1
|
Feng X, Bai S, Zhou L, Song Y, Jia S, Guo Q, Zhang C. Integrated Analysis of Transcriptome and Metabolome Provides Insights into Flavonoid Biosynthesis of Blueberry Leaves in Response to Drought Stress. Int J Mol Sci 2024; 25:11135. [PMID: 39456917 PMCID: PMC11508776 DOI: 10.3390/ijms252011135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Blueberries (Vaccinium spp.) are extremely sensitive to drought stress. Flavonoids are crucial secondary metabolites that possess the ability to withstand drought stress. Therefore, improving the drought resistance of blueberries by increasing the flavonoid content is crucial for the development of the blueberry industry. To explore the underlying molecular mechanism of blueberry in adaptation to drought stress, we performed an integrated analysis of the metabolome and transcriptome of blueberry leaves under drought stress. We found that the most enriched drought-responsive genes are mainly involved in flavonoid biosynthesis and plant hormone signal transduction pathways based on transcriptome data and the main drought-responsive metabolites come from the flavonoid class based on metabolome data. The UDP-glucose flavonoid 3-O-glucosyl transferase (UFGT), flavonol synthase (FLS), and anthocyanidin reductase (ANR-2) genes may be the key genes for the accumulation of anthocyanins, flavonols, and flavans in response to drought stress in blueberry leaves, respectively. Delphinidin 3-glucoside and delphinidin-3-O-glucoside chloride may be the most important drought-responsive flavonoid metabolites. VcMYB1, VcMYBPA1, MYBPA1.2, and MYBPA2.1 might be responsible for drought-induced flavonoid biosynthesis and VcMYB14, MYB14, MYB102, and MYB108 may be responsible for blueberry leaf drought tolerance. ABA responsive elements binding factor (ABF) genes, MYB genes, bHLH genes, and flavonoid biosynthetic genes might form a regulatory network to regulate drought-induced accumulation of flavonoid metabolites in blueberry leaves. Our study provides a useful reference for breeding drought-resistant blueberry varieties.
Collapse
Affiliation(s)
- Xinghua Feng
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Sining Bai
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Lianxia Zhou
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Yan Song
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Sijin Jia
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Qingxun Guo
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun 130062, China
| | - Chunyu Zhang
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
2
|
Ying J, Wen S, Cai Y, Ye Y, Li L, Qian R. Decoding anthocyanin biosynthesis regulation in Asparagus officinalis peel coloration: Insights from integrated metabolomic and transcriptomic analyses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108980. [PMID: 39102766 DOI: 10.1016/j.plaphy.2024.108980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Asparagus is a key global vegetable crop with significant economic importance. Purple asparagus, rich in anthocyanins, stands out for its nutritional value. Despite its prominence, the molecular mechanisms driving purple peel coloration in asparagus remain unclear. This study focuses on three asparagus varieties with distinct peel colors to analyze anthocyanins in both the metabolome and transcriptome, unraveling the regulatory mechanisms. Our findings identify 30 anthocyanins, categorized into five major anthocyanin aglycones across diverse asparagus peel colors. Notably, among the 30 differentially expressed metabolites (DEMs), 18 anthocyanins displayed significantly up-regulated expression in the 'Purple Passion' variety. Key contributors include Cyanidin-3-O-rutinoside-5-O-glucoside and Cyanidin-3-O-sophoroside. Cyanidin-3-O-glucoside is most abundant in 'Purple Passion', while Petunidin-glucoside-galactoside is the least. Analysis of differentially expressed genes (DEGs) displayed 21 structural genes in anthocyanin synthesis, with F3H, DFR, ANS, and one of three UFGTs showing significantly higher expression in the 'Purple Passion' compared to 'Grande' and 'Erasmus'. Additionally, transcription factors (TFs), including 38 MYB, 33 bHLH, and 13 bZIP, also display differential expression in this variety. Validation through real-time qPCR supports the idea that increased expression of anthocyanin structural genes contribute to anthocyanin accumulation. Transient overexpression of AoMYB17 in tobacco further showed that it had the vital function of increasing anthocyanin content. This study sheds light on the mechanisms behind anthocyanin coloration in three distinct asparagus peels. Therefore, it lays the foundation for potential genetic enhancements, aiming to develop new purple-fleshed asparagus germplasms with heightened anthocyanin content.
Collapse
Affiliation(s)
- Jiali Ying
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China.
| | - Shuangshuang Wen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China
| | - Yunfei Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China
| | - Youju Ye
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China
| | - Lebin Li
- Wenzhou Shenlu Seeds Co., Ltd, Wenzhou, 325005, Zhejiang, China
| | - Renjuan Qian
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China.
| |
Collapse
|
3
|
Li H, Yu J, Qin J, Zhao H, Zhang K, Ge W. Regulatory mechanisms of miR171d-SCL6 module in the rooting process of Acer rubrum L. PLANTA 2024; 260:109. [PMID: 39340535 DOI: 10.1007/s00425-024-04539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
MAIN CONCLUSION MiR171d and SCL6 are induced by the plant hormone auxin. MiR171d negatively regulates the expression of SCL6, thereby regulating the growth and development of plant adventitious roots. Under natural conditions, it is difficult to induce rooting in the process of propagating Acer rubrum L. via branches, which seriously limits its wide application in landscaping construction. In this study, the expression of Ar-miR171d was downregulated and the expression of ArSCL6 was upregulated after 300 mg/L indole-3-butyric acid (IBA) treatment. The transient interaction of Ar-miR171d and ArSCL6 in tobacco cells further confirmed their cleavage activity. Transgenic function verification confirmed that OE-Ar-miR171d inhibited adventitious root (AR) development, while OE-ArSCL6 promoted AR development. Tissue-specific expression verification of the ArSCL6 promoter demonstrated that it was specifically expressed in the plant root and leaf organs. Subcellular localization and transcriptional activation assays revealed that both ArSCL6 and ArbHLH089 were located in the nucleus and exhibited transcriptional activation activity. The interaction between the two was verified by bimolecular fluorescence complementarity (BIFC) experiments. These results help elucidate the regulatory mechanisms of the Ar-miR171d-ArSCL6 module during the propagation of A. rubrum and provide a molecular basis for the rooting of branches.
Collapse
Affiliation(s)
- Huiju Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| | - Jiayu Yu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| | - Jiaming Qin
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Hewen Zhao
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China.
| | - Wei Ge
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China.
| |
Collapse
|
4
|
Arshad KT, Xiang C, Yuan C, Li L, Wang J, Zhou P, Manzoor N, Yang S, Li M, Liang Y, Chen J, Zhao Y. Elucidation of AsANS controlling pigment biosynthesis in Angelica sinensis through hormonal and transcriptomic analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14500. [PMID: 39221482 DOI: 10.1111/ppl.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Angelica sinensis, a traditional Chinese medicinal plant, has been primarily reported due to its nutritional value. Pigmentation in this plant is an important appearance trait that directly affects its commercial value. To understand the mechanism controlling purpleness in A. sinensis, hormonal and transcriptomic analyses were performed in three different tissues (leave, root and stem), using two cultivars with contrasting colors. The two-dimensional data set provides dynamic hormonal and gene expression networks underpinning purpleness in A. sinensis. We found abscisic acid as a crucial hormone modulating anthocyanin biosynthesis in A. sinensis. We further identified and validated 7 key genes involved in the anthocyanin biosynthesis pathway and found a specific module containing ANS as a hub gene in WGCNA. Overexpression of a candidate pigment regulatory gene, AsANS (AS08G02092), in transgenic calli of A. sinensis resulted in increased anthocyanin production and caused purpleness. Together, these analyses provide an important understanding of the molecular networks underlying A. sinensis anthocyanin production and its correlation with plant hormones, which can provide an important source for breeding.
Collapse
Affiliation(s)
- Khadija Tehseen Arshad
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Chunfan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Chengxiao Yuan
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Lesong Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Juan Wang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Pinhan Zhou
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Nazer Manzoor
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yanli Liang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Junwen Chen
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| |
Collapse
|
5
|
Wang Y, Li P, Zhu Y, Zhang F, Zhang S, He Y, Wu Y, Lin Y, Wang H, Ren W, Wang L, Yang Y, Wang R, Zheng P, Liu Y, Wang S, Yue J. Graph-Based Pangenome of Actinidia chinensis Reveals Structural Variations Mediating Fruit Degreening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400322. [PMID: 38757662 PMCID: PMC11267314 DOI: 10.1002/advs.202400322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Fruit ripening is associated with the degreening process (loss of chlorophyll) that occurs in most fruit species. Kiwifruit is one of the special species whose fruits may maintain green flesh by accumulating a large amount of chlorophyll even after ripening. However, little is known about the genetic variations related to the fruit degreening process. Here, a graph-based kiwifruit pangenome by analyzing 14 chromosome-scale haplotype-resolved genome assemblies from seven representative cultivars or lines in Actinidia chinensis is built. A total of 49,770 non-redundant gene families are identified, with core genes constituting 46.6%, and dispensable genes constituting 53.4%. A total of 84,591 non-redundant structural variations (SVs) are identified. The pangenome graph integrating both reference genome sequences and variant information facilitates the identification of SVs related to fruit color. The SV in the promoter of the AcBCM gene determines its high expression in the late developmental stage of fruits, which causes chlorophyll accumulation in the green-flesh fruits by post-translationally regulating AcSGR2, a key enzyme of chlorophyll catabolism. Taken together, a high-quality pangenome is constructed, unraveled numerous genetic variations, and identified a novel SV mediating fruit coloration and fruit quality, providing valuable information for further investigating genome evolution and domestication, QTL genes function, and genomics-assisted breeding.
Collapse
Affiliation(s)
- Yingzhen Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
- School of Forestry Science and TechnologyLishui Vocational and Technical CollegeLishui323000China
| | - Pengwei Li
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Yanyan Zhu
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Feng Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Sijia Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Yan He
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Ying Wu
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Yunzhi Lin
- Ministry of Education Key Laboratory for Bio‐resource and Eco‐environmentCollege of Life ScienceState Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengdu610064China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Wangmei Ren
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Lihuan Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Ying Yang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Runze Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Pengpeng Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Yongsheng Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
- Ministry of Education Key Laboratory for Bio‐resource and Eco‐environmentCollege of Life ScienceState Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengdu610064China
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| | - Junyang Yue
- Anhui Province Key Laboratory of Horticultural Crop Quality BiologySchool of HorticultureAnhui Agricultural UniversityHefei230036China
| |
Collapse
|
6
|
Tan Q, Huan X, Pan Z, Yang X, Wei Y, Zhou C, Wang W, Wang L. Comparative Transcriptome Analysis Reveals Key Functions of MiMYB Gene Family in Macadamia Nut Pericarp Formation. Int J Mol Sci 2024; 25:6840. [PMID: 38999950 PMCID: PMC11241416 DOI: 10.3390/ijms25136840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Macadamia nuts are one of the most important economic food items in the world. Pericarp thickness and flavonoid composition are the key quality traits of Macadamia nuts, but the underlying mechanism of pericarp formation is still unknown. In this study, three varieties with significantly different pericarp thicknesses, namely, A38, Guire No.1, and HAES 900, at the same stage of maturity, were used for transcriptome analysis, and the results showed that there were significant differences in their gene expression profile. A total of 3837 new genes were discovered, of which 1532 were functionally annotated. The GO, COG, and KEGG analysis showed that the main categories in which there were significant differences were flavonoid biosynthesis, phenylpropanoid biosynthesis, and the cutin, suberine, and wax biosynthesis pathways. Furthermore, 63 MiMYB transcription factors were identified, and 56 R2R3-MYB transcription factors were clustered into different subgroups compared with those in Arabidopsis R2R3-MYB. Among them, the S4, S6, and S7 subgroups were involved in flavonoid biosynthesis and pericarp formation. A total of 14 MiMYBs' gene expression were verified by RT-qPCR analysis. These results provide fundamental knowledge of the pericarp formation regulatory mechanism in macadamia nuts.
