Zurich, CH-8008Zurich, Switzerland
| | - Jacob S. Jordan
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Benjamin P. Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Liyou Wu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK73019
| | - Christina Fossum
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| | - Aaron Chew
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Ying Fu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK73019
| | - Malay Saha
- Noble Research Institute, Ardmore, OK73401
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK73019
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA94550
- Life and Environmental Sciences Department, University of California Merced, Merced, CA95343
| | - Trent R. Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Mary K. Firestone
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA94720
| |
Collapse
|
5
|
Zhong C, Hu C, Xu C, Zhang Z, Hu G. Metabolomics reveals changes in soil metabolic profiles during vegetation succession in karst area. Front Microbiol 2024; 15:1337672. [PMID: 38989027 PMCID: PMC11233535 DOI: 10.3389/fmicb.2024.1337672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Soil metabolites are critical in regulating the dynamics of ecosystem structure and function, particularly in fragile karst ecosystems. Clarification of response of soil metabolism to vegetation succession in karst areas will contribute to the overall understanding and management of karst soils. Here, we investigated the metabolite characteristics of karst soils with different vegetation stages (grassland, brushwood, secondary forest and primary forest) based on untargeted metabolomics. We confirmed that the abundance and composition of soil metabolites altered with vegetation succession. Of the 403 metabolites we found, 157 had significantly varied expression levels across vegetation soils, including mainly lipids and lipid-like molecules, phenylpropanoids and polyketides, organic acids and derivatives. Certain soil metabolites, such as maltotetraose and bifurcose, were sensitive to vegetation succession, increasing significantly from grassland to brushwood and then decreasing dramatically in secondary and primary forests, making them possible indicators of karst vegetation succession. In addition, soil metabolic pathways, such as galactose metabolism and biosynthesis of unsaturated fatty acids, also changed with vegetation succession. This study characterized the soil metabolic profile in different vegetation stages during karst secondary succession, which would provide new insights for the management of karst soils.
Collapse
Affiliation(s)
| | | | | | - Zhonghua Zhang
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, College of Environmental and Life Sciences, Nanning Normal University, Nanning, China
| | - Gang Hu
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, College of Environmental and Life Sciences, Nanning Normal University, Nanning, China
| |
Collapse
|
6
|
Chroston ECM, Bziuk N, Stauber EJ, Ravindran BM, Hielscher A, Smalla K, Wittstock U. Plant glucosinolate biosynthesis and breakdown pathways shape the rhizosphere bacterial/archaeal community. PLANT, CELL & ENVIRONMENT 2024; 47:2127-2145. [PMID: 38419355 DOI: 10.1111/pce.14870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Rhizosphere microbial community assembly results from microbe-microbe-plant interactions mediated by small molecules of plant and microbial origin. Studies with Arabidopsis thaliana have indicated a critical role of glucosinolates in shaping the root and/or rhizosphere microbial community, likely through breakdown products produced by plant or microbial myrosinases inside or outside of the root. Plant nitrile-specifier proteins (NSPs) promote the formation of nitriles at the expense of isothiocyanates upon glucosinolate hydrolysis with unknown consequences for microbial colonisation of roots and rhizosphere. Here, we generated the A. thaliana triple mutant nsp134 devoid of nitrile formation in root homogenates. Using this line and mutants lacking aliphatic or indole glucosinolate biosynthesis pathways or both, we found bacterial/archaeal alpha-diversity of the rhizosphere to be affected only by the ability to produce aliphatic glucosinolates. In contrast, bacterial/archaeal community composition depended on functional root NSPs as well as on pathways of aliphatic and indole glucosinolate biosynthesis. Effects of NSP deficiency were strikingly distinct from those of impaired glucosinolate biosynthesis. Our results demonstrate that rhizosphere microbial community assembly depends on functional pathways of both glucosinolate biosynthesis and breakdown in support of the hypothesis that glucosinolate hydrolysis by myrosinases and NSPs happens before secretion of products to the rhizosphere.
Collapse
Affiliation(s)
- Eleanor C M Chroston
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nina Bziuk
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Einar J Stauber
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Beena M Ravindran
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Annika Hielscher
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Ute Wittstock
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
Song Y, Yao S, Li X, Wang T, Jiang X, Bolan N, Warren CR, Northen TR, Chang SX. Soil metabolomics: Deciphering underground metabolic webs in terrestrial ecosystems. ECO-ENVIRONMENT & HEALTH 2024; 3:227-237. [PMID: 38680731 PMCID: PMC11047296 DOI: 10.1016/j.eehl.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024]
Abstract
Soil metabolomics is an emerging approach for profiling diverse small molecule metabolites, i.e., metabolomes, in the soil. Soil metabolites, including fatty acids, amino acids, lipids, organic acids, sugars, and volatile organic compounds, often contain essential nutrients such as nitrogen, phosphorus, and sulfur and are directly linked to soil biogeochemical cycles driven by soil microorganisms. This paper presents an overview of methods for analyzing soil metabolites and the state-of-the-art of soil metabolomics in relation to soil nutrient cycling. We describe important applications of metabolomics in studying soil carbon cycling and sequestration, and the response of soil organic pools to changing environmental conditions. This includes using metabolomics to provide new insights into the close relationships between soil microbiome and metabolome, as well as responses of soil metabolome to plant and environmental stresses such as soil contamination. We also highlight the advantage of using soil metabolomics to study the biogeochemical cycles of elements and suggest that future research needs to better understand factors driving soil function and health.
Collapse
Affiliation(s)
- Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi Yao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaona Li
- School of Environment and Ecology, Jiangnan University, Wuxi 225127, China
| | - Tao Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Nedland, WA-6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Nedland, WA-6009, Australia
- Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Charles R. Warren
- School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Building A08, NSW 2006, Australia
| | - Trent R. Northen
- Environmental Genomics and System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| |
Collapse
|
8
|
Mushtaq W, Fauconnier ML, de Clerck C. Assessment of induced allelopathy in crop-weed co-culture with rye-pigweed model. Sci Rep 2024; 14:10446. [PMID: 38714777 PMCID: PMC11076540 DOI: 10.1038/s41598-024-60663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/25/2024] [Indexed: 05/10/2024] Open
Abstract
This study evaluates induced allelopathy in a rye-pigweed model driven by rye's (Secale cereale L.) allelopathic potential as a cover crop and pigweed's (Amaranthus retroflexus L.) notoriety as a weed. The response of rye towards pigweed's presence in terms of benzoxazinoids (BXs) provides valuable insight into induced allelopathy for crop improvement. In the 2 week plant stage, pigweed experiences a significant reduction in growth in rye's presence, implying allelopathic effects. Rye exhibits increased seedling length and BXs upsurge in response to pigweed presence. These trends persist in the 4 week plant stage, emphasizing robust allelopathic effects and the importance of different co-culture arrangements. Germination experiments show rye's ability to germinate in the presence of pigweed, while pigweed exhibits reduced germination with rye. High-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis identifies allelopathic compounds (BXs), 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in rye. Rye significantly increases BX production in response to pigweed, age-dependently. Furthermore, pigweed plants are screened for possible BX uptake from the rhizosphere. Results suggest that allelopathy in rye-pigweed co-cultures is influenced by seed timing, and age-dependent dynamics of plants' allelopathic compounds, providing a foundation for further investigations into chemical and ecological processes in crop-weed interactions.
Collapse
Affiliation(s)
- Waseem Mushtaq
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030, Gembloux, Belgium.
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030, Gembloux, Belgium
| | - Caroline de Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030, Gembloux, Belgium
| |
Collapse
|
9
|
Kempthorne CJ, St Pierre M, Le A, Livingstone S, McNulty J, Cadotte MW, Liscombe DK. Mass spectrometry-based metabolomics for the elucidation of alkaloid biosynthesis and function in invasive Vincetoxicum rossicum populations. PHYTOCHEMISTRY 2024; 221:114051. [PMID: 38452878 DOI: 10.1016/j.phytochem.2024.114051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
The genus Vincetoxicum includes a couple of highly invasive vines in North America that threaten biodiversity and challenge land management strategies. Vincetoxicum species are known to produce bioactive phenanthroindolizidine alkaloids that might play a role in the invasiveness of these plants via chemical interactions with other organisms. Untargeted, high-resolution mass spectrometry-based metabolomics approaches were used to explore specialized metabolism in Vincetoxicum plants collected from invaded sites in Ontario, Canada. All metabolites corresponding to alkaloids in lab and field samples of V. rossicum and V. nigrum were identified, which collectively contained 25 different alkaloidal features. The biosynthesis of these alkaloids was investigated by the incorporation of the stable isotope-labelled phenylalanine precursor providing a basis for an updated biosynthetic pathway accounting for the rapid generation of chemical diversity in invasive Vincetoxicum. Aqueous extracts of aerial Vincetoxicum rossicum foliage had phytotoxic activity against seedlings of several species, resulting in identification of tylophorine as a phytotoxin; tylophorine and 14 other alkaloids from Vincetoxicum accumulated in soils associated with full-sun and a high-density of V. rossicum. Using desorption-electrospray ionization mass spectrometry, 15 alkaloids were found to accumulate at wounded sites of V. rossicum leaves, a chemical cocktail that would be encountered by feeding herbivores. Understanding the specialized metabolism of V. rossicum provides insight into the roles and influences of phenanthroindolizidine alkaloids in ecological systems and enables potential, natural product-based approaches for the control of invasive Vincetoxicum and other weedy species.
Collapse
Affiliation(s)
- Christine J Kempthorne
- Vineland Research and Innovation Centre, 4890 Victoria Ave North, Box 4000, Vineland Station, Ontario, L0R 2E0, Canada; Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario, L2S 3A1, Canada
| | - Max St Pierre
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L8, Canada
| | - Andrew Le
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Stuart Livingstone
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - James McNulty
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L8, Canada
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - David K Liscombe
- Vineland Research and Innovation Centre, 4890 Victoria Ave North, Box 4000, Vineland Station, Ontario, L0R 2E0, Canada; Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
10
|
Wang X, Zhang J, Lu X, Bai Y, Wang G. Two diversities meet in the rhizosphere: root specialized metabolites and microbiome. J Genet Genomics 2024; 51:467-478. [PMID: 37879496 DOI: 10.1016/j.jgg.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Plants serve as rich repositories of diverse chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes, including interactions with various microbes both beneficial and harmful. Considering microbes as bioreactors, the chemical diversity undergoes dynamic changes when root-derived specialized metabolites (RSMs) and microbes encounter each other in the rhizosphere. Recent advancements in sequencing techniques and molecular biology tools have not only accelerated the elucidation of biosynthetic pathways of RSMs but also unveiled the significance of RSMs in plant-microbe interactions. In this review, we provide a comprehensive description of the effects of RSMs on microbe assembly in the rhizosphere and the influence of corresponding microbial changes on plant health, incorporating the most up-to-date information available. Additionally, we highlight open questions that remain for a deeper understanding of and harnessing the potential of RSM-microbe interactions to enhance plant adaptation to the environment. Finally, we propose a pipeline for investigating the intricate associations between root exometabolites and the rhizomicrobiome.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingying Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Xinjun Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Caggìa V, Wälchli J, Deslandes-Hérold G, Mateo P, Robert CAM, Guan H, Bigalke M, Spielvogel S, Mestrot A, Schlaeppi K, Erb M. Root-exuded specialized metabolites reduce arsenic toxicity in maize. Proc Natl Acad Sci U S A 2024; 121:e2314261121. [PMID: 38513094 PMCID: PMC10990099 DOI: 10.1073/pnas.2314261121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/19/2024] [Indexed: 03/23/2024] Open
Abstract
By releasing specialized metabolites, plants modify their environment. Whether and how specialized metabolites protect plants against toxic levels of trace elements is not well understood. We evaluated whether benzoxazinoids, which are released into the soil by major cereals, can confer protection against arsenic toxicity. Benzoxazinoid-producing maize plants performed better in arsenic-contaminated soils than benzoxazinoid-deficient mutants in the greenhouse and the field. Adding benzoxazinoids to the soil restored the protective effect, and the effect persisted to the next crop generation via positive plant-soil feedback. Arsenate levels in the soil and total arsenic levels in the roots were lower in the presence of benzoxazinoids. Thus, the protective effect of benzoxazinoids is likely soil-mediated and includes changes in soil arsenic speciation and root accumulation. We conclude that exuded specialized metabolites can enhance protection against toxic trace elements via soil-mediated processes and may thereby stabilize crop productivity in polluted agroecosystems.
