1
|
Zhao J, Satyanarayan M, VanSlambrouck J, Kolstoe A, Voyt M, Jamesa G, Yu F, Lu Y. Functional Relationships of Two NFU Proteins in Maintaining the Abundances of Mitochondrial Iron-Sulfur Proteins. PLANT DIRECT 2025; 9:e70081. [PMID: 40443787 PMCID: PMC12120262 DOI: 10.1002/pld3.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 06/02/2025]
Abstract
Iron-sulfur clusters are involved in many biological processes, including photosynthetic electron transport in the chloroplast and respiratory electron transport in the mitochondrion. Iron-sulfur cluster biosynthesis requires iron-sulfur carriers such as nitrogen-fixation-subunit-U [NFU]-type proteins. The Arabidopsis thaliana nuclear genome encodes two mitochondrion-targeted NFU proteins: NFU4 and NFU5, previously reported to have a primary role in the biosynthesis of the lipoate cofactor, mediated by the 4Fe-4S enzyme lipoyl synthase. Through in vitro reconstitution and spectroscopic analysis, we found that recombinant NFU4 and NFU5 proteins had UV-visible features characteristic of 4Fe-4S clusters. In addition, we confirmed that double homozygous, complete loss-of-function nfu4 nfu5 mutants had an embryo-lethal phenotype. To investigate the functional relationship between NFU4 and NFU5, we generated sesquimutants that were homozygous loss-of-function for one gene and heterozygous for the other, which appeared slightly smaller than nfu4-2, nfu4-4, and nfu5-1 single mutants. This suggests that the simultaneous decrease in levels of NFU4 and NFU5 proteins may have an additive effect on plant growth. Quantitative reverse transcription PCR showed that the NFU4 transcript was absent in mutants homozygous for nfu4-2 and nfu4-4 and that the NFU5 transcript level was substantially reduced in the nfu5-1 single mutant or sesquimutants. Consistent with the transcript data, the abundances of NFU4 and NFU5 proteins were either virtually absent or substantially reduced in the corresponding single mutants and sesquimutants. Immunoblot analysis showed that most nfu4 and nfu5-1 single, double, and sesquimutants had significant reductions in the levels of mitochondrial 4Fe-4S proteins, such as aconitase (ACO) and biotin synthase 2 (BIO2; note that BIO2 also contains a 2Fe-2S cluster). In addition, nfu4 nfu5 sesquimutants showed substantial reductions in the protein level of the 75-kDa subunit of respiratory complex I (CI75), which contains one 2Fe-2S cluster and two 4Fe-4S clusters. These observations indicate that NFU4 and NFU5 are important in maintaining the levels of mitochondrial 4Fe-4S proteins. Such observations are also consistent with the hypothesis that NFU4 and NFU5 may serve as iron-sulfur carriers and may play a role in the transfer of 4Fe-4S clusters to recipient apoproteins, such as ACO and CI75, during the biogenesis and maturation of mitochondrial 4Fe-4S clusters.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Biological SciencesWestern Michigan UniversityKalamazooMichiganUSA
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingShaanxiChina
| | | | | | - Alexander J. Kolstoe
- Department of Biological SciencesWestern Michigan UniversityKalamazooMichiganUSA
| | - Michael J. Voyt
- Department of Biological SciencesWestern Michigan UniversityKalamazooMichiganUSA
| | - Glory O. Jamesa
- Department of Biological SciencesWestern Michigan UniversityKalamazooMichiganUSA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingShaanxiChina
| | - Yan Lu
- Department of Biological SciencesWestern Michigan UniversityKalamazooMichiganUSA
| |
Collapse
|
2
|
Gao Y, Chen A, Zhu D, Zhou M, Huang H, Pan R, Wang X, Li L, Shen J. Mitochondrial Energy Homeostasis and Membrane Interaction Regulate the Rapid Growth of Moso Bamboo. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40255185 DOI: 10.1111/pce.15559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
The rapid growth of moso bamboo is primarily attributed to the swift elongation of its internodes. While mitochondria are known to provide energy for various cellular processes, the specific mechanisms by which they facilitate rapid growth in bamboo remain elusive. In this study, we optimised the procedures for mitochondria isolation and performed a comprehensive analysis of mitochondrial dynamics and proteomics from internodes at various growth stages, including the initial growth (IG) stage, the starting of cell division (SD), and the rapid elongation (RE). Confocal observation demonstrated that cells in the RE stage have a higher mitochondrial density and increased mitochondrial motility compared to other stages. Proteomic analysis of isolated mitochondria revealed an upregulation of the tricarboxylic acid cycle, along with a synchronous increase in both mitochondrial- and nuclear-encoded components of oxidative phosphorylation in RE cells. Moreover, the upregulation of various mitochondrial membrane transporters in RE cells suggests an enhanced exchange of metabolic intermediates and inorganic ions with the cytosol. Intriguingly, ultrastructural analysis and pharmacological treatments revealed membrane interactions between the endoplasmic reticulum (ER) and mitochondria in RE cells. In conclusion, our study provides novel insights into mitochondrial function and the intracellular dynamics that regulate the rapid growth of moso bamboo.
Collapse
Affiliation(s)
- Yanli Gao
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Anjing Chen
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Dongmei Zhu
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Mingbing Zhou
- National Key Laboratory for Development and Utilization of Forest Food Resources, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, China
| | - Huahong Huang
- Zhejiang International Science and Technology Cooperation Base for Plant Germplasm Resources Conservation and Utilization, Zhejiang A&F University, Hangzhou, China
| | - Ronghui Pan
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinbo Shen
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
3
|
Waneka G, Broz AK, Wold-McGimsey F, Zou Y, Wu Z, Sloan DB. Disruption of recombination machinery alters the mutational landscape in plant organellar genomes. G3 (BETHESDA, MD.) 2025; 15:jkaf029. [PMID: 39946260 PMCID: PMC12005158 DOI: 10.1093/g3journal/jkaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Land plant organellar genomes have extremely low rates of point mutation yet also experience high rates of recombination and genome instability. Characterizing the molecular machinery responsible for these patterns is critical for understanding the evolution of these genomes. While much progress has been made toward understanding recombination activity in land plant organellar genomes, the relationship between recombination pathways and point mutation rates remains uncertain. The organellar-targeted mutS homolog MSH1 has previously been shown to suppress point mutations as well as non-allelic recombination between short repeats in Arabidopsis thaliana. We therefore implemented high-fidelity Duplex Sequencing to test if other genes that function in recombination and maintenance of genome stability also affect point mutation rates. We found small to moderate increases in the frequency of single nucleotide variants (SNVs) and indels in mitochondrial and/or plastid genomes of A. thaliana mutant lines lacking radA, recA1, or recA3. In contrast, osb2 and why2 mutants did not exhibit an increase in point mutations compared to wild-type (WT) controls. In addition, we analyzed the distribution of SNVs in previously generated Duplex Sequencing data from A. thaliana organellar genomes and found unexpected strand asymmetries and large effects of flanking nucleotides on mutation rates in WT plants and msh1 mutants. Finally, using long-read Oxford Nanopore sequencing, we characterized structural variants in organellar genomes of the mutant lines and show that different short repeat sequences become recombinationally active in different mutant backgrounds. Together, these complementary sequencing approaches shed light on how recombination may impact the extraordinarily low point mutation rates in plant organellar genomes.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Yi Zou
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, GD 518120, China
| | - Zhiqiang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, GD 518120, China
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Yu Y, Wang C, Zhang X, Wang J, Li M, Song T, Liang D, Feng G. The transcription factor TaWHY2-6A acts as a positive regulator in response to drought tolerance in transgenic plants. Biochem Biophys Res Commun 2025; 755:151580. [PMID: 40048758 DOI: 10.1016/j.bbrc.2025.151580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/02/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Drought stress severely affects wheat yield, and Whirly (WHY) transcription factors (TFs) are essential in modulating plant tolerance to abiotic stresses. In this study, we identified six WHY members in the wheat whole-genome database, categorized into Group I and Group II, with three homologous WHY genes in each group. From the four selected drought-responsive candidate genes with upregulated expression, we focused on TaWHY2-6A, which was significantly upregulated under drought stress. Under drought conditions, TaWHY2-6A transgenic Arabidopsis exhibited significantly higher chlorophyll content and better growth status compared to wild-type (WT) plants, indicating that TaWHY2-6A enhances drought resistance in transgenic Arabidopsis. In contrast, wheat lines with silenced-TaWHY2-6A exhibited a more severe wilting phenotype following drought treatment, accompanied by elevated levels of H2O2 and O2.-, and reduced antioxidant enzyme activity. These findings suggest that the wheat TaWHY2-6A gene positively regulates drought resistance under drought stress. This research provides a theoretical basis and valuable genetic resources for drought-resistance breeding in wheat.
Collapse
Affiliation(s)
- Yang Yu
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China; Tianjin Crop Research Institute, The Key Laboratory of Crop Genetics and Breeding, Tianjin, 300192, China; Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Agronomy, Northwest Agricultural and Forestry University, Xianyang, 712100, China
| | - Conglei Wang
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Xiao Zhang
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Jianhe Wang
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Mengting Li
- Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Tianqi Song
- College of Agronomy, Northwest Agricultural and Forestry University, Xianyang, 712100, China
| | - Dan Liang
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China; Tianjin Crop Research Institute, The Key Laboratory of Crop Genetics and Breeding, Tianjin, 300192, China.
| | - Gang Feng
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| |
Collapse
|
5
|
Kuznetsov AV. Criterion for Assessing Accumulated Neurotoxicity of Alpha-Synuclein Oligomers in Parkinson's Disease. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2025; 41:e70027. [PMID: 40293716 PMCID: PMC12036748 DOI: 10.1002/cnm.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/14/2025] [Accepted: 02/22/2025] [Indexed: 04/30/2025]
Abstract
The paper introduces a parameter called "accumulated neurotoxicity" of α-syn oligomers, which measures the cumulative damage these toxic species inflict on neurons over time, given the years it typically takes for such damage to manifest. A threshold value for accumulated neurotoxicity is estimated, beyond which neuron death is likely. Numerical results suggest that rapid deposition of α-syn oligomers into fibrils minimizes neurotoxicity, indicating that the formation of Lewy bodies might play a neuroprotective role. Strategies such as reducing α-syn monomer production or enhancing degradation can decrease accumulated neurotoxicity. In contrast, slower degradation (reflected by longer half-lives of monomers and free aggregates) increases neurotoxicity, supporting the idea that impaired protein degradation may contribute to Parkinson's disease progression. Accumulated neurotoxicity is highly sensitive to the half-deposition time of free α-syn aggregates into fibrils, exhibiting a sharp increase as it transitions from negligible to elevated levels, indicative of neural damage.