Collapse
Affiliation(s)
- Qiujin Tan
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China; (Q.T.)
| | - Xiuju Huan
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China; (Q.T.)
| | - Zhenzhen Pan
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China; (Q.T.)
| | - Xiaozhou Yang
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China; (Q.T.)
| | - Yuanrong Wei
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China; (Q.T.)
| | - Chunheng Zhou
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China; (Q.T.)
| | - Wenlin Wang
- Guangxi South Subtropical Agricultural Research Institute, Longzhou 532415, China; (Q.T.)
| | - Lifeng Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
7
|
Wang Y, Liu Y. Recent advances of kwifruit genome and genetic transformation. MOLECULAR HORTICULTURE 2024; 4:19. [PMID: 38725051 PMCID: PMC11084073 DOI: 10.1186/s43897-024-00096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Affiliation(s)
- Yingzhen Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| |
Collapse
|
8
|
Li H, Yang Y, Zhang W, Zheng H, Xu X, Li H, Sun C, Hu H, Zhao W, Ma R, Tao J. Promoter replication of grape MYB transcription factor is associated with a new red flesh phenotype. PLANT CELL REPORTS 2024; 43:136. [PMID: 38709311 DOI: 10.1007/s00299-024-03225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
KEY MESSAGE In our study, we discovered a fragment duplication autoregulation mechanism in 'ZS-HY', which may be the reason for the phenotype of red foliage and red flesh in grapes. In grapes, MYBA1 and MYBA2 are the main genetic factors responsible for skin coloration which are located at the color loci on chromosome 2, but the exact genes responsible for color have not been identified in the flesh. We used a new teinturier grape germplasm 'ZhongShan-HongYu' (ZS-HY) which accumulate anthocyanin both in skin and flesh as experimental materials. All tissues of 'ZS-HY' contained cyanidin 3-O-(6″-p-coumaroyl glucoside), and pelargonidins were detected in skin, flesh, and tendril. Through gene expression analysis at different stage of flesh, significant differences in the expression levels of VvMYBA1 were found. Gene amplification analysis showed that the VvMYBA1 promoter is composed of two alleles, VvMYBA1a and 'VvMYBA1c-like'. An insertion of a 408 bp repetitive fragment was detected in the allele 'VvMYBA1c-like'. In this process, we found the 408 bp repetitive fragment was co-segregated with red flesh and foliage phenotype. Our results revealed that the 408 bp fragment replication insertion in promoter of 'VvMYBA1c-like' was the target of its protein, and the number of repeat fragments was related to the increase of trans-activation of VvMYBA1 protein. The activation of promoter by VvMYBA1 was enhanced by the addition of VvMYC1. In addition, VvMYBA1 interacted with VvMYC1 to promote the expression of VvGT1 and VvGST4 genes in 'ZS-HY'. The discovery of this mutation event provides new insights into the regulation of VvMYBA1 on anthocyanin accumulation in red-fleshed grape, which is of great significance for molecular breeding of red-fleshed table grapes.
Collapse
Affiliation(s)
- Hui Li
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, 261061, China
| | - Yaxin Yang
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Zhang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi, 830001, Xinjiang, China
| | - Huan Zheng
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianbin Xu
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoran Li
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenxu Sun
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haipeng Hu
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanli Zhao
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruiyang Ma
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Tao
- College of Horticulture, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China.
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi, 830001, Xinjiang, China.
| |
Collapse
|
9
|
Zuo D, Yan Y, Ma J, Zhao P. Genome-Wide Analysis of Transcription Factor R2R3-MYB Gene Family and Gene Expression Profiles during Anthocyanin Synthesis in Common Walnut ( Juglans regia L.). Genes (Basel) 2024; 15:587. [PMID: 38790216 PMCID: PMC11121633 DOI: 10.3390/genes15050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The R2R3-MYB gene family, encoding plant transcriptional regulators, participates in many metabolic pathways of plant physiology and development, including flavonoid metabolism and anthocyanin synthesis. This study proceeded as follows: the JrR2R3-MYB gene family was analyzed genome-wide, and the family members were identified and characterized using the high-quality walnut reference genome "Chandler 2.0". All 204 JrR2R3-MYBs were established and categorized into 30 subgroups via phylogenetic analysis. JrR2R3-MYBs were unevenly distributed over 16 chromosomes. Most JrR2R3-MYBs had similar structures and conservative motifs. The cis-acting elements exhibit multiple functions of JrR2R3-MYBs such as light response, metabolite response, and stress response. We found that the expansion of JrR2R3-MYBs was mainly caused by WGD or segmental duplication events. Ka/Ks analysis indicated that these genes were in a state of negative purifying selection. Transcriptome results suggested that JrR2R3-MYBs were widely entangled in the process of walnut organ development and differentially expressed in different colored varieties of walnuts. Subsequently, we identified 17 differentially expressed JrR2R3-MYBs, 9 of which may regulate anthocyanin biosynthesis based on the results of a phylogenetic analysis. These genes were present in greater expression levels in 'Zijing' leaves than in 'Lvling' leaves, as revealed by the results of qRT-PCR experiments. These results contributed to the elucidation of the functions of JrR2R3-MYBs in walnut coloration. Collectively, this work provides a foundation for exploring the functional characteristics of the JrR2R3-MYBs in walnuts and improving the nutritional value and appearance quality of walnuts.
Collapse
Affiliation(s)
| | | | | | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (D.Z.); (Y.Y.); (J.M.)
| |
Collapse
|
10
|
Liu X, Zhao T, Yuan L, Qiu F, Tang Y, Li D, Zhang F, Zeng L, Yang C, Nagdy MM, Htun ZLL, Lan X, Chen M, Liao Z, Li Y. A Fruit-Expressed MYB Transcription Factor Regulates Anthocyanin Biosynthesis in Atropa belladonna. Int J Mol Sci 2024; 25:4963. [PMID: 38732182 PMCID: PMC11084770 DOI: 10.3390/ijms25094963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Anthocyanins are water-soluble flavonoid pigments that play a crucial role in plant growth and metabolism. They serve as attractants for animals by providing plants with red, blue, and purple pigments, facilitating pollination and seed dispersal. The fruits of solanaceous plants, tomato (Solanum lycopersicum) and eggplant (Solanum melongena), primarily accumulate anthocyanins in the fruit peels, while the ripe fruits of Atropa belladonna (Ab) have a dark purple flesh due to anthocyanin accumulation. In this study, an R2R3-MYB transcription factor (TF), AbMYB1, was identified through association analysis of gene expression and anthocyanin accumulation in different tissues of A. belladonna. Its role in regulating anthocyanin biosynthesis was investigated through gene overexpression and RNA interference (RNAi). Overexpression of AbMYB1 significantly enhanced the expression of anthocyanin biosynthesis genes, such as AbF3H, AbF3'5'H, AbDFR, AbANS, and Ab3GT, leading to increased anthocyanin production. Conversely, RNAi-mediated suppression of AbMYB1 resulted in decreased expression of most anthocyanin biosynthesis genes, as well as reduced anthocyanin contents in A. belladonna. Overall, AbMYB1 was identified as a fruit-expressed R2R3-MYB TF that positively regulated anthocyanin biosynthesis in A. belladonna. This study provides valuable insights into the regulation of anthocyanin biosynthesis in Solanaceae plants, laying the foundation for understanding anthocyanin accumulation especially in the whole fruits of solanaceous plants.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Tengfei Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Lina Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Fei Qiu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Yueli Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Dan Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Fangyuan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Lingjiang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Chunxian Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Mohammad Mahmoud Nagdy
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (M.M.N.); (M.C.)
- Department of Medicinal and Aromatic Plants Research, National Research Centre, Cairo 12311, Egypt
| | - Zun Lai Lai Htun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
- Department of Botany, University of Magway, Magway 04012, Myanmar
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Xizang Agriculture and Animal Husbandry University, Nyingchi 860000, China;
| | - Min Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (M.M.N.); (M.C.)
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| | - Yan Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; (X.L.); (T.Z.); (L.Y.); (F.Q.); (Y.T.); (D.L.); (F.Z.); (L.Z.); (C.Y.); (Z.L.L.H.)
| |
Collapse
|
11
|
Wu C, Cai D, Li J, Lin Z, Wei W, Shan W, Chen J, Lu W, Su X, Kuang J. Banana MabHLH28 positively regulates the expression of softening-related genes to mediate fruit ripening independently or via cooperating with MaWRKY49/111. HORTICULTURE RESEARCH 2024; 11:uhae053. [PMID: 38706579 PMCID: PMC11069428 DOI: 10.1093/hr/uhae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/17/2024] [Indexed: 05/07/2024]
Abstract
Texture softening is a physiological indicator of fruit ripening, which eventually contributes to fruit quality and the consumer's acceptance. Despite great progress having been made in identification of the genes related to fruit softening, the upstream transcriptional regulatory pathways of these softening-related genes are not fully elucidated. Here, a novel bHLH gene, designated as MabHLH28, was identified because of its significant upregulation in banana fruit ripening. DAP-Seq analysis revealed that MabHLH28 bound to the core sequence of 'CAYGTG' presented in promoter regions of fruit softening-associated genes, such as the genes related to cell wall modification (MaPG3, MaPE1, MaPL5, MaPL8, MaEXP1, MaEXP2, MaEXPA2, and MaEXPA15) and starch degradation (MaGWD1 and MaLSF2), and these bindings were validated by EMSA and DLR assays. Transient overexpression and knockdown of MabHLH28 in banana fruit resulted in up- and down-regulation of softening-related genes, thereby hastening and postponing fruit ripening. Furthermore, overexpression of MabHLH28 in tomato accelerated the ripening process by elevating the accumulation of softening-associated genes. In addition, MabHLH28 showed interaction withMaWRKY49/111 and itself to form protein complexes, which could combinatorically strengthen the transcription of softening-associated genes. Taken together, our findings suggest that MabHLH28 mediates fruit softening by upregulating the expression of softening-related genes either alone or in combination with MaWRKY49/111.
Collapse
Affiliation(s)
- Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Danling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zengxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinguo Su
- Agronomy Dean, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Li X, Luo X, Liu Z, Wang C, Lin A, Xiao K, Cao M, Fan J, Lian H, Xu P. FvDFR2 rather than FvDFR1 play key roles for anthocyanin synthesis in strawberry petioles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111960. [PMID: 38103695 DOI: 10.1016/j.plantsci.2023.111960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of anthocyanins can be found in both the fruit and petioles of strawberries, but the fruit appears red while the petioles appear purple-red. Additionally, in the white-fruited diploid strawberries, the petioles can accumulate anthocyanins normally, suggesting a different synthesis pattern between the petioles and fruits. We screened the EMS mutagenized population of a red-fruited diploid strawberry 'Ruegen' and discovered a mutant which showed no anthocyanin accumulation in the petioles but normal accumulation in the fruit. Through BSA sequencing and allelic test, it was found that a mutation in FvDFR2 was responsible for this phenotype. Furthermore, the complex formed by the interaction between the petiole-specific FvMYB10L and FvTT8 only binds the promoter of FvDFR2 but not FvDFR1, resulting in the expression of only FvDFR2 in the petiole. FvDFR2 can catalyze the conversion of DHQ and eventually the formation of cyanidin and peonidin, giving the petiole a purplish-red color. In the fruit, however, both FvDFR1 and FvDFR2 can be expressed, which can mediate the synthesis of cyanidin and pelargonidin. Our study clearly reveals different regulation of FvDFR1 and FvDFR2 in mediating anthocyanin synthesis in petioles and fruits.
Collapse
Affiliation(s)
- Xinyu Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Luo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Chong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Anqi Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Xiao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Minghao Cao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Department of Ecology, Lishui University, Lishui, China
| | - Junmiao Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongli Lian
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pengbo Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Huang X, Liu L, Qiang X, Meng Y, Li Z, Huang F. Integrated Metabolomic and Transcriptomic Profiles Provide Insights into the Mechanisms of Anthocyanin and Carotenoid Biosynthesis in Petals of Medicago sativa ssp. sativa and Medicago sativa ssp. falcata. PLANTS (BASEL, SWITZERLAND) 2024; 13:700. [PMID: 38475545 DOI: 10.3390/plants13050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The petals of Medicago sativa ssp. sativa and M. sativa ssp. falcata are purple and yellow, respectively. Free hybridization between M. sativa ssp. sativa and M. sativa ssp. falcata has created hybrids with various flower colors in nature. Moreover, the flower colors of alfalfa are closely correlated with yield, nutritional quality, stress tolerance and other agronomic characteristics. To elucidate the underlying mechanisms of flower color formation in M. sativa ssp. sativa and M. sativa ssp. falcata, we conducted an integrative analysis of the transcriptome and metabolome of alfalfa with three different petal colors (purple, yellow and cream). The metabolic profiles suggested that anthocyanins and carotenoids are the crucial pigments in purple and yellow flowers, respectively. A quantitative exploration of the anthocyanin and carotenoid components indicated that the accumulations of cyanidin, delphinidin, peonidin, malvidin, pelargonidin and petunidin derivatives are significantly higher in purple flowers than in cream flowers. In addition, the content of carotenes (phytoene, α-carotene and β-carotene) and xanthophylls (α-cryptoxanthin, lutein, β-cryptoxanthin, zeaxanthin, antheraxanthin and violaxanthin derivatives) was markedly higher in yellow flowers than in cream flowers. Furthermore, we found that delphinidin-3,5-O-diglucoside and lutein were the predominant pigments accumulated in purple and yellow flowers, respectively. The transcriptomic results revealed that twenty-five upregulated structural genes (one C4H, three 4CL, twelve CHS, two CHI, one F3H, one F3'H, one F3'5'H and four DFR) are involved in the accumulation of anthocyanins in purple flowers, and nine structural genes (two PSY, one ZDS, two CRTISO, two BCH, one ZEP and one ECH) exert an effect on the carotenoid biosynthesis pathway in yellow flowers. The findings of this study reveal the underlying mechanisms of anthocyanin and carotenoid biosynthesis in alfalfa with three classic flower colors.