Collapse
Affiliation(s)
- Veronica Caggìa
- Institute of Plant Sciences, University of Bern, BernCH-3013, Switzerland
- Department of Environmental Sciences, University of Basel, Basel4056, Switzerland
| | - Jan Wälchli
- Department of Environmental Sciences, University of Basel, Basel4056, Switzerland
| | | | - Pierre Mateo
- Institute of Plant Sciences, University of Bern, BernCH-3013, Switzerland
| | | | - Hang Guan
- Institute of Geography, University of Bern, BernCH-3012, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, BernCH-3012, Switzerland
- Institute of Applied Geoscience, Technical University Darmstadt, DarmstadtD-64287, Germany
| | - Sandra Spielvogel
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-Universität, Kiel24118, Germany
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich52425, Germany
| | - Adrien Mestrot
- Institute of Geography, University of Bern, BernCH-3012, Switzerland
| | - Klaus Schlaeppi
- Institute of Plant Sciences, University of Bern, BernCH-3013, Switzerland
- Department of Environmental Sciences, University of Basel, Basel4056, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, BernCH-3013, Switzerland
| |
Collapse
|
12
|
Wei C, Liang J, Wang R, Chi L, Wang W, Tan J, Shi H, Song X, Cui Z, Xie Q, Cheng D, Wang X. Response of bacterial community metabolites to bacterial wilt caused by Ralstonia solanacearum: a multi-omics analysis. FRONTIERS IN PLANT SCIENCE 2024; 14:1339478. [PMID: 38317834 PMCID: PMC10839043 DOI: 10.3389/fpls.2023.1339478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
The soil microbial community plays a critical role in promoting robust plant growth and serves as an effective defence mechanism against root pathogens. Current research has focused on unravelling the compositions and functions of diverse microbial taxa in plant rhizospheres invaded by Ralstonia solanacearum, however, the specific mechanisms by which key microbial groups with distinct functions exert their effects remain unclear. In this study, we employed a combination of amplicon sequencing and metabolomics analysis to investigate the principal metabolic mechanisms of key microbial taxa in plant rhizosphere soil. Compared to the healthy tobacco rhizosphere samples, the bacterial diversity and co-occurrence network of the diseased tobacco rhizosphere soil were significantly reduced. Notably, certain genera, including Gaiella, Rhodoplanes, and MND1 (Nitrosomonadaceae), were found to be significantly more abundant in the rhizosphere of healthy plants than in that of diseased plants. Eight environmental factors, including exchangeable magnesium, available phosphorus, and pH, were found to be crucial factors influencing the composition of the microbial community. Ralstonia displayed negative correlations with pH, exchangeable magnesium, and cation exchange flux, but showed a positive correlation with available iron. Furthermore, metabolomic analysis revealed that the metabolic pathways related to the synthesis of various antibacterial compounds were significantly enriched in the healthy group. The correlation analysis results indicate that the bacterial genera Polycyclovorans, Lysobacter, Pseudomonas, and Nitrosospira may participate in the synthesis of antibacterial compounds. Collectively, our findings contribute to a more in-depth understanding of disease resistance mechanisms within healthy microbial communities and provide a theoretical foundation for the development of targeted strategies using beneficial microorganisms to suppress disease occurrence.
Collapse
Affiliation(s)
- Chengjian Wei
- College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jinchang Liang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Rui Wang
- Enshi Tobacco Science and Technology Center, Enshi, China
| | - Luping Chi
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wenjing Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jun Tan
- Enshi Tobacco Science and Technology Center, Enshi, China
| | - Heli Shi
- Enshi Tobacco Science and Technology Center, Enshi, China
| | - Xueru Song
- Engineering Center for Biological Control of Diseases and Pests in Tobacco Industry, Yuxi, China
| | - Zhenzhen Cui
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qiang Xie
- Sichuan Tobacco Science and Technology Center, Chengdu, China
| | - Dejie Cheng
- College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoqiang Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
13
|
Alahmad A, Harir M, Fochesato S, Tulumello J, Walker A, Barakat M, Ndour PMS, Schmitt-Kopplin P, Cournac L, Laplaze L, Heulin T, Achouak W. Unraveling the interplay between root exudates, microbiota, and rhizosheath formation in pearl millet. MICROBIOME 2024; 12:1. [PMID: 38167150 PMCID: PMC10763007 DOI: 10.1186/s40168-023-01727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The rhizosheath, a cohesive soil layer firmly adhering to plant roots, plays a vital role in facilitating water and mineral uptake. In pearl millet, rhizosheath formation is genetically controlled and influenced by root exudates. Here, we investigated the impact of root exudates on the microbiota composition, interactions, and assembly processes, and rhizosheath structure in pearl millet using four distinct lines with contrasting soil aggregation abilities. RESULTS Utilizing 16S rRNA gene and ITS metabarcoding for microbiota profiling, coupled with FTICR-MS metabonomic analysis of metabolite composition in distinct plant compartments and root exudates, we revealed substantial disparities in microbial diversity and interaction networks. The ß-NTI analysis highlighted bacterial rhizosphere turnover driven primarily by deterministic processes, showcasing prevalent homogeneous selection in root tissue (RT) and root-adhering soil (RAS). Conversely, fungal communities were more influenced by stochastic processes. In bulk soil assembly, a combination of deterministic and stochastic mechanisms shapes composition, with deterministic factors exerting a more pronounced role. Metabolic profiles across shoots, RT, and RAS in different pearl millet lines mirrored their soil aggregation levels, emphasizing the impact of inherent plant traits on microbiota composition and unique metabolic profiles in RT and exudates. Notably, exclusive presence of antimicrobial compounds, including DIMBOA and H-DIMBOA, emerged in root exudates and RT of low aggregation lines. CONCLUSIONS This research underscores the pivotal influence of root exudates in shaping the root-associated microbiota composition across pearl millet lines, entwined with their soil aggregation capacities. These findings underscore the interconnectedness of root exudates and microbiota, which jointly shape rhizosheath structure, deepening insights into soil-plant-microbe interactions and ecological processes shaping rhizosphere microbial communities. Deciphering plant-microbe interactions and their contribution to soil aggregation and microbiota dynamics holds promise for the advancement of sustainable agricultural strategies. Video Abstract.
Collapse
Affiliation(s)
- Abdelrahman Alahmad
- CEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE), Aix Marseille Univ, 13108, Saint-Paul-Lez-Durance, France
- UniLaSalle, SFR NORVEGE FED 4277, AGHYLE Rouen UP 2018.C101, 3 Rue du Tronquet, 76130, Mont-Saint- Aignan, France
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Chair Analytl Food Chem, Technical University of Munich, 85354, Freising, Weihenstephan, Germany
| | - Sylvain Fochesato
- CEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE), Aix Marseille Univ, 13108, Saint-Paul-Lez-Durance, France
| | - Joris Tulumello
- CEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE), Aix Marseille Univ, 13108, Saint-Paul-Lez-Durance, France
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Mohamed Barakat
- CEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE), Aix Marseille Univ, 13108, Saint-Paul-Lez-Durance, France
| | - Papa Mamadou Sitor Ndour
- CIRAD, INRAE, Eco&Sols, Université de Montpellier, Institut Agro, IRD FR, Montpellier, France
- UCEIV-ULCO, 50 Rue Ferdinand Buisson, 62228, Calais, France
- LMI IESOL, Centre de Recherche, ISRA-IRD de Bel Air, Dakar, Senegal
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Chair Analytl Food Chem, Technical University of Munich, 85354, Freising, Weihenstephan, Germany
| | - Laurent Cournac
- CIRAD, INRAE, Eco&Sols, Université de Montpellier, Institut Agro, IRD FR, Montpellier, France
- LMI IESOL, Centre de Recherche, ISRA-IRD de Bel Air, Dakar, Senegal
| | - Laurent Laplaze
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- LMI LAPSE, Centre de Recherche, ISRA-IRD de Bel Air, Dakar, Senegal
| | - Thierry Heulin
- CEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE), Aix Marseille Univ, 13108, Saint-Paul-Lez-Durance, France.
| | - Wafa Achouak
- CEA, CNRS, BIAM, Lab Microbial Ecology of the Rhizosphere (LEMiRE), Aix Marseille Univ, 13108, Saint-Paul-Lez-Durance, France.
| |
Collapse
|
14
|
Zhang X, Song M, Gao L, Tian Y. Metabolic variations in root tissues and rhizosphere soils of weak host plants potently lead to distinct host status and chemotaxis regulation of Meloidogyne incognita in intercropping. MOLECULAR PLANT PATHOLOGY 2024; 25:e13396. [PMID: 37823341 PMCID: PMC10782644 DOI: 10.1111/mpp.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Root-knot nematodes (RKNs) inflict extensive damage to global agricultural production. Intercropping has been identified as a viable agricultural tool for combating RKNs, but the mechanisms by which intercropped plants modulate RKN parasitism are still not well understood. Here, we focus on the cucumber-amaranth intercropping system. We used a range of approaches, including the attraction assay, in vitro RNA interference (RNAi), untargeted metabolomics, and hairy root transformation, to unveil the mechanisms by which weak host plants regulate Meloidogyne incognita chemotaxis towards host plants and control infection. Amaranth roots showed a direct repellence to M. incognita through disrupting its chemotaxis. The in vitro RNAi assay demonstrated that the Mi-flp-1 and Mi-flp-18 genes (encoding FMRFamide-like peptides) regulated M. incognita chemotaxis towards cucumber and controlled infection. Moreover, M. incognita infection stimulated cucumber and amaranth to accumulate distinct metabolites in both root tissues and rhizosphere soils. In particular, naringenin and salicin, enriched specifically in amaranth rhizosphere soils, inhibited the expression of Mi-flp-1 and Mi-flp-18. In addition, overexpression of genes involved in the biosynthesis of pantothenic acid and phloretin, both of which were enriched specifically in amaranth root tissues, delayed M. incognita development in cucumber hairy roots. Together, our results reveal that both the distinct host status and disruption of chemotaxis contribute to M. incognita inhibition in intercropping.
Collapse
Affiliation(s)
- Xu Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijingChina
| | - Mengyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijingChina
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijingChina
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijingChina
| |
Collapse
|
15
|
Santangeli M, Steininger-Mairinger T, Vetterlein D, Hann S, Oburger E. Maize (Zea mays L.) root exudation profiles change in quality and quantity during plant development - A field study. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111896. [PMID: 37838155 DOI: 10.1016/j.plantsci.2023.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Deciphering root exudate composition of soil-grown plants is considered a crucial step to better understand plant-soil-microbe interactions affecting plant growth performance. In this study, two genotypes of Zea mays L. (WT, rth3) differing in root hair elongation were grown in the field in two substrates (sand, loam) in custom-made, perforated columns inserted into the field plots. Root exudates were collected at different plant developmental stages (BBCH 14, 19, 59, 83) using a soil-hydroponic-hybrid exudation sampling approach. Exudates were characterized by LC-MS based non-targeted metabolomics, as well as by photometric assays targeting total dissolved organic carbon, soluble carbohydrates, proteins, amino acids, and phenolics. Results showed that plant developmental stage was the main driver shaping both the composition and quantity of exuded compounds. Carbon (C) exudation per plant increased with increasing biomass production over time, while C exudation rate per cm² root surface area h-1 decreased with plant maturity. Furthermore, exudation rates were higher in the substrate with lower nutrient mobility (i.e., loam). Surprisingly, we observed higher exudation rates in the root hairless rth3 mutant compared to the root hair-forming WT sibling, though exudate metabolite composition remained similar. Our results highlight the impact of plant developmental stage on the plant-soil-microbe interplay.