Collapse
Affiliation(s)
- Andrey V. Kuznetsov
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
6
|
Saha S, Parlar S, Meyer EH, Murcha MW. The complex I subunit B22 contains a LYR domain that is crucial for an interaction with the mitochondrial acyl carrier protein SDAP1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70028. [PMID: 39981882 PMCID: PMC11843852 DOI: 10.1111/tpj.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
Mitochondrial complex I (CI), a large multi-subunit respiratory complex contains two LYR (leucine/tyrosine/arginine) domain-containing subunits, B14 (NDUA6/LYRM6) and B22 (NDUB9/LYRM3). Mitochondrial LYR (LYRM) proteins are soluble matrix-located proteins that have been implicated in diverse functions such as iron-sulphur cluster insertion, OXPHOS complex assembly, and mitoribosome biogenesis. B14 and B22 are unique to other LYRM proteins in that they are integral components of CI. To explore the function of B22, we examined T-DNA insertional knockout and knockdown lines, which displayed a mild growth defect linked to reduced CI activity and abundance. Notably, this defect could not be rescued by complementation with a B22 variant that contained a mutated LYR domain, indicating the domain's critical role in B22's function. Protein interaction assays further revealed that the LYR domain is crucial for B22's interaction with the neighbouring CI subunit, mitochondrial acyl carrier protein SDAP1. Similarly, T-DNA insertional knockdown lines of SDAP1 showed a comparable CI defect, suggesting that the interaction between B22 and SDAP1, mediated by the LYR domain, is important for the function and assembly of CI.
Collapse
Affiliation(s)
- Saurabh Saha
- School of Molecular Sciences and ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaPerthWestern Australia6009Australia
| | - Simge Parlar
- Department of Cell Physiology, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergWeinbergweg 10Halle (Saale)06120Germany
| | - Etienne H. Meyer
- Department of Cell Physiology, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergWeinbergweg 10Halle (Saale)06120Germany
| | - Monika W. Murcha
- School of Molecular Sciences and ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaPerthWestern Australia6009Australia
| |
Collapse
|
7
|
Zhu W, Qian J, Hou Y, Tembrock LR, Nie L, Hsu YF, Xiang Y, Zou Y, Wu Z. The evolutionarily diverged single-stranded DNA-binding proteins SSB1/SSB2 differentially affect the replication, recombination and mutation of organellar genomes in Arabidopsis thaliana. PLANT DIVERSITY 2025; 47:127-135. [PMID: 40041566 PMCID: PMC11873582 DOI: 10.1016/j.pld.2024.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 03/06/2025]
Abstract
Single-stranded DNA-binding proteins (SSBs) play essential roles in the replication, recombination and repair processes of organellar DNA molecules. In Arabidopsis thaliana, SSBs are encoded by a small family of two genes (SSB1 and SSB2). However, the functional divergence of these two SSB copies in plants remains largely unknown, and detailed studies regarding their roles in the replication and recombination of organellar genomes are still incomplete. In this study, phylogenetic, gene structure and protein motif analyses all suggested that SSB1 and SSB2 probably diverged during the early evolution of seed plants. Based on accurate long-read sequencing results, ssb1 and ssb2 mutants had decreased copy numbers for both mitochondrial DNA (mtDNA) and plastid DNA (ptDNA), accompanied by a slight increase in structural rearrangements mediated by intermediate-sized repeats in mt genome and small-scale variants in both genomes. Our findings provide an important foundation for further investigating the effects of DNA dosage in the regulation of mutation frequencies in plant organellar genomes.
Collapse
Affiliation(s)
- Weidong Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jie Qian
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yingke Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Luke R. Tembrock
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Liyun Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yong Xiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yi Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
8
|
Lynch M. The bioenergetic cost of building a metazoan. Proc Natl Acad Sci U S A 2024; 121:e2414742121. [PMID: 39508768 PMCID: PMC11573499 DOI: 10.1073/pnas.2414742121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/06/2024] [Indexed: 11/15/2024] Open
Abstract
All life forms depend on the conversion of energy into biomass used in growth and reproduction. For unicellular heterotrophs, the energetic cost associated with building a cell scales slightly sublinearly with cell weight. However, observations on multiple Daphnia species and numerous other metazoans suggest that although a similar size-specific scaling is retained in multicellular heterotrophs, there is a quantum leap in the energy required to build a replacement soma, presumably owing to the added investment in nonproductive features such as cell adhesion, support tissue, and intercellular communication and transport. Thus, any context-dependent ecological advantages that accompany the evolution of multicellularity come at a high baseline bioenergetic cost. At the phylogenetic level, for both unicellular and multicellular eukaryotes, the energetic expense per unit biomass produced declines with increasing adult size of a species, but there is a countergradient scaling within the developmental trajectories of individual metazoan species, with the cost of biomass production increasing with size. Translation of the results into the universal currency of adenosine triphosphate (ATP) hydrolyses provides insight into the demands on the electron-transport/ATP-synthase machinery per organism and on the minimum doubling times for biomass production imposed by the costs of duplicating the energy-producing infrastructure.
Collapse
Affiliation(s)
- Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ85287
| |
Collapse
|
9
|
Kuznetsov AV. Effects of Time-Dependent Adenosine Triphosphate Consumption Caused by Neuron Firing on Adenosine Triphosphate Concentrations in Synaptic Boutons Containing and Lacking a Stationary Mitochondrion. J Biomech Eng 2024; 146:111002. [PMID: 38888293 DOI: 10.1115/1.4065743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The precise mechanism behind the supply of adenosine triphosphate (ATP) to approximately half of the presynaptic release sites in axons that lack a stationary mitochondrion is not fully understood. This paper presents a mathematical model designed to simulate the transient ATP concentration in presynaptic en passant boutons. The model is utilized to investigate how the ATP concentration responds to increased ATP demand during neuronal firing in boutons with a stationary mitochondrion and those without one. The analysis suggests that neuron firing may cause oscillations in the ATP concentrations, with peak-to-peak amplitudes ranging from 0.06% to 5% of their average values. However, this does not deplete boutons lacking a mitochondrion of ATP; for physiologically relevant values of model parameters, their concentration remains approximately 3.75 times higher than the minimum concentration required for synaptic activity. The variance in average ATP concentrations between boutons containing a stationary mitochondrion and those lacking one ranges from 0.3% to 0.8%, contingent on the distance between the boutons. The model indicates that diffusion-driven ATP transport is rapid enough to adequately supply ATP molecules to boutons lacking a stationary mitochondrion.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910
| |
Collapse
|
10
|
Kan S, Su X, Yang L, Zhou H, Qian M, Zhang W, Li C. From light into shadow: comparative plastomes in Petrocosmea and implications for low light adaptation. BMC PLANT BIOLOGY 2024; 24:949. [PMID: 39394065 PMCID: PMC11468349 DOI: 10.1186/s12870-024-05669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Plastids originated from an ancient endosymbiotic event and evolved into the photosynthetic organelles in plant cells. They absorb light energy and carbon dioxide, converting them into chemical energy and oxygen, which are crucial for plant development and adaptation. However, little is known about the plastid genome to light adaptation. Petrocosmea, a member of the Gesneriaceae family, comprises approximately 70 species with diverse light environment, serve as an ideal subject for studying plastomes adapt to light. RESULTS In this study, we selected ten representative species of Petrocosmea from diverse light environments, assembled their plastid genomes, and conducted a comparative genomic analysis. We found that the plastid genome of Petrocosmea is highly conserved in both structure and gene content. The phylogenetic relationships reconstructed based on the plastid genes were divided into five clades, which is consistent with the results of previous studies. The vast majority of plastid protein-coding genes were under purifying selection, with only the rps8 and rps16 genes identified under positive selection in different light environments. Notably, significant differences of evolutionary rate were observed in NADH dehydrogenase, ATPase ribosome, and RNA polymerase between Clade A and the other clades. Additionally, we identified ycf1 and several intergenic regions (trnH-psbA, trnK-rps16, rpoB-trnC, petA-psbJ, ccsA-trnL, rps16-trnQ, and trnS-trnG) as candidate barcodes for this emerging ornamental horticulture. CONCLUSION We newly assembled ten plastid genomes of Petrocosmea and identified several hypervariable regions, providing genetic resources and candidate markers for this promising emerging ornamental horticulture. Furthermore, our study suggested that rps8 and rps16 were under positive selection and that the evolutionary patterns of NADH dehydrogenase, ATPase ribosome, and RNA polymerase were related to the diversity light environment in Petrocosmea. This revealed an evolutionary scenario for light adaptation of the plastid genome in plants.
Collapse
Affiliation(s)
- Shenglong Kan
- Marine College, Shandong University, Weihai, 264209, China
| | - Xiaoju Su
- Marine College, Shandong University, Weihai, 264209, China
| | - Liu Yang
- Marine College, Shandong University, Weihai, 264209, China
| | - Hongling Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, China
| | - Mu Qian
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, 250110, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai, 264209, China.
| | - Chaoqun Li
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China.
- Shandong Engineering Research Center of Rose Breeding Technology and Germplasm Innovation, School of Life Sciences, Qilu Normal University, Jinan, 250200, China.
| |
Collapse
|
11
|
Moseler A, Wagner S, Meyer AJ. Protein persulfidation in plants: mechanisms and functions beyond a simple stress response. Biol Chem 2024:hsz-2024-0038. [PMID: 39303198 DOI: 10.1515/hsz-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Posttranslational modifications (PTMs) can modulate the activity, localization and interactions of proteins and (re)define their biological function. Understanding how changing environments can alter cellular processes thus requires detailed knowledge about the dynamics of PTMs in time and space. A PTM that gained increasing attention in the last decades is protein persulfidation, where a cysteine thiol (-SH) is covalently bound to sulfane sulfur to form a persulfide (-SSH). The precise cellular mechanisms underlying the presumed persulfide signaling in plants are, however, only beginning to emerge. In the mitochondrial matrix, strict regulation of persulfidation and H2S homeostasis is of prime importance for maintaining mitochondrial bioenergetic processes because H2S is a highly potent poison for cytochrome c oxidase. This review summarizes the current knowledge about protein persulfidation and corresponding processes in mitochondria of the model plant Arabidopsis. These processes will be compared to the respective processes in non-plant models to underpin similarities or highlight apparent differences. We provide an overview of mitochondrial pathways that contribute to H2S and protein persulfide generation and mechanisms for H2S fixation and de-persulfidation. Based on current proteomic data, we compile a plant mitochondrial persulfidome and discuss how persulfidation may regulate protein function.
Collapse
Affiliation(s)
- Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
12
|
Gorbenko IV, Tarasenko VI, Garnik EY, Yakovleva TV, Katyshev AI, Belkov VI, Orlov YL, Konstantinov YM, Koulintchenko MV. Overexpression of RPOTmp Being Targeted to Either Mitochondria or Chloroplasts in Arabidopsis Leads to Overall Transcriptome Changes and Faster Growth. Int J Mol Sci 2024; 25:8164. [PMID: 39125738 PMCID: PMC11312007 DOI: 10.3390/ijms25158164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The transcription of Arabidopsis organellar genes is performed by three nuclear-encoded RNA polymerases: RPOTm, RPOTmp, and RPOTp. The RPOTmp protein possesses ambiguous transit peptides, allowing participation in gene expression control in both mitochondria and chloroplasts, although its function in plastids is still under discussion. Here, we show that the overexpression of RPOTmp in Arabidopsis, targeted either to mitochondria or chloroplasts, disturbs the dormant seed state, and it causes the following effects: earlier germination, decreased ABA sensitivity, faster seedling growth, and earlier flowering. The germination of RPOTmp overexpressors is less sensitive to NaCl, while rpotmp knockout is highly vulnerable to salt stress. We found that mitochondrial dysfunction in the rpotmp mutant induces an unknown retrograde response pathway that bypasses AOX and ANAC017. Here, we show that RPOTmp transcribes the accD, clpP, and rpoB genes in plastids and up to 22 genes in mitochondria.
