1
|
Cai Z, Ma C, Hao Y, Jia W, Cao Y, Wu H, Xu X, Han L, Li C, Shang H, Liang A, White JC, Xing B. Molecular Evidence of CeO 2 Nanoparticle Modulation of ABA and Genes Containing ABA-Responsive Cis-Elements to Promote Rice Drought Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21804-21816. [PMID: 39584419 DOI: 10.1021/acs.est.4c08485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cerium dioxide nanoparticles (CeO2 NPs) have enzyme-like properties and scavenge excess ROS induced by stressors such as drought. However, the underlying molecular mechanisms by which CeO2 NPs enhance drought resistance are unknown. In this work, both foliar application and soil injection of CeO2 NPs were used to rice seedlings under a 30 day moderate drought (40% soil relative moisture). Foliar application of 4 mg of CeO2 NPs per pot reduced excess reactive oxygen species and abscisic acid (ABA) in rice leaves, thereby maintaining chloroplast structural integrity and photosynthetic output, ultimately increasing drought-stressed rice biomass by 31.3%. Genes associated with photosynthesis and ribosome activity provided the foundation by which CeO2 NPs enhanced rice drought resistance. Importantly, these genes were tightly regulated by ABA due to the large number of abscisic acid responsive elements in their promoter regions. CeO2 NPs also upregulated the expression of soluble sugar and fatty acid synthesis associated genes in drought-stressed rice, thereby contributing to osmotic balance and membrane lipid stability. These results highlight the potential of CeO2 NPs to enhance rice photosynthesis and drought-resistant biomolecule accumulation by regulating ABA-dependent responses. This work provides further evidence demonstrating nanomaterials have great potential to sustainably promote stress resistance and climate resilient crops.
Collapse
Affiliation(s)
- Zeyu Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuanxin Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Hao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Weili Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yini Cao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinxin Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanfang Han
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Heping Shang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Anqi Liang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Barakat S, Çimen Ş, Miri SM, Vatandaşlar E, Yelkenci HE, San Martín A, Beker MÇ, Kök K, Öztürk G, Eroglu E. Bioenergetic shift and proteomic signature induced by lentiviral-transduction of GFP-based biosensors. Redox Biol 2024; 78:103416. [PMID: 39509993 PMCID: PMC11574814 DOI: 10.1016/j.redox.2024.103416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
Fluorescent proteins (FPs) stand as pivotal tools extensively employed across diverse biological research endeavors in various model systems. However, long-standing concerns surround their use due to the numerous side effects associated with their expression. Recent investigations have brought to light the significance of hydrogen peroxide (H2O2) that is associated with the maturation process of green fluorescent protein (GFP) fluorophores. The structural and functional impairments associated with GFP expression are possibly linked to this amount of H2O2. In this study, we assess the impact of the GFP-based HyPer7 biosensor on cellular homeostasis and proteome changes, aiming to identify potential risks related to oxidative stress responses that potentially risks the application of such tools. Cells expressing genome-integrated HyPer7 demonstrated altered mitochondrial membrane potential (MMP), which was alleviated by the addition of antioxidants or culturing cells at physiological normoxia (5 kPa O2). Additionally, HyPer7-expressing cells also exhibited significant impairment in mitochondrial oxidative respiration, suggesting broader mitochondrial dysfunction. Through untargeted proteomics analysis, we identified 26 proteins exhibiting differential expression in HyPer7-expressing cells compared to respective control cells. Functional annotation analysis showed that the list of the delineated proteins is associated with cellular responses to stress and the regulation of antioxidant mechanisms. Our findings underscore the significance of caution and validation in ensuring a thorough comprehension of cellular responses when using fluorescent protein-based tools, thereby enhancing the reliability of the results.
Collapse
Affiliation(s)
- Sarah Barakat
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Şeyma Çimen
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey; Department of Nutrition and Dietetics, Institution of Health Sciences, Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Seyed Mohammad Miri
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey; Molecular Biology, Genetics, and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| | - Emre Vatandaşlar
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Hayriye Ecem Yelkenci
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Alejandro San Martín
- Centro de Estudios Científicos (CECs), 5110466, Valdivia, Chile; Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, 5110773, Valdivia, Chile
| | - Mustafa Çağlar Beker
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey; Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Kıvanç Kök
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey; Department of Biostatistics and Medical Informatics, International School of Medicine, Istanbul Medipol University, Istanbul, 34810, Turkey.