Collapse
Affiliation(s)
- Michael Santangeli
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Science, Institute of Soil Research, 3430 Tulln an der Donau, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, 1190 Vienna, Austria
| | - Teresa Steininger-Mairinger
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, 1190 Vienna, Austria
| | - Doris Vetterlein
- Department of Soil System Science, UFZ, 06120 Halle/Saale, Germany; Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, 1190 Vienna, Austria
| | - Eva Oburger
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Science, Institute of Soil Research, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
16
|
Rathore N, Hanzelková V, Dostálek T, Semerád J, Schnablová R, Cajthaml T, Münzbergová Z. Species phylogeny, ecology, and root traits as predictors of root exudate composition. THE NEW PHYTOLOGIST 2023. [PMID: 37421208 DOI: 10.1111/nph.19060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/04/2023] [Indexed: 07/10/2023]
Abstract
Root traits including root exudates are key factors affecting plant interactions with soil and thus play an important role in determining ecosystem processes. The drivers of their variation, however, remain poorly understood. We determined the relative importance of phylogeny and species ecology in determining root traits and analyzed the extent to which root exudate composition can be predicted by other root traits. We measured different root morphological and biochemical traits (including exudate profiles) of 65 plant species grown in a controlled system. We tested phylogenetic conservatism in traits and disentangled the individual and overlapping effects of phylogeny and species ecology on traits. We also predicted root exudate composition using other root traits. Phylogenetic signal differed greatly among root traits, with the strongest signal in phenol content in plant tissues. Interspecific variation in root traits was partly explained by species ecology, but phylogeny was more important in most cases. Species exudate composition could be partly predicted by specific root length, root dry matter content, root biomass, and root diameter, but a large part of variation remained unexplained. In conclusion, root exudation cannot be easily predicted based on other root traits and more comparative data on root exudation are needed to understand their diversity.
Collapse
Affiliation(s)
- Nikita Rathore
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Věra Hanzelková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Tomáš Dostálek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Renáta Schnablová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| |
Collapse
|
17
|
Cao Y, Du P, Zhang J, Ji J, Xu J, Liang B. Dopamine alleviates cadmium stress in apple trees by recruiting beneficial microorganisms to enhance the physiological resilience revealed by high-throughput sequencing and soil metabolomics. HORTICULTURE RESEARCH 2023; 10:uhad112. [PMID: 37577402 PMCID: PMC10419553 DOI: 10.1093/hr/uhad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/16/2023] [Indexed: 08/15/2023]
Abstract
Dopamine has demonstrated promise as a stress-relief substance. However, the function of dopamine in Cd tolerance and its mechanism remains largely unknown. The current study was performed to investigate the mechanism of dopamine on alleviating apple Cd stress through regular application of CdCl2 and dopamine solution to potting soil. The results indicated that dopamine significantly reduced reactive oxygen species (ROS) and Cd accumulation and alleviated the inhibitory effect of Cd stress on the growth of apple plants through activation of the antioxidant system, enhancement of photosynthetic capacity, and regulation of gene expression related to Cd absorption and detoxification. The richness of the rhizosphere microbial community increased, and community composition and assembly were affected by dopamine treatment. Network analysis of microbial communities showed that the numbers of nodes and total links increased significantly after dopamine treatment, while the keystone species shifted. Linear discriminant analysis effect size indicated that some biomarkers were significantly enriched after dopamine treatment, suggesting that dopamine induced plants to recruit potentially beneficial microorganisms (Pseudoxanthomonas, Aeromicrobium, Bradyrhizobium, Frankia, Saccharimonadales, Novosphingobium, and Streptomyces) to resist Cd stress. The co-occurrence network showed several metabolites that were positively correlated with relative growth rate and negatively correlated with Cd accumulation, suggesting that potentially beneficial microorganisms may be attracted by several metabolites (L-threonic acid, profenamine, juniperic acid and (3β,5ξ,9ξ)-3,6,19-trihydroxyurs-12-en-28-oic acid). Our results demonstrate that dopamine alleviates Cd stress in apple trees by recruiting beneficial microorganisms to enhance the physiological resilience revealed. This study provides an effective means to reduce the harm to agricultural production caused by heavy metals.
Collapse
Affiliation(s)
- Yang Cao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Peihua Du
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jiran Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jiahao Ji
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jizhong Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Bowen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| |
Collapse
|
18
|
Dollinger J, Pétriacq P, Flandin A, Samouelian A. Soil metabolomics: A powerful tool for predicting and specifying pesticide sorption. CHEMOSPHERE 2023:139302. [PMID: 37385484 DOI: 10.1016/j.chemosphere.2023.139302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Sorption regulates the dispersion of pesticides from cropped areas to surrounding water bodies as well as their persistence. Assessing the risk of water contamination and evaluating the efficiency of mitigation measures, requires fine-resolution sorption data and a good knowledge of its drivers. This study aimed to assess the potential of a new approach combining chemometric and soil metabolomics to estimate the adsorption and desorption coefficients of a range of pesticides. It also aims to identify and characterise key components of soil organic matter (SOM) driving the sorption of these pesticides. We constituted a dataset of 43 soils from Tunisia, France and Guadeloupe (West Indies), covering extensive ranges of texture, organic carbon and pH. We performed untargeted soil metabolomics by liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS). We measured the adsorption and desorption coefficients of three pesticides namely glyphosate, 2,4-D and difenoconazole for these soils. We developed Partial Least Square Regression (PLSR) models for the prediction of the sorption coefficients from the RT-m/z matrix and conducted further ANOVA analyses to identify, annotate and characterise the most significant constituents of SOM in the PLSR models. The curated metabolomics matrix yielded 1213 metabolic markers. The prediction performance of the PLSR models was generally high for the adsorption coefficients Kdads (0.3 < R2 < 0.8) and for the desorption coefficients Kfdes (0.6 < R2 < 0.8) but low for ndes (0.03 < R2 < 0.3). The most significant features in the predictive models were annotated with a confidence level of 2 or 3. The molecular descriptors of these putative compounds suggest that the pool of SOM compounds driving glyphosate sorption is reduced compared to 2,4-D and difenoconazole, and these compounds are generally more polar. This approach can provide estimates of the adsorption and desorption coefficients of pesticides, including polar pesticide, for contrasted pedoclimates.
Collapse
Affiliation(s)
- Jeanne Dollinger
- UMR LISAH, Université Montpellier, INRAE, IRD, Institut Agro, 34060, Montpellier, France.
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR1332, BFP, 33882, Villenave d'Ornon, France; Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Amélie Flandin
- Univ. Bordeaux, INRAE, UMR1332, BFP, 33882, Villenave d'Ornon, France; Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Anatja Samouelian
- UMR LISAH, Université Montpellier, INRAE, IRD, Institut Agro, 34060, Montpellier, France
| |
Collapse
|
19
|
McLaughlin S, Zhalnina K, Kosina S, Northen TR, Sasse J. The core metabolome and root exudation dynamics of three phylogenetically distinct plant species. Nat Commun 2023; 14:1649. [PMID: 36964135 PMCID: PMC10039077 DOI: 10.1038/s41467-023-37164-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/01/2023] [Indexed: 03/26/2023] Open
Abstract
Root exudates are plant-derived, exported metabolites likely shaping root-associated microbiomes by acting as nutrients and signals. However, root exudation dynamics are unclear and thus also, if changes in exudation are reflected in changes in microbiome structure. Here, we assess commonalities and differences between exudates of different plant species, diurnal exudation dynamics, as well as the accompanying methodological aspects of exudate sampling. We find that exudates should be collected for hours rather than days as many metabolite abundances saturate over time. Plant growth in sterile, nonsterile, or sugar-supplemented environments significantly alters exudate profiles. A comparison of Arabidopsis thaliana, Brachypodium distachyon, and Medicago truncatula shoot, root, and root exudate metabolite profiles reveals clear differences between these species, but also a core metabolome for tissues and exudates. Exudate profiles also exhibit a diurnal signature. These findings add to the methodological and conceptual groundwork for future exudate studies to improve understanding of plant-microbe interactions.
Collapse
Affiliation(s)
- Sarah McLaughlin
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology, Berkeley, CA, USA
- Institute for Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Kateryna Zhalnina
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology, Berkeley, CA, USA
| | - Suzanne Kosina
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology, Berkeley, CA, USA
| | - Trent R Northen
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology, Berkeley, CA, USA.
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Joelle Sasse
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology, Berkeley, CA, USA.
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Institute for Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Deng Q, Liu H, Lu Q, Gangurde SS, Du P, Li H, Li S, Liu H, Wang R, Huang L, Chen R, Fan C, Liang X, Chen X, Hong Y. Silicon Application for the Modulation of Rhizosphere Soil Bacterial Community Structures and Metabolite Profiles in Peanut under Ralstonia solanacearum Inoculation. Int J Mol Sci 2023; 24:3268. [PMID: 36834682 PMCID: PMC9960962 DOI: 10.3390/ijms24043268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Silicon (Si) has been shown to promote peanut growth and yield, but whether Si can enhance the resistance against peanut bacterial wilt (PBW) caused by Ralstonia solanacearum, identified as a soil-borne pathogen, is still unclear. A question regarding whether Si enhances the resistance of PBW is still unclear. Here, an in vitro R. solanacearum inoculation experiment was conducted to study the effects of Si application on the disease severity and phenotype of peanuts, as well as the microbial ecology of the rhizosphere. Results revealed that Si treatment significantly reduced the disease rate, with a decrement PBW severity of 37.50% as compared to non-Si treatment. The soil available Si (ASi) significantly increased by 13.62-44.87%, and catalase activity improved by 3.01-3.10%, which displayed obvious discrimination between non-Si and Si treatments. Furthermore, the rhizosphere soil bacterial community structures and metabolite profiles dramatically changed under Si treatment. Three significantly changed bacterial taxa were observed, which showed significant abundance under Si treatment, whereas the genus Ralstonia genus was significantly suppressed by Si. Similarly, nine differential metabolites were identified to involve into unsaturated fatty acids via a biosynthesis pathway. Significant correlations were also displayed between soil physiochemical properties and enzymes, the bacterial community, and the differential metabolites by pairwise comparisons. Overall, this study reports that Si application mediated the evolution of soil physicochemical properties, the bacterial community, and metabolite profiles in the soil rhizosphere, which significantly affects the colonization of the Ralstonia genus and provides a new theoretical basis for Si application in PBW prevention.