Collapse
Affiliation(s)
- Xiuzheng Huang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Lei Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Xiaojing Qiang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Yuanfa Meng
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| | - Fan Huang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 100081, China
| |
Collapse
|
14
|
An JP, Xu RR, Wang XN, Zhang XW, You CX, Han Y. MdbHLH162 connects the gibberellin and jasmonic acid signals to regulate anthocyanin biosynthesis in apple. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:265-284. [PMID: 38284786 DOI: 10.1111/jipb.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals. The positive regulators of anthocyanin biosynthesis have been reported, whereas the anthocyanin repressors have been neglected. Although the signal transduction pathways of gibberellin (GA) and jasmonic acid (JA) and their regulation of anthocyanin biosynthesis have been investigated, the cross-talk between GA and JA and the antagonistic mechanism of regulating anthocyanin biosynthesis remain to be investigated. In this study, we identified the anthocyanin repressor MdbHLH162 in apple and revealed its molecular mechanism of regulating anthocyanin biosynthesis by integrating the GA and JA signals. MdbHLH162 exerted passive repression by interacting with MdbHLH3 and MdbHLH33, which are two recognized positive regulators of anthocyanin biosynthesis. MdbHLH162 negatively regulated anthocyanin biosynthesis by disrupting the formation of the anthocyanin-activated MdMYB1-MdbHLH3/33 complexes and weakening transcriptional activation of the anthocyanin biosynthetic genes MdDFR and MdUF3GT by MdbHLH3 and MdbHLH33. The GA repressor MdRGL2a antagonized MdbHLH162-mediated inhibition of anthocyanins by sequestering MdbHLH162 from the MdbHLH162-MdbHLH3/33 complex. The JA repressors MdJAZ1 and MdJAZ2 interfered with the antagonistic regulation of MdbHLH162 by MdRGL2a by titrating the formation of the MdRGL2a-MdbHLH162 complex. Our findings reveal that MdbHLH162 integrates the GA and JA signals to negatively regulate anthocyanin biosynthesis. This study provides new information for discovering more anthocyanin biosynthesis repressors and explores the cross-talk between hormone signals.
Collapse
Affiliation(s)
- Jian-Ping An
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, China
| | - Xiao-Na Wang
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Xiao-Wei Zhang
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
15
|
Yu M, Xiong J, Dong K, Quan X, Guo H, Huo J, Qin D, Wang Y, Lu X, Zhu C. AcMYB10 Involved in Anthocyanin Regulation of 'Hongyang' Kiwifruit Induced via Fruit Bagging and High-Postharvest-Temperature Treatments. Genes (Basel) 2024; 15:97. [PMID: 38254986 PMCID: PMC10815172 DOI: 10.3390/genes15010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Light and temperature are key factors influencing the accumulation of anthocyanin in fruit crops. To assess the effects of fruit bagging during development and high post-ripening temperature on 'Hongyang' kiwifruit, we compared the pigmentation phenotypes and expression levels of anthocyanin-related genes between bagged and unbagged treatments, and between 25 °C and 37 °C postharvest storage temperatures. Both the bagging and 25 °C treatments showed better pigmentation phenotypes with higher anthocyanin concentrations. The results of the qRT-PCR analysis revealed that the gene expression levels of LDOX (leucoanthocyanidin dioxygenase), F3GT (UDP-flavonoid 3-O-glycosyltransferase ), AcMYB10, and AcbHLH42 were strongly correlated and upregulated by both the bagging treatment and 25 °C storage. The results of bimolecular fluorescence complementation and luciferase complementation imaging assays indicated an interaction between AcMYB10 and AcbHLH42 in plant cells, whereas the results of a yeast one-hybrid assay further demonstrated that AcMYB10 activated the promoters of AcLODX and AcF3GT. These results strongly suggest that enhanced anthocyanin synthesis is caused by the promoted expression of AcLODX and AcF3GT, regulated by the complex formed by AcMYB10-AcbHLH42.
Collapse
Affiliation(s)
- Min Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinyu Xiong
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Kun Dong
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Xin Quan
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hao Guo
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Huo
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Dong Qin
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yanchang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xuemei Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chenqiao Zhu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
16
|
Zeng HT, Zheng T, Tang Q, Xu H, Chen M. Integrative metabolome and transcriptome analyses reveal the coloration mechanism in Camellia oleifera petals with different color. BMC PLANT BIOLOGY 2024; 24:19. [PMID: 38166635 PMCID: PMC10759395 DOI: 10.1186/s12870-023-04699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Camellia olelfera petals are colorful, and have high ornamental value. However, the color formation mechanism of C. olelfera petals with different color is still unclear. In our study, WGCNA method was applied to integrate metabolites and transcriptomes to investigate the coloration mechanism of four C. olelfera cultivars with different petal colors. RESULTS Here, a total of 372 flavonoids were identified (including 27 anthocyanins), and 13 anthocyanins were significantly differentially accumulated in C. olelfera petals. Among them, cyanidin-3-O-(6''-O-p-Coumaroyl) glucoside was the main color constituent in pink petals, cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-rutinoside, and cyanidin-3-O-(6''-O-malonyl) glucoside were the main contributors to candy pink petals, and peonidin-3-O-glucoside was the important color substance responsible for the red petals of C. oleifera. Furthermore, six structural genes (Co4CL1, CoF3H1, CoF3'H, CoANS, CoUGT75C1-4, and CoUGT75C1-5), three MYBs (CoMYB1, CoMYB4, and CoMYB44-3), three bHLHs (CobHLH30, CobHLH 77, and CobHLH 79-1), and two WRKYs (CoWRKY7 and CoWRKY22) could be identified candidate genes related to anthocyanins biosynthesis and accumulation, and lead to the pink and red phenotypes. The regulatory network of differentially accumulated anthocyanins and the anthocyanins related genes in C. olelfera petals were established. CONCLUSIONS These findings elucidate the molecular basis of the coloration mechanisms of pink and red color in C. olelfera petals, and provided valuable target genes for future improvement of petals color in C. olelfera.
Collapse
Affiliation(s)
- Hai-Tao Zeng
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China
| | - Tao Zheng
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China.
| | - Qi Tang
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China
| | - Hao Xu
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China
| | - Mengjiao Chen
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China
| |
Collapse
|
17
|
Wu YY, Wang LL, Lin YL, Li X, Liu XF, Xu ZH, Fu BL, Wang WQ, Allan AC, Tu MY, Yin XR. AcHZP45 is a repressor of chlorophyll biosynthesis and activator of chlorophyll degradation in kiwifruit. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:204-218. [PMID: 37712824 DOI: 10.1093/jxb/erad361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
The degradation of chlorophyll during fruit development is essential to reveal a more 'ripe' color that signals readiness to wild dispersers of seeds and the human consumer. Here, comparative biochemical analysis of developing fruit of Actinidia deliciosa cv. Xuxiang ('XX', green-fleshed) and Actinidia chinensis cv. Jinshi No.1 ('JS', yellow-fleshed) indicated that variation in chlorophyll content is the major contributor to differences in flesh color. Four differentially expressed candidate genes were identified: the down-regulated genes AcCRD1 and AcPOR1 involved in chlorophyll biosynthesis, and the up-regulated genes AcSGR1 and AcSGR2 driving chlorophyll degradation. Prochlorophyllide and chlorophyllide, the metabolites produced by AcCRD1 and AcPOR1, progressively reduced in 'JS', but not in 'XX', indicating that chlorophyll biosynthesis was less active in yellow-fleshed fruit. AcSGR1 and AcSGR2 were verified to be involved in chlorophyll degradation, using both transient expression in tobacco and stable overexpression in kiwifruit. Furthermore, a homeobox-leucine zipper (HD-Zip II), AcHZP45, showed significantly increased expression during 'JS' fruit ripening, which led to both repressed expression of AcCRD1 and AcPOR1 and activated expression of AcSGR1 and AcSGR2. Collectively, the present study indicated that different dynamics of chlorophyll biosynthesis and degradation coordinate the changes in chlorophyll content in kiwifruit flesh, which are orchestrated by the key transcription factor AcHZP45.
Collapse
Affiliation(s)
- Ying-Ying Wu
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ling-Li Wang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Yi-Lai Lin
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiang Li
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Fen Liu
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zi-Hong Xu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Bei-Ling Fu
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wen-Qiu Wang
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mei-Yan Tu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Xue-Ren Yin
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Hu X, Liang Z, Sun T, Huang L, Wang Y, Chan Z, Xiang L. The R2R3-MYB Transcriptional Repressor TgMYB4 Negatively Regulates Anthocyanin Biosynthesis in Tulips ( Tulipa gesneriana L.). Int J Mol Sci 2024; 25:563. [PMID: 38203734 PMCID: PMC10779166 DOI: 10.3390/ijms25010563] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Anthocyanins play a paramount role in color variation and significantly contribute to the economic value of ornamental plants. The conserved activation complex MYB-bHLH-WD40 (MBW; MYB: v-myb avian myeloblastosis viral oncogene homolog; bHLH: basic helix-loop-helix protein; WD40:WD-repeat protein) involved in anthocyanin biosynthesis has been thoroughly researched, but there have been limited investigations into the function of repressor factors. In this study, we characterized TgMYB4, an R2R3-MYB transcriptional repressor which is highly expressed during petal coloration in red petal cultivars. TgMYB4-overexpressing tobaccos exhibited white or light pink petals with less anthocyanin accumulation compared to control plants. TgMYB4 was found to inhibit the transcription of ANTHOCYANIDIN SYNTHASE (TfANS1) and DIHYDRO-FLAVONOL-4-REDUCTASE (AtDFR), although it did not bind to their promoters. Moreover, the TgMYB4 protein was able to compete with the MYB activator to bind to the :bHLHprotein, thereby suppressing the function of the activator MBW complex. These findings demonstrate that TgMYB4 plays a suppressive role in the regulation of anthocyanin synthesis during flower pigmentation.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhulong Chan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (X.H.)
| | - Lin Xiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (X.H.)
| |
Collapse
|
19
|
Zhang Y, Wang L, Kong X, Chen Z, Zhong S, Li X, Shan R, You X, Wei K, Chen C. Integrated Analysis of Metabolome and Transcriptome Revealed Different Regulatory Networks of Metabolic Flux in Tea Plants [ Camellia sinensis (L.) O. Kuntze] with Varied Leaf Colors. Int J Mol Sci 2023; 25:242. [PMID: 38203412 PMCID: PMC10779186 DOI: 10.3390/ijms25010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Leaf color variations in tea plants were widely considered due to their attractive phenotypes and characteristic flavors. The molecular mechanism of color formation was extensively investigated. But few studies focused on the transformation process of leaf color change. In this study, four strains of 'Baijiguan' F1 half-sib generation with similar genetic backgrounds but different colors were used as materials, including Green (G), Yellow-Green (Y-G), Yellow (Y), and Yellow-Red (Y-R). The results of broadly targeted metabolomics showed that 47 metabolites were differentially accumulated in etiolated leaves (Y-G, Y, and Y-R) as compared with G. Among them, lipids were the main downregulated primary metabolites in etiolated leaves, which were closely linked with the thylakoid membrane and chloroplast structure. Flavones and flavonols were the dominant upregulated secondary metabolites in etiolated leaves, which might be a repair strategy for reducing the negative effects of dysfunctional chloroplasts. Further integrated analysis with the transcriptome indicated different variation mechanisms of leaf phenotype in Y-G, Y, and Y-R. The leaf color formation of Y-G and Y was largely determined by the increased content of eriodictyol-7-O-neohesperidoside and the enhanced activities of its modification process, while the color formation of Y-R depended on the increased contents of apigenin derivates and the vigorous processes of their transportation and transcription factor regulation. The key candidate genes, including UDPG, HCT, CsGSTF1, AN1/CsMYB75, and bHLH62, might play important roles in the flavonoid pathway.
Collapse
Affiliation(s)
- Yazhen Zhang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China;
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Zhihui Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Sitong Zhong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Xinlei Li
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Ruiyang Shan
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Xiaomei You
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China;
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| |
Collapse
|
20
|
Zhang X, Zhang K, Guo Y, Lv X, Wu M, Deng H, Xie Y, Li M, Wang J, Lin L, Lv X, Xia H, Liang D. Methylation of AcGST1 Is Associated with Anthocyanin Accumulation in the Kiwifruit Outer Pericarp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18865-18876. [PMID: 38053505 DOI: 10.1021/acs.jafc.3c03029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Most red-fleshed kiwifruit cultivars, such as Hongyang, only accumulate anthocyanins in the inner pericarp; the trait of full red flesh becomes the goal pursued by breeders. In this study, we identified a mutant "H-16" showing a red color in both the inner and outer pericarps, and the underlying mechanism was explored. Through transcriptome analysis, a key differentially expressed gene AcGST1 was screened out, which was positively correlated with anthocyanin accumulation in the outer pericarp. The result of McrBC-PCR and bisulfite sequencing revealed that the SG3 region (-292 to -597 bp) of AcGST1 promoter in "H-16" had a significantly lower CHH cytosine methylation level than that in Hongyang, accompanied by low expression of methyltransferase genes (MET1 and CMT2) and high expression of demethylase genes (ROS1 and DML1). Transient calli transformation confirmed that demethylase gene DML1 can activate transcription of AcGST1 to enhance its expression. Overexpression of AcGST1 enhanced the anthocyanin accumulation in the fruit flesh and leaves of the transgenic lines. These results suggested that a decrease in the methylation level of the AcGST1 promoter may contribute to accumulation of anthocyanin in the outer pericarp of "H-16".