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey; Department of Physiology, School of Medicine, Bolu Abant İzzet Baysal University, Bolu, 14030, Turkey.
| | - Emrah Eroglu
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey; Molecular Biology, Genetics, and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey.
| |
Collapse
|
3
|
Lakhneko O, Fialová I, Fiala R, Kopáčová M, Kováč A, Danchenko M. Silicon might mitigate nickel toxicity in maize roots via chelation, detoxification, and membrane transport. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117334. [PMID: 39549574 DOI: 10.1016/j.ecoenv.2024.117334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Nickel is an essential micronutrient for plant growth and development. However, in excessive amounts caused by accidental pollution of soils, this heavy metal is toxic to plants. Although silicon is a non-essential nutrient, it accumulates in most monocots, particularly the vital crop maize (corn, Zea mays). In fact, this metalloid mineral can alleviate the toxicity of heavy metals, though the mechanism is not entirely clear yet. Herein, we measured proteome, gene expression, enzyme activities, and selected sugars to investigate such effect thoroughly. Deep proteomic analysis revealed a minor impact of 100 µM Ni, 2.5 mM Si, or their combination on roots in 12-day-old hydroponically grown maize seedlings upon 9 days of exposure. Nonetheless, we suggested plausible mechanisms of Si mitigation of excessive Ni: Chelation by metallothioneins and phytochelatins, detoxification by glycine betaine pathway, and restructuring of plasma membrane transporters. Higher activity of glutathione S-transferase confirmed its plausible involvement in reducing Ni toxicity in combined treatment. Accumulation of sucrose synthase and corresponding soluble sugars in Ni and combined treatment implied high energy requirements both during heavy metal stress and its mitigation. Expression analysis of genes coding a few differentially accumulated proteins failed to reveal concordant changes, indicating posttranscriptional regulation. Proposed mitigation mechanisms should be functionally validated in follow-up studies.
Collapse
Affiliation(s)
- Olha Lakhneko
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia
| | - Ivana Fialová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia
| | - Roderik Fiala
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia
| | - Mária Kopáčová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava 84538, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava 84510, Slovakia
| | - Maksym Danchenko
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia.
| |
Collapse
|
4
|
Imtiaz H, Khan SA, Hassan A, Khan AR, Khurshid G, Khan ZA, Sajjad Y. Insight into physiological and biochemical markers against formaldehyde stress in spider plant (Chlorophytum comosum L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61305-61319. [PMID: 39417939 DOI: 10.1007/s11356-024-35314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Formaldehyde is a prominent volatile organic compound and also considered as an indoor air pollutant. Chlorophytum comosum, an indoor plant, has been reported to metabolize indoor formaldehyde. But the phytotoxic effects of formaldehyde, being a pollutant, on C. comosum are not well explored. Furthermore, C. comosum responses that can be considered as markers at the physiological and biochemical level against formaldehyde stress are not yet investigated. Therefore, the current research study was aimed to evaluate such potential markers against formaldehyde in C. comosum. Briefly, C. comosum was exposed to 5-, 10-, and 20-ppm formaldehyde doses in an airtight glass chamber. Plant samples were then taken to analyze morpho-anatomical, physiological, and biochemical responses after short (2, 4, and 6 h), medium (12 and 24 h), and extended durations (48 and 96 h) for each tested dose. Application of 10 and 20 ppm formaldehyde doses leads to a significant incline in enzymatic antioxidants. Formaldehyde concentration of 10 ppm leads to a maximum increase in catalase (30.30 U/mg of protein), guaiacol peroxidase (135.64 U/mg of protein), and superoxide dismutase (44.76 U/mg of protein) compared to their respective controls. A significant change is also observed in non-enzymatic parameters, including total phenolic content, which ranged from 3.62 mg GAE/g (control) to 10.51 mg GAE/g, total antioxidants vary from 27.37% (control) to 85.05% in 20 ppm formaldehyde, respectively. However, formaldehyde application negatively affected the physiological responses of C. comosum by reducing its photosynthetic rate, transpiration rate, and stomatal conductance. Additionally, extended exposure of C. comosum to 10- and 20-ppm formaldehyde doses leads to visible leaf damage. Principal component analysis indicated that enzymatic parameters including SOD, CAT, and GPX and non-enzymatic parameters including MDA, TPC, TFC, TAOs, carotenoids, TSS, and intercellular CO2 contributed the most to the total variance. Thus, these parameters have potential to serve as physiological and biochemical markers in C. comosum against formaldehyde stress.