Collapse
Affiliation(s)
- Quanqing Deng
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qing Lu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Sunil S. Gangurde
- Department of Plant Pathology, University of Georgia, Tifton, GA 30602, USA
| | - Puxuan Du
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haifen Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shaoxiong Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haiyan Liu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Runfeng Wang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lu Huang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ronghua Chen
- Institute of Agricultural Sciences in Ganzhou, Ganzhou 341000, China
| | - Chenggen Fan
- Institute of Agricultural Sciences in Ganzhou, Ganzhou 341000, China
| | - Xuanqiang Liang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoping Chen
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanbin Hong
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
21
|
Li K, Chen L, Shi W, Hu C, Sha Y, Feng G, Wang E, Chen W, Sui X, Mi G. Impacts of maize hybrids with different nitrogen use efficiency on root-associated microbiota based on distinct rhizosphere soil metabolites. Environ Microbiol 2023; 25:473-492. [PMID: 36451600 DOI: 10.1111/1462-2920.16293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Plant genotypes shape root-associated microbiota that affect plant nutrient acquisition and productivity. It is unclear how maize hybrids modify root-associated microbiota and their functions and relationship with nitrogen use efficiency (NUE) by regulating rhizosphere soil metabolites. Here, two N-efficient (NE) (ZD958, DMY3) and two N-inefficient (NIE) maize hybrids (YD9953, LY99) were used to investigate this issue under low N (60 kg N ha-1 , LN) and high N (180 kg N ha-1 , HN) field conditions. NE hybrids had higher yield than NIE hybrids under LN but not HN. NE and NIE hybrids recruited only distinct root-associated bacterial microbiota in LN. The bacterial network stability was stronger in NE than NIE hybrids. Compared with NIE hybrids, NE hybrids recruited more bacterial taxa that have been described as plant growth-promoting rhizobacteria (PGPR), and less related to denitrification and N competition; this resulted in low N2 O emission and high rhizosphere NO3 - -N accumulation. NE and NIE hybrids had distinct rhizosphere soil metabolite patterns, and their specific metabolites were closely related to microbiota and specific genera under LN. Our findings reveal the relationships among plant NUE, rhizosphere soil metabolites, root-associated microbiota, and soil nutrient cycling, and this information is informative for breeding NE crops.
Collapse
Affiliation(s)
- Keke Li
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - La Chen
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenjun Shi
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Conghui Hu
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Ye Sha
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guozhong Feng
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Changchun, China
| | - Entao Wang
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | | | - Xinhua Sui
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guohua Mi
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Li P, Ye S, Chen J, Wang L, Li Y, Ge L, Wu G, Song L, Wang C, Sun Y, Wang J, Pan A, Quan Z, Wu Y. Combined metagenomic and metabolomic analyses reveal that Bt rice planting alters soil C-N metabolism. ISME COMMUNICATIONS 2023; 3:4. [PMID: 36690796 PMCID: PMC9870860 DOI: 10.1038/s43705-023-00217-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
The environmental impacts of genetically modified (GM) plants remain a controversial global issue. To address these issues, comprehensive environmental risk assessments of GM plants is critical for the sustainable development and application of transgenic technology. In this paper, significant differences were not observed between microbial metagenomic and metabolomic profiles in surface waters of the Bt rice (T1C-1, the transgenic line) and non-Bt cultivars (Minghui 63 (the isogenic line) and Zhonghua 11 (the conventional japonica cultivar)). In contrast, differences in these profiles were apparent in the rhizospheres. T1C-1 planting increased soil microbiome diversity and network stability, but did not significantly alter the abundances of potential probiotic or phytopathogenic microorganisms compared with Minghui 63 and Zhonghua 11, which revealed no adverse effects of T1C-1 on soil microbial communities. T1C-1 planting could significantly alter soil C and N, probably via the regulation of the abundances of enzymes related to soil C and N cycling. In addition, integrated multi-omic analysis of root exudate metabolomes and soil microbiomes showed that the abundances of various metabolites released as root exudates were significantly correlated with subsets of microbial populations including the Acidobacteria, Actinobacteria, Chloroflexi, and Gemmatimonadetes that were differentially abundant in T1C-1 and Mnghui 63 soils. Finally, the potential for T1C-1-associated root metabolites to exert growth effects on T1C-1-associated species was experimentally validated by analysis of bacterial cultures, revealing that Bt rice planting could selectively modulate specific root microbiota. Overall, this study indicate that Bt rice can directly modulate rhizosphere microbiome assemblages by altering the metabolic compositions of root exudates that then alters soil metabolite profiles and physiochemical properties. This study unveils the mechanistic associations of Bt plant-microorganism-environment, which provides comprehensive insights into the potential ecological impacts of GM plants.
Collapse
Affiliation(s)
- Peng Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China.
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd, 201106, Shanghai, China.
| | - Shuifeng Ye
- College of Life Sciences, Shangrao Normal University, 334001, Shangrao, China
| | - Jun Chen
- East China University of Technology, 330013, Nanchang, China
| | - Luyao Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Yujie Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Lei Ge
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Guogan Wu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Lili Song
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Cui Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Yu Sun
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Jinbin Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Aihu Pan
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 201106, Shanghai, China
| | - Zhexue Quan
- School of Life Sciences, Fudan University, 200433, Shanghai, China.
| | - Yunfei Wu
- The College of Bioscience and Biotechnology, Yangzhou University, 225009, Yangzhou, China.
| |
Collapse
|
23
|
Berni R, Leclercq CC, Roux P, Hausman JF, Renaut J, Guerriero G. A molecular study of Italian ryegrass grown on Martian regolith simulant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158774. [PMID: 36108852 DOI: 10.1016/j.scitotenv.2022.158774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
In the last decade, the exploration of deep space has become the objective of the national space programs of many countries. The International Space Exploration Coordination Group has set a roadmap whose long-range strategy envisions the expansion of human presence in the solar system to progress with exploration and knowledge and to accelerate innovation. Crewed missions to Mars could be envisaged by 2040. In this scenario, finding ways to use the local resources for the provision of food, construction materials, propellants, pharmaceuticals is needed. Plants are important resources for deep space manned missions because they produce phytochemicals of pharmaceutical relevance, are sources of food and provide oxygen which is crucial in bioregenerative life support systems. Growth analysis and plant biomass yield have been previously evaluated on Martian regolith simulants; however, molecular approaches employing gene expression analysis and proteomics are still missing. The present work aims at filling this gap by providing molecular data on a representative member of the Poaceae, Lolium multiflorum Lam., grown on potting soil and a Martian regolith simulant (MMS-1). The molecular data were complemented with optical microscopy of root/leaf tissues and physico-chemical analyses. The results show that the plants grew for 2 weeks on regolith simulants. The leaves were bent downwards and chlorotic, the roots developed a lacunar aerenchyma and small brownish deposits containing Fe were observed. Gene expression analysis and proteomics revealed changes in transcripts related to the phenylpropanoid pathway, stress response, primary metabolism and proteins involved in translation and DNA methylation. Additionally, the growth of plants slightly but significantly modified the pH of the regolith simulants. The results here presented constitute a useful resource to get a comprehensive understanding of the major factors impacting the growth of plants on MMS-1.
Collapse
Affiliation(s)
- Roberto Berni
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, L-4940 Hautcharage, Luxembourg
| | - Céline C Leclercq
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, L-4940 Hautcharage, Luxembourg
| | - Philippe Roux
- Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, B-5030 Gembloux, Belgium
| | - Jean-Francois Hausman
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, L-4940 Hautcharage, Luxembourg
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, L-4940 Hautcharage, Luxembourg
| | - Gea Guerriero
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, L-4940 Hautcharage, Luxembourg.
| |
Collapse
|
24
|
Chen Y, Pan L, Ren M, Li J, Guan X, Tao J. Comparison of genetically modified insect-resistant maize and non-transgenic maize revealed changes in soil metabolomes but not in rhizosphere bacterial community. GM CROPS & FOOD 2022; 13:1-14. [PMID: 35180835 PMCID: PMC8890387 DOI: 10.1080/21645698.2022.2025725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The deliberate introduction of the beneficial gene in crop plants through transgenic technology can provide enormous agricultural and economic benefits. However, the impact of commercialization of these crops on the ecosystem particularly on belowground soil biodiversity is still uncertain. Here, we examined and compared the effects of a non-transgenic maize cultivar and an insect-resistant transgenic maize cultivar genetically engineered with cry1Ah gene from Bacillus thuringiensis, on the rhizosphere bacterial community using 16S rDNA amplicon sequencing and soil metabolome profile using UPLC/MS analysis at six different growth stages. We found no significant differences in bacterial community composition and diversity at all growth stages between the two cultivars. The analysis of bacterial beta-diversity showed an evident difference in community structure attributed to plant different growth stages but not to the plant type. In contrast, the soil metabolic profile of transgenic maize differed from that of the non-transgenic plant at some growth stages, and most of the altered metabolites were usually related to the metabolism but not to the plant-microbe interaction related pathways. These results suggest that genetic modification with the cry1Ah gene-altered maize soil metabolism but had no obvious effect on the rhizosphere bacterial community.
Collapse
Affiliation(s)
- Yanjun Chen
- College of Tropical Crops, Hainan University, Haikou, P.R. China.,State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, P.R. China
| | - Libo Pan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, P.R. China
| | - Mengyun Ren
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, P.R. China
| | - Xiao Guan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, P.R. China
| | - Jun Tao
- College of Tropical Crops, Hainan University, Haikou, P.R. China
| |
Collapse
|
25
|
Vismans G, van Bentum S, Spooren J, Song Y, Goossens P, Valls J, Snoek BL, Thiombiano B, Schilder M, Dong L, Bouwmeester HJ, Pétriacq P, Pieterse CMJ, Bakker PAHM, Berendsen RL. Coumarin biosynthesis genes are required after foliar pathogen infection for the creation of a microbial soil-borne legacy that primes plants for SA-dependent defenses. Sci Rep 2022; 12:22473. [PMID: 36577764 PMCID: PMC9797477 DOI: 10.1038/s41598-022-26551-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Plants deposit photosynthetically-fixed carbon in the rhizosphere, the thin soil layer directly around the root, thereby creating a hospitable environment for microbes. To manage the inhabitants of this nutrient-rich environment, plant roots exude and dynamically adjust microbe-attracting and -repelling compounds to stimulate specific members of the microbiome. Previously, we demonstrated that foliar infection of Arabidopsis thaliana by the biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) leads to a disease-induced modification of the rhizosphere microbiome. Soil conditioned with Hpa-infected plants provided enhanced protection against foliar downy mildew infection in a subsequent population of plants, a phenomenon dubbed the soil-borne legacy (SBL). Here, we show that for the creation of the SBL, plant-produced coumarins play a prominent role as coumarin-deficient myb72 and f6'h1 mutants were defective in creating a Hpa-induced SBL. Root exudation profiles changed significantly in Col-0 upon foliar Hpa infection, and this was accompanied by a compositional shift in the root microbiome that was significantly different from microbial shifts occurring on roots of Hpa-infected coumarin-deficient mutants. Our data further show that the Hpa-induced SBL primes Col-0 plants growing in SBL-conditioned soil for salicylic acid (SA)-dependent defenses. The SA-signaling mutants sid2 and npr1 were unresponsive to the Hpa-induced SBL, suggesting that the protective effect of the Hpa-induced shift in the root microbiome results from an induced systemic resistance that requires SA-signaling in the plant.
Collapse
Affiliation(s)
- Gilles Vismans
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Sietske van Bentum
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Jelle Spooren
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Yang Song
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Pim Goossens
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Josep Valls
- Univ. Bordeaux, INRAE, UMR 1366 OENO - Axe Molécules À Intérêt Biologique, ISVV, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Basten L Snoek
- Department of Biology, Science4, Life Theoretical Biology and Bioinformatics, Institute of Biodynamics and Biocomplexity, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Benjamin Thiombiano
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE, Amsterdam, the Netherlands
| | - Mario Schilder
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE, Amsterdam, the Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE, Amsterdam, the Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE, Amsterdam, the Netherlands
| | - Pierre Pétriacq
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathology, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Corné M J Pieterse
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Peter A H M Bakker
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Roeland L Berendsen
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands.
| |
Collapse
|
26
|
Salem MA, Wang JY, Al-Babili S. Metabolomics of plant root exudates: From sample preparation to data analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1062982. [PMID: 36561464 PMCID: PMC9763704 DOI: 10.3389/fpls.2022.1062982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Plants release a set of chemical compounds, called exudates, into the rhizosphere, under normal conditions and in response to environmental stimuli and surrounding soil organisms. Plant root exudates play indispensable roles in inhibiting the growth of harmful microorganisms, while also promoting the growth of beneficial microbes and attracting symbiotic partners. Root exudates contain a complex array of primary and specialized metabolites. Some of these chemicals are only found in certain plant species for shaping the microbial community in the rhizosphere. Comprehensive understanding of plant root exudates has numerous applications from basic sciences to enhancing crop yield, production of stress-tolerant crops, and phytoremediation. This review summarizes the metabolomics workflow for determining the composition of root exudates, from sample preparation to data acquisition and analysis. We also discuss recent advances in the existing analytical methods and future perspectives of metabolite analysis.