Collapse
Affiliation(s)
- Xuefeng Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Kun Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuqi Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyu Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Meijing Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Honghong Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Xie
- Sichuan Provincial Academy of Natural Resources Sciences, Chengdu 610015, China
| | - Mingzhang Li
- Sichuan Provincial Academy of Natural Resources Sciences, Chengdu 610015, China
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
21
|
Ren Y, Zhang S, Zhao Q, Wu Y, Li H. The CsMYB123 and CsbHLH111 are involved in drought stress-induced anthocyanin biosynthesis in Chaenomeles speciosa. MOLECULAR HORTICULTURE 2023; 3:25. [PMID: 37990285 PMCID: PMC10664276 DOI: 10.1186/s43897-023-00071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023]
Abstract
Drought stress has been demonstrated to enhance the biosynthesis of anthocyanins in the leaves, resulting in an increased aesthetic appeal. However, the molecular mechanisms underlying drought-induced anthocyanin biosynthesis in Chaenomeles speciosa remain unclear. In this study, the metabolites of C. speciosa leaves were analyzed, and it was found that the content of cyanidin-3-O-rutinoside increased significantly under drought stress. The differentially expressed genes CsMYB123 and CsbHLH111 were isolated by transcriptomics data analysis and gene cloning, and gene overexpression and VIGS experiments verified that both play important roles in anthocyanin biosynthesis. Subsequently, Y1H and Dual-luciferase reporter assay showed that CsMYB123 binds to the promoters of anthocyanin biosynthesis-related structural genes (such as CsCHI, CsF3H, and CsANS), while CsbHLH111 was shown to bind to the promoter of CsCHI, positively regulating its activity. Furthermore, BIFC and Y2H assays unveiled potential protein-protein interactions between CsMYB123 and CsbHLH111 at the cell nucleus. Collectively, these results shed light on the critical roles played by CsMYB123 and CsbHLH111 in anthocyanin biosynthesis, thus providing a valuable insight into understanding the molecular mechanisms of how the MYB and bHLH genes regulate anthocyanin biosynthesis in the process of leaf coloration in C. speciosa.
Collapse
Affiliation(s)
- Yanshen Ren
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuangyu Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qianyi Zhao
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Wu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Houhua Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
22
|
Cheng JL, Wei XP, Chen Y, Qi YD, Zhang BG, Liu HT. Comparative transcriptome analysis reveals candidate genes related to the sex differentiation of Schisandra chinensis. Funct Integr Genomics 2023; 23:344. [PMID: 37991590 DOI: 10.1007/s10142-023-01264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Schisandra chinensis is a monoecious plant with unisex flowers. The fruit of S. chinensis is of high medical with economic value. The yield of S. chinensis fruit is related to the ratio of its female and male flowers. However, there is little research on its floral development and sex differentiation. To elucidate the possible mechanism for the sex differentiation of S. chinensis, we collected 18 samples of female and male flowers from three developmental stages and performed a comparative RNA-seq analysis aimed at identifying differentially expressed genes (DEGs) that may be related to sex differentiation. The results showed 936, 7179, and 6890 differentially expressed genes between female and male flowers at three developmental stages, respectively, and 466 candidate genes may play roles in sex differentiation. KEGG analysis showed genes involved in the flavonoid biosynthesis pathway and DNA replication pathway were essential for the development of female flowers. 51 MADS-box genes and 10 YABBY genes were identified in S. chinensis. The DEGs analysis indicated that MADS-box and YABBY genes were strongly related to the sex determination of S. chinensis. RT-qPCR confirmed the RNA-seq results of 20 differentially expressed genes, including three male-biased genes and 17 female-biased genes. A possible regulatory model of sex differentiation in S. chinensis was proposed according to our results. This study helps reveal the sex-differentiation mechanism of S. chinensis and lays the foundation for regulating the male-female ratio of S. chinensis in the future.
Collapse
Affiliation(s)
- Ji-Long Cheng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Ping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yu Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yao-Dong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ben-Gang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Tao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Wang Y, Liu Y, Zhang L, Tang L, Xu S, Wang Z, Zhang Y, Lin Y, Wang Y, Li M, Zhang Y, Luo Y, Chen Q, Tang H. A Novel R2R3-MYB Transcription Factor FaMYB10-like Promotes Light-Induced Anthocyanin Accumulation in Cultivated Strawberry. Int J Mol Sci 2023; 24:16561. [PMID: 38068883 PMCID: PMC10706590 DOI: 10.3390/ijms242316561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Anthocyanins widely accumulate in the vegetative and reproductive tissues of strawberries and play an important role in stress resistance and fruit quality. Compared with other fruits, little is known about the molecular mechanisms regulating anthocyanin accumulation in strawberry vegetative tissues. In this study, we revealed an R2R3-MYB transcription factor, FaMYB10-like (FaMYB10L), which positively regulated anthocyanin accumulation and was induced by light in the petiole and runner of cultivated strawberry. FaMYB10L is a homologue of FveMYB10-like and a nuclear localization protein. Transient overexpression of FaMYB10L in a white fruit strawberry variety (myb10 mutant) rescued fruit pigmentation, and further qR-PCR analysis revealed that FaMYB10L upregulated the expression levels of anthocyanin biosynthesis-related genes and transport gene. A dual luciferase assay showed that FaMYB10L could activate the anthocyanin transport gene FaRAP. Anthocyanin accumulation was observed in FaMYB10L-overexpressing strawberry calli, and light treatment enhanced anthocyanin accumulation. Furthermore, transcriptomic profiling indicated that the DEGs involved in the flavonoid biosynthesis pathway and induced by light were enriched in FaMYB10L-overexpressing strawberry calli. In addition, yeast two-hybrid assays and luciferase complementation assays indicated that FaMYB10L could interact with bHLH3. These findings enriched the light-involved regulatory network of anthocyanin metabolism in cultivated strawberries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.W.); (Y.L.); (L.Z.); (L.T.); (S.X.); (Z.W.); (Y.Z.); (Y.L.); (Y.W.); (M.L.); (Y.Z.); (Y.L.); (Q.C.)
| |
Collapse
|
24
|
Guo Y, Li D, Liu T, Li Y, Liu J, He M, Cui X, Liu Z, Chen M. Genome-Wide Identification of PAP1 Direct Targets in Regulating Seed Anthocyanin Biosynthesis in Arabidopsis. Int J Mol Sci 2023; 24:16049. [PMID: 38003239 PMCID: PMC10671800 DOI: 10.3390/ijms242216049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Anthocyanins are widespread water-soluble pigments in the plant kingdom. Anthocyanin accumulation is activated by the MYB-bHLH-WD40 (MBW) protein complex. In Arabidopsis, the R2R3-MYB transcription factor PAP1 activates anthocyanin biosynthesis. While prior research primarily focused on seedlings, seeds received limited attention. This study explores PAP1's genome-wide target genes in anthocyanin biosynthesis in seeds. Our findings confirm that PAP1 is a positive regulator of anthocyanin biosynthesis in Arabidopsis seeds. PAP1 significantly increased anthocyanin content in developing and mature seeds in Arabidopsis. Transcriptome analysis at 12 days after pollination reveals the upregulation of numerous genes involved in anthocyanin accumulation in 35S:PAP1 developing seeds. Chromatin immunoprecipitation and dual luciferase reporter assays demonstrate PAP1's direct promotion of ten key genes and indirect upregulation of TT8, TTG1, and eight key genes during seed maturation, thus enhancing seed anthocyanin accumulation. These findings enhance our understanding of PAP1's novel role in regulating anthocyanin accumulation in Arabidopsis seeds.
Collapse
Affiliation(s)
- Yuan Guo
- Shaanxi Key Laboratory of Crop Heterosis, National Yangling Agricultural Biotechnology and Breeding Center, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.G.); (T.L.); (Y.L.); (J.L.); (M.H.); (X.C.); (Z.L.)
| | - Dong Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai 264025, China;
| | - Tiantian Liu
- Shaanxi Key Laboratory of Crop Heterosis, National Yangling Agricultural Biotechnology and Breeding Center, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.G.); (T.L.); (Y.L.); (J.L.); (M.H.); (X.C.); (Z.L.)
| | - Yuxin Li
- Shaanxi Key Laboratory of Crop Heterosis, National Yangling Agricultural Biotechnology and Breeding Center, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.G.); (T.L.); (Y.L.); (J.L.); (M.H.); (X.C.); (Z.L.)
| | - Jiajia Liu
- Shaanxi Key Laboratory of Crop Heterosis, National Yangling Agricultural Biotechnology and Breeding Center, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.G.); (T.L.); (Y.L.); (J.L.); (M.H.); (X.C.); (Z.L.)
| | - Mingyuan He
- Shaanxi Key Laboratory of Crop Heterosis, National Yangling Agricultural Biotechnology and Breeding Center, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.G.); (T.L.); (Y.L.); (J.L.); (M.H.); (X.C.); (Z.L.)
| | - Xiaohui Cui
- Shaanxi Key Laboratory of Crop Heterosis, National Yangling Agricultural Biotechnology and Breeding Center, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.G.); (T.L.); (Y.L.); (J.L.); (M.H.); (X.C.); (Z.L.)
| | - Zijin Liu
- Shaanxi Key Laboratory of Crop Heterosis, National Yangling Agricultural Biotechnology and Breeding Center, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.G.); (T.L.); (Y.L.); (J.L.); (M.H.); (X.C.); (Z.L.)
| | - Mingxun Chen
- Shaanxi Key Laboratory of Crop Heterosis, National Yangling Agricultural Biotechnology and Breeding Center, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.G.); (T.L.); (Y.L.); (J.L.); (M.H.); (X.C.); (Z.L.)
| |
Collapse
|
25
|
Shan T, Xu J, Zhong X, Zhang J, He B, Tao Y, Wu J. Full-length transcriptome sequencing provides new insights into the complexity of flavonoid biosynthesis in Glechoma longituba. PHYSIOLOGIA PLANTARUM 2023; 175:e14104. [PMID: 38148235 DOI: 10.1111/ppl.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023]
Abstract
Glechoma longituba has been frequently used in treating urolithiasis and cholelithiasis due to the presence of flavonoids, which are its major bioactive constituents. However, research on the molecular background of flavonoid biosynthesis in G. longituba is limited. In this study, we used single-molecule real-time combined with next-generation sequencing technologies to construct the complete transcriptome of G. longituba. We identified 404,648 non-redundant transcripts, including 249,697 coding sequences, 197,811 simple sequence repeats, 174,846 long noncoding RNA, and 176,554 coding RNA. Moreover, we functionally annotated 346,218 isoforms (85.56%) and identified 86,528 differentially expressed genes. We also identified 55 non-redundant full-length isoforms related to the flavonoid biosynthetic pathway. Pearson correlation analysis revealed that the expression levels of some key genes of the flavonoid biosynthesis pathway were significantly positively correlated with the flavonoid metabolites. Furthermore, we performed bioinformatics analysis (sequence and structural) of isoform_47029 (encoding flavanone 3-hydroxylase) and isoform_53692 (encoding flavonol synthase) to evaluate their potential biological functions. Finally, we validated gene expression levels of 12 flavonoid-related key enzyme genes using quantitative real-time PCR. Overall, this study provides full-length transcriptome information on G. longituba for the first time and valuable molecular resources for further research on the medicinal properties of this plant.