Collapse
Affiliation(s)
- Igor V. Gorbenko
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Vladislav I. Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Elena Y. Garnik
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Tatiana V. Yakovleva
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Alexander I. Katyshev
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Vadim I. Belkov
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
| | - Yuriy L. Orlov
- The Digital Health Center, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Yuri M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
- Biosoil Department, Irkutsk State University, Irkutsk 664003, Russia
| | - Milana V. Koulintchenko
- Siberian Institute of Plant Physiology and Biochemistry of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia; (V.I.T.); (T.V.Y.); (A.I.K.); (Y.M.K.); (M.V.K.)
- Kazan Institute of Biochemistry and Biophysics of the Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences” (KIBB FRC KazSC RAS), Kazan 420111, Russia
| |
Collapse
|
13
|
Thielen M, Gärtner B, Knoop V, Schallenberg-Rüdinger M, Lesch E. Conquering new grounds: plant organellar C-to-U RNA editing factors can be functional in the plant cytosol. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:895-915. [PMID: 38753873 DOI: 10.1111/tpj.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Plant mitochondrial and chloroplast transcripts are subject to numerous events of specific cytidine-to-uridine (C-to-U) RNA editing to correct genetic information. Key protein factors for this process are specific RNA-binding pentatricopeptide repeat (PPR) proteins, which are encoded in the nucleus and post-translationally imported into the two endosymbiotic organelles. Despite hundreds of C-to-U editing sites in the plant organelles, no comparable editing has been found for nucleo-cytosolic mRNAs raising the question why plant RNA editing is restricted to chloroplasts and mitochondria. Here, we addressed this issue in the model moss Physcomitrium patens, where all PPR-type RNA editing factors comprise specific RNA-binding and cytidine deamination functionalities in single proteins. To explore whether organelle-type RNA editing can principally also take place in the plant cytosol, we expressed PPR56, PPR65 and PPR78, three editing factors recently shown to also function in a bacterial setup, together with cytosolic co-transcribed native targets in Physcomitrium. While we obtained unsatisfying results upon their constitutive expression, we found strong cytosolic RNA editing under hormone-inducible expression. Moreover, RNA-Seq analyses revealed varying numbers of up to more than 900 off-targets in other cytosolic transcripts. We conclude that PPR-mediated C-to-U RNA editing is not per se incompatible with the plant cytosol but that its limited target specificity has restricted its occurrence to the much less complex transcriptomes of mitochondria and chloroplast in the course of evolution.
Collapse
Affiliation(s)
- Mirjam Thielen
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Béla Gärtner
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
14
|
Waneka G, Broz AK, Wold-McGimsey F, Zou Y, Wu Z, Sloan DB. Disruption of recombination machinery alters the mutational landscape in plant organellar genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597120. [PMID: 38895361 PMCID: PMC11185577 DOI: 10.1101/2024.06.03.597120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Land plant organellar genomes have extremely low rates of point mutation yet also experience high rates of recombination and genome instability. Characterizing the molecular machinery responsible for these patterns is critical for understanding the evolution of these genomes. While much progress has been made towards understanding recombination activity in land plant organellar genomes, the relationship between recombination pathways and point mutation rates remains uncertain. The organellar targeted mutS homolog MSH1 has previously been shown to suppress point mutations as well as non-allelic recombination between short repeats in Arabidopsis thaliana. We therefore implemented high-fidelity Duplex Sequencing to test if other genes that function in recombination and maintenance of genome stability also affect point mutation rates. We found small to moderate increases in the frequency of single nucleotide variants (SNVs) and indels in mitochondrial and/or plastid genomes of A. thaliana mutant lines lacking radA, recA1, or recA3. In contrast, osb2 and why2 mutants did not exhibit an increase in point mutations compared to wild type (WT) controls. In addition, we analyzed the distribution of SNVs in previously generated Duplex Sequencing data from A. thaliana organellar genomes and found unexpected strand asymmetries and large effects of flanking nucleotides on mutation rates in WT plants and msh1 mutants. Finally, using long-read Oxford Nanopore sequencing, we characterized structural variants in organellar genomes of the mutant lines and show that different short repeat sequences become recombinationally active in different mutant backgrounds. Together, these complementary sequencing approaches shed light on how recombination may impact the extraordinarily low point mutation rates in plant organellar genomes.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Yi Zou
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Zhiqiang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
15
|
Belosludtseva NV, Dubinin MV, Belosludtsev KN. Pore-Forming VDAC Proteins of the Outer Mitochondrial Membrane: Regulation and Pathophysiological Role. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1061-1078. [PMID: 38981701 DOI: 10.1134/s0006297924060075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
Voltage-dependent anion channels (VDAC1-3) of the outer mitochondrial membrane are a family of pore-forming β-barrel proteins that carry out controlled "filtration" of small molecules and ions between the cytoplasm and mitochondria. Due to the conformational transitions between the closed and open states and interaction with cytoplasmic and mitochondrial proteins, VDACs not only regulate the mitochondrial membrane permeability for major metabolites and ions, but also participate in the control of essential intracellular processes and pathological conditions. This review discusses novel data on the molecular structure, regulatory mechanisms, and pathophysiological role of VDAC proteins, as well as future directions in this area of research.
Collapse
Affiliation(s)
- Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Mari State University, Yoshkar-Ola, Mari El, 424001, Russia
| | | | | |
Collapse
|
16
|
Moreno SR, Ugalde JM. A double-feature mitochondrial proteome exploration show. PLANT PHYSIOLOGY 2024; 195:1091-1093. [PMID: 38324674 PMCID: PMC11142345 DOI: 10.1093/plphys/kiae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Affiliation(s)
- Sebastián R Moreno
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - José Manuel Ugalde
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| |
Collapse
|
17
|
Rugen N, Senkler M, Braun HP. Deep proteomics reveals incorporation of unedited proteins into mitochondrial protein complexes in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:1180-1199. [PMID: 38060994 PMCID: PMC11142381 DOI: 10.1093/plphys/kiad655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/12/2023] [Indexed: 06/02/2024]
Abstract
The mitochondrial proteome consists of numerous types of proteins which either are encoded and synthesized in the mitochondria, or encoded in the cell nucleus, synthesized in the cytoplasm and imported into the mitochondria. Their synthesis in the mitochondria, but not in the nucleus, relies on the editing of the primary transcripts of their genes at defined sites. Here, we present an in-depth investigation of the mitochondrial proteome of Arabidopsis (Arabidopsis thaliana) and a public online platform for the exploration of the data. For the analysis of our shotgun proteomic data, an Arabidopsis sequence database was created comprising all available protein sequences from the TAIR10 and Araport11 databases, supplemented with sequences of proteins translated from edited and nonedited transcripts of mitochondria. Amino acid sequences derived from partially edited transcripts were also added to analyze proteins encoded by the mitochondrial genome. Proteins were digested in parallel with six different endoproteases to obtain maximum proteome coverage. The resulting peptide fractions were finally analyzed using liquid chromatography coupled to ion mobility spectrometry and tandem mass spectrometry. We generated a "deep mitochondrial proteome" of 4,692 proteins. 1,339 proteins assigned to mitochondria by the SUBA5 database (https://suba.live) accounted for >80% of the total protein mass of our fractions. The coverage of proteins by identified peptides was particularly high compared to single-protease digests, allowing the exploration of differential splicing and RNA editing events at the protein level. We show that proteins translated from nonedited transcripts can be incorporated into native mitoribosomes and the ATP synthase complex. We present a portal for the use of our data, based on "proteomaps" with directly linked protein data. The portal is available at www.proteomeexplorer.de.
Collapse
Affiliation(s)
- Nils Rugen
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Michael Senkler
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
18
|
Mizrahi R, Ostersetzer-Biran O. Mitochondrial RNA Helicases: Key Players in the Regulation of Plant Organellar RNA Splicing and Gene Expression. Int J Mol Sci 2024; 25:5502. [PMID: 38791540 PMCID: PMC11122041 DOI: 10.3390/ijms25105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial genomes of land plants are large and exhibit a complex mode of gene organization and expression, particularly at the post-transcriptional level. The primary organellar transcripts in plants undergo extensive maturation steps, including endo- and/or exo-nucleolytic cleavage, RNA-base modifications (mostly C-to-U deaminations) and both 'cis'- and 'trans'-splicing events. These essential processing steps rely on the activities of a large set of nuclear-encoded factors. RNA helicases serve as key players in RNA metabolism, participating in the regulation of transcription, mRNA processing and translation. They unwind RNA secondary structures and facilitate the formation of ribonucleoprotein complexes crucial for various stages of gene expression. Furthermore, RNA helicases are involved in RNA metabolism by modulating pre-mRNA maturation, transport and degradation processes. These enzymes are, therefore, pivotal in RNA quality-control mechanisms, ensuring the fidelity and efficiency of RNA processing and turnover in plant mitochondria. This review summarizes the significant roles played by helicases in regulating the highly dynamic processes of mitochondrial transcription, RNA processing and translation in plants. We further discuss recent advancements in understanding how dysregulation of mitochondrial RNA helicases affects the splicing of organellar genes, leading to respiratory dysfunctions, and consequently, altered growth, development and physiology of land plants.
Collapse
Affiliation(s)
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus—Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
19
|
Peñafiel-Ayala A, Peralta-Castro A, Mora-Garduño J, García-Medel P, Zambrano-Pereira AG, Díaz-Quezada C, Abraham-Juárez MJ, Benítez-Cardoza CG, Sloan DB, Brieba LG. Plant Organellar MSH1 Is a Displacement Loop-Specific Endonuclease. PLANT & CELL PHYSIOLOGY 2024; 65:560-575. [PMID: 37756637 PMCID: PMC11494383 DOI: 10.1093/pcp/pcad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
MutS HOMOLOG 1 (MSH1) is an organellar-targeted protein that obstructs ectopic recombination and the accumulation of mutations in plant organellar genomes. MSH1 also modulates the epigenetic status of nuclear DNA, and its absence induces a variety of phenotypic responses. MSH1 is a member of the MutS family of DNA mismatch repair proteins but harbors an additional GIY-YIG nuclease domain that distinguishes it from the rest of this family. How MSH1 hampers recombination and promotes fidelity in organellar DNA inheritance is unknown. Here, we elucidate its enzymatic activities by recombinantly expressing and purifying full-length MSH1 from Arabidopsis thaliana (AtMSH1). AtMSH1 is a metalloenzyme that shows a strong binding affinity for displacement loops (D-loops). The DNA-binding abilities of AtMSH1 reside in its MutS domain and not in its GIY-YIG domain, which is the ancillary nickase of AtMSH1. In the presence of divalent metal ions, AtMSH1 selectively executes multiple incisions at D-loops, but not other DNA structures including Holliday junctions or dsDNA, regardless of the presence or absence of mismatches. The selectivity of AtMSH1 to dismantle D-loops supports the role of this enzyme in preventing recombination between short repeats. Our results suggest that plant organelles have evolved novel DNA repair routes centered around the anti-recombinogenic activity of MSH1.