Collapse
Affiliation(s)
- Mohamed A. Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
27
|
Li Y, Yang R, Häggblom MM, Li M, Guo L, Li B, Kolton M, Cao Z, Soleimani M, Chen Z, Xu Z, Gao W, Yan B, Sun W. Characterization of diazotrophic root endophytes in Chinese silvergrass (Miscanthus sinensis). MICROBIOME 2022; 10:186. [PMID: 36329505 PMCID: PMC9632085 DOI: 10.1186/s40168-022-01379-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/22/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Phytoremediation is a potentially cost-effective way to remediate highly contaminated mine tailing sites. However, nutrient limitations, especially the deficiency of nitrogen (N), can hinder the growth of plants and impair the phytoremediation of mine tailings. Nevertheless, pioneer plants can successfully colonize mine tailings and exhibit potential for tailing phytoremediation. Diazotrophs, especially diazotrophic endophytes, can promote the growth of their host plants. This was tested in a mine-tailing habitat by a combination of field sampling, DNA-stable isotope probing (SIP) analysis, and pot experiments. RESULTS Bacteria belonging to the genera Herbaspirillum, Rhizobium, Devosia, Pseudomonas, Microbacterium, and Delftia are crucial endophytes for Chinese silvergrass (Miscanthus sinensis) grown in the tailing, the model pioneer plant selected in this study. Further, DNA-SIP using 15N2 identified Pseudomonas, Rhizobium, and Exiguobacterium as putative diazotrophic endophytes of M. sinensis. Metagenomic-binning suggested that these bacteria contained essential genes for nitrogen fixation and plant growth promotion. Finally, two diazotrophic endophytes Rhizobium sp. G-14 and Pseudomonas sp. Y-5 were isolated from M. sinensis. Inoculation of another pioneer plant in mine tailings, Bidens pilosa, with diazotrophic endophytes resulted in successful plant colonization, significantly increased nitrogen fixation activity, and promotion of plant growth. CONCLUSIONS This study indicated that diazotrophic endophytes have the potential to promote the growth of pioneer plant B. pilosa in mine tailings. Video Abstract.
Collapse
Affiliation(s)
- Yongbin Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Joint Laboratory for Environmental Pollution and Control, Guangdong-Hong Kong-Macao, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Rui Yang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Lifang Guo
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Max Kolton
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Joint Laboratory for Environmental Pollution and Control, Guangdong-Hong Kong-Macao, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zhiguo Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Zhimin Xu
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Wenlong Gao
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Joint Laboratory for Environmental Pollution and Control, Guangdong-Hong Kong-Macao, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bei Yan
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Joint Laboratory for Environmental Pollution and Control, Guangdong-Hong Kong-Macao, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China.
- Joint Laboratory for Environmental Pollution and Control, Guangdong-Hong Kong-Macao, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
28
|
Microbiome of Soybean (Glycine max L.) Rhizosphere from Free State, South Africa. Microbiol Resour Announc 2022; 11:e0028822. [DOI: 10.1128/mra.00288-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Soybean develop a symbiotic relationship with the rhizospheric microbial communities. These organisms are important in maintaining soybean growth and health. Soil samples for this study were collected from Free State, South Africa. We present the microbiome of the soybean rhizosphere and its functional categories at level 1 of the SEED subsystem.
Collapse
|
29
|
Carper DL, Appidi MR, Mudbhari S, Shrestha HK, Hettich RL, Abraham PE. The Promises, Challenges, and Opportunities of Omics for Studying the Plant Holobiont. Microorganisms 2022; 10:microorganisms10102013. [PMID: 36296289 PMCID: PMC9609723 DOI: 10.3390/microorganisms10102013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Microorganisms are critical drivers of biological processes that contribute significantly to plant sustainability and productivity. In recent years, emerging research on plant holobiont theory and microbial invasion ecology has radically transformed how we study plant–microbe interactions. Over the last few years, we have witnessed an accelerating pace of advancements and breadth of questions answered using omic technologies. Herein, we discuss how current state-of-the-art genomics, transcriptomics, proteomics, and metabolomics techniques reliably transcend the task of studying plant–microbe interactions while acknowledging existing limitations impeding our understanding of plant holobionts.
Collapse
Affiliation(s)
- Dana L. Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Manasa R. Appidi
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Sameer Mudbhari
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Him K. Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Robert L. Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence:
| |
Collapse
|
30
|
Ma W, Tang S, Dengzeng Z, Zhang D, Zhang T, Ma X. Root exudates contribute to belowground ecosystem hotspots: A review. Front Microbiol 2022; 13:937940. [PMID: 36274740 PMCID: PMC9581264 DOI: 10.3389/fmicb.2022.937940] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 09/19/2023] Open
Abstract
Root exudates are an essential carrier for material cycling, energy exchange, and information transfer between the belowground parts of plants and the soil. We synthesize current properties and regulators of root exudates and their role in the belowground ecosystem as substances cycle and signal regulation. We discussed the composition and amount of root exudates and their production mechanism, indicating that plant species, growth stage, environmental factors, and microorganisms are primary influence factors. The specific mechanisms by which root secretions mobilize the soil nutrients were summarized. First, plants improve the nutrient status of the soil by releasing organic acids for acidification and chelation. Then, root exudates accelerated the SOC turnover due to their dual impacts, forming and destabilizing aggregates and MASOC. Eventually, root exudates mediate the plant-plant interaction and plant-microbe interaction. Additionally, a summary of the current collection methods of root exudates is presented.
Collapse
Affiliation(s)
- Wenming Ma
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
31
|
Gualtieri L, Monti MM, Mele F, Russo A, Pedata PA, Ruocco M. Volatile Organic Compound (VOC) Profiles of Different Trichoderma Species and Their Potential Application. J Fungi (Basel) 2022; 8:jof8100989. [PMID: 36294554 PMCID: PMC9605199 DOI: 10.3390/jof8100989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Fungi emit a broad spectrum of volatile organic compounds (VOCs), sometimes producing species-specific volatile profiles. Volatilomes have received over the last decade increasing attention in ecological, environmental and agricultural studies due to their potential to be used in the biocontrol of plant pathogens and pests and as plant growth-promoting factors. In the present study, we characterised and compared the volatilomes from four different Trichoderma species: T. asperellum B6; T. atroviride P1; T. afroharzianum T22; and T. longibrachiatum MK1. VOCs were collected from each strain grown both on PDA and in soil and analysed using proton transfer reaction quadrupole interface time-of-flight mass spectrometry (PTR-Qi-TOF-MS). Analysis of the detected volatiles highlighted a clear separation of the volatilomes of all the four species grown on PDA whereas the volatilomes of the soil-grown fungi could be only partially separated. Moreover, a limited number of species-specific peaks were found and putatively identified. In particular, each of the four Trichoderma species over-emitted somevolatiles involved in resistance induction, promotion of plant seed germination and seedling development and antimicrobial activity, as 2-pentyl-furan, 6PP, acetophenone and p-cymene by T. asperellum B6, T. atroviride P1, T. afroharzianum T22 and T. longibrachiatum MK1, respectively. Their potential role in interspecific interactions from the perspective of biological control is briefly discussed.
Collapse
Affiliation(s)
- Liberata Gualtieri
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
| | - Maurilia Maria Monti
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
- Correspondence: ; Tel.: +39-06-499-327-824
| | - Francesca Mele
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
| | - Assunta Russo
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| | - Paolo Alfonso Pedata
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
| |
Collapse
|
32
|
Pan Y, Kang P, Tan M, Hu J, Zhang Y, Zhang J, Song N, Li X. Root exudates and rhizosphere soil bacterial relationships of Nitraria tangutorum are linked to k-strategists bacterial community under salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:997292. [PMID: 36119572 PMCID: PMC9471988 DOI: 10.3389/fpls.2022.997292] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
When plants are subjected to various biotic and abiotic stresses, the root system responds actively by secreting different types and amounts of bioactive compounds, while affects the structure of rhizosphere soil bacterial community. Therefore, understanding plant-soil-microbial interactions, especially the strength of microbial interactions, mediated by root exudates is essential. A short-term experiment was conducted under drought and salt stress to investigate the interaction between root exudates and Nitraria tangutorum rhizosphere bacterial communities. We found that drought and salt stress increased rhizosphere soil pH (9.32 and 20.6%) and electrical conductivity (1.38 and 11 times), respectively, while decreased organic matter (27.48 and 31.38%), total carbon (34.55 and 29.95%), and total phosphorus (20 and 28.57%) content of N. tangutorum rhizosphere soil. Organic acids, growth hormones, and sugars were the main differential metabolites of N. tangutorum under drought and salt stress. Salt stress further changed the N. tangutorum rhizosphere soil bacterial community structure, markedly decreasing the relative abundance of Bacteroidota as r-strategist while increasing that of Alphaproteobacteria as k-strategists. The co-occurrence network analysis showed that drought and salt stress reduced the connectivity and complexity of the rhizosphere bacterial network. Soil physicochemical properties and root exudates in combination with salt stress affect bacterial strategies and interactions. Our study revealed the mechanism of plant-soil-microbial interactions under the influence of root exudates and provided new insights into the responses of bacterial communities to stressful environments.
Collapse
Affiliation(s)
- Yaqing Pan
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Peng Kang
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, China
| | - Min Tan
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, China
| | - Jinpeng Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Yinchuan, China
| | - Yaqi Zhang
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, China
| | - Jinlin Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Yinchuan, China
| | - Naiping Song
- Breeding Base for Key Laboratory Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| | - Xinrong Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
33
|
Zhang T, Xiong J, Tian R, Li Y, Zhang Q, Li K, Xu X, Liang L, Zheng Y, Tian B. Effects of single- and mixed-bacterial inoculation on the colonization and assembly of endophytic communities in plant roots. FRONTIERS IN PLANT SCIENCE 2022; 13:928367. [PMID: 36105708 PMCID: PMC9464981 DOI: 10.3389/fpls.2022.928367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/28/2022] [Indexed: 06/10/2023]
Abstract
The introduction and inoculation of beneficial bacteria in plants have consistently been considered as one of the most important ways to improve plant health and production. However, the effects of bacterial inoculation on the community assembly and composition of the root endophytic microbiome remain largely unknown. In this study, 55 strains were randomly isolated from tomato roots and then inoculated into wheat seeds singly or in combination. Most of the isolated bacterial strains showed an ability to produce lignocellulose-decomposing enzymes and promote plant growth. The results demonstrated that bacterial inoculation had a significant effect on the wheat root endophytic microbiome. The wheat root samples inoculated with single-bacterial species were significantly separated into two groups (A and B) that had different community structures and compositions. Among these, root endophytic communities for most wheat samples inoculated with a single-bacterial strain (Group A) were predominated by one or several bacterial species, mainly belonging to Enterobacterales. In contrast, only a few of the root samples inoculated with a single-bacterial strain (Group B) harbored a rich bacterial flora with relatively high bacterial diversity. However, wheat roots inoculated with a mixed bacterial complex were colonized by a more diverse and abundant bacterial flora, which was mainly composed of Enterobacterales, Actinomycetales, Bacillales, Pseudomonadales, and Rhizobiales. The results demonstrated that inoculation with bacterial complexes could help plants establish more balanced and beneficial endophytic communities. In most cases, bacterial inoculation does not result in successful colonization by the target bacterium in wheat roots. However, bacterial inoculation consistently had a significant effect on the root microbiome in plants. CAP analysis demonstrated that the variation in wheat root endophytic communities was significantly related to the taxonomic status and lignocellulose decomposition ability of the inoculated bacterial strain (p < 0.05). To reveal the role of lignocellulose degradation in shaping the root endophytic microbiome in wheat, four bacterial strains with different colonization abilities were selected for further transcriptome sequencing analysis. The results showed that, compared with that in the dominant bacterial species Ent_181 and Ent_189 of Group A, the expression of lignocellulose-decomposing enzymes was significantly downregulated in Bac_133 and Bac_71 (p < 0.05). In addition, we found that the dominant bacterial species of the tomato endophytic microbiome were more likely to become dominant populations in the wheat root microbiome. In general, our results demonstrated that lignocellulose-decomposing enzymes played a vital role in the formation of endophytes and their successful colonization of root tissues. This finding establishes a theoretical foundation for the development of broad-spectrum probiotics.