Collapse
Affiliation(s)
- Hifza Imtiaz
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Sabaz Ali Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Amjad Hassan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
- Department of Biosciences, University of Wah, Wah Cantt, 47040, Pakistan
| | - Abdul Rehman Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Ghazal Khurshid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Zahid Ahmad Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Yasar Sajjad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
5
|
Nouraei S, Mia MS, Liu H, Turner NC, Khan JM, Yan G. Proteomic analysis of near-isogenic lines reveals key biomarkers on wheat chromosome 4B conferring drought tolerance. THE PLANT GENOME 2024; 17:e20343. [PMID: 37199103 DOI: 10.1002/tpg2.20343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/05/2023] [Accepted: 03/27/2023] [Indexed: 05/19/2023]
Abstract
Drought is a major constraint for wheat production that is receiving increased attention due to global climate change. This study conducted isobaric tags for relative and absolute quantitation proteomic analysis on near-isogenic lines to shed light on the underlying mechanism of qDSI.4B.1 quantitative trait loci (QTL) on the short arm of chromosome 4B conferring drought tolerance in wheat. Comparing tolerant with susceptible isolines, 41 differentially expressed proteins were identified to be responsible for drought tolerance with a p-value of < 0.05 and fold change >1.3 or <0.7. These proteins were mainly enriched in hydrogen peroxide metabolic activity, reactive oxygen species metabolic activity, photosynthetic activity, intracellular protein transport, cellular macromolecule localization, and response to oxidative stress. Prediction of protein interactions and pathways analysis revealed the interaction between transcription, translation, protein export, photosynthesis, and carbohydrate metabolism as the most important pathways responsible for drought tolerance. The five proteins, including 30S ribosomal protein S15, SRP54 domain-containing protein, auxin-repressed protein, serine hydroxymethyltransferase, and an uncharacterized protein with encoding genes on 4BS, were suggested as candidate proteins responsible for drought tolerance in qDSI.4B.1 QTL. The gene coding SRP54 protein was also one of the differentially expressed genes in our previous transcriptomic study.
Collapse
Affiliation(s)
- Sina Nouraei
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Md Sultan Mia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Neil C Turner
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Javed M Khan
- Proteomics International, Crawley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Crawley, Western Australia, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
6
|
Dziubek D, Poeker L, Siemitkowska B, Graf A, Marino G, Alseekh S, Arrivault S, Fernie AR, Armbruster U, Geigenberger P. NTRC and thioredoxins m1/m2 underpin the light acclimation of plants on proteome and metabolome levels. PLANT PHYSIOLOGY 2024; 194:982-1005. [PMID: 37804523 PMCID: PMC10828201 DOI: 10.1093/plphys/kiad535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
During photosynthesis, plants must manage strong fluctuations in light availability on different time scales, leading to long-term acclimation and short-term responses. However, little is known about the regulation and coordination of these processes and the modulators involved. In this study, we used proteomics, metabolomics, and reverse genetics to investigate how different light environmental factors, such as intensity or variability, affect long-term and short-term acclimation responses of Arabidopsis (Arabidopsis thaliana) and the importance of the chloroplast redox network in their regulation. In the wild type, high light, but not fluctuating light, led to large quantitative changes in the proteome and metabolome, accompanied by increased photosynthetic dynamics and plant growth. This finding supports light intensity as a stronger driver for acclimation than variability. Deficiencies in NADPH-thioredoxin reductase C (NTRC) or thioredoxins m1/m2, but not thioredoxin f1, almost completely suppressed the re-engineering of the proteome and metabolome, with both the induction of proteins involved in stress and redox responses and the repression of those involved in cytosolic and plastid protein synthesis and translation being strongly attenuated. Moreover, the correlations of protein or metabolite levels with light intensity were severely disturbed, suggesting a general defect in the light-dependent acclimation response, resulting in impaired photosynthetic dynamics. These results indicate a previously unknown role of NTRC and thioredoxins m1/m2 in modulating light acclimation at proteome and metabolome levels to control dynamic light responses. NTRC, but not thioredoxins m1/m2 or f1, also improves short-term photosynthetic responses by balancing the Calvin-Benson cycle in fluctuating light.