Collapse
Affiliation(s)
- Alejandro Peñafiel-Ayala
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Antolin Peralta-Castro
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Josue Mora-Garduño
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Paola García-Medel
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Angie G Zambrano-Pereira
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Corina Díaz-Quezada
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - María Jazmín Abraham-Juárez
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-IPN, Guillermo Massieu Helguera No. 239, La Escalera Ticoman 07320 DF, México
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| |
Collapse
|
20
|
Edris R, Sultan LD, Best C, Mizrahi R, Weinstein O, Chen S, Kamennaya NA, Keren N, Zer H, Zhu H, Ostersetzer-Biran O. Root Primordium Defective 1 Encodes an Essential PORR Protein Required for the Splicing of Mitochondria-Encoded Group II Introns and for Respiratory Complex I Biogenesis. PLANT & CELL PHYSIOLOGY 2024; 65:602-617. [PMID: 37702436 DOI: 10.1093/pcp/pcad101] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Cellular respiration involves complex organellar metabolic activities that are pivotal for plant growth and development. Mitochondria contain their own genetic system (mitogenome, mtDNA), which encodes key elements of the respiratory machinery. Plant mtDNAs are notably larger than their counterparts in Animalia, with complex genome organization and gene expression characteristics. The maturation of the plant mitochondrial transcripts involves extensive RNA editing, trimming and splicing events. These essential processing steps rely on the activities of numerous nuclear-encoded cofactors, which may also play key regulatory roles in mitochondrial biogenesis and function and hence in plant physiology. Proteins that harbor the plant organelle RNA recognition (PORR) domain are represented in a small gene family in plants. Several PORR members, including WTF1, WTF9 and LEFKOTHEA, are known to act in the splicing of organellar group II introns in angiosperms. The AT4G33495 gene locus encodes an essential PORR protein in Arabidopsis, termed ROOT PRIMORDIUM DEFECTIVE 1 (RPD1). A null mutation of At.RPD1 causes arrest in early embryogenesis, while the missense mutant lines, rpd1.1 and rpd1.2, exhibit a strong impairment in root development and retarded growth phenotypes, especially under high-temperature conditions. Here, we further show that RPD1 functions in the splicing of introns that reside in the coding regions of various complex I (CI) subunits (i.e. nad2, nad4, nad5 and nad7), as well as in the maturation of the ribosomal rps3 pre-RNA in Arabidopsis mitochondria. The altered growth and developmental phenotypes and modified respiration activities are tightly correlated with respiratory chain CI defects in rpd1 mutants.
Collapse
Affiliation(s)
- Rana Edris
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Laure D Sultan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Corinne Best
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Ron Mizrahi
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Ofir Weinstein
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Stav Chen
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Nina A Kamennaya
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Bluestein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, Sede Boqer 8499000, Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Hagit Zer
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| | - Hongliang Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
21
|
Negroni YL, Doro I, Tamborrino A, Luzzi I, Fortunato S, Hensel G, Khosravi S, Maretto L, Stevanato P, Lo Schiavo F, de Pinto MC, Krupinska K, Zottini M. The Arabidopsis Mitochondrial Nucleoid-Associated Protein WHIRLY2 Is Required for a Proper Response to Salt Stress. PLANT & CELL PHYSIOLOGY 2024; 65:576-589. [PMID: 38591870 PMCID: PMC11094760 DOI: 10.1093/pcp/pcae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
In the last years, plant organelles have emerged as central coordinators of responses to internal and external stimuli, which can induce stress. Mitochondria play a fundamental role as stress sensors being part of a complex communication network between the organelles and the nucleus. Among the different environmental stresses, salt stress poses a significant challenge and requires efficient signaling and protective mechanisms. By using the why2 T-DNA insertion mutant and a novel knock-out mutant prepared by CRISPR/Cas9-mediated genome editing, this study revealed that WHIRLY2 is crucial for protecting mitochondrial DNA (mtDNA) integrity during salt stress. Loss-of-function mutants show an enhanced sensitivity to salt stress. The disruption of WHIRLY2 causes the impairment of mtDNA repair that results in the accumulation of aberrant recombination products, coinciding with severe alterations in nucleoid integrity and overall mitochondria morphology besides a compromised redox-dependent response and misregulation of antioxidant enzymes. The results of this study revealed that WHIRLY2-mediated structural features in mitochondria (nucleoid compactness and cristae) are important for an effective response to salt stress.
Collapse
Affiliation(s)
- Yuri L Negroni
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Irene Doro
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Alberto Tamborrino
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Irene Luzzi
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari, Campus Universitario, Via Orabona, 4, Bari 70125, Italy
| | - Götz Hensel
- Plant Reproductive Biology, Department of Physiology and Cell Biology, IPK, Corrensstraße 3, Seeland, Gatersleben D-06466, Germany
| | - Solmaz Khosravi
- Plant Reproductive Biology, Department of Physiology and Cell Biology, IPK, Corrensstraße 3, Seeland, Gatersleben D-06466, Germany
| | - Laura Maretto
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Viale Università 16, Legnaro, Padova 35020, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Viale Università 16, Legnaro, Padova 35020, Italy
| | - Fiorella Lo Schiavo
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari, Campus Universitario, Via Orabona, 4, Bari 70125, Italy
| | - Karin Krupinska
- Botanisches Institut, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel D-24098, Germany
| | - Michela Zottini
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| |
Collapse
|
22
|
Waters ER, Bezanilla M, Vierling E. ATAD3 Proteins: Unique Mitochondrial Proteins Essential for Life in Diverse Eukaryotic Lineages. PLANT & CELL PHYSIOLOGY 2024; 65:493-502. [PMID: 37859594 DOI: 10.1093/pcp/pcad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
ATPase family AAA domain-containing 3 (ATAD3) proteins are unique mitochondrial proteins that arose deep in the eukaryotic lineage but that are surprisingly absent in Fungi and Amoebozoa. These ∼600-amino acid proteins are anchored in the inner mitochondrial membrane and are essential in metazoans and Arabidopsis thaliana. ATAD3s comprise a C-terminal ATPases Associated with a variety of cellular Activities (AAA+) matrix domain and an ATAD3_N domain, which is located primarily in the inner membrane space but potentially extends to the cytosol to interact with the ER. Sequence and structural alignments indicate that ATAD3 proteins are most similar to classic chaperone unfoldases in the AAA+ family, suggesting that they operate in mitochondrial protein quality control. A. thaliana has four ATAD3 genes in two distinct clades that appear first in the seed plants, and both clades are essential for viability. The four genes are generally coordinately expressed, and transcripts are highest in growing apices and imbibed seeds. Plants with disrupted ATAD3 have reduced growth, aberrant mitochondrial morphology, diffuse nucleoids and reduced oxidative phosphorylation complex I. These and other pleiotropic phenotypes are also observed in ATAD3 mutants in metazoans. Here, we discuss the distribution of ATAD3 proteins as they have evolved in the plant kingdom, their unique structure, what we know about their function in plants and the challenges in determining their essential roles in mitochondria.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Department of Biology, San Diego State University, 5500 Campanille Dr., San Diego, CA 92182, USA
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, 78 College St., Hanover, NH 03755, USA
| | - Elizabeth Vierling
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| |
Collapse
|
23
|
Sloan DB, Conover JL, Grover CE, Wendel JF, Sharbrough J. Polyploid plants take cytonuclear perturbations in stride. THE PLANT CELL 2024; 36:829-839. [PMID: 38267606 PMCID: PMC10980399 DOI: 10.1093/plcell/koae021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Hybridization in plants is often accompanied by nuclear genome doubling (allopolyploidy), which has been hypothesized to perturb interactions between nuclear and organellar (mitochondrial and plastid) genomes by creating imbalances in the relative copy number of these genomes and producing genetic incompatibilities between maternally derived organellar genomes and the half of the allopolyploid nuclear genome from the paternal progenitor. Several evolutionary responses have been predicted to ameliorate these effects, including selection for changes in protein sequences that restore cytonuclear interactions; biased gene retention/expression/conversion favoring maternal nuclear gene copies; and fine-tuning of relative cytonuclear genome copy numbers and expression levels. Numerous recent studies, however, have found that evolutionary responses are inconsistent and rarely scale to genome-wide generalities. The apparent robustness of plant cytonuclear interactions to allopolyploidy may reflect features that are general to allopolyploids such as the lack of F2 hybrid breakdown under disomic inheritance, and others that are more plant-specific, including slow sequence divergence in organellar genomes and preexisting regulatory responses to changes in cell size and endopolyploidy during development. Thus, cytonuclear interactions may only rarely act as the main barrier to establishment of allopolyploid lineages, perhaps helping to explain why allopolyploidy is so pervasive in plant evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Justin L Conover
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Joel Sharbrough
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| |
Collapse
|
24
|
Kuznetsov AV. Lewy body radius growth: The hypothesis of the cube root of time dependency. J Theor Biol 2024; 581:111734. [PMID: 38246486 DOI: 10.1016/j.jtbi.2024.111734] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
This paper presents a model for the growth of Lewy bodies (LBs), which are pathological hallmarks of Parkinson's disease (PD). The model simulates the growth of classical LBs, consisting of a core and a halo. The core is assumed to comprise lipid membrane fragments and damaged organelles, while the halo consists of radiating alpha-synuclein (α-syn) fibrils. The Finke-Watzky model is employed to simulate the aggregation of lipid fragments and α-syn monomers. Analytical and numerical exploration of the governing equations yielded approximate solutions applicable for larger times. The application of these approximate solutions to simulate LB radius growth led to the discovery of the cube root hypothesis, which posits that the LB radius is proportional to the cube root of its growth time. Sensitivity analysis revealed that the LB radius is unaffected by the kinetic rates of nucleation and autocatalytic growth, with growth primarily regulated by the production rates of lipid membrane fragments and α-syn monomers. The model indicates that the formation of large LBs associated with PD is dependent on the malfunction of the machinery responsible for the degradation of lipid membrane fragments, α-syn monomers, and their aggregates.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA.
| |
Collapse
|
25
|
Chustecki JM, Johnston IG. Collective mitochondrial dynamics resolve conflicting cellular tensions: From plants to general principles. Semin Cell Dev Biol 2024; 156:253-265. [PMID: 38043948 DOI: 10.1016/j.semcdb.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 12/05/2023]
Abstract
Mitochondria play diverse and essential roles in eukaryotic cells, and plants are no exception. Plant mitochondria have several differences from their metazoan and fungal cousins: they often exist in a fragmented state, move rapidly on actin rather than microtubules, have many plant-specific metabolic features and roles, and usually contain only a subset of the complete mtDNA genome, which itself undergoes frequent recombination. This arrangement means that exchange and complementation is essential for plant mitochondria, and recent work has begun to reveal how their collective dynamics and resultant "social networks" of encounters support this exchange, connecting plant mitochondria in time rather than in space. This review will argue that this social network perspective can be extended to a "societal network", where mitochondrial dynamics are an essential part of the interacting cellular society of organelles and biomolecules. Evidence is emerging that mitochondrial dynamics allow optimal resolutions to competing cellular priorities; we will survey this evidence and review potential future research directions, highlighting that plant mitochondria can help reveal and test principles that apply across other kingdoms of life. In parallel with this fundamental cell biology, we also highlight the translational "One Health" importance of plant mitochondrial behaviour - which is exploited in the production of a vast amount of crops consumed worldwide - and the potential for multi-objective optimisation to understand and rationally re-engineer the evolved resolutions to these tensions.