Collapse
Affiliation(s)
- Ting Zhang
- The Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Juan Xiong
- The Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Rongchuan Tian
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ye Li
- The Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qinyi Zhang
- The Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ke Li
- The Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xiaohong Xu
- Library, Fujian Normal University, Fuzhou, China
| | - Lianming Liang
- Key Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
| | - Yi Zheng
- The Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Baoyu Tian
- The Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
34
|
Mashabela MD, Tugizimana F, Steenkamp PA, Piater LA, Dubery IA, Mhlongo MI. Untargeted metabolite profiling to elucidate rhizosphere and leaf metabolome changes of wheat cultivars (Triticum aestivum L.) treated with the plant growth-promoting rhizobacteria Paenibacillus alvei (T22) and Bacillus subtilis. Front Microbiol 2022; 13:971836. [PMID: 36090115 PMCID: PMC9453603 DOI: 10.3389/fmicb.2022.971836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
The rhizosphere is a highly complex and biochemically diverse environment that facilitates plant–microbe and microbe–microbe interactions, and this region is found between plant roots and the bulk soil. Several studies have reported plant root exudation and metabolite secretion by rhizosphere-inhabiting microbes, suggesting that these metabolites play a vital role in plant–microbe interactions. However, the biochemical constellation of the rhizosphere soil is yet to be fully elucidated and thus remains extremely elusive. In this regard, the effects of plant growth-promoting rhizobacteria (PGPR)–plant interactions on the rhizosphere chemistry and above ground tissues are not fully understood. The current study applies an untargeted metabolomics approach to profile the rhizosphere exo-metabolome of wheat cultivars generated from seed inoculated (bio-primed) with Paenibacillus (T22) and Bacillus subtilis strains and to elucidate the effects of PGPR treatment on the metabolism of above-ground tissues. Chemometrics and molecular networking tools were used to process, mine and interpret the acquired mass spectrometry (MS) data. Global metabolome profiling of the rhizosphere soil of PGPR-bio-primed plants revealed differential accumulation of compounds from several classes of metabolites including phenylpropanoids, organic acids, lipids, organoheterocyclic compounds, and benzenoids. Of these, some have been reported to function in plant–microbe interactions, chemotaxis, biocontrol, and plant growth promotion. Metabolic perturbations associated with the primary and secondary metabolism were observed from the profiled leaf tissue of PGPR-bio-primed plants, suggesting a distal metabolic reprograming induced by PGPR seed bio-priming. These observations gave insights into the hypothetical framework which suggests that PGPR seed bio-priming can induce metabolic changes in plants leading to induced systemic response for adaptation to biotic and abiotic stress. Thus, this study contributes knowledge to ongoing efforts to decipher the rhizosphere metabolome and mechanistic nature of biochemical plant–microbe interactions, which could lead to metabolome engineering strategies for improved plant growth, priming for defense and sustainable agriculture.
Collapse
Affiliation(s)
- Manamele D. Mashabela
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Fidele Tugizimana
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
- International Research and Development Division, Omnia Group, Ltd., Johannesburg, South Africa
| | - Paul A. Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Lizelle A. Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Msizi I. Mhlongo
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
- *Correspondence: Msizi I. Mhlongo,
| |
Collapse
|
35
|
Mashabela MD, Masamba P, Kappo AP. Metabolomics and Chemoinformatics in Agricultural Biotechnology Research: Complementary Probes in Unravelling New Metabolites for Crop Improvement. BIOLOGY 2022; 11:1156. [PMID: 36009783 PMCID: PMC9405339 DOI: 10.3390/biology11081156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022]
Abstract
The United Nations (UN) estimate that the global population will reach 10 billion people by 2050. These projections have placed the agroeconomic industry under immense pressure to meet the growing demand for food and maintain global food security. However, factors associated with climate variability and the emergence of virulent plant pathogens and pests pose a considerable threat to meeting these demands. Advanced crop improvement strategies are required to circumvent the deleterious effects of biotic and abiotic stress and improve yields. Metabolomics is an emerging field in the omics pipeline and systems biology concerned with the quantitative and qualitative analysis of metabolites from a biological specimen under specified conditions. In the past few decades, metabolomics techniques have been extensively used to decipher and describe the metabolic networks associated with plant growth and development and the response and adaptation to biotic and abiotic stress. In recent years, metabolomics technologies, particularly plant metabolomics, have expanded to screening metabolic biomarkers for enhanced performance in yield and stress tolerance for metabolomics-assisted breeding. This review explores the recent advances in the application of metabolomics in agricultural biotechnology for biomarker discovery and the identification of new metabolites for crop improvement. We describe the basic plant metabolomics workflow, the essential analytical techniques, and the power of these combined analytical techniques with chemometrics and chemoinformatics tools. Furthermore, there are mentions of integrated omics systems for metabolomics-assisted breeding and of current applications.
Collapse
Affiliation(s)
| | | | - Abidemi Paul Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524, Johannesburg 2006, South Africa; (M.D.M.); (P.M.)
| |
Collapse
|
36
|
Bulk and Spatially Resolved Extracellular Metabolome of Free-Living Nitrogen Fixation. Appl Environ Microbiol 2022; 88:e0050522. [PMID: 35652664 PMCID: PMC9238392 DOI: 10.1128/aem.00505-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Soil nitrogen (N) transformations constrain terrestrial net primary productivity and are driven by the activity of soil microorganisms. Free-living N fixation (FLNF) is an important soil N transformation and key N input to terrestrial systems, but the forms of N contributed to soil by FLNF are poorly understood. To address this knowledge gap, a focus on microorganisms and microbial scale processes is needed that links N-fixing bacteria and their contributed N sources to FLNF process rates. However, studying the activity of soil microorganisms in situ poses inherent challenges, including differences in sampling scale between microorganism and process rates, which can be addressed with culture-based studies and an emphasis on microbial-scale measurements. Culture conditions can differ significantly from soil conditions, so it also important that such studies include multiple culture conditions like liquid and solid media as proxies for soil environments like soil pore water and soil aggregate surfaces. Here we characterized extracellular N-containing metabolites produced by two common, diazotrophic soil bacteria in liquid and solid media, with or without N, across two sampling scales (bulk via GC-MS and spatially resolved via MALDI mass spec imaging). We found extracellular production of inorganic and organic N during FLNF, indicating terrestrial N contributions from FLNF occur in multiple forms not only as ammonium as previously thought. Extracellular metabolite profiles differed between liquid and solid media supporting previous work indicating environmental structure influences microbial function. Metabolite profiles also differed between sampling scales underscoring the need to quantify microbial scale conditions to accurately interpret microbial function. IMPORTANCE Free-living nitrogen-fixing bacteria contribute significantly to terrestrial nitrogen availability; however, the forms of nitrogen contributed by this process are poorly understood. This is in part because of inherent challenges to studying soil microorganisms in situ, such as vast differences in scale between microorganism and ecosystem and complexities of the soil system (e.g., opacity, chemical complexity). Thus, upscaling important ecosystem processes driven by soil microorganisms, like free-living nitrogen fixation, requires microbial-scale measurements in controlled systems. Our work generated bulk and spatially resolved measurements of nitrogen released during free-living nitrogen fixation under two contrasting growth conditions analogous to soil pores and aggregates. This work allowed us to determine that diverse forms of nitrogen are likely contributed to terrestrial systems by free-living nitrogen bacteria. We also demonstrated that microbial habitat (e.g., liquid versus solid media) alters microbial activity and that measurement of microbial activity is altered by sampling scale (e.g., bulk versus spatially resolved) highlighting the critical importance of quantifying microbial-scale processes to upscaling of ecosystem function.
Collapse
|
37
|
Koprivova A, Kopriva S. Plant secondary metabolites altering root microbiome composition and function. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102227. [PMID: 35525222 DOI: 10.1016/j.pbi.2022.102227] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Plants share their natural environment with numerous microorganisms, commensal as well as harmful. Plant fitness and performance are thus dependent on an efficient communication with such microbiota. The primary means of communication are metabolites exuded from roots, primarily diverse secondary metabolites. The exuded metabolites trigger changes in composition and function of plant associated microbiome. In the last few years, many metabolites were uncovered that are part of this communication network and modulate specific functions of the root microbiota. Here, we describe the progress in identification of such metabolites and their functions and outline the most significant knowledge gaps for future research.
Collapse
Affiliation(s)
- Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
38
|
Kang S, Kim KT, Choi J, Kim H, Cheong K, Bandara A, Lee YH. Genomics and Informatics, Conjoined Tools Vital for Understanding and Protecting Plant Health. PHYTOPATHOLOGY 2022; 112:981-995. [PMID: 34889667 DOI: 10.1094/phyto-10-21-0418-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Genomics' impact on crop production continuously expands. The number of sequenced plant and microbial species and strains representing diverse populations of individual species rapidly increases thanks to the advent of next-generation sequencing technologies. Their genomic blueprints revealed candidate genes involved in various functions and processes crucial for crop health and helped in understanding how the sequenced organisms have evolved at the genome level. Functional genomics quickly translates these blueprints into a detailed mechanistic understanding of how such functions and processes work and are regulated; this understanding guides and empowers efforts to protect crops from diverse biotic and abiotic threats. Metagenome analyses help identify candidate microbes crucial for crop health and uncover how microbial communities associated with crop production respond to environmental conditions and cultural practices, presenting opportunities to enhance crop health by judiciously configuring microbial communities. Efficient conversion of disparate types of massive genomics data into actionable knowledge requires a robust informatics infrastructure supporting data preservation, analysis, and sharing. This review starts with an overview of how genomics came about and has quickly transformed life science. We illuminate how genomics and informatics can be applied to investigate various crop health-related problems using selected studies. We end the review by noting why community empowerment via crowdsourcing is crucial to harnessing genomics to protect global food and nutrition security without continuously expanding the environmental footprint of crop production.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Jaeyoung Choi
- Korea Institute of Science and Technology Gangneung Institute of Natural Products, Gangneung 25451, Korea
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Kyeongchae Cheong
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - Ananda Bandara
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
39
|
Li YH, Yang YY, Wang ZG, Chen Z. Emerging Function of Ecotype-Specific Splicing in the Recruitment of Commensal Microbiome. Int J Mol Sci 2022; 23:4860. [PMID: 35563250 PMCID: PMC9100151 DOI: 10.3390/ijms23094860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022] Open
Abstract
In recent years, host-microbiome interactions in both animals and plants has emerged as a novel research area for studying the relationship between host organisms and their commensal microbial communities. The fitness advantages of this mutualistic interaction can be found in both plant hosts and their associated microbiome, however, the driving forces mediating this beneficial interaction are poorly understood. Alternative splicing (AS), a pivotal post-transcriptional mechanism, has been demonstrated to play a crucial role in plant development and stress responses among diverse plant ecotypes. This natural variation of plants also has an impact on their commensal microbiome. In this article, we review the current progress of plant natural variation on their microbiome community, and discuss knowledge gaps between AS regulation of plants in response to their intimately related microbiota. Through the impact of this article, an avenue could be established to study the biological mechanism of naturally varied splicing isoforms on plant-associated microbiome assembly.