Collapse
Affiliation(s)
- Tingyu Shan
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jingyao Xu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Xinxin Zhong
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jingjing Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Bing He
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
| | - Yijia Tao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| |
Collapse
|
26
|
Ye L, Bai F, Zhang L, Luo M, Gao L, Wang Z, Peng J, Chen Q, Luo X. Transcriptome and metabolome analyses of anthocyanin biosynthesis in post-harvest fruits of a full red-type kiwifruit ( Actinidia arguta) 'Jinhongguan'. FRONTIERS IN PLANT SCIENCE 2023; 14:1280970. [PMID: 37877082 PMCID: PMC10591155 DOI: 10.3389/fpls.2023.1280970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Anthocyanin is the main component of pigment in red-fleshed kiwifruit. 'Jinhongguan' is a new cultivar of Actinidia arguta with red peel and flesh after harvest. However, the specific types of anthocyanin in the 'Jinhongguan' fruit and its biosynthesis pathways remain largely unknown. Here, the total anthocyanin content in the fruit color conversion process was determined. The results showed that total anthocyanin content increased with the deepening color of the peel and flesh. To identify the genes related to anthocyanin biosynthesis and the types of anthocyanins in the 'Jinhongguan' fruit, a combined analysis of transcriptome and anthocyanin-targeted metabolome was carried out. A total of 5751 common differentially expressed genes (DEGs) at different stages of peel and flesh were identified, of which 2767 were common up-DEGs and 2976 were common down-DEGs. KEGG and GO enrichment analyses showed that the common up-DEGs were significantly enriched in anthocyanin synthesis-related pathways, suggesting some up-DEGs are involved in anthocyanin biosynthesis. In total, 29 metabolites were detected in the flesh by anthocyanin-targeted metabolome. Among these, nine were differential accumulation metabolites (DAMs) in comparison to red flesh vs green flesh. Six DAMs were up-regulated, with five of them were cyanidins. The content of cyanidin-3-O-galactoside was much higher than that of other DAMs, making it the main pigment in 'Jinhongguan'. Moreover, a total of 36 anthocyanin synthesis-related structural genes, 27 MYB transcription factors (TFs), 37 bHLH TFs and 9 WDR TFs were screened from the common DEGs. Correlation analysis of transcriptome and metabolome revealed that 9 structural genes, 6 MYB TFs, 6 bHLH TFs and 1 WDR TF were significantly associated with cyanidin-3-O-galactoside. Further, qRT-PCR analysis demonstrated that structural genes (AaPAL3, Aa4CL3, AaCHS2/3/8/9/11, AaDFR1/2, AaANR1, UFGT3a and UFGT6b) and TFs (MYB108, bHLH30, bHLH94-1 and WD43) play important roles in cyanidin biosynthesis. Overall, this study identified cyanidin-3-O-galactoside as the main anthocyanin type and revealed key candidate genes of red coloration of post-harvest fruit in Actinidia arguta. These findings provided new insights into the color formation mechanism of post-harvest fruit and offered a theoretical basis for color regulation in kiwifruit.
Collapse
Affiliation(s)
- Lixia Ye
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Fuxi Bai
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Lei Zhang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Minmin Luo
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Lei Gao
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Zhi Wang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jue Peng
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Qinghong Chen
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Xuan Luo
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| |
Collapse
|
27
|
Kamran HM, Fu X, Wang H, Yang N, Chen L. Genome-Wide Identification and Expression Analysis of the bHLH Transcription Factor Family in Wintersweet ( Chimonanthus praecox). Int J Mol Sci 2023; 24:13462. [PMID: 37686265 PMCID: PMC10487621 DOI: 10.3390/ijms241713462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Wintersweet (Chimonanthus praecox (L.) Link, Calycanthaceae) is an esteemed ornamental flowering shrub known for its distinct blooming period in winter, vibrant color petals, and captivating floral fragrance. Basic helix-loop-helix (bHLH) transcription factors (TFs) play pivotal roles as key regulators in secondary metabolites biosynthesis, growth, and development in plants. However, the systematic analysis of the bHLH family members and their role in the regulation of floral traits in Wintersweet remains insufficiently understood. To bridge this knowledge gap, we conducted a comprehensive genome-wide analysis of the C. praecox bHLH (CpbHLH) gene family, identifying a total of 131 CpbHLH genes across 11 chromosomes. Phylogenetic analysis classified these CpbHLH genes into 23 subfamilies, wherein most members within the same subfamily exhibited analogous intron/exon patterns and motif composition. Moreover, the expansion of the CpbHLH gene family was primarily driven by segmental duplication, with duplicated gene pairs experiencing purifying selection during evolution. Transcriptomic analysis revealed diverse expression patterns of CpbHLH genes in various tissues and distinct stages of Wintersweet flower development, thereby suggesting their involvement in a diverse array of physiological processes. Furthermore, yeast 2-hybrid assay demonstrated interaction between CpbHLH25 and CpbHLH59 (regulators of floral scent and color) as well as with CpbHLH112 and CpMYB2, suggesting potential coordinately regulation of secondary metabolites biosynthesis in Wintersweet flowers. Collectively, our comprehensive analysis provides valuable insights into the structural attributes, evolutionary dynamics, and expression profiles of the CpbHLH gene family, laying a solid foundation for further explorations of the multifaceted physiological and molecular roles of bHLH TFs in Wintersweet.
Collapse
Affiliation(s)
| | | | | | - Nan Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (H.M.K.)
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (H.M.K.)
| |
Collapse
|
28
|
Jiang L, Gao Y, Han L, Zhang W, Fan P. Designing plant flavonoids: harnessing transcriptional regulation and enzyme variation to enhance yield and diversity. FRONTIERS IN PLANT SCIENCE 2023; 14:1220062. [PMID: 37575923 PMCID: PMC10420081 DOI: 10.3389/fpls.2023.1220062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Plant synthetic biology has emerged as a powerful and promising approach to enhance the production of value-added metabolites in plants. Flavonoids, a class of plant secondary metabolites, offer numerous health benefits and have attracted attention for their potential use in plant-based products. However, achieving high yields of specific flavonoids remains challenging due to the complex and diverse metabolic pathways involved in their biosynthesis. In recent years, synthetic biology approaches leveraging transcription factors and enzyme diversity have demonstrated promise in enhancing flavonoid yields and expanding their production repertoire. This review delves into the latest research progress in flavonoid metabolic engineering, encompassing the identification and manipulation of transcription factors and enzymes involved in flavonoid biosynthesis, as well as the deployment of synthetic biology tools for designing metabolic pathways. This review underscores the importance of employing carefully-selected transcription factors to boost plant flavonoid production and harnessing enzyme promiscuity to broaden flavonoid diversity or streamline the biosynthetic steps required for effective metabolic engineering. By harnessing the power of synthetic biology and a deeper understanding of flavonoid biosynthesis, future researchers can potentially transform the landscape of plant-based product development across the food and beverage, pharmaceutical, and cosmetic industries, ultimately benefiting consumers worldwide.
Collapse
Affiliation(s)
- Lina Jiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yifei Gao
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Leiqin Han
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxuan Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Pengxiang Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
29
|
Lu R, Song M, Wang Z, Zhai Y, Hu C, Perl A, Ma H. Independent flavonoid and anthocyanin biosynthesis in the flesh of a red-fleshed table grape revealed by metabolome and transcriptome co-analysis. BMC PLANT BIOLOGY 2023; 23:361. [PMID: 37454071 DOI: 10.1186/s12870-023-04368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Red flesh is a desired fruit trait, but the regulation of red flesh formation in grape is not well understood. 'Mio Red' is a seedless table grape variety with light-red flesh and blue-purple skin. The skin color develops at veraison whereas the flesh color develops at a later stage of berry development. The flesh and skin flavonoid metabolomes and transcriptomes were analyzed. RESULTS A total of 161 flavonoids were identified, including 16 anthocyanins. A total of 66 flavonoids were found at significantly different levels in the flesh and skin (fold change ≥ 2 or ≤ 0.5, variable importance in projection (VIP) ≥ 1). The main anthocyanins in the flesh were pelargonidin and peonidin, and in the skin were peonidin, delphinidin, and petunidin. Transcriptome comparison revealed 57 differentially expressed structural genes of the flavonoid-metabolism pathway (log2fold change ≥ 1, FDR < 0.05, FPKM ≥ 1). Two differentially expressed anthocyanin synthase (ANS) genes were annotated, ANS2 (Vitvi02g00435) with high expression in flesh and ANS1 (Vitvi11g00565) in skin, respectively. One dihydro flavonol 4-reductase (DFR, Vitvi18g00988) gene was differentially expressed although high in both skin and flesh. Screened and correlation analysis of 12 ERF, 9 MYB and 3 bHLH genes. The Y1H and dual luciferase assays showed that MYBA1 highly activates the ANS2 promoter in flesh and that ERFCBF6 was an inhibitory, EFR23 and bHLH93 may activate the DFR gene. These genes may be involved in the regulation of berry flesh color. CONCLUSIONS Our study revealed that anthocyanin biosynthesis in grape flesh is independent of that in the skin. Differentially expressed ANS, MYB and ERF transcription factors provide new clues for the future breeding of table grapes that will provide the health benefits as red wine.
Collapse
Affiliation(s)
- Renxiang Lu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Miaoyu Song
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhe Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanlei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chaoyang Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Avihai Perl
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
30
|
Luo X, An F, Xue J, Zhu W, Wei Z, Ou W, Li K, Chen S, Cai J. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in cassava ( Manihot esculenta Crantz) leaves. FRONTIERS IN PLANT SCIENCE 2023; 14:1181257. [PMID: 37360704 PMCID: PMC10289162 DOI: 10.3389/fpls.2023.1181257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
Cassava (Manihot esculenta Crantz) leaves are often used as vegetables in Africa. Anthocyanins possess antioxidant, anti-inflammatory, anti-cancer, and other biological activities. They are poor in green leaves but rich in the purple leaves of cassava. The mechanism of anthocyanin's accumulation in cassava is poorly understood. In this study, two cassava varieties, SC9 with green leaves and Ziyehuangxin with purple leaves (PL), were selected to perform an integrative analysis using metabolomics and transcriptomics. The metabolomic analysis indicated that the most significantly differential metabolites (SDMs) belong to anthocyanins and are highly accumulated in PL. The transcriptomic analysis revealed that differentially expressed genes (DEGs) are enriched in secondary metabolites biosynthesis. The analysis of the combination of metabolomics and transcriptomics showed that metabolite changes are associated with the gene expressions in the anthocyanin biosynthesis pathway. In addition, some transcription factors (TFs) may be involved in anthocyanin biosynthesis. To further investigate the correlation between anthocyanin accumulation and color formation in cassava leaves, the virus-induced gene silencing (VIGS) system was used. VIGS-MeANR silenced plant showed the altered phenotypes of cassava leaves, partially from green to purple color, resulting in a significant increase of the total anthocyanin content and reduction in the expression of MeANR. These results provide a theoretical basis for breeding cassava varieties with anthocyanin-rich leaves.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jie Cai
- *Correspondence: Songbi Chen, ; Jie Cai,
| |
Collapse
|
31
|
Shu P, Zhang Z, Wu Y, Chen Y, Li K, Deng H, Zhang J, Zhang X, Wang J, Liu Z, Xie Y, Du K, Li M, Bouzayen M, Hong Y, Zhang Y, Liu M. A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). THE NEW PHYTOLOGIST 2023; 238:2064-2079. [PMID: 36843264 DOI: 10.1111/nph.18840] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/12/2023] [Indexed: 05/04/2023]
Abstract
Kiwifruit (Actinidia chinensis) is one of the popular fruits world-wide, and its quality is mainly determined by key metabolites (sugars, flavonoids, and vitamins). Previous works on kiwifruit are mostly done via a single omics approach or involve only limited metabolites. Consequently, the dynamic metabolomes during kiwifruit development and ripening and the underlying regulatory mechanisms are poorly understood. In this study, using high-resolution metabolomic and transcriptomic analyses, we investigated kiwifruit metabolic landscapes at 11 different developmental and ripening stages and revealed a parallel classification of 515 metabolites and their co-expressed genes into 10 distinct metabolic vs gene modules (MM vs GM). Through integrative bioinformatics coupled with functional genomic assays, we constructed a global map and uncovered essential transcriptomic and transcriptional regulatory networks for all major metabolic changes that occurred throughout the kiwifruit growth cycle. Apart from known MM vs GM for metabolites such as soluble sugars, we identified novel transcription factors that regulate the accumulation of procyanidins, vitamin C, and other important metabolites. Our findings thus shed light on the kiwifruit metabolic regulatory network and provide a valuable resource for the designed improvement of kiwifruit quality.
Collapse
Affiliation(s)
- Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zixin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kunyan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jing Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jiayu Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yue Xie
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610213, Sichuan, China
| | - Kui Du
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610213, Sichuan, China
| | - Mingzhang Li
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610213, Sichuan, China
| | - Mondher Bouzayen
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, 31320, France
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick, CV4 7AL, UK
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
32
|
Li Y, Ma X, Xiao LD, Yu YN, Yan HL, Gong ZH. CaWRKY50 Acts as a Negative Regulator in Response to Colletotrichum scovillei Infection in Pepper. PLANTS (BASEL, SWITZERLAND) 2023; 12:1962. [PMID: 37653879 PMCID: PMC10221478 DOI: 10.3390/plants12101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Chili anthracnose is one of the most common and destructive fungal pathogens that affects the yield and quality of pepper. Although WRKY proteins play crucial roles in pepper resistance to a variety of pathogens, the mechanism of their resistance to anthracnose is still unknown. In this study, we found that CaWRKY50 expression was obviously induced by Colletotrichum scovillei infection and salicylic acid (SA) treatments. CaWRKY50-silencing enhanced pepper resistance to C. scovillei, while transient overexpression of CaWRKY50 in pepper increased susceptibility to C. scovillei. We further found that overexpression of CaWRKY50 in tomatoes significantly decreased resistance to C. scovillei by SA and reactive oxygen species (ROS) signaling pathways. Moreover, CaWRKY50 suppressed the expression of two SA-related genes, CaEDS1 (enhanced disease susceptibility 1) and CaSAMT1 (salicylate carboxymethyltransferase 1), by directly binding to the W-box motif in their promoters. Additionally, we demonstrated that CaWRKY50 interacts with CaWRKY42 and CaMIEL1 in the nucleus. Thus, our findings revealed that CaWRKY50 plays a negative role in pepper resistance to C. scovillei through the SA-mediated signaling pathway and the antioxidant defense system. These results provide a theoretical foundation for molecular breeding of pepper varieties resistant to anthracnose.