Collapse
Affiliation(s)
- Joanna M Chustecki
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway; Computational Biology Unit, University of Bergen, Bergen, Norway.
| |
Collapse
|
26
|
Tolleter D, Smith EN, Dupont-Thibert C, Uwizeye C, Vile D, Gloaguen P, Falconet D, Finazzi G, Vandenbrouck Y, Curien G. The Arabidopsis leaf quantitative atlas: a cellular and subcellular mapping through unified data integration. QUANTITATIVE PLANT BIOLOGY 2024; 5:e2. [PMID: 38572078 PMCID: PMC10988163 DOI: 10.1017/qpb.2024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 04/05/2024]
Abstract
Quantitative analyses and models are required to connect a plant's cellular organisation with its metabolism. However, quantitative data are often scattered over multiple studies, and finding such data and converting them into useful information is time-consuming. Consequently, there is a need to centralise the available data and to highlight the remaining knowledge gaps. Here, we present a step-by-step approach to manually extract quantitative data from various information sources, and to unify the data format. First, data from Arabidopsis leaf were collated, checked for consistency and correctness and curated by cross-checking sources. Second, quantitative data were combined by applying calculation rules. They were then integrated into a unique comprehensive, referenced, modifiable and reusable data compendium representing an Arabidopsis reference leaf. This atlas contains the metrics of the 15 cell types found in leaves at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Dimitri Tolleter
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Edward N. Smith
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Clémence Dupont-Thibert
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Clarisse Uwizeye
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Denis Vile
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), UMR 759, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Pauline Gloaguen
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | | | - Gilles Curien
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| |
Collapse
|
27
|
van Wijk KJ, Bentolila S, Leppert T, Sun Q, Sun Z, Mendoza L, Li M, Deutsch EW. Detection and editing of the updated Arabidopsis plastid- and mitochondrial-encoded proteomes through PeptideAtlas. PLANT PHYSIOLOGY 2024; 194:1411-1430. [PMID: 37879112 DOI: 10.1093/plphys/kiad572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) ecotype Col-0 has plastid and mitochondrial genomes encoding over 100 proteins. Public databases (e.g. Araport11) have redundancy and discrepancies in gene identifiers for these organelle-encoded proteins. RNA editing results in changes to specific amino acid residues or creation of start and stop codons for many of these proteins, but the impact of RNA editing at the protein level is largely unexplored due to the complexities of detection. Here, we assembled the nonredundant set of identifiers, their correct protein sequences, and 452 predicted nonsynonymous editing sites of which 56 are edited at lower frequency. We then determined accumulation of edited and/or unedited proteoforms by searching ∼259 million raw tandem MS spectra from ProteomeXchange, which is part of PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/). We identified all mitochondrial proteins and all except 3 plastid-encoded proteins (NdhG/Ndh6, PsbM, and Rps16), but no proteins predicted from the 4 ORFs were identified. We suggest that Rps16 and 3 of the ORFs are pseudogenes. Detection frequencies for each edit site and type of edit (e.g. S to L/F) were determined at the protein level, cross-referenced against the metadata (e.g. tissue), and evaluated for technical detection challenges. We detected 167 predicted edit sites at the proteome level. Minor frequency sites were edited at low frequency at the protein level except for cytochrome C biogenesis 382 at residue 124 (Ccb382-124). Major frequency sites (>50% editing of RNA) only accumulated in edited form (>98% to 100% edited) at the protein level, with the exception of Rpl5-22. We conclude that RNA editing for major editing sites is required for stable protein accumulation.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Stephane Bentolila
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Margaret Li
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| |
Collapse
|
28
|
Lesch E, Stempel MS, Dressnandt V, Oldenkott B, Knoop V, Schallenberg-Rüdinger M. Conservation of the moss RNA editing factor PPR78 despite the loss of its known cytidine-to-uridine editing sites is explained by a hidden extra target. THE PLANT CELL 2024; 36:727-745. [PMID: 38000897 PMCID: PMC10896298 DOI: 10.1093/plcell/koad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Cytidine (C)-to-uridine (U) RNA editing in plant organelles relies on specific RNA-binding pentatricopeptide repeat (PPR) proteins. In the moss Physcomitrium patens, all such RNA editing factors feature a C-terminal DYW domain that acts as the cytidine deaminase for C-to-U conversion. PPR78 of Physcomitrium targets 2 mitochondrial editing sites, cox1eU755SL and rps14eU137SL. Remarkably, the latter is edited to highly variable degrees in different mosses. Here, we aimed to unravel the coevolution of PPR78 and its 2 target sites in mosses. Heterologous complementation in a Physcomitrium knockout line revealed that the variable editing of rps14eU137SL depends on the PPR arrays of different PPR78 orthologues but not their C-terminal domains. Intriguingly, PPR78 has remained conserved despite the simultaneous loss of editing at both known targets among Hypnales (feather mosses), suggesting it serves an additional function. Using a recently established RNA editing assay in Escherichia coli, we confirmed site-specific RNA editing by PPR78 in the bacterium and identified 4 additional off-targets in the bacterial transcriptome. Based on conservation profiles, we predicted ccmFNeU1465RC as a candidate editing target of PPR78 in moss mitochondrial transcriptomes. We confirmed editing at this site in several mosses and verified that PPR78 targets ccmFNeU1465RC in the bacterial editing system, explaining the conservation and functional adaptation of PPR78 during moss evolution.
Collapse
Affiliation(s)
- Elena Lesch
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Maike Simone Stempel
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Vanessa Dressnandt
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Bastian Oldenkott
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Volker Knoop
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| |
Collapse
|
29
|
Wu Y, Li M, Ying H, Gu Y, Zhu Y, Gu Y, Huang L. Mitochondrial quality control alterations and placenta-related disorders. Front Physiol 2024; 15:1344951. [PMID: 38390447 PMCID: PMC10883312 DOI: 10.3389/fphys.2024.1344951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Mitochondria are ubiquitous in eukaryotic cells. Normal maintenance of function is the premise and basis for various physiological activities. Mitochondrial dysfunction is commonly observed in a wide range of pathological conditions, such as neurodegenerative, metabolic, cardiovascular, and various diseases related to foetal growth and development. The placenta is a highly energy-dependent organ that acts as an intermediary between the mother and foetus and functions to maintain foetal growth and development. Recent studies have demonstrated that mitochondrial dysfunction is associated with placental disorders. Defects in mitochondrial quality control mechanisms may lead to preeclampsia and foetal growth restriction. In this review, we address the quality control mechanisms of mitochondria and the relevant pathologies of mitochondrial dysfunction in placenta-related diseases, such as preeclampsia and foetal growth restriction. This review also investigates the relation between mitochondrial dysfunction and placental disorders.
Collapse
Affiliation(s)
- Yamei Wu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Meng Li
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Gu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Yunlong Zhu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Yanfang Gu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Lu Huang
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| |
Collapse
|
30
|
Zheng Y, Cabassa-Hourton C, Eubel H, Chevreux G, Lignieres L, Crilat E, Braun HP, Lebreton S, Savouré A. Pyrroline-5-carboxylate metabolism protein complex detected in Arabidopsis thaliana leaf mitochondria. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:917-934. [PMID: 37843921 DOI: 10.1093/jxb/erad406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/14/2023] [Indexed: 10/18/2023]
Abstract
Proline dehydrogenase (ProDH) and pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyse the oxidation of proline into glutamate via the intermediates P5C and glutamate-semialdehyde (GSA), which spontaneously interconvert. P5C and GSA are also intermediates in the production of glutamate from ornithine and α-ketoglutarate catalysed by ornithine δ-aminotransferase (OAT). ProDH and P5CDH form a fused bifunctional PutA enzyme in Gram-negative bacteria and are associated in a bifunctional substrate-channelling complex in Thermus thermophilus; however, the physical proximity of ProDH and P5CDH in eukaryotes has not been described. Here, we report evidence of physical proximity and interactions between Arabidopsis ProDH, P5CDH, and OAT in the mitochondria of plants during dark-induced leaf senescence when all three enzymes are expressed. Pairwise interactions and localization of the three enzymes were investigated using bimolecular fluorescence complementation with confocal microscopy in tobacco and sub-mitochondrial fractionation in Arabidopsis. Evidence for a complex composed of ProDH, P5CDH, and OAT was revealed by co-migration of the proteins in native conditions upon gel electrophoresis. Co-immunoprecipitation coupled with mass spectrometry analysis confirmed the presence of the P5C metabolism complex in Arabidopsis. Pull-down assays further demonstrated a direct interaction between ProDH1 and P5CDH. P5C metabolism complexes might channel P5C among the constituent enzymes and directly provide electrons to the respiratory electron chain via ProDH.
Collapse
Affiliation(s)
- Yao Zheng
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Holger Eubel
- Institute of Plant Genetics, Leibniz Universität Hannover, Germany
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Laurent Lignieres
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Emilie Crilat
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, Germany
| | - Sandrine Lebreton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| |
Collapse
|
31
|
Lima RPM, Oliveira JS, do Nascimento LC, Labate MTV, Labate CA, Barreto P, Maia IDG. High-throughput analysis reveals disturbances throughout the cell caused by Arabidopsis UCP1 and UCP3 double knockdown. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108324. [PMID: 38183903 DOI: 10.1016/j.plaphy.2023.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
Three genes encoding mitochondrial uncoupling proteins (UCPs) have been described in Arabidopsis thaliana (UCP1 to UCP3). In plants, UCPs may act as an uncoupler or as an aspartate/glutamate exchanger. For instance, much of the data regarding UCP functionality were obtained for the UCP1 and UCP2 isoforms compared with UCP3. Here, to get a better understanding about the concerted action of UCP1 and UCP3 in planta, we investigated the transcriptome and metabolome profiles of ucp1 ucp3 double mutant plants during the vegetative phase. For that, 21-day-old mutant plants, which displayed the most evident phenotypic alterations compared to wild type (WT) plants, were employed. The double knockdown of UCP1 and UCP3, isoforms unequivocally present inside the mitochondria, promoted important transcriptional reprogramming with alterations in the expression of genes related to mitochondrial and chloroplast function as well as those responsive to abiotic stress, suggesting disturbances throughout the cell. The observed transcriptional changes were well integrated with the metabolomic data of ucp1 ucp3 plants. Alterations in metabolites related to primary and secondary metabolism, particularly enriched in the Alanine, Aspartate and Glutamate metabolism, were detected. These findings extend our knowledge of the underlying roles played by UCP3 in concert with UCP1 at the whole plant level.