Collapse
Affiliation(s)
- Dejan Dziubek
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, 82152 Martinsried, Germany
| | - Louis Poeker
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, 82152 Martinsried, Germany
| | - Beata Siemitkowska
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexander Graf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Giada Marino
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, 82152 Martinsried, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Departments of Metabolomics and Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgari
| | - Stéphanie Arrivault
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Departments of Metabolomics and Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgari
| | - Ute Armbruster
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Institute of Molecular Photosynthesis, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- CEPLAS—Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Peter Geigenberger
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
7
|
Fakih Z, Plourde MB, Germain H. Differential Participation of Plant Ribosomal Proteins from the Small Ribosomal Subunit in Protein Translation under Stress. Biomolecules 2023; 13:1160. [PMID: 37509195 PMCID: PMC10377644 DOI: 10.3390/biom13071160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Upon exposure to biotic and abiotic stress, plants have developed strategies to adapt to the challenges imposed by these unfavorable conditions. The energetically demanding translation process is one of the main elements regulated to reduce energy consumption and to selectively synthesize proteins involved in the establishment of an adequate response. Emerging data have shown that ribosomes remodel to adapt to stresses. In Arabidopsis thaliana, ribosomes consist of approximately eighty-one distinct ribosomal proteins (RPs), each of which is encoded by two to seven genes. Recent research has revealed that a mutation in a given single RP in plants can not only affect the functions of the RP itself but can also influence the properties of the ribosome, which could bring about changes in the translation to varying degrees. However, a pending question is whether some RPs enable ribosomes to preferentially translate specific mRNAs. To reveal the role of ribosomal proteins from the small subunit (RPS) in a specific translation, we developed a novel approach to visualize the effect of RPS silencing on the translation of a reporter mRNA (GFP) combined to the 5'UTR of different housekeeping and defense genes. The silencing of genes encoding for NbRPSaA, NbRPS5A, and NbRPS24A in Nicotiana benthamiana decreased the translation of defense genes. The NbRACK1A-silenced plant showed compromised translations of specific antioxidant enzymes. However, the translations of all tested genes were affected in NbRPS27D-silenced plants. These findings suggest that some RPS may be potentially involved in the control of protein translation.
Collapse
Affiliation(s)
- Zainab Fakih
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada
| | - Mélodie B Plourde
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada
| |
Collapse
|
8
|
Yu X, Wei P, Zhao S, Chen Z, Li X, Zhang W, Liu C, Yang Y, Li X, Liu X. Population transcriptomics uncover the relative roles of positive selection and differential expression in Batrachium bungei adaptation to the Qinghai-Tibetan plateau. PLANT CELL REPORTS 2023; 42:879-893. [PMID: 36973418 DOI: 10.1007/s00299-023-03005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE Positive selection genes are related to metabolism, while differentially expressed genes are related to photosynthesis, suggesting that genetic adaptation and expression regulation may play independent roles in different gene classes. Genome-wide investigation of the molecular mechanisms for high-altitude adaptation is an intriguing topic in evolutionary biology. The Qinghai-Tibet Plateau (QTP) with its extremely variable environments is an ideal site for studying high-altitude adaptation. Here, we used transcriptome data of 100 individuals from 20 populations collected from various altitudes on the QTP to investigate the adaptive mechanisms of the aquatic plant Batrachium bungei at both the genetic and transcriptional level. To explore genes and biological pathways that may contribute to QTP adaptation, we employed a two-step approach, in which we identified positively selected genes and differentially expressed genes using the landscape genomic and differential expression approaches. The positive selection analysis showed that genes involved in metabolic regulation played a crucial role in B. bungei adaptation to the extreme environments of the QTP, especially intense ultraviolet radiation. Altitude-based differential expression analysis suggested that B. bungei could increase the rate of energy dissipation or reduce the efficiency of light energy absorption by down regulating the expression of photosynthesis-related genes to adapt to the strong ultraviolet radiation. Weighted gene co-expression network analysis identified ribosomal genes as hubs of altitude adaptation in B. bungei. Only a small part of genes (about 10%) overlapped between positively selected genes and differentially expressed genes in B. bungei, suggesting that genetic adaptation and gene expression regulation might play relatively independent roles in different categories of functional genes. Taken together, this study enriches our understanding of the high-altitude adaptation mechanism of B. bungei on the QTP.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shuqi Zhao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Zhuyifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xinzhong Li
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China
| | - Wencai Zhang
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China
| | - Chenlai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yujiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xiaoyan Li
- Biology Experimental Teaching Center, School of Life Science, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China.