Collapse
Affiliation(s)
- Yang Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| | - Luo-Dan Xiao
- Yibin Research Institute of Tea Industry, Yibin 644000, China;
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| | - Hui-Ling Yan
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| |
Collapse
|
33
|
Martínez-Rivas FJ, Blanco-Portales R, Serratosa MP, Ric-Varas P, Guerrero-Sánchez V, Medina-Puche L, Moyano L, Mercado JA, Alseekh S, Caballero JL, Fernie AR, Muñoz-Blanco J, Molina-Hidalgo FJ. FaMYB123 interacts with FabHLH3 to regulate the late steps of anthocyanin and flavonol biosynthesis during ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:683-698. [PMID: 36840368 DOI: 10.1111/tpj.16166] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 02/17/2023] [Indexed: 05/10/2023]
Abstract
In this work, we identified and functionally characterized the strawberry (Fragaria × ananassa) R2R3 MYB transcription factor FaMYB123. As in most genes associated with organoleptic properties of ripe fruit, FaMYB123 expression is ripening-related, receptacle-specific, and antagonistically regulated by ABA and auxin. Knockdown of FaMYB123 expression by RNAi in ripe strawberry fruit receptacles downregulated the expression of enzymes involved in the late steps of anthocyanin/flavonoid biosynthesis. Transgenic fruits showed a parallel decrease in the contents of total anthocyanin and flavonoid, especially malonyl derivatives of pelargonidin and cyanidins. The decrease was concomitant with accumulation of proanthocyanin, propelargonidins, and other condensed tannins associated mainly with green receptacles. Potential coregulation between FaMYB123 and FaMYB10, which may act on different sets of genes for the enzymes involved in anthocyanin production, was explored. FaMYB123 and FabHLH3 were found to interact and to be involved in the transcriptional activation of FaMT1, a gene responsible for the malonylation of anthocyanin components during ripening. Taken together, these results demonstrate that FaMYB123 regulates the late steps of the flavonoid pathway in a specific manner. In this study, a new function for an R2R3 MYB transcription factor, regulating the expression of a gene that encodes a malonyltransferase, has been elucidated.
Collapse
Affiliation(s)
- Félix J Martínez-Rivas
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rosario Blanco-Portales
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - María P Serratosa
- Department of Agricultural Chemistry, University of Cordoba, Edificio Marie Curie, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Pablo Ric-Varas
- Department of Plant Biology, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, University of Málaga, Campus de Teatinos, E-29071, Málaga, Spain
| | - Víctor Guerrero-Sánchez
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Laura Medina-Puche
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Lourdes Moyano
- Department of Agricultural Chemistry, University of Cordoba, Edificio Marie Curie, Campus de Rabanales, E-14014, Córdoba, Spain
| | - José A Mercado
- Department of Plant Biology, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, University of Málaga, Campus de Teatinos, E-29071, Málaga, Spain
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, Plovdiv, 4000, Bulgaria
| | - José L Caballero
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, Plovdiv, 4000, Bulgaria
| | - Juan Muñoz-Blanco
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Francisco J Molina-Hidalgo
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| |
Collapse
|
34
|
Liu M, Liu G, Wang G, Song S, Zhang P, Liu X, Li Y, Mao X, Bao Z, Ma F. Identification and functional characterization of AcMYB113 in anthocyanin metabolism of Aesculus chinensis Bunge var. chinensis leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107709. [PMID: 37094493 DOI: 10.1016/j.plaphy.2023.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Anthocyanins can be induced by environmental factors such as low-temperature and play essential roles in plant color formation. In this study, leaves of Aesculus chinensis Bunge var. chinensis with different colors under natural low-temperature in autumn were collected and grouped into green leaf (GL) and red leaf (RL). To reveal the underlying mechanism of color formation in RL, a combined analysis of the metabolome and transcriptome was conducted with GL and RL. Metabolic analyses revealed that total anthocyanin content and primary anthocyanin components were increased RL relative to GL and cyanidin was the main anthocyanin compound in RL. Transcriptome analysis provided a total of 18720 differentially expressed genes (DEGs), of which 9150 DEGs were upregulated and 9570 DEGs were downregulated in RL relative to GL. KEGG analysis showed that DEGs were mainly enriched in flavonoid biosynthesis, phenylalanine metabolism, and phenylpropanoid biosynthesis. Furthermore, co-expression network analysis indicated that 56 AcMYB transcription factors were highly expressed in RL compared with GL, among which AcMYB113 (an R2R3-MYB TF) had a strong correlation with anthocyanins. Overexpression of AcMYB113 in apple resulted in dark-purple transgenic calluses. In addition, the transient expression experiment showed that AcMYB113 enhanced anthocyanin synthesis by activating pathways of anthocyanin biosynthesis in leaves of Aesculus chinensis Bunge var. chinensis. Taken together, our findings reveal new insights into the molecular mechanism of anthocyanin accumulation in RL and provide candidate genes for the breeding of anthocyanin-rich cultivars.
Collapse
Affiliation(s)
- Minmin Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Genzhong Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Guodong Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Shiyan Song
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Peng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiaofang Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yuling Li
- Institute of ornamental plants, Shandong Academy of Forestry, Jinan, Shandong, China
| | - Xiuhong Mao
- Institute of ornamental plants, Shandong Academy of Forestry, Jinan, Shandong, China.
| | - Zhilong Bao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China.
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China.
| |
Collapse
|
35
|
Luan Y, Chen Z, Tang Y, Sun J, Meng J, Tao J, Zhao D. Tree peony PsMYB44 negatively regulates petal blotch distribution by inhibiting dihydroflavonol-4-reductase gene expression. ANNALS OF BOTANY 2023; 131:323-334. [PMID: 36534917 PMCID: PMC9992934 DOI: 10.1093/aob/mcac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS The tree peony (Paeonia suffruticosa Andr.) has been widely cultivated as a field plant, and petal blotch is one of its important traits, which not only promotes proliferation but also confers high ornamental value. However, the regulatory network controlling blotch formation remains elusive owing to the functional differences and limited conservation of transcriptional regulators in dicots. METHODS We performed phylogenetic analysis to identify MYB44-like transcription factors in P. suffruticosa blotched cultivar 'High noon' petals. A candidate MYB44-like transcription factor, PsMYB44, was analysed via expression pattern analysis, subcellular localization, target gene identification, gene silencing in P. suffruticosa petals and heterologous overexpression in tobacco. KEY RESULTS A blotch formation-related MYB44-like transcription factor, PsMYB44, was cloned. The C-terminal of the PsMYB44 amino acid sequence had a complete C2 motif that affects anthocyanin biosynthesis, and PsMYB44 was clustered in the MYB44-like transcriptional repressor branch. PsMYB44 was located in the nucleus, and its spatial and temporal expression patterns were negatively correlated with blotch formation. Furthermore, a yeast one-hybrid assay showed that PsMYB44 could target the promoter of the late anthocyanin biosynthesis-related dihydroflavonol-4-reductase (DFR) gene, and a dual-luciferase assay demonstrated that PsMYB44 could repress PsDFR promoter activity. On the one hand, overexpression of PsMYB44 significantly faded the red colour of tobacco flowers and decreased the anthocyanin content by 42.3 % by downregulating the expression level of the tobacco NtDFR gene. On the other hand, PsMYB44-silenced P. suffruticosa petals had a redder blotch colour, which was attributed to the fact that silencing PsMYB44 redirected metabolic flux to the anthocyanin biosynthesis branch, thereby promoting more anthocyanin accumulation in the petal base. CONCLUSION These results demonstrated that PsMYB44 negatively regulated the biosynthesis of anthocyanin by directly binding to the PsDFR promoter and subsequently inhibiting blotch formation, which helped to elucidate the molecular regulatory network of anthocyanin-mediated blotch formation in plants.
Collapse
Affiliation(s)
- Yuting Luan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Zijie Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jing Sun
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jiasong Meng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
36
|
Li Y, Sun Z, Lu J, Jin Z, Li J. Integrated transcriptomics and metabolomics analysis provide insight into anthocyanin biosynthesis for sepal color formation in Heptacodium miconioides. FRONTIERS IN PLANT SCIENCE 2023; 14:1044581. [PMID: 36890897 PMCID: PMC9987713 DOI: 10.3389/fpls.2023.1044581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Heptacodium miconioides Rehd., commonly known as "seven-son flower," is an ornamental species with a beautiful flower pattern and persistent sepals. Its sepals are of horticultural value, turning bright red and elongating in the autumn; however, the molecular mechanisms that cause sepal color change remain unclear. We analyzed the dynamic changes in anthocyanin composition in the sepal of H. miconioides at four developmental stages (S1-S4). A total of 41 anthocyanins were detected and classified into 7 major anthocyanin aglycones. High levels of the pigments cyanidin-3,5-O-diglucoside, cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, and pelargonidin-3-O-glucoside were responsible for sepal reddening. Transcriptome analysis revealed 15 differentially expressed genes involved in anthocyanin biosynthesis that were detected between 2 developmental stages. Of these, the high expression of HmANS was considered critical structural gene related to anthocyanin biosynthesis pathway in the sepal through co-expression analysis with anthocyanin content. In addition, a transcription factor (TF)-metabolite correlation analysis revealed that three HmMYB, two HmbHLH, two HmWRKY, and two HmNAC TFs exhibited a strong positive role in the regulation of the anthocyanin structural genes (Pearson's correlation coefficient > 0.90). Luciferase activity assay showed that HmMYB114, HmbHLH130, HmWRKY6, and HmNAC1 could activate the promoters of HmCHS4 and HmDFR1 genes in vitro. These findings increase our understanding of anthocyanin metabolism in the sepal of H. miconioides and provide a guide for studies involving sepal color conversion and regulation.
Collapse
Affiliation(s)
- Yueling Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| | - Zhongshuai Sun
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| | - Jieyang Lu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| | - Zexin Jin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| |
Collapse
|
37
|
Wang Y, Wang Z, Zhang J, Liu Z, Wang H, Tu H, Zhou J, Luo X, Chen Q, He W, Yang S, Li M, Lin Y, Zhang Y, Zhang Y, Luo Y, Tang H, Wang X. Integrated Transcriptome and Metabolome Analyses Provide Insights into the Coloring Mechanism of Dark-red and Yellow Fruits in Chinese Cherry [ Cerasus pseudocerasus (Lindl.) G. Don]. Int J Mol Sci 2023; 24:ijms24043471. [PMID: 36834881 PMCID: PMC9965709 DOI: 10.3390/ijms24043471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Chinese cherry [Cerasus pseudocerasus (Lindl.) G. Don] is an important fruit tree from China that has excellent ornamental, economic, and nutritional values with various colors. The dark-red or red coloration of fruit, an attractive trait for consumers, is determined by anthocyanin pigmentation. In this study, the coloring patterns during fruit development in dark-red and yellow Chinese cherry fruits were firstly illustrated by integrated transcriptome and widely-targeted metabolome analyses. Anthocyanin accumulation in dark-red fruits was significantly higher compared with yellow fruits from the color conversion period, being positively correlated to the color ratio. Based on transcriptome analysis, eight structural genes (CpCHS, CpCHI, CpF3H, CpF3'H, CpDFR, CpANS, CpUFGT, and CpGST) were significantly upregulated in dark-red fruits from the color conversion period, especially CpANS, CpUFGT, and CpGST. On contrary, the expression level of CpLAR were considerably higher in yellow fruits than in dark-red fruits, especially at the early stage. Eight regulatory genes (CpMYB4, CpMYB10, CpMYB20, CpMYB306, bHLH1, CpNAC10, CpERF106, and CpbZIP4) were also identified as determinants of fruit color in Chinese cherry. Liquid chromatography-tandem mass spectrometry identified 33 and 3 differential expressed metabolites related to anthocyanins and procyanidins between mature dark-red and yellow fruits. Cyanidin-3-O-rutinoside was the predominant anthocyanin compound in both fruits, while it was 6.23-fold higher in dark-red than in yellow fruits. More accumulated flavanol and procyanidin contents resulted in less anthocyanin content in flavonoid pathway in yellow fruits due to the higher expression level of CpLAR. These findings can help understand the coloring mechanism of dark-red and yellow fruits in Chinese cherry, and provide genetic basis for breeding new cultivars.