Collapse
Affiliation(s)
- Rômulo Pedro Macêdo Lima
- Departamento de Ciências Químicas e Biológicas (Setor Genética), Instituto de Biociências, UNESP, CEP 18618-689, Botucatu, SP, Brazil
| | - Jakeline Santos Oliveira
- Departamento de Biologia Estrutural e Funcional (Setor Fisiologia), Instituto de Biociências, UNESP, CEP 18618-689, Botucatu, SP, Brazil
| | | | | | - Carlos Alberto Labate
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", USP, CEP 13418-260, Piracicaba, SP, Brazil
| | - Pedro Barreto
- Departamento de Ciências Químicas e Biológicas (Setor Genética), Instituto de Biociências, UNESP, CEP 18618-689, Botucatu, SP, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas (Setor Genética), Instituto de Biociências, UNESP, CEP 18618-689, Botucatu, SP, Brazil.
| |
Collapse
|
32
|
Fuchs P, Feixes-Prats E, Arruda P, Feitosa-Araújo E, Fernie AR, Grefen C, Lichtenauer S, Linka N, de Godoy Maia I, Meyer AJ, Schilasky S, Sweetlove LJ, Wege S, Weber APM, Millar AH, Keech O, Florez-Sarasa I, Barreto P, Schwarzländer M. PLANT UNCOUPLING MITOCHONDRIAL PROTEIN 2 localizes to the Golgi. PLANT PHYSIOLOGY 2024; 194:623-628. [PMID: 37820040 DOI: 10.1093/plphys/kiad540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 10/13/2023]
Abstract
In contrast to its close homolog PLANT UNCOUPLING MITOCHONDRIAL PROTEIN 1 (UCP1), which is an abundant carrier protein in the mitochondria, UCP2 localizes to the Golgi.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Elisenda Feixes-Prats
- Centre for Research in Agricultural Genomics (CRAG), Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, 13083-875 Campinas, Brazil
| | - Elias Feitosa-Araújo
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, D-14476 Postdam-Golm, Germany
| | - Christopher Grefen
- Institute of Molecular and Cellular Botany, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
| | - Nicole Linka
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Ivan de Godoy Maia
- Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, Brazil
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Sören Schilasky
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Lee J Sweetlove
- Department of Biology, South Parks Road, University of Oxford, OX1 3RB Oxford, UK
| | - Stefanie Wege
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 6009 Perth, Western Australia, Australia
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden
| | - Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics (CRAG), Campus UAB Bellaterra, 08193 Barcelona, Spain
- Institut de Recerca i Tecnología Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Pedro Barreto
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, D-48143 Münster, Germany
| |
Collapse
|
33
|
Qin H, Yang W, Liu Z, Ouyang Y, Wang X, Duan H, Zhao B, Wang S, Zhang J, Chang Y, Jiang K, Yu K, Zhang X. Mitochondrial VOLTAGE-DEPENDENT ANION CHANNEL 3 regulates stomatal closure by abscisic acid signaling. PLANT PHYSIOLOGY 2024; 194:1041-1058. [PMID: 37772952 DOI: 10.1093/plphys/kiad516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), stomatal closure mediated by abscisic acid (ABA) is redundantly controlled by ABA receptor family proteins (PYRABACTIN RESISTANCE 1 [PYR1]/PYR1-LIKE [PYLs]) and subclass III SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASES 2 (SnRK2s). Among these proteins, the roles of PYR1, PYL2, and SnRK2.6 are more dominant. A recent discovery showed that ABA-induced accumulation of reactive oxygen species (ROS) in mitochondria promotes stomatal closure. By analyzing stomatal movements in an array of single and higher order mutants, we revealed that the mitochondrial protein VOLTAGE-DEPENDENT ANION CHANNEL 3 (VDAC3) jointly regulates ABA-mediated stomatal closure with a specialized set of PYLs and SnRK2s by affecting cellular and mitochondrial ROS accumulation. VDAC3 interacted with 9 PYLs and all 3 subclass III SnRK2s. Single mutation in VDAC3, PYLs (except PYR1 and PYL2), or SnRK2.2/2.3 had little effect on ABA-mediated stomatal closure. However, knocking out PYR1, PYL1/2/4/8, or SnRK2.2/2.3 in vdac3 mutants resulted in significantly delayed or attenuated ABA-mediated stomatal closure, despite the presence of other PYLs or SnRK2s conferring redundant functions. We found that cellular and mitochondrial accumulation of ROS induced by ABA was altered in vdac3pyl1 mutants. Moreover, H2O2 treatment restored ABA-induced stomatal closure in mutants with decreased stomatal sensitivity to ABA. Our work reveals that VDAC3 ensures redundant control of ABA-mediated stomatal closure by canonical ABA signaling components.
Collapse
Affiliation(s)
- Haixia Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zile Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yi Ouyang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haiyang Duan
- State Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shujie Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuankai Chang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
34
|
Fernie AR, Yan J, Aharoni A, Ma J. Editorial: The past, present and future of The Plant Journal Resource Articles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:967-973. [PMID: 37943112 DOI: 10.1111/tpj.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetics, Huazhong Agricultural District, Wuhan, China
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jianxian Ma
- Purdue University, 915 S. University St, West Lafayette, IN, USA
| |
Collapse
|
35
|
Yang Y, Oldenkott B, Ramanathan S, Lesch E, Takenaka M, Schallenberg-Rüdinger M, Knoop V. DYW cytidine deaminase domains have a long-range impact on RNA recognition by the PPR array of chimeric plant C-to-U RNA editing factors and strongly affect target selection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:840-854. [PMID: 37565789 DOI: 10.1111/tpj.16412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023]
Abstract
The protein factors for the specific C-to-U RNA editing events in plant mitochondria and chloroplasts possess unique arrays of RNA-binding pentatricopeptide repeats (PPRs) linked to carboxy-terminal cytidine deaminase DYW domains via the extension motifs E1 and E2. The E1 and E2 motifs have distant similarities to tetratricopeptide repeats known to mediate protein-protein interactions but their precise function is unclear. Here, we investigate the tolerance of PPR56 and PPR65, two functionally characterized RNA editing factors of the moss Physcomitrium patens, for the creation of chimeras by variably replacing their C-terminal protein regions. Making use of a heterologous RNA editing assay system in Escherichia coli we find that heterologous DYW domains can strongly restrict or widen the spectrum of off-targets in the bacterial transcriptome for PPR56. Surprisingly, our data suggest that these changes are not only caused by the preference of a given heterologous DYW domain for the immediate sequence environment of the cytidine to be edited but also by a long-range impact on the nucleotide selectivity of the upstream PPRs.
Collapse
Affiliation(s)
- Yingying Yang
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Bastian Oldenkott
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Shyam Ramanathan
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Mizuki Takenaka
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
36
|
Ukolova IV, Borovskii GB. OXPHOS Organization and Activity in Mitochondria of Plants with Different Life Strategies. Int J Mol Sci 2023; 24:15229. [PMID: 37894910 PMCID: PMC10607765 DOI: 10.3390/ijms242015229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The study of the supramolecular organization of the mitochondrial oxidative phosphorylation system (OXPHOS) in various eukaryotes has led to the accumulation of a considerable amount of data on the composition, stoichiometry, and architecture of its constituent superstructures. However, the link between the features of system arrangement and the biological characteristics of the studied organisms has been poorly explored. Here, we report a comparative investigation into supramolecular and functional OXPHOS organization in the mitochondria of etiolated shoots of winter wheat (Triticum aestivum L.), maize (Zea mays L.), and pea (Pisum sativum L.). Investigations based on BN-PAGE, in-gel activity assays, and densitometric analysis revealed both similarities and specific OXPHOS features apparently related to the life strategies of each species. Frost-resistant winter wheat was distinguished by highly stable basic I1III2IVa/b respirasomes and V2 dimers, highly active complex I, and labile complex IV, which were probably essential for effective OXPHOS adaptation during hypothermia. Maize, a C4 plant, had the highly stable dimers IV2 and V2, less active complex I, and active alternative NAD(P)H dehydrogenases. The latter fact could contribute to successful chloroplast-mitochondrial cooperation, which is essential for highly efficient photosynthesis in this species. The pea OXPHOS contained detergent-resistant high-molecular respirasomes I1-2III2IVn, highly active complexes IV and V, and stable succinate dehydrogenase, suggesting an active energy metabolism in organelles of this plant. The results and conclusions are in good agreement with the literature data on the respiratory activity of mitochondria from these species and are summarized in a proposed scheme of organization of OXPHOS fragments.
Collapse
Affiliation(s)
- Irina V. Ukolova
- Laboratory of Physiological Genetics, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia;
| | | |
Collapse
|
37
|
Amthor JS. ATP yield of plant respiration: potential, actual and unknown. ANNALS OF BOTANY 2023; 132:133-162. [PMID: 37409716 PMCID: PMC10550282 DOI: 10.1093/aob/mcad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND AND AIMS The ATP yield of plant respiration (ATP/hexose unit respired) quantitatively links active heterotrophic processes with substrate consumption. Despite its importance, plant respiratory ATP yield is uncertain. The aim here was to integrate current knowledge of cellular mechanisms with inferences required to fill knowledge gaps to generate a contemporary estimate of respiratory ATP yield and identify important unknowns. METHOD A numerical balance sheet model combining respiratory carbon metabolism and electron transport pathways with uses of the resulting transmembrane electrochemical proton gradient was created and parameterized for healthy, non-photosynthesizing plant cells catabolizing sucrose or starch to produce cytosolic ATP. KEY RESULTS Mechanistically, the number of c subunits in the mitochondrial ATP synthase Fo sector c-ring, which is unquantified in plants, affects ATP yield. A value of 10 was (justifiably) used in the model, in which case respiration of sucrose potentially yields about 27.5 ATP/hexose (0.5 ATP/hexose more from starch). Actual ATP yield often will be smaller than its potential due to bypasses of energy-conserving reactions in the respiratory chain, even in unstressed plants. Notably, all else being optimal, if 25 % of respiratory O2 uptake is via the alternative oxidase - a typically observed fraction - ATP yield falls 15 % below its potential. CONCLUSIONS Plant respiratory ATP yield is smaller than often assumed (certainly less than older textbook values of 36-38 ATP/hexose) leading to underestimation of active-process substrate requirements. This hinders understanding of ecological/evolutionary trade-offs between competing active processes and assessments of crop growth gains possible through bioengineering of processes that consume ATP. Determining the plant mitochondrial ATP synthase c-ring size, the degree of any minimally required (useful) bypasses of energy-conserving reactions in the respiratory chain, and the magnitude of any 'leaks' in the inner mitochondrial membrane are key research needs.
Collapse
Affiliation(s)
- J S Amthor
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
38
|
Guo Q, Gao Y, Song C, Zhang X, Wang G. Morphological and transcriptomic responses/acclimations of erect-type submerged macrophyte Hydrilla verticillata both at low-light exposure and light recovery phases. Ecol Evol 2023; 13:e10583. [PMID: 37809356 PMCID: PMC10556543 DOI: 10.1002/ece3.10583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Light intensity is a determinant for submerged macrophytes. Little is known about their molecular responses to low-light exposure, despite more informative and responsive than morphological traits. For erect-type submerged macrophytes, the stem is more crucial relative to the leaf in acclimation to low-light stress, but receives less attention. We determined morphological and stem transcriptomic responses/acclimations of Hydrilla verticillata to extremely and mildly low light (7.2 and 36 μmol photons m-2 s-1, respectively), that is, EL and ML, with the radiation intensity of 180 μmol photons m-2 s-1 as the control. Low-light exposure continued for 9 days, followed by a 7-day recovery phase (180 μmol photons m-2 s-1). At the exposure phase, the low-light treatments, in particular the EL, decreased the relative growth ratio, but induced greater height and longer stem internode distance and epidermal cell. Such responses/acclimations continued into the recovery phase, despite more or less changes in the magnitude. Transcriptome showed that the photosynthetic system was inhibited at the exposure phase, but the macrophyte adjusted hormone synthesis relating to cell division and elongation. Moreover, the EL activated cell stress responses such as DNA repair. Following light recovery, the macrophyte exhibited a strong-light response, although energy metabolism enhanced. Especially, the EL enriched the pathways relating to anthocyanin synthesis at such phase, indicating an activation of photoprotective mechanism. Our findings suggest that negative influences of low light occur at both low-light exposure and recovery phases, but submerged macrophytes would acclimate to light environments. Transcriptome can show molecular basis of plant responses/acclimations, including but not limited to morphology. This study establishes a bridge connecting morphological and molecular responses/acclimations.