| |
Collapse
|
9
|
Ghouili E, Sassi K, Hidri Y, M’Hamed HC, Somenahally A, Xue Q, Jebara M, Nefissi Ouertani R, Riahi J, de Oliveira AC, Abid G, Muhovski Y. Effects of Date Palm Waste Compost Application on Root Proteome Changes of Barley ( Hordeum vulgare L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:526. [PMID: 36771612 PMCID: PMC9921465 DOI: 10.3390/plants12030526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Proteomic analysis was performed to investigate the differentially abundant proteins (DAPs) in barley roots during the tillering stage. Bioinformatic tools were used to interpret the biological function, the pathway analysis and the visualisation of the network amongst the identified proteins. A total of 72 DAPs (33 upregulated and 39 downregulated) among a total of 2580 proteins were identified in response to compost treatment, suggesting multiple pathways of primary and secondary metabolism, such as carbohydrates and energy metabolism, phenylpropanoid pathway, glycolysis pathway, protein synthesis and degradation, redox homeostasis, RNA processing, stress response, cytoskeleton organisation, and phytohormone metabolic pathways. The expression of DAPs was further validated by qRT-PCR. The effects on barley plant development, such as the promotion of root growth and biomass increase, were associated with a change in energy metabolism and protein synthesis. The activation of enzymes involved in redox homeostasis and the regulation of stress response proteins suggest a protective effect of compost, consequently improving barley growth and stress acclimation through the reduction of the environmental impact of productive agriculture. Overall, these results may facilitate a better understanding of the molecular mechanism of compost-promoted plant growth and provide valuable information for the identification of critical genes/proteins in barley as potential targets of compost.
Collapse
Affiliation(s)
- Emna Ghouili
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, (L2AD, CBBC), P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Khaled Sassi
- Laboratory of Agronomy, National Agronomy Institute of Tunisia (INAT), University of Carthage, Avenue Charles Nicolle, Tunis-Mahrajène, P.O. Box 43, Tunis 1082, Tunisia
| | - Yassine Hidri
- Laboratory of Integrated Olive Production in the Humid, Sub-humid and Semi-arid Region (LR16IO3), Olive Tree Institute, Cité Mahragène, P.O. Box 208, Tunis 1082, Tunisia
| | - Hatem Cheikh M’Hamed
- Agronomy Laboratory, National Institute of Agronomic Research of Tunis (INRAT), Carthage University, Hedi Karray Street, Ariana 2049, Tunisia
| | - Anil Somenahally
- Department of Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd, College Station, TX 77843-2474, USA
| | - Qingwu Xue
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX 79403-6603, USA
| | - Moez Jebara
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, (L2AD, CBBC), P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Jouhaina Riahi
- Laboratory of Agronomy, National Agronomy Institute of Tunisia (INAT), University of Carthage, Avenue Charles Nicolle, Tunis-Mahrajène, P.O. Box 43, Tunis 1082, Tunisia
| | - Ana Caroline de Oliveira
- Biological Engineering Unit, Department of Life Sciences, Walloon Agricultural Research Centre, Chaussée de Charleroi, P.O. Box 234, 5030 Gembloux, Belgium
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, (L2AD, CBBC), P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Yordan Muhovski
- Biological Engineering Unit, Department of Life Sciences, Walloon Agricultural Research Centre, Chaussée de Charleroi, P.O. Box 234, 5030 Gembloux, Belgium
| |
Collapse
|
10
|
Wei P, Yu X, Yang Y, Chen Z, Zhao S, Li X, Zhang W, Liu C, Li X, Liu X. Biased gene expression reveals the contribution of subgenome to altitude adaptation in allopolyploid Isoetes sinensis. Ecol Evol 2022; 12:e9677. [PMID: 36619709 PMCID: PMC9797765 DOI: 10.1002/ece3.9677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Allopolyploids are believed to inherit the genetic characteristics of its progenitors and exhibit stronger adaptability and vigor. The allotetraploid Isoetes sinensis was formed by the natural hybridization and polyploidization of two diploid progenitors, Isoetes taiwanensis and Isoetes yunguiensis, and was believed to have the potential to adapt to plateau environments. To explore the expression pattern of homoeologous genes and their contributions to altitude adaptation, we transplanted natural allotetraploid I. sinensis (TnTnYnYn) along the altitude gradient for a long-term, and harvested them in summer and winter, respectively. One year after transplanting, it still lived