Collapse
Affiliation(s)
- Yue-Han Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Yuan-You Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
| | - Zhi-Gang Wang
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Zhuo Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
| |
Collapse
|
40
|
Miranda-Carrazco A, Chávez-López C, Ramírez-Villanueva DA, Dendooven L. Bacteria in (vermi)composted organic wastes mostly survive when applied to an arable soil cultivated with wheat (Triticum sp. L.). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:363. [PMID: 35419663 DOI: 10.1007/s10661-022-09996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Composting and vermicomposting are an environmentally friendly way to reduce pathogens in organic wastes and generate a valuable product that provides nutrients for crops. However, how the bacterial community structure changes during these different processes and if the bacteria applied with the (vermi)composted products survive in an arable cultivated soil is still largely unknown. In this study, we monitored how the bacterial community structure changed during conditioning, composting with and without Eisenia fetida, and when the end-product was applied to arable soil cultivated with wheat Triticum sp. L. The organic wastes used were biosolid, cow manure, and a mixture of both. Large changes occurred in the relative abundance of some of the most abundant bacterial genera during conditioning, but the changes were much smaller during composting or vermicomposting. The bacterial community structure was significantly different in the organic wastes during conditioning and (vermi)composting but adding E. fetida had no significant effect on it. Changes in the relative abundance of the bacterial groups in the (vermi)composted waste applied to the arable soil cultivated with wheat were small, suggesting that most survived even after 140 days. As such, applying (vermi)composted organic wastes not only adds nutrients to a crop but also contributes to the survival of plant growth-promoting bacteria found in the (vermi)compost. However, putative human pathogens found in the biosolid also survived in the arable soil, and their relative abundance remained high but mixing the biosolid with cow manure reduced that risk. It was found that applying (vermi)composted organic wastes to an arable soil not only provides plant nutrients and adds bacteria with plant growth-promoting capacities, but some putative pathogens also survived.
Collapse
Affiliation(s)
- Alejandra Miranda-Carrazco
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico
| | - Claudia Chávez-López
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico
| | | | - Luc Dendooven
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico.
| |
Collapse
|
41
|
Shen MC, Shi YZ, Bo GD, Liu XM. Fungal Inhibition of Agricultural Soil Pathogen Stimulated by Nitrogen-Reducing Fertilization. Front Bioeng Biotechnol 2022; 10:866419. [PMID: 35497365 PMCID: PMC9039341 DOI: 10.3389/fbioe.2022.866419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Plant health is the fundamental of agricultural production, which is threatened by plant pathogens severely. The previous studies exhibited the effects of different pathogen control strategies (physical, chemical, and microbial methods), which resulted from bringing in exogenous additives, on microbial community structures and functions. Nevertheless, few studies focused on the potential inhibitory abilities of native microbial community in the soil, which could be activated or enhanced by different fertilization strategies. In this study, three plant diseases (TMV, TBS, and TBW) of tobacco, fungal community of tobacco rhizosphere soil, and the correlation between them were researched. The results showed that nitrogen-reducing fertilization strategies could significantly decrease the occurrence rate and the disease index of three tobacco diseases. The results of bioinformatics analyses revealed that the fungal communities of different treatments could differentiate the nitrogen-reducing fertilization group and the control group (CK). Furthermore, key genera which were responsible for the variation of fungal community were explored by LEfSe analysis. For instance, Tausonia and Trichocladium increased, while Naganishia and Fusicolla decreased under nitrogen-reducing fertilization conditions. Additionally, the correlation between tobacco diseases and key genera was verified using the Mantel test. Moreover, the causal relationship between key genera and tobacco diseases was deeply explored by PLS–PM analysis. These findings provide a theoretical basis for a nitrogen-reducing fertilization strategy against tobacco diseases without exogenous additives and make contributions to revealing the microbial mechanism of native-valued fungal key taxa against tobacco diseases, which could be stimulated by agricultural fertilization management.
Collapse
Affiliation(s)
- Min-Chong Shen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - You-Zhi Shi
- Cigar Institute of China Tobacco Hubei Industrial Co., Ltd., Yichang, China
| | - Guo-Dong Bo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xin-Min Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Xin-Min Liu,
| |
Collapse
|
42
|
Bacterial Communities in the Rhizosphere at Different Growth Stages of Maize Cultivated in Soil Under Conventional and Conservation Agricultural Practices. Microbiol Spectr 2022; 10:e0183421. [PMID: 35254138 PMCID: PMC9049951 DOI: 10.1128/spectrum.01834-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Farmers in Mexico till soil intensively, remove crop residues for fodder and grow maize often in monoculture. Conservation agriculture (CA), including minimal tillage, crop residue retention and crop diversification, is proposed as a more sustainable alternative. In this study, we determined the effect of agricultural practices and the developing maize rhizosphere on soil bacterial communities. Bulk and maize (Zea mays L.) rhizosphere soil under conventional practices (CP) and CA were sampled during the vegetative, flowering and grain filling stage, and 16S rRNA metabarcoding was used to assess bacterial diversity and community structure. The functional diversity was inferred from the bacterial taxa using PICRUSt. Conservation agriculture positively affected taxonomic and functional diversity compared to CP. The agricultural practice was the most important factor in defining the structure of bacterial communities, even more so than rhizosphere and plant growth stage. The rhizosphere enriched fast growing copiotrophic bacteria, such as Rhizobiales, Sphingomonadales, Xanthomonadales, and Burkholderiales, while in the bulk soil of CP other copiotrophs were enriched, e.g., Halomonas and Bacillus. The bacterial community in the maize bulk soil resembled each other more than in the rhizosphere of CA and CP. The bacterial community structure, and taxonomic and functional diversity in the maize rhizosphere changed with maize development and the differences between the bulk soil and the rhizosphere were more accentuated when the plant aged. Although agricultural practices did not alter the effect of the rhizosphere on the soil bacterial communities in the flowering and grain filling stage, they did in the vegetative stage. IMPORTANCE We studied the effect of sustainable conservation agricultural practices versus intensive conventional ones on the soil microbial diversity, potential functionality, and community assembly in rhizosphere of maize cultivated in a semiarid environment. We found that conservation agriculture practices increased the diversity of soil microbial species and functions and strongly affected how they were structured compared to conventional practices. Microbes affected by the roots of maize, the rhizobiome, were different and more diverse than in the surrounding soil and their diversity increased when the plant grew. The agricultural practices affected the maize rhizobiome only in the early stages of growth, but this might have an important impact on the development of maize plant.
Collapse
|
43
|
Mashabela MD, Piater LA, Dubery IA, Tugizimana F, Mhlongo MI. Rhizosphere Tripartite Interactions and PGPR-Mediated Metabolic Reprogramming towards ISR and Plant Priming: A Metabolomics Review. BIOLOGY 2022; 11:346. [PMID: 35336720 PMCID: PMC8945280 DOI: 10.3390/biology11030346] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms colonising the rhizosphere. PGPR are involved in plant growth promotion and plant priming against biotic and abiotic stresses. Plant-microbe interactions occur through chemical communications in the rhizosphere and a tripartite interaction mechanism between plants, pathogenic microbes and plant-beneficial microbes has been defined. However, comprehensive information on the rhizosphere communications between plants and microbes, the tripartite interactions and the biochemical implications of these interactions on the plant metabolome is minimal and not yet widely available nor well understood. Furthermore, the mechanistic nature of PGPR effects on induced systemic resistance (ISR) and priming in plants at the molecular and metabolic levels is yet to be fully elucidated. As such, research investigating chemical communication in the rhizosphere is currently underway. Over the past decades, metabolomics approaches have been extensively used in describing the detailed metabolome of organisms and have allowed the understanding of metabolic reprogramming in plants due to tripartite interactions. Here, we review communication systems between plants and microorganisms in the rhizosphere that lead to plant growth stimulation and priming/induced resistance and the applications of metabolomics in understanding these complex tripartite interactions.
Collapse
Affiliation(s)
- Manamele D. Mashabela
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (M.D.M.); (L.A.P.); (I.A.D.); (F.T.)
| | - Lizelle A. Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (M.D.M.); (L.A.P.); (I.A.D.); (F.T.)
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (M.D.M.); (L.A.P.); (I.A.D.); (F.T.)
| | - Fidele Tugizimana
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (M.D.M.); (L.A.P.); (I.A.D.); (F.T.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| | - Msizi I. Mhlongo
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (M.D.M.); (L.A.P.); (I.A.D.); (F.T.)
| |
Collapse
|
44
|
Shen MC, Zhang YZ, Bo GD, Yang B, Wang P, Ding ZY, Wang ZB, Yang JM, Zhang P, Yuan XL. Microbial Responses to the Reduction of Chemical Fertilizers in the Rhizosphere Soil of Flue-Cured Tobacco. Front Bioeng Biotechnol 2022; 9:812316. [PMID: 35087808 PMCID: PMC8787768 DOI: 10.3389/fbioe.2021.812316] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/22/2021] [Indexed: 12/23/2022] Open
Abstract
The overuse of chemical fertilizers has resulted in the degradation of the physicochemical properties and negative changes in the microbial profiles of agricultural soil. These changes have disequilibrated the balance in agricultural ecology, which has resulted in overloaded land with low fertility and planting obstacles. To protect the agricultural soil from the effects of unsustainable fertilization strategies, experiments of the reduction of nitrogen fertilization at 10, 20, and 30% were implemented. In this study, the bacterial responses to the reduction of nitrogen fertilizer were investigated. The bacterial communities of the fertilizer-reducing treatments (D10F, D20F, and D30F) were different from those of the control group (CK). The alpha diversity was significantly increased in D20F compared to that of the CK. The analysis of beta diversity revealed variation of the bacterial communities between fertilizer-reducing treatments and CK, when the clusters of D10F, D20F, and D30F were separated. Chemical fertilizers played dominant roles in changing the bacterial community of D20F. Meanwhile, pH, soil organic matter, and six enzymes (soil sucrase, catalase, polyphenol oxidase, urease, acid phosphatase, and nitrite reductase) were responsible for the variation of the bacterial communities in fertilizer-reducing treatments. Moreover, four of the top 20 genera (unidentified JG30-KF-AS9, JG30-KF-CM45, Streptomyces, and Elsterales) were considered as key bacteria, which contributed to the variation of bacterial communities between fertilizer-reducing treatments and CK. These findings provide a theoretical basis for a fertilizer-reducing strategy in sustainable agriculture, and potentially contribute to the utilization of agricultural resources through screening plant beneficial bacteria from native low-fertility soil.