Collapse
Affiliation(s)
- Qingchun Guo
- School of EnvironmentNanjing Normal UniversityNanjingChina
| | - Yuxuan Gao
- School of EnvironmentNanjing Normal UniversityNanjingChina
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of Botany, Chinese Academy of SciencesBeijingChina
| | - Chao Song
- School of EnvironmentNanjing Normal UniversityNanjingChina
| | - Xinhou Zhang
- School of EnvironmentNanjing Normal UniversityNanjingChina
| | - Guoxiang Wang
- School of EnvironmentNanjing Normal UniversityNanjingChina
| |
Collapse
|
39
|
Zhang Y, Jaime SM, Bulut M, Graf A, Fernie AR. The conditional mitochondrial protein complexome in the Arabidopsis thaliana root and shoot. PLANT COMMUNICATIONS 2023; 4:100635. [PMID: 37291828 PMCID: PMC10504587 DOI: 10.1016/j.xplc.2023.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/23/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Protein complexes are important for almost all biological processes. Hence, to fully understand how cells work, it is also necessary to characterize protein complexes and their dynamics in response to various cellular cues. Moreover, the dynamics of protein interaction play crucial roles in regulating the (dis)association of protein complexes and, in turn, regulating biological processes such as metabolism. Here, mitochondrial protein complexes were investigated by blue native PAGE and size-exclusion chromatography under conditions of oxidative stress in order to monitor their dynamic (dis)associations. Rearrangements of enzyme interactions and changes in protein complex abundance were observed in response to oxidative stress induced by menadione treatment. These included changes in enzymatic protein complexes involving γ-amino butyric acid transaminase (GABA-T), Δ-ornithine aminotransferase (Δ-OAT), or proline dehydrogenase 1 (POX1) that are expected to affect proline metabolism. Menadione treatment also affected interactions between several enzymes of the tricarboxylic acid (TCA) cycle and the abundance of complexes of the oxidative phosphorylation pathway. In addition, we compared the mitochondrial complexes of roots and shoots. Considerable differences between the two tissues were observed in the mitochondrial import/export apparatus, the formation of super-complexes in the oxidative phosphorylation pathway, and specific interactions between enzymes of the TCA cycle that we postulate may be related to the metabolic/energetic requirements of roots and shoots.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Silvia Martínez Jaime
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mustafa Bulut
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexander Graf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
40
|
Tran HC, Schmitt V, Lama S, Wang C, Launay-Avon A, Bernfur K, Sultan K, Khan K, Brunaud V, Liehrmann A, Castandet B, Levander F, Rasmusson AG, Mireau H, Delannoy E, Van Aken O. An mTRAN-mRNA interaction mediates mitochondrial translation initiation in plants. Science 2023; 381:eadg0995. [PMID: 37651534 DOI: 10.1126/science.adg0995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
Plant mitochondria represent the largest group of respiring organelles on the planet. Plant mitochondrial messenger RNAs (mRNAs) lack Shine-Dalgarno-like ribosome-binding sites, so it is unknown how plant mitoribosomes recognize mRNA. We show that "mitochondrial translation factors" mTRAN1 and mTRAN2 are land plant-specific proteins, required for normal mitochondrial respiration chain biogenesis. Our studies suggest that mTRANs are noncanonical pentatricopeptide repeat (PPR)-like RNA binding proteins of the mitoribosomal "small" subunit. We identified conserved Adenosine (A)/Uridine (U)-rich motifs in the 5' regions of plant mitochondrial mRNAs. mTRAN1 binds this motif, suggesting that it is a mitoribosome homing factor to identify mRNAs. We demonstrate that mTRANs are likely required for translation of all plant mitochondrial mRNAs. Plant mitochondrial translation initiation thus appears to use a protein-mRNA interaction that is divergent from bacteria or mammalian mitochondria.
Collapse
Affiliation(s)
| | | | - Sbatie Lama
- Department of Biology, Lund University, Lund, Sweden
| | - Chuande Wang
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Katja Bernfur
- Department of Chemistry, Lund University, Lund, Sweden
| | - Kristin Sultan
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | - Véronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Arnaud Liehrmann
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université Paris-Saclay, CNRS, Université d'Évry, Laboratoire de Mathématiques et Modélisation d'Évry, 91037 Évry-Courcouronnes, France
| | - Benoît Castandet
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | | | - Hakim Mireau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | | |
Collapse
|
41
|
Pedroletti L, Moseler A, Meyer AJ. Assembly, transfer, and fate of mitochondrial iron-sulfur clusters. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3328-3344. [PMID: 36846908 DOI: 10.1093/jxb/erad062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
Since the discovery of an autonomous iron-sulfur cluster (Fe-S) assembly machinery in mitochondria, significant efforts to examine the nature of this process have been made. The assembly of Fe-S clusters occurs in two distinct steps with the initial synthesis of [2Fe-2S] clusters by a first machinery followed by a subsequent assembly into [4Fe-4S] clusters by a second machinery. Despite this knowledge, we still have only a rudimentary understanding of how Fe-S clusters are transferred and distributed among their respective apoproteins. In particular, demand created by continuous protein turnover and the sacrificial destruction of clusters for synthesis of biotin and lipoic acid reveal possible bottlenecks in the supply chain of Fe-S clusters. Taking available information from other species into consideration, this review explores the mitochondrial assembly machinery of Arabidopsis and provides current knowledge about the respective transfer steps to apoproteins. Furthermore, this review highlights biotin synthase and lipoyl synthase, which both utilize Fe-S clusters as a sulfur source. After extraction of sulfur atoms from these clusters, the remains of the clusters probably fall apart, releasing sulfide as a highly toxic by-product. Immediate refixation through local cysteine biosynthesis is therefore an essential salvage pathway and emphasizes the physiological need for cysteine biosynthesis in plant mitochondria.
Collapse
Affiliation(s)
- Luca Pedroletti
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
42
|
Caubrière D, Moseler A, Rouhier N, Couturier J. Diversity and roles of cysteine desulfurases in photosynthetic organisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3345-3360. [PMID: 36861318 DOI: 10.1093/jxb/erad065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/22/2023] [Indexed: 06/08/2023]
Abstract
As sulfur is part of many essential protein cofactors such as iron-sulfur clusters, molybdenum cofactors, or lipoic acid, its mobilization from cysteine represents a fundamental process. The abstraction of the sulfur atom from cysteine is catalysed by highly conserved pyridoxal 5'-phosphate-dependent enzymes called cysteine desulfurases. The desulfuration of cysteine leads to the formation of a persulfide group on a conserved catalytic cysteine and the concomitant release of alanine. Sulfur is then transferred from cysteine desulfurases to different targets. Numerous studies have focused on cysteine desulfurases as sulfur-extracting enzymes for iron-sulfur cluster synthesis in mitochondria and chloroplasts but also for molybdenum cofactor sulfuration in the cytosol. Despite this, knowledge about the involvement of cysteine desulfurases in other pathways is quite rudimentary, particularly in photosynthetic organisms. In this review, we summarize current understanding of the different groups of cysteine desulfurases and their characteristics in terms of primary sequence, protein domain architecture, and subcellular localization. In addition, we review the roles of cysteine desulfurases in different fundamental pathways and highlight the gaps in our knowledge to encourage future work on unresolved issues especially in photosynthetic organisms.
Collapse
Affiliation(s)
| | - Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
- Institut Universitaire de France, F-75000, Paris, France
| |
Collapse
|
43
|
Johnson ET, Lyon R, Zaitlin D, Khan AB, Jairajpuri MA. A comparison of transporter gene expression in three species of Peronospora plant pathogens during host infection. PLoS One 2023; 18:e0285685. [PMID: 37262030 PMCID: PMC10234565 DOI: 10.1371/journal.pone.0285685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Protein transporters move essential metabolites across membranes in all living organisms. Downy mildew causing plant pathogens are biotrophic oomycetes that transport essential nutrients from their hosts to grow. Little is known about the functions and gene expression levels of membrane transporters produced by downy mildew causing pathogens during infection of their hosts. Approximately 170-190 nonredundant transporter genes were identified in the genomes of Peronospora belbahrii, Peronospora effusa, and Peronospora tabacina, which are specialized pathogens of basil, spinach, and tobacco, respectively. The largest groups of transporter genes in each species belonged to the major facilitator superfamily, mitochondrial carriers (MC), and the drug/metabolite transporter group. Gene expression of putative Peronospora transporters was measured using RNA sequencing data at two time points following inoculation onto leaves of their hosts. There were 16 transporter genes, seven of which were MCs, expressed in each Peronospora species that were among the top 45 most highly expressed transporter genes 5-7 days after inoculation. Gene transcripts encoding the ADP/ATP translocase and the mitochondrial phosphate carrier protein were the most abundant mRNAs detected in each Peronospora species. This study found a number of Peronospora genes that are likely critical for pathogenesis and which might serve as future targets for control of these devastating plant pathogens.