well, even in the extreme environment of the Qinghai-Tibet Plateau. Then, we performed high-throughput RNA sequencing to measure their gene expression level. A total of 7801 homoeologous genes were expressed, among which 5786 were identified as shared expression in different altitudes and seasons. We further found that altitude variations could change the subgenome bias trend of I. sinensis, but season could not. Moreover, the functions of uniquely expressed genes indicated that temperature might be an important restrictive factor during the adaptation process. Through the analysis of DEGs and uniquely expressed genes, we found that Y subgenome provided more contributions to high altitude adaptation than T subgenome. These adaptive traits to high altitude may be inherited from its plateau progenitor I. yunguiensis. Through weighted gene co-expression network analysis, pentatricopeptide repeats gene family and glycerophospholipid metabolism pathway were considered to play important roles in high-altitude adaptation. Totally, this study will enrich our understanding of allopolyploid in environmental adaptation.
Collapse
Affiliation(s)
- Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiao‐lei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Yu‐jiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Zhu‐yifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Shu‐qi Zhao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xin‐zhong Li
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| | - Wen‐cai Zhang
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| | - Chen‐lai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiao‐yan Li
- Biology Experimental Teaching Center, School of Life ScienceWuhan UniversityWuhanChina
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| |
Collapse
|
11
|
Han M, Xu M, Su T, Wang S, Wu L, Feng J, Ding C. Transcriptome Analysis Reveals Critical Genes and Pathways in Carbon Metabolism and Ribosome Biogenesis in Poplar Fertilized with Glutamine. Int J Mol Sci 2022; 23:9998. [PMID: 36077396 PMCID: PMC9456319 DOI: 10.3390/ijms23179998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Exogenous Gln as a single N source has been shown to exert similar roles to the inorganic N in poplar 'Nanlin895' in terms of growth performance, yet the underlying molecular mechanism remains unclear. Herein, transcriptome analyses of both shoots (L) and roots (R) of poplar 'Nanlin895' fertilized with Gln (G) or the inorganic N (control, C) were performed. Compared with the control, 3109 differentially expressed genes (DEGs) and 5071 DEGs were detected in the GL and GR libraries, respectively. In the shoots, Gln treatment resulted in downregulation of a large number of ribosomal genes but significant induction of many starch and sucrose metabolism genes, demonstrating that poplars tend to distribute more energy to sugar metabolism rather than ribosome biosynthesis when fertilized with Gln-N. By contrast, in the roots, most of the DEGs were annotated to carbon metabolism, glycolysis/gluconeogenesis and phenylpropanoid biosynthesis, suggesting that apart from N metabolism, exogenous Gln has an important role in regulating the redistribution of carbon resources and secondary metabolites. Therefore, it can be proposed that the promotion impact of Gln on poplar growth and photosynthesis may result from the improvement of both carbon and N allocation, accompanied by an efficient energy switch for growth and stress responses.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Shizhen Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Liangdan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Junhu Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Changjun Ding
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
12
|
Dias-Fields L, Adamala KP. Engineering Ribosomes to Alleviate Abiotic Stress in Plants: A Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:2097. [PMID: 36015400 PMCID: PMC9415564 DOI: 10.3390/plants11162097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
As the centerpiece of the biomass production process, ribosome activity is highly coordinated with environmental cues. Findings revealing ribosome subgroups responsive to adverse conditions suggest this tight coordination may be grounded in the induction of variant ribosome compositions and the differential translation outcomes they might produce. In this perspective, we go through the literature linking ribosome heterogeneity to plants' abiotic stress response. Once unraveled, this crosstalk may serve as the foundation of novel strategies to custom cultivars tolerant to challenging environments without the yield penalty.