Collapse
Affiliation(s)
- Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiyi Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenshan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongxia Tu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingting Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xirui Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaofeng Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
38
|
Liu Y, Lv G, Yang Y, Ma K, Ren X, Li M, Liu Z. Interaction of AcMADS68 with transcription factors regulates anthocyanin biosynthesis in red-fleshed kiwifruit. HORTICULTURE RESEARCH 2023; 10:uhac252. [PMID: 36751270 PMCID: PMC9896601 DOI: 10.1093/hr/uhac252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
In red-fleshed kiwifruit, anthocyanin pigmentation is a crucial commercial trait. The MYB-bHLH-WD40 (MBW) complex and other transcription factors regulate its accumulation. Herein, a new SEP gene, AcMADS68, was identified as a regulatory candidate for anthocyanin biosynthesis in the kiwifruit by transcriptome data and bioinformatic analyses. AcMADS68 alone could not induce the accumulation of anthocyanin both in Actinidia arguta fruit and tobacco leaves. However, in combination with AcMYBF110, AcMYB123, and AcbHLH1, AcMADS68 co-overexpression increased anthocyanin biosynthesis, whereas its silencing reduced anthocyanin accumulation. The results of the dual-luciferase reporter, firefly luciferase complementation, yeast two-hybrid and co-immunoprecipitation assays showed that AcMADS68 could interact with both AcMYBF110 and AcMYB123 but not with AcbHLH1, thereby co-regulating anthocyanin biosynthesis by promoting the activation of the target genes, including AcANS, AcF3GT1, and AcGST1. Moreover, AcMADS68 also could activate the promoter of AcbHLH1 surported by dual-luciferase reporter and yeast one-hybrid assays, thereby further amplifying the regulation signals from the MBW complex, thus resulting in enhanced anthocyanin accumulation in the kiwifruit. These findings may facilitate better elucidation of various regulatory mechanisms underlying anthocyanin accumulation and contribute to the quality enhancement of red-fleshed kiwifruit.
Collapse
Affiliation(s)
| | | | - Yaqi Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shannxi, China
| | - Kangxun Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shannxi, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shannxi, China
| | | | | |
Collapse
|
39
|
Genome-Wide Identification and Expression Analysis of the bHLH Transcription Factor Family and Its Response to Abiotic Stress in Mongolian Oak ( Quercus mongolica). Curr Issues Mol Biol 2023; 45:1127-1148. [PMID: 36826020 PMCID: PMC9955707 DOI: 10.3390/cimb45020075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The basic helix-loop-helix (bHLH) family, one of the largest families of transcription factors in plants, is extensively involved in the growth, development, and stress response of several woody plants. However, no systematic analysis of the bHLH gene family in Quercus mongolica has been reported. We characterize QmbHLH genes and identify the functions of QmbHLH proteins in Q. mongolica. We used bioinformatics approaches, qRT-PCR analysis, and RNA sequencing data to examine chromosomal distributions, gene structures, and conserved patterns, and identified 89 QmbHLH genes, which were divided into 21 subgroups based on the phylogenetic analysis of bHLH genes in Arabidopsis thaliana. Segmental replication played a more prominent role than tandem duplication in the expansion of the QmbHLH gene family. Based on patterns of tissue-specific expression, protein interactions, and cis-element analysis, QmbHLH genes may be extensively involved in the growth and development of Q. mongolica. In leaves, stems, and roots, 12 selected QmbHLH genes exhibited responsiveness to abiotic stresses (salt, cold, weak light, and drought). Our study facilitates follow-up functional investigations of the bHLH gene family in Q. mongolica and provides novel insights into bHLH superfamilies in woody plants.
Collapse
|
40
|
Ji XL, Zhang M, Wang D, Li Z, Lang S, Song XS. Genome-wide identification of WD40 superfamily in Cerasus humilis and functional characteristics of ChTTG1. Int J Biol Macromol 2023; 225:376-388. [PMID: 36402390 DOI: 10.1016/j.ijbiomac.2022.11.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
The WD40 superfamily plays an important role in a wide range of developmental and physiological processes. It is a large gene family in eukaryotes. Unfortunately, the research on the WD40 superfamily genes in Cerasus humilis has not been reported. 198 ChWD40s were identified and analyzed in the present study, along with evolutionary relationships, gene structure, chromosome distribution, and collinearity. Then, 5 pairs of tandem duplication and 17 pairs of segmental duplication were found. Based on RNA-Seq data analysis, we screened 31 candidate genes whose expression was up-regulated during the four developmental stages of fruit peel. In addition, we also demonstrated that ChWD40-140, namely ChTTG1, located in the nucleus, cytoplasm, and cytomembrane, has transcriptional activation activity and can form homodimers. ChTTG1 is involved in anthocyanin biosynthesis through heterologous overexpression in Arabidopsis. These research results provide a reference for a comprehensive analysis of the functions of WD40 in the future.
Collapse
Affiliation(s)
- Xiao Long Ji
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Di Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhe Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shaoyu Lang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xing Shun Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
41
|
Camarero MC, Briegas B, Corbacho J, Labrador J, Gallardo M, Gomez-Jimenez MC. Characterization of Transcriptome Dynamics during Early Fruit Development in Olive ( Olea europaea L.). Int J Mol Sci 2023; 24:961. [PMID: 36674474 PMCID: PMC9864153 DOI: 10.3390/ijms24020961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
In the olive (Olea europaea L.), an economically leading oil crop worldwide, fruit size and yield are determined by the early stages of fruit development. However, few detailed analyses of this stage of fruit development are available. This study offers an extensive characterization of the various processes involved in early olive fruit growth (cell division, cell cycle regulation, and cell expansion). For this, cytological, hormonal, and transcriptional changes characterizing the phases of early fruit development were analyzed in olive fruit of the cv. 'Picual'. First, the surface area and mitotic activity (by flow cytometry) of fruit cells were investigated during early olive fruit development, from 0 to 42 days post-anthesis (DPA). The results demonstrate that the cell division phase extends up to 21 DPA, during which the maximal proportion of 4C cells in olive fruits was reached at 14 DPA, indicating that intensive cell division was activated in olive fruits at that time. Subsequently, fruit cell expansion lasted as long as 3 weeks more before endocarp lignification. Finally, the molecular mechanisms controlling the early fruit development were investigated by analyzing the transcriptome of olive flowers at anthesis (fruit set) as well as olive fruits at 14 DPA (cell division phase) and at 28 DPA (cell expansion phase). Sequential induction of the cell cycle regulating genes is associated with the upregulation of genes involved in cell wall remodeling and ion fluxes, and with a shift in plant hormone metabolism and signaling genes during early olive fruit development. This occurs together with transcriptional activity of subtilisin-like protease proteins together with transcription factors potentially involved in early fruit growth signaling. This gene expression profile, together with hormonal regulators, offers new insights for understanding the processes that regulate cell division and expansion, and ultimately fruit yield and olive size.
Collapse
Affiliation(s)
- Maria C. Camarero
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Beatriz Briegas
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Jorge Corbacho
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Juana Labrador
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Mercedes Gallardo
- Laboratory of Plant Physiology, University of Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Maria C. Gomez-Jimenez
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
42
|
Characterization of Highbush Blueberry ( Vaccinium corymbosum L.) Anthocyanin Biosynthesis Related MYBs and Functional Analysis of VcMYB Gene. Curr Issues Mol Biol 2023; 45:379-399. [PMID: 36661513 PMCID: PMC9857026 DOI: 10.3390/cimb45010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
As one of the most important transcription factors regulating plant anthocyanin biosynthesis, MYB has attracted great attentions. In this study, we identified fifteen candidate anthocyanin biosynthesis related MYB (ABRM) proteins, including twelve R2R3-MYBs and three 1R-MYBs, from highbush blueberry. The subcellular localization prediction results showed that, with the exception of VcRVE8 (localized in chloroplast and nucleus), all of the blueberry ABRMs were nucleus-localized. The gene structure analysis revealed that the exon numbers of the blueberry ABRM genes varied greatly, ranging between one and eight. There are many light-responsive, phytohormone-responsive, abiotic stress-responsive and plant growth and development related cis-acting elements in the promoters of the blueberry ABRM genes. It is noteworthy that almost all of their promoters contain light-, ABA- and MeJA-responsive elements, which is consistent with the well-established results that anthocyanin accumulation and the expression of MYBs are influenced significantly by many factors, such as light, ABA and JA. The gene expression analysis revealed that VcMYB, VcMYB6, VcMYB23, VcMYBL2 and VcPH4 are expressed abundantly in blueberry fruits, and VcMYB is expressed the highest in the red, purple and blue fruits among all blueberry ABRMs. VcMYB shared high similarity with functionally proven ABRMs from many other plant species. The gene cloning results showed that VcMYB had three variable transcripts, but only the transient overexpression of VcMYB-1 promoted anthocyanin accumulation in the green fruits. Our study can provide a basis for future research on the anthocyanin biosynthesis related MYBs in blueberry.
Collapse
|
43
|
Wang Y, Zhen J, Che X, Zhang K, Zhang G, Yang H, Wen J, Wang J, Wang J, He B, Yu A, Li Y, Wang Z. Transcriptomic and metabolomic analysis of autumn leaf color change in Fraxinus angustifolia. PeerJ 2023; 11:e15319. [PMID: 37197583 PMCID: PMC10184661 DOI: 10.7717/peerj.15319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023] Open
Abstract
Fraxinus angustifolia is a type of street tree and shade tree with ornamental value. It has a beautiful shape and yellow or reddish purple autumn leaves, but its leaf color formation mechanism and molecular regulation network need to be studied. In this study, we integrated the metabolomes and transcriptomes of stage 1 (green leaf) and stage 2 (red-purple leaf) leaves at two different developmental stages to screen differential candidate genes and metabolites related to leaf color variation. The results of stage 1 and stage 2 transcriptome analysis showed that a total of 5,827 genes were differentially expressed, including 2,249 upregulated genes and 3,578 downregulated genes. Through functional enrichment analysis of differentially expressed genes, we found that they were involved in flavonoid biosynthesis, phenylpropanoid biosynthesis, pigment metabolism, carotene metabolism, terpenoid biosynthesis, secondary metabolite biosynthesis, pigment accumulation, and other biological processes. By measuring the metabolites of Fraxinus angustifolia leaves, we found the metabolites closely related to the differentially expressed genes in two different periods of Fraxinus angustifolia, among which flavonoid compounds were the main differential metabolites. Through transcriptome and metabolomics data association analysis, we screened nine differentially expressed genes related to anthocyanins. Transcriptome and qRT-PCR results showed that these nine genes showed significant expression differences in different stages of the sample, and we speculate that they are likely to be the main regulatory factors in the molecular mechanism of leaf coloration. This is the first time that we have analyzed the transcriptome combination metabolome in the process of leaf coloration of Fraxinus angustifolia, which has important guiding significance for directional breeding of colored-leaf Fraxinus species and will also give new insights for enriching the landscape.
Collapse
Affiliation(s)
- Yanlong Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Jinpeng Zhen
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Bioinformatics Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding, China
| | - Xiaoyu Che
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Kang Zhang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Bioinformatics Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding, China
| | - Guowei Zhang
- Hongyashan State-owned Forest Farm in Hebei Province, Baoding, China
| | - Huijuan Yang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Jing Wen
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Jinxin Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Jiming Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
- College of Grammar, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Bo He
- Green Building Development Center of Baoding, Baoding, China
| | - Ailong Yu
- Flower and Wood Technical Service Center of Hengshui, Hengshui, China
| | - Yanhui Li
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Zhigang Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| |
Collapse
|
44
|
Wang D, Chen L, Yang Y, Abbas F, Qin Y, Lu H, Lai B, Wu Z, Hu B, Qin Y, Wang H, Zhao J, Hu G. Integrated metabolome and transcriptome analysis reveals the cause of anthocyanin biosynthesis deficiency in litchi aril. PHYSIOLOGIA PLANTARUM 2023; 175:e13860. [PMID: 36683140 DOI: 10.1111/ppl.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Anthocyanins are health-promoting compounds with strong antioxidant properties that play important roles in disease prevention. Litchi chinensis Sonn. is a well-known and economically significant fruit due to its appealing appearance and nutritional value. The mature pericarp of litchi is rich in anthocyanins, whereas the aril (flesh) has an extremely low anthocyanin content. However, the mechanism of anthocyanin differential accumulation in litchi pericarp and aril remained unknown. Here, metabolome and transcriptome analysis were performed to unveil the cause of the deficiency of anthocyanin biosynthesis in litchi aril. Numerous anthocyanin biosynthesis-related metabolites and their derivatives were found in the aril, and the levels of rutin and (-)-epicatechin in the aril were comparable to those found in the pericarp, while anthocyanin levels were negligible. This suggests that the biosynthetic pathway from phenylalanine to cyanidin was present but that a block in cyanidin glycosylation could result in extremely low anthocyanin accumulation in the aril. Furthermore, 54 candidate genes were screened using weighted gene co-expression network analysis (WGCNA), and 9 genes (LcUFGT1, LcGST1, LcMYB1, LcSGR, LcCYP75B1, LcMATE, LcTPP, LcSWEET10, and LcERF61) might play a significant role in regulating anthocyanin biosynthesis. The dual-luciferase reporter (DLR) assay revealed that LcMYB1 strongly activated the promoters of LcUFGT1, LcGST4, and LcSWEET10. The results imply that LcMYB1 is the primary qualitative gene responsible for the deficiency of anthocyanin biosynthesis in litchi aril, which was confirmed by a transient transformation assay. Our findings shed light on the molecular mechanisms underlying tissue-specific anthocyanin accumulation and will help developing new red-fleshed litchi germplasm.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobio-resources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Lei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobio-resources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yabing Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobio-resources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Farhat Abbas
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobio-resources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yaqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobio-resources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hanle Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobio-resources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Biao Lai
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, China
| | - Zichen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobio-resources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bing Hu
- Key Laboratory of Tropical Forestry Research, National Forestry and Grassland Administration, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobio-resources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Huicong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobio-resources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobio-resources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobio-resources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
45
|
Huang S, Wang L, Wang Z, Yang G, Xiang X, An Y, Kan J. Multiomics strategy reveals the accumulation and biosynthesis of bitter components in Zanthoxylum schinifolium Sieb. et Zucc. Food Res Int 2022; 162:111964. [DOI: 10.1016/j.foodres.2022.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/30/2022]
|
46
|
Li K, Li Y, Wang Y, Li Y, He J, Li Y, Du L, Gao Y, Ma N, Gao J, Zhou X. Disruption of transcription factor RhMYB123 causes the transformation of stamen to malformed petal in rose (Rosa hybrida). PLANT CELL REPORTS 2022; 41:2293-2303. [PMID: 35999377 DOI: 10.1007/s00299-022-02921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
We find that the R2R3 MYB transcription factor RhMYB123 has a novel function to regulate stamen-petal organ specification in rose. Rose is one of the ornamental plants with economic importance worldwide. Malformed flower seriously affects the ornamental value and fertility of rose. However, the regulatory mechanism is largely unknown. In this work, we identified a R2R3 MYB transcription factor RhMYB123 from rose, the expression of which significantly decreased from flower differentiation stage to floral organ development stage. Phylogenetic analysis indicated that it belongs to the same subgroup as MYB123 of Arabidopsis and located in nucleus. In addition, RhMYB123 was confirmed to have transcriptional activation function by dual luciferase assay. Silencing RhMYB123 using Virus-Induced Gene Silencing (VIGS) in rose could increase the number of malformed petaloid stamen. Furthermore, we identified 549 differential expressed genes (DEGs) in TRV-RhMYB123 lines compared to TRV controls by RNA-seq of floral buds (flower differentiation stage). Among of those genes, expression of 3 MADS box family genes related to floral organ development reduced in TRV-RhMYB123 lines, including AGAMOUS (RhAG), AGAMOUS LIKE 15 (RhAGL15), and SHATTERPROOF 1 (RhSHP1). Given, previous studies have shown that auxin plays a crucial role in floral meristem initiation and stamen-petal organ specification. We also found 6 DEGs were involved in auxin signal transduction, of which five were reduced expression in TRV-RhMYB123. Taken together, our findings suggested that RhMYB123 may govern the development of malformed petaloid stamen by regulating the expressions of some MADS box family members and auxin signaling pathway elements.