Collapse
Affiliation(s)
- Min-Chong Shen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yu-Zhen Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guo-Dong Bo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Bin Yang
- Shandong Qingdao Tobacco Co., Ltd., Qingdao, China
| | - Peng Wang
- Shandong Qingdao Tobacco Co., Ltd., Qingdao, China
| | | | - Zhao-Bao Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jian-Ming Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Peng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiao-Long Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
45
|
Cai M, Zhao X, Wang X, Shi G, Hu C. Se changed the component of organic chemicals and Cr bioavailability in pak choi rhizosphere soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67331-67342. [PMID: 34245415 DOI: 10.1007/s11356-021-13465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/11/2021] [Indexed: 06/13/2023]
Abstract
Rhizosphere organic chemicals response and its role on Cr/Se adsorption are of great importance to understand Cr/Se bioavailability in Cr-contaminated soil with the application of Se. In the current work, the processes were carried out using rhizobox experiment (Brassica campestris L. ssp. chinensis Makino). The results showed that in soil contaminated by 200 mg kg-1 Cr(III), Se(IV) complexed with Cr(III) and carboxylic acid (cis-9,10-Epoxystearic acid, hexadecanedioic acid) reduced Cr(VI) to Cr(III), thus increasing of Cr adsorption, furtherly decreasing Cr bioavailability. While in soil contaminated by 120 mg kg-1 Cr(VI), Se(VI) competed for adsorption sites with Cr(VI) and salicylic acid activated insoluble Cr(III), thus decreasing Cr adsorption, finally increasing Cr bioavailability. Moreover, with Cr contamination, Se bioavailability in soil was enhanced by the secretion of carboxylic acid, which can reduce Se to lower valent state and compete the adsorption sites and complex with Se oxyanion. These results yielded a better understanding of rhizosphere dynamics regulating by Se application in Cr-contaminated soil. Moreover, the current study supplemented the theoretical basis for beneficial elements application as an environment-friendly resource to facilitate cleaner production in heavy metal contaminated soil.
Collapse
Affiliation(s)
- Miaomiao Cai
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan, 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan, 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan, 430070, China.
| |
Collapse
|
46
|
Ma YN, Ni YX, Cao ZY, Pan JY, Tuwang MC, Yang H, Chen MX, Mou RX. Chemistry-specific responses due to rice-microbe interactions in the rhizosphere to counteract mefenacet stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104970. [PMID: 34802520 DOI: 10.1016/j.pestbp.2021.104970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of herbicides has raised considerable concern with regard to their harmful consequences on plant growth, crop yield and the soil ecological environment. It has been well documented that colonization of rhizobacteria in the plant root system has a positive effect on activation of plant defenses to protect the plant from damage. Using the platform of high-throughput analysis with tandem mass spectrometry and Illumina sequencing, we identified the specific activated rhizobacteria, the key growth stimulating substances and the metabolic pathways involved in seedling stage tolerance to mefenacet stress in rice. The relative abundance of beneficial rhizospheremicrobes such as Acidobacteria and Firmicutes increased with mefenacet treatment, indicating that the rhizosphere recruited some beneficial microbes to resist mefenacet stress. Mefenacet treatment induced alterations in several interlinked metabolic pathways, many of which were related to activation of defense response signaling, especially the indole-3-pyruvate pathway. Indole-3-acetaldehyde and indole-3-ethanol from this pathway may act as flexible storage pools for indole-3-acetic acid (IAA). Our findings also suggest that a significant increase of IAA produced by the enrichment of beneficial rhizospheremicrobes, for example genus Bacillus, alleviated the dwarfing phenomenon observed in hydroponic medium following mefenacet exposure, which may be a key signaling molecule primarily for phytostimulation and phytotolerance in microbe-plant interactions.
Collapse
Affiliation(s)
- You-Ning Ma
- China National Rice Research Institute, Hangzhou 310006, China
| | - Yan-Xia Ni
- China National Rice Research Institute, Hangzhou 310006, China
| | - Zhao-Yun Cao
- China National Rice Research Institute, Hangzhou 310006, China
| | - Jiu-Yue Pan
- China National Rice Research Institute, Hangzhou 310006, China
| | - Man-Cuo Tuwang
- China National Rice Research Institute, Hangzhou 310006, China
| | - Huan Yang
- China National Rice Research Institute, Hangzhou 310006, China
| | - Ming-Xue Chen
- China National Rice Research Institute, Hangzhou 310006, China
| | - Ren-Xiang Mou
- China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
47
|
Williams A, Langridge H, Straathof AL, Fox G, Muhammadali H, Hollywood KA, Xu Y, Goodacre R, de Vries FT. Comparing root exudate collection techniques: An improved hybrid method. SOIL BIOLOGY & BIOCHEMISTRY 2021; 161:108391. [PMID: 34602656 PMCID: PMC8444088 DOI: 10.1016/j.soilbio.2021.108391] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 05/07/2023]
Abstract
1. Plant-microbe interactions are critical for ecosystem functioning and drive rhizosphere processes. Root exudates are an important soil carbon (C) input, as well as a mechanism for communication between plants and rhizosphere microbes, but are notoriously difficult to extract and characterise. Common methods produce either substantial noise from the soil or do not mimic natural systems. Optimising methods for root exudate collection in soil is crucial for advancing our understanding of root-microbe interactions under changing environmental conditions. 2. Hybrid root exudate collection methods, where plants are grown in soil and transferred to hydroponics for exudate collection after root washing, might offer an ecologically relevant alternative to existing approaches. However, this method causes potential root damage as well as osmosis and subsequent leaking of cell contents. Here, we assessed different 'root recovery' periods after root washing and before hybrid root exudate collection, by comparing root exudate quantity and quality with both damaged root extracts and with leachates collected from the intact root-soil system. This was done across three common grassland species representing three functional groups. 3. We found that root exudate profiles of the shortest recovery period (0 days) were similar to damaged root extracts and were very high in C. With an increasing period of root recovery, profiles were more similar to leachates collected from the intact root-soil system, and C concentrations decreased. While both hybrid and leachate collection methods separated species by their root exudate profiles, the hybrid method was less variable in terms of the amount of C measured and provided a more diverse and abundant metabolome with better identification of metabolites. 4. Our results show that a recovery period after root washing of at least 3 days is critical to prevent root damage bias in hybrid collection methods, and that our hybrid method yields exudates that discriminate between species. Our data also suggest that exudates collected with this hybrid method are ecologically valid, which is vital for gaining a mechanistic understanding of their role in ecosystem functioning.
Collapse
Affiliation(s)
- Alex Williams
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | - Holly Langridge
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | - Angela L. Straathof
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, M13 9PT, Manchester, UK
- Ontario Soil and Crop Improvement Association, 1 Stone Road West, N1G 4Y2, Guelph, Ontario, Canada
| | - Graeme Fox
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Howbeer Muhammadali
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Biosciences Building, Crown Street, L69 7ZB, Liverpool, UK
| | - Katherine A. Hollywood
- Manchester Institute of Biotechnology, The University of Manchester, Princess Road, Manchester, M1 7DN, UK
| | - Yun Xu
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Biosciences Building, Crown Street, L69 7ZB, Liverpool, UK
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Biosciences Building, Crown Street, L69 7ZB, Liverpool, UK
| | - Franciska T. de Vries
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, M13 9PT, Manchester, UK
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, the Netherlands
| |
Collapse
|
48
|
Shimasaki T, Masuda S, Garrido-Oter R, Kawasaki T, Aoki Y, Shibata A, Suda W, Shirasu K, Yazaki K, Nakano RT, Sugiyama A. Tobacco Root Endophytic Arthrobacter Harbors Genomic Features Enabling the Catabolism of Host-Specific Plant Specialized Metabolites. mBio 2021; 12:e0084621. [PMID: 34044592 PMCID: PMC8262997 DOI: 10.1128/mbio.00846-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/17/2021] [Indexed: 01/04/2023] Open
Abstract
Plant roots constitute the primary interface between plants and soilborne microorganisms and harbor microbial communities called the root microbiota. Recent studies have demonstrated a significant contribution of plant specialized metabolites (PSMs) to the assembly of root microbiota. However, the mechanistic and evolutionary details underlying the PSM-mediated microbiota assembly and its contribution to host specificity remain elusive. Here, we show that the bacterial genus Arthrobacter is predominant specifically in the tobacco endosphere and that its enrichment in the tobacco endosphere is partially mediated by a combination of two unrelated classes of tobacco-specific PSMs, santhopine and nicotine. We isolated and sequenced Arthrobacter strains from tobacco roots as well as soils treated with these PSMs and identified genomic features, including but not limited to genes for santhopine and nicotine catabolism, that are associated with the ability to colonize tobacco roots. Phylogenomic and comparative analyses suggest that these genes were gained in multiple independent acquisition events, each of which was possibly triggered by adaptation to particular soil environments. Taken together, our findings illustrate a cooperative role of a combination of PSMs in mediating plant species-specific root bacterial microbiota assembly and suggest that the observed interaction between tobacco and Arthrobacter may be a consequence of an ecological fitting process. IMPORTANCE Host secondary metabolites have a crucial effect on the taxonomic composition of its associated microbiota. It is estimated that a single plant species produces hundreds of secondary metabolites; however, whether different classes of metabolites have distinctive or common roles in the microbiota assembly remains unclear. Here, we show that two unrelated classes of secondary metabolites in tobacco play a cooperative role in the formation of tobacco-specific compositions of the root bacterial microbiota, which has been established as a consequence of independent evolutionary events in plants and bacteria triggered by different ecological effects. Our findings illustrate mechanistic and evolutionary aspects of the microbiota assembly that are mediated by an arsenal of plant secondary metabolites.
Collapse
Affiliation(s)
- Tomohisa Shimasaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Sachiko Masuda
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Ruben Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Takashi Kawasaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Arisa Shibata
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Ryohei Thomas Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| |
Collapse
|
49
|
Improvement of Soil Microbial Diversity through Sustainable Agricultural Practices and Its Evaluation by -Omics Approaches: A Perspective for the Environment, Food Quality and Human Safety. Microorganisms 2021; 9:microorganisms9071400. [PMID: 34203506 PMCID: PMC8308033 DOI: 10.3390/microorganisms9071400] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023] Open
Abstract
Soil is one of the key elements for supporting life on Earth. It delivers multiple ecosystem services, which are provided by soil processes and functions performed by soil biodiversity. In particular, soil microbiome is one of the fundamental components in the sustainment of plant biomass production and plant health. Both targeted and untargeted management of soil microbial communities appear to be promising in the sustainable improvement of food crop yield, its nutritional quality and safety. –Omics approaches, which allow the assessment of microbial phylogenetic diversity and functional information, have increasingly been used in recent years to study changes in soil microbial diversity caused by agronomic practices and environmental factors. The application of these high-throughput technologies to the study of soil microbial diversity, plant health and the quality of derived raw materials will help strengthen the link between soil well-being, food quality, food safety and human health.
Collapse
|
50
|
Feng H, Fu R, Hou X, Lv Y, Zhang N, Liu Y, Xu Z, Miao Y, Krell T, Shen Q, Zhang R. Chemotaxis of Beneficial Rhizobacteria to Root Exudates: The First Step towards Root-Microbe Rhizosphere Interactions. Int J Mol Sci 2021; 22:ijms22136655. [PMID: 34206311 PMCID: PMC8269324 DOI: 10.3390/ijms22136655] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/28/2022] Open
Abstract
Chemotaxis, the ability of motile bacteria to direct their movement in gradients of attractants and repellents, plays an important role during the rhizosphere colonization by rhizobacteria. The rhizosphere is a unique niche for plant-microbe interactions. Root exudates are highly complex mixtures of chemoeffectors composed of hundreds of different compounds. Chemotaxis towards root exudates initiates rhizobacteria recruitment and the establishment of bacteria-root interactions. Over the last years, important progress has been made in the identification of root exudate components that play key roles in the colonization process, as well as in the identification of the cognate chemoreceptors. In the first part of this review, we summarized the roles of representative chemoeffectors that induce chemotaxis in typical rhizobacteria and discussed the structure and function of rhizobacterial chemoreceptors. In the second part we reviewed findings on how rhizobacterial chemotaxis and other root-microbe interactions promote the establishment of beneficial rhizobacteria-plant interactions leading to plant growth promotion and protection of plant health. In the last part we identified the existing gaps in the knowledge and discussed future research efforts that are necessary to close them.
Collapse
Affiliation(s)
- Haichao Feng
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Ruixin Fu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Xueqin Hou
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Yu Lv
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Youzhi Miao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Correspondence: ; Tel.: +86-025-84396477
| |
Collapse
|