Collapse
Affiliation(s)
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Dinkeloo K, Pelly Z, McDowell JM, Pilot G. A split green fluorescent protein system to enhance spatial and temporal sensitivity of translating ribosome affinity purification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:304-315. [PMID: 35436375 PMCID: PMC9544980 DOI: 10.1111/tpj.15779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Translating ribosome affinity purification (TRAP) utilizes transgenic plants expressing a ribosomal protein fused to a tag for affinity co-purification of ribosomes and the mRNAs that they are translating. This population of actively translated mRNAs (translatome) can be interrogated by quantitative PCR or RNA sequencing. Condition- or cell-specific promoters can be utilized to isolate the translatome of specific cell types, at different growth stages and/or in response to environmental variables. While advantageous for revealing differential expression, this approach may not provide sufficient sensitivity when activity of the condition/cell-specific promoter is weak, when ribosome turnover is low in the cells of interest, or when the targeted cells are ephemeral. In these situations, expressing tagged ribosomes under the control of these specific promoters may not yield sufficient polysomes for downstream analysis. Here, we describe a new TRAP system that employs two transgenes: One is constitutively expressed and encodes a ribosomal protein fused to one fragment of a split green fluorescent protein (GFP); the second is controlled by a stimulus-specific promoter and encodes the second GFP fragment fused to an affinity purification tag. In cells where both transgenes are active, the purification tag is attached to ribosomes by bi-molecular folding and assembly of the split GFP fragments. This approach provides increased sensitivity and better temporal resolution because it labels pre-existing ribosomes and does not depend on rapid ribosome turnover. We describe the optimization and key parameters of this system, and then apply it to a plant-pathogen interaction in which spatial and temporal resolution are difficult to achieve with current technologies.
Collapse
Affiliation(s)
- Kasia Dinkeloo
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| | - Zoe Pelly
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| | - John M. McDowell
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| |
Collapse
|
14
|
Abstract
Tremendous progress has been made on molecular aspects of plant phosphorus (P) nutrition, often without heeding information provided by soil scientists, ecophysiologists, and crop physiologists. This review suggests ways to integrate information from different disciplines. When soil P availability is very low, P-mobilizing strategies are more effective than mycorrhizal strategies. Soil parameters largely determine how much P roots can acquire from P-impoverished soil, and kinetic properties of P transporters are less important. Changes in the expression of P transporters avoid P toxicity. Plants vary widely in photosynthetic P-use efficiency, photosynthesis per unit leaf P. The challenge is to discover what the trade-offs are of different patterns of investment in P fractions. Less investment may save P, but are costs incurred? Are these costs acceptable for crops? These questions can be resolved only by the concerted action of scientists working at both molecular and physiological levels, rather than pursuing these problems independently.
Collapse
Affiliation(s)
- Hans Lambers
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia;
- Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Enzymes degraded under high light maintain proteostasis by transcriptional regulation in Arabidopsis. Proc Natl Acad Sci U S A 2022; 119:e2121362119. [PMID: 35549553 PMCID: PMC9171785 DOI: 10.1073/pnas.2121362119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Photoinhibitory high light stress in plants leads to increases in markers of protein degradation and transcriptional up-regulation of proteases and proteolytic machinery, but protein homeostasis (proteostasis) of most enzymes is largely maintained under high light, so we know little about the metabolic consequences of it beyond photosystem damage. We developed a technique to look for rapid protein turnover events in response to high light through 13C partial labeling and detailed peptide mass spectrometry. This analysis reveals a light-induced transcriptional program for nuclear-encoded genes, beyond the regulation of photosystem II, to replace key protein degradation targets in plants and ensure proteostasis under high light stress. Photoinhibitory high light stress in Arabidopsis leads to increases in markers of protein degradation and transcriptional up-regulation of proteases and proteolytic machinery, but proteostasis is largely maintained. We find significant increases in the in vivo degradation rate for specific molecular chaperones, nitrate reductase, glyceraldehyde-3 phosphate dehydrogenase, and phosphoglycerate kinase and other plastid, mitochondrial, peroxisomal, and cytosolic enzymes involved in redox shuttles. Coupled analysis of protein degradation rates, mRNA levels, and protein abundance reveal that 57% of the nuclear-encoded enzymes with higher degradation rates also had high light–induced transcriptional responses to maintain proteostasis. In contrast, plastid-encoded proteins with enhanced degradation rates showed decreased transcript abundances and must maintain protein abundance by other processes. This analysis reveals a light-induced transcriptional program for nuclear-encoded genes, beyond the regulation of the photosystem II (PSII) D1 subunit and the function of PSII, to replace key protein degradation targets in plants and ensure proteostasis under high light stress.