Collapse
Affiliation(s)
- Kun Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yuqi Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yi Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen, China
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yunju Li
- Yunnan Yuntianhua Modern Agriculture Development Co., Ltd, Kunming, China
| | - Lisi Du
- Yunnan Yuntianhua Modern Agriculture Development Co., Ltd, Kunming, China
| | - Yuerong Gao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
47
|
Li T, Wang Y, Dong Q, Wang F, Kong F, Liu G, Lei Y, Yang H, Zhou Y, Li C. Weighted gene co-expression network analysis reveals key module and hub genes associated with the anthocyanin biosynthesis in maize pericarp. FRONTIERS IN PLANT SCIENCE 2022; 13:1013412. [PMID: 36388502 PMCID: PMC9661197 DOI: 10.3389/fpls.2022.1013412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Anthocyanins are the visual pigments that present most of the colors in plants. Its biosynthesis requires the coordinated expression of structural genes and regulatory genes. Pericarps are the rich sources of anthocyanins in maize seeds. In the experiment, the transcriptomes of transparent and anthocyanins-enriched pericarps at 15, 20, and 25 DAP were obtained. The results output 110.007 million raw reads and 51407 genes' expression matrix. Using data filtration in R language, 2057 genes were eventually identified for weighted gene co-expression network analysis. The results showed that 2057 genes were classified into ten modules. The cyan module containing 183 genes was confirmed to be the key module with the highest correlation value of 0.98 to the anthocyanins trait. Among 183 genes, seven structural genes were mapped the flavonoid biosynthesis pathway, and a transcription factor Lc gene was annotated as an anthocyanin regulatory gene. Cluster heatmap and gene network analysis further demonstrated that Naringenin, 2-oxoglutarate 3-dioxygenase (Zm00001d001960), Dihydroflavonol 4-reductase (Zm00001d044122), Leucoanthocyanidin dioxygenase (Zm00001d014914), anthocyanin regulatory Lc gene (Zm00001d026147), and Chalcone synthase C2 (Zm00001d052673) participated in the anthocyanins biosynthesis. And the transcription factor anthocyanin regulatory Lc gene Zm00001d026147 may act on the genes Chalcone synthase C2 (Zm00001d052673) and Dihydroflavonol 4-reductase (Zm00001d044122). The yeast one-hybrid assays confirmed that the Lc protein could combine with the promoter region of C2 and directly regulate the anthocyanin biosynthesis in the pericarp. These results may provide a new sight to uncover the module and hub genes related to anthocyanins biosynthesis in plants.
Collapse
Affiliation(s)
- Tingchun Li
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yiting Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qing Dong
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Fang Wang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Fanna Kong
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Guihu Liu
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yanli Lei
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Huaying Yang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yingbing Zhou
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Cheng Li
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
48
|
Wang Y, Zhang M, Dong K, Yin X, Hao C, Zhang W, Irfan M, Chen L, Wang Y. Metabolomic and transcriptomic exploration of the uric acid-reducing flavonoids biosynthetic pathways in the fruit of Actinidia arguta Sieb. Zucc. FRONTIERS IN PLANT SCIENCE 2022; 13:1025317. [PMID: 36388584 PMCID: PMC9647161 DOI: 10.3389/fpls.2022.1025317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/04/2022] [Indexed: 05/25/2023]
Abstract
Flavonoids from Actinidia arguta Sieb. Zucc. can reduce uric acid in mice. However, the molecular basis of its biosynthesis is still unclear. In this paper, we used a combination of extensively targeted metabolomics and transcriptomics analysis to determine the types and differences of flavonoids in the fruit ripening period (August to September) of two main cultivated varieties in northern China. The ethanol extract was prepared, and the potential flavonoids of Chrysin (Flavone1), Rutin (Flavone2), and Daidzein (Flavone3) in Actinidia arguta Sieb. Zucc. were separated and purified by HPD600 macroporous adsorption resin and preparative liquid chromatography. The structure was identified by MS-HPLC, and the serum uric acid index of male Kunming mice was determined by an animal model test.125 flavonoids and 50 differentially regulated genes were identified. The contents of UA (uric acid), BUN (urea nitrogen), Cr (creatinine), and GAPDH in mouse serum and mouse liver glycogen decreased or increased in varying degrees. This paper reveals the biosynthetic pathway of uric acid-reducing flavonoids in the fruit of Actinidia arguta Sieb. Zucc., a major cultivar in northern China, provides valuable information for the development of food and drug homologous functional foods.
Collapse
Affiliation(s)
- Yubo Wang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Minghui Zhang
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Kuiling Dong
- Oriental Language Institute, Mudanjiang Normal University, Mudanjiang, China
| | - Xiaojuan Yin
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Chunhui Hao
- Pet Medicine Teaching and Research Office, Liaoning Agricultural College, Yingkou, China
| | - Wenge Zhang
- Biochemistry Teaching and Research Office, Anshan Health School, Anshan, China
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Lijing Chen
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yong Wang
- College of Chemical Engineering, Liaoning University of Science and Technology, Anshan, China
| |
Collapse
|
49
|
Wang L, Li L, Zhao W, Fan L, Meng H, Zhang G, Wu W, Shi J, Wu G. Integrated metabolomic and transcriptomic analysis of the anthocyanin and proanthocyanidin regulatory networks in red walnut natural hybrid progeny leaves. PeerJ 2022; 10:e14262. [PMID: 36285329 PMCID: PMC9588303 DOI: 10.7717/peerj.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Background Walnuts are among the most important dry fruit crops worldwide, typically exhibiting green leaves and yellow-brown or gray-yellow seed coats. A specific walnut accession with red leaves and seed coats, 'RW-1', was selected for study because of its high anthocyanin and proanthocyanidin (PA) contents. Anthocyanins and PAs are important secondary metabolites and play key roles in plant responses to biotic and abiotic stresses. However, few studies have focused on the molecular mechanism of anthocyanin biosynthesis in walnuts. Methods In this study, we determined the anthocyanin and PA components and their contents in different color leaves of 'RW-1' natural hybrid progenies at various developmental stages. Integrated transcriptome and metabolome analyses were used to identify the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs). We also performed conjoint analyses on DEGs and DAMs to ascertain the degree pathways, and explore the regulation of anthocyanin and PA biosynthesis. Results The results of widely targeted metabolome profiling and anthocyanin detection revealed 395 substances, including four PAs and 26 anthocyanins, in red (SR) and green leaves (SG) of 'RW-1' natural hybrid progenies. From the research, the contents of all anthocyanin components in SR were higher than that in SG. Among them, the contents of delphinidin 3-O-galactoside, cyanidin 3-O-galactoside, delphinidin 3-O-arabinoside and cyanidin 3-O-glucoside were significantly higher than others, and they were considered as the main types of anthocyanins. However, nine anthocyanins were detected only in SR. For PAs, the content of procyanidin C1 was higher in SR compared with SG, while procyanidin B1 and procyanidin B3 were higher in SR-1 and SR-3 but downregulated in SR-2 compared with the controls. Furthermore, transcriptome analysis revealed that the expressions of structural genes (C4H, F3H, F3'5'H, UFGT, LAR and ANR), three MYBs predicted as the activators of anthocyanin and PA biosynthesis, two MYBs predicted as the repressors of anthocyanin biosynthesis, and five WD40s in the anthocyanin and PA biosynthetic pathways were significantly higher in the SR walnuts. Gene-metabolite correlation analyses revealed a core set of 31 genes that were strongly correlated with four anthocyanins and one PA metabolites. The alteration of gene coding sequence altered the binding or regulation of regulatory factors to structural genes in different color leaves, resulting in the effective increase of anthocyanins and PAs accumulation in red walnut. Conclusions This study provides valuable information on anthocyanin and PA metabolites and candidate genes for anthocyanin and PA biosynthesis, yielding new insights into anthocyanin and PA biosynthesis in walnuts.
Collapse
Affiliation(s)
- Lei Wang
- Henan Agricultural University, Zhengzhou, China
| | - Lin Li
- Henan Agricultural University, Zhengzhou, China
| | - Wei Zhao
- Henan Agricultural University, Zhengzhou, China
| | - Lu Fan
- Henan Agricultural University, Zhengzhou, China
| | - Haijun Meng
- Henan Agricultural University, Zhengzhou, China
| | | | - Wenjiang Wu
- Henan Agricultural University, Zhengzhou, China
| | - Jiangli Shi
- Henan Agricultural University, Zhengzhou, China
| | - Guoliang Wu
- Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
50
|
Qian J, Jiang L, Qing H, Chen J, Wan Z, Xu M, Fu J, Zhang C. ZeMYB9 regulates cyanidin synthesis by activating the expression of flavonoid 3'-hydroxylase gene in Zinnia elegans. FRONTIERS IN PLANT SCIENCE 2022; 13:981086. [PMID: 36330274 PMCID: PMC9623174 DOI: 10.3389/fpls.2022.981086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Petal color in Zinnia elegans is characterized mainly by anthocyanin accumulation. The difference in the content of anthocyanins, especially cyanidins, affects petal coloration in Z. elegans, but the underlying regulatory mechanism remains elusive. Here, we report one R2R3-MYB transcription factor from subgroup 6, ZeMYB9, acting as a positive regulator of anthocyanin accumulation in Z. elegans. Up-regulated expression of ZeMYB9 and flavonoid 3'-hydroxylase gene (ZeF3'H) was detected in the cultivar with higher cyanidin content. ZeMYB9 could specifically activate the promoter of ZeF3'H, and over-expression of ZeMYB9 induces much greater anthocyanin accumulation and higher expression level of anthocyanin biosynthetic genes in both petunia and tobacco. And then, ZeMYB9 was demonstrated to interact with ZeGL3, a bHLH transcription factor belonging to IIIf subgroup. Promoter activity of ZeF3'H was significantly promoted by co-expressing ZeMYB9 and ZeGL3 compared with expressing ZeMYB9 alone. Moreover, transient co-expression of ZeMYB9 and ZeGL3 induced anthocyanin accumulation in tobacco leaves. Our results suggest that ZeMYB9 could enhance cyanidin synthesis and regulate petal color in Z. elegans though activating the expression of ZeF3'H, by itself or interacting with ZeGL3.
Collapse
Affiliation(s)
- Jieyu Qian
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Lingli Jiang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Hongsheng Qing
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Jiahong Chen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Ziyun Wan
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Menghan Xu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- School of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| |
Collapse
|