Collapse
Affiliation(s)
- Eric T Johnson
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Unit, Peoria, Illinois, United States of America
| | - Rebecca Lyon
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Unit, Peoria, Illinois, United States of America
| | - David Zaitlin
- Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Abdul Burhan Khan
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | | |
Collapse
|
44
|
Kuznetsov IA, Kuznetsov AV. ATP diffusional gradients are sufficient to maintain bioenergetic homeostasis in synaptic boutons lacking mitochondria. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3696. [PMID: 36872253 DOI: 10.1002/cnm.3696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 05/13/2023]
Abstract
Previous work on mitochondrial distribution in axons has shown that approximately half of the presynaptic release sites do not contain mitochondria, raising the question of how the boutons that do not contain mitochondria are supplied with ATP. Here, we develop and apply a mathematical model to study this question. Specifically, we investigate whether diffusive transport of ATP is sufficient to support the exocytic functionality in synaptic boutons which lack mitochondria. Our results demonstrate that the difference in ATP concentration between a bouton containing a mitochondrion and a neighboring bouton lacking a mitochondrion is only approximately 0.4%, which is still 3.75 times larger than the ATP concentration minimally required to support synaptic vesicle release. This work therefore suggests that passive diffusion of ATP is sufficient to maintain the functionality of boutons which do not contain mitochondria.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
45
|
Zhang J, Gao B, Ye B, Sun Z, Qian Z, Yu L, Bi Y, Ma L, Ding Y, Du Y, Wang W, Mao Z. Mitochondrial-Targeted Delivery of Polyphenol-Mediated Antioxidases Complexes against Pyroptosis and Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208571. [PMID: 36648306 DOI: 10.1002/adma.202208571] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Excess accumulation of mitochondrial reactive oxygen species (mtROS) is a key target for inhibiting pyroptosis-induced inflammation and tissue damage. However, targeted delivery of drugs to mitochondria and efficient clearance of mtROS remain challenging. In current study, it is discovered that polyphenols such as tannic acid (TA) can mediate the targeting of polyphenol/antioxidases complexes to mitochondria. This affinity does not depend on mitochondrial membrane potential but stems from the strong binding of TA to mitochondrial outer membrane proteins. Taking advantage of the feasibility of self-assembly between TA and proteins, superoxide dismutase, catalase, and TA are assembled into complexes (referred to as TSC) for efficient enzymatic activity maintenance. In vitro fluorescence confocal imaging shows that TSC not only promoted the uptake of biological enzymes in hepatocytes but also highly overlapped with mitochondria after lysosomal escape. The results from an in vitro model of hepatocyte oxidative stress demonstrate that TSC efficiently scavenges excess mtROS and reverses mitochondrial depolarization, thereby inhibiting inflammasome-mediated pyroptosis. More interestingly, TSC maintain superior efficacy compared with the clinical gold standard drug N-acetylcysteine in both acetaminophen- and D-galactosamine/lipopolysaccharide-induced pyroptosis-related hepatitis mouse models. In conclusion, this study opens a new paradigm for targeting mitochondrial oxidative stress to inhibit pyroptosis and treat inflammatory diseases.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Bingqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Zhefeng Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Lisha Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yanli Bi
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
| |
Collapse
|
46
|
Klusch N, Dreimann M, Senkler J, Rugen N, Kühlbrandt W, Braun HP. Cryo-EM structure of the respiratory I + III 2 supercomplex from Arabidopsis thaliana at 2 Å resolution. NATURE PLANTS 2023; 9:142-156. [PMID: 36585502 PMCID: PMC9873573 DOI: 10.1038/s41477-022-01308-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/08/2022] [Indexed: 05/15/2023]
Abstract
Protein complexes of the mitochondrial respiratory chain assemble into respiratory supercomplexes. Here we present the high-resolution electron cryo-microscopy structure of the Arabidopsis respiratory supercomplex consisting of complex I and a complex III dimer, with a total of 68 protein subunits and numerous bound cofactors. A complex I-ferredoxin, subunit B14.7 and P9, a newly defined subunit of plant complex I, mediate supercomplex formation. The component complexes stabilize one another, enabling new detailed insights into their structure. We describe (1) an interrupted aqueous passage for proton translocation in the membrane arm of complex I; (2) a new coenzyme A within the carbonic anhydrase module of plant complex I defining a second catalytic centre; and (3) the water structure at the proton exit pathway of complex III2 with a co-purified ubiquinone in the QO site. We propose that the main role of the plant supercomplex is to stabilize its components in the membrane.
Collapse
Affiliation(s)
- Niklas Klusch
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt, Germany.
| | - Maximilian Dreimann
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt, Germany
| | - Jennifer Senkler
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | - Nils Rugen
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
47
|
Jung L, Schleicher S, Alsaied Taha F, Takenaka M, Binder S. The MITOCHONDRIAL TRANSCRIPT STABILITY FACTOR 4 (MTSF4) is essential for the accumulation of dicistronic rpl5-cob mRNAs in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:375-386. [PMID: 36468791 DOI: 10.1111/tpj.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The Arabidopsis thaliana genome harbors more than 450 nuclear genes encoding pentatricopeptide repeat (PPR) proteins that operate in the RNA metabolism of mitochondria and/or plastids. To date, the molecular function of many PPR proteins is still unknown. Here we analyzed the nucleus-encoded gene At4g19440 coding for a P-type PPR protein. Knockout of this gene interferes with normal embryo development and seed maturation. Two experimental approaches were applied to overcome lethality and to investigate the outcome of At4g19440 knockout in adult plants. These studies revealed changes in the abundance of several mitochondria-encoded transcripts. In particular, steady-state levels of dicistronic rpl5-cob RNAs were markedly reduced, whereas levels of mature ccmC and rpl2-mttB transcripts were clearly increased. Predictions according to the one repeat to one nucleotide code for PPR proteins indicate binding of the At4g19440 protein to a previously detected small RNA at the 3' termini of the dicistronic rpl5-cob transcripts. This potential interaction indicates a function of this protein in 3' end formation and stabilization of these RNA species, whereas the increase in the levels of the ccmC mRNA along with other mitochondria-encoded RNAs seems to be a secondary effect of At4g19440 knockout. Since the inactivation of At4g19440 influences the stability of several mitochondrial RNAs we call this gene MITOCHONDRIAL TRANSCRIPT STABILITY FACTOR 4 (MTSF4). This factor will be an interesting subject to study opposing effects of a single nucleus-encoded protein on mitochondrial transcript levels.
Collapse
Affiliation(s)
- Lisa Jung
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | - Sarah Schleicher
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | - Fatema Alsaied Taha
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | - Mizuki Takenaka
- Plant Molecular Genetics, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Stefan Binder
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| |
Collapse
|
48
|
Porto NP, Bret RSC, Souza PVL, Cândido-Sobrinho SA, Medeiros DB, Fernie AR, Daloso DM. Thioredoxins regulate the metabolic fluxes throughout the tricarboxylic acid cycle and associated pathways in a light-independent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:36-49. [PMID: 36323196 DOI: 10.1016/j.plaphy.2022.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The metabolic fluxes throughout the tricarboxylic acid cycle (TCAC) are inhibited in the light by the mitochondrial thioredoxin (TRX) system. However, it is unclear how this system orchestrates the fluxes throughout the TCAC and associated pathways in the dark. Here we carried out a13C-HCO3 labelling experiment in Arabidopsis leaves from wild type (WT) and mutants lacking TRX o1 (trxo1), TRX h2 (trxh2), or both NADPH-dependent TRX reductase A and B (ntra ntrb) exposed to 0, 30 and 60 min of dark or light conditions. No 13C-enrichment in TCAC metabolites in illuminated WT leaves was observed. However, increased succinate content was found in parallel to reductions in Ala in the light, suggesting the latter operates as an alternative carbon source for succinate synthesis. By contrast to WT, all mutants showed substantial changes in the content and 13C-enrichment in TCAC metabolites under both dark and light conditions. Increased 13C-enrichment in glutamine in illuminated trxo1 leaves was also observed, strengthening the idea that TRX o1 restricts in vivo carbon fluxes from glycolysis and the TCAC to glutamine. We further demonstrated that both photosynthetic and gluconeogenic fluxes toward glucose are increased in trxo1 and that the phosphoenolpyruvate carboxylase (PEPc)-mediated 13C-incorporation into malate is higher in trxh2 mutants, as compared to WT. Our results collectively provide evidence that TRX h2 and the mitochondrial NTR/TRX system regulate the metabolic fluxes throughout the TCAC and associated pathways, including glycolysis, gluconeogenesis and the synthesis of glutamine in a light-independent manner.
Collapse
Affiliation(s)
- Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Raissa S C Bret
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
49
|
Zou Y, Zhu W, Sloan DB, Wu Z. Long-read sequencing characterizes mitochondrial and plastid genome variants in Arabidopsis msh1 mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:738-755. [PMID: 36097957 PMCID: PMC9617793 DOI: 10.1111/tpj.15976] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The abundant repeats in plant mitochondrial genomes can cause rapid genome rearrangements and are also a major obstacle in short-read sequencing studies. Nuclear-encoded proteins such as MSH1 are known to suppress the generation of repeat-associated mitochondrial genome variants, but our understanding of these mechanisms has been constrained by the limitations of short-read technologies. Here, we used highly accurate long-read sequencing (PacBio HiFi) to characterize mitochondrial and plastid genome variants in Arabidopsis thaliana msh1 mutant individuals. The HiFi reads provided a global view of recombination dynamics with detailed quantification of parental and crossover recombination products for both large and small repeats. We found that recombination breakpoints were distributed relatively evenly across the length of repeated sequences and detected widespread internal exchanges of sequence variants between pairs of imperfect repeats in the mitochondrial genome of msh1 mutants. Long-read assemblies of mitochondrial genomes from seven other A. thaliana wild-type accessions differed by repeat-mediated structural rearrangements similar to those observed in msh1 mutants, but they were all in a simple low-heteroplasmy state. The Arabidopsis plastid genome generally lacks small repeats and exhibited a very different pattern of variant accumulation in msh1 mutants compared with the mitochondrial genome. Our data illustrate the power of HiFi technology in studying repeat-mediated recombination in plant organellar genomes and improved the sequence resolution for recombinational processes suppressed by MSH1. Plant organellar genomes can undergo rapid rearrangements. Long-read sequencing provides a detailed and quantitative view of mitochondrial and plastid genome variants normally suppressed by MSH1, advancing our understanding of plant organellar genome dynamics.
Collapse
Affiliation(s)
- Yi Zou
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Weidong Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Zhiqiang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
50
|
Ruberti C, Feitosa-Araujo E, Xu Z, Wagner S, Grenzi M, Darwish E, Lichtenauer S, Fuchs P, Parmagnani AS, Balcerowicz D, Schoenaers S, de la Torre C, Mekkaoui K, Nunes-Nesi A, Wirtz M, Vissenberg K, Van Aken O, Hause B, Costa A, Schwarzländer M. MCU proteins dominate in vivo mitochondrial Ca2+ uptake in Arabidopsis roots. THE PLANT CELL 2022; 34:4428-4452. [PMID: 35938694 PMCID: PMC9614509 DOI: 10.1093/plcell/koac242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Ca2+ signaling is central to plant development and acclimation. While Ca2+-responsive proteins have been investigated intensely in plants, only a few Ca2+-permeable channels have been identified, and our understanding of how intracellular Ca2+ fluxes is facilitated remains limited. Arabidopsis thaliana homologs of the mammalian channel-forming mitochondrial calcium uniporter (MCU) protein showed Ca2+ transport activity in vitro. Yet, the evolutionary complexity of MCU proteins, as well as reports about alternative systems and unperturbed mitochondrial Ca2+ uptake in knockout lines of MCU genes, leave critical questions about the in vivo functions of the MCU protein family in plants unanswered. Here, we demonstrate that MCU proteins mediate mitochondrial Ca2+ transport in planta and that this mechanism is the major route for fast Ca2+ uptake. Guided by the subcellular localization, expression, and conservation of MCU proteins, we generated an mcu triple knockout line. Using Ca2+ imaging in living root tips and the stimulation of Ca2+ transients of different amplitudes, we demonstrated that mitochondrial Ca2+ uptake became limiting in the triple mutant. The drastic cell physiological phenotype of impaired subcellular Ca2+ transport coincided with deregulated jasmonic acid-related signaling and thigmomorphogenesis. Our findings establish MCUs as a major mitochondrial Ca2+ entry route in planta and link mitochondrial Ca2+ transport with phytohormone signaling.
Collapse
Affiliation(s)
| | - Elias Feitosa-Araujo
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | - Zhaolong Xu
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
- Jiangsu Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | | | - Matteo Grenzi
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
| | - Essam Darwish
- Department of Biology, Lund University, Lund, 22362, Sweden
- Agricultural Botany Department, Faculty of Agriculture, Plant Physiology Section, Cairo University, Giza, 12613, Egypt
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | | | | | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, D-68167, Germany
| | - Khansa Mekkaoui
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Markus Wirtz
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Heidelberg, D-69120, Germany
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
- Department of Agriculture, Plant Biochemistry and Biotechnology Lab, Hellenic Mediterranean University, Heraklion, 71410, Greece
| | | | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Alex Costa
- Authors for correspondence: (A.C); (M.S.)
| | | |
Collapse
|