Collapse
|
16
|
Qureshi MK, Gawroński P, Munir S, Jindal S, Kerchev P. Hydrogen peroxide-induced stress acclimation in plants. Cell Mol Life Sci 2022; 79:129. [PMID: 35141765 PMCID: PMC11073338 DOI: 10.1007/s00018-022-04156-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Among all reactive oxygen species (ROS), hydrogen peroxide (H2O2) takes a central role in regulating plant development and responses to the environment. The diverse role of H2O2 is achieved through its compartmentalized synthesis, temporal control exerted by the antioxidant machinery, and ability to oxidize specific residues of target proteins. Here, we examine the role of H2O2 in stress acclimation beyond the well-studied transcriptional reprogramming, modulation of plant hormonal networks and long-distance signalling waves by highlighting its global impact on the transcriptional regulation and translational machinery.
Collapse
Affiliation(s)
- Muhammad Kamran Qureshi
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Sana Munir
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Sunita Jindal
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| |
Collapse
|
17
|
Hartmann A, Berkowitz O, Whelan J, Narsai R. Cross-species transcriptomic analyses reveals common and opposite responses in Arabidopsis, rice and barley following oxidative stress and hormone treatment. BMC PLANT BIOLOGY 2022; 22:62. [PMID: 35120438 PMCID: PMC8815143 DOI: 10.1186/s12870-021-03406-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/14/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND For translational genomics, a roadmap is needed to know the molecular similarities or differences between species, such as model species and crop species. This knowledge is invaluable for the selection of target genes and pathways to alter downstream in response to the same stimuli. Here, the transcriptomic responses to six treatments including hormones (abscisic acid - ABA and salicylic acid - SA); treatments that cause oxidative stress (3-amino-1,2,4-triazole - 3AT, methyl viologen - MV); inhibit respiration (antimycin A - AA) or induce genetic damage (ultraviolet radiation -UV) were analysed and compared between Arabidopsis (Arabidopsis thaliana), barley (Hordeum vulgare) and rice (Oryza sativa). RESULTS Common and opposite responses were identified between species, with the number of differentially expressed genes (DEGs) varying greatly between treatments and species. At least 70% of DEGs overlapped with at least one other treatment within a species, indicating overlapping response networks. Remarkably, 15 to 34% of orthologous DEGs showed opposite responses between species, indicating diversity in responses, despite orthology. Orthologous DEGs with common responses to multiple treatments across the three species were correlated with experimental data showing the functional importance of these genes in biotic/abiotic stress responses. The mitochondrial dysfunction response was revealed to be highly conserved in all three species in terms of responsive genes and regulation via the mitochondrial dysfunction element. CONCLUSIONS The orthologous DEGs that showed a common response between species indicate conserved transcriptomic responses of these pathways between species. However, many genes, including prominent salt-stress responsive genes, were oppositely responsive in multiple-stresses, highlighting fundamental differences in the responses and regulation of these genes between species. This work provides a resource for translation of knowledge or functions between species.
Collapse
Affiliation(s)
- Andreas Hartmann
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
18
|
Tivendale ND, Fenske R, Duncan O, Millar AH. In vivo homopropargylglycine incorporation enables sampling, isolation and characterization of nascent proteins from Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1260-1276. [PMID: 34152049 DOI: 10.1111/tpj.15376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Determining which proteins are actively synthesized at a given point in time and extracting a representative sample for analysis is important to understand plant responses. Here we show that the methionine (Met) analogue homopropargylglycine (HPG) enables Bio-Orthogonal Non-Canonical Amino acid Tagging (BONCAT) of a small sample of the proteins being synthesized in Arabidopsis plants or cell cultures, facilitating their click-chemistry enrichment for analysis. The sites of HPG incorporation could be confirmed by peptide mass spectrometry at Met sites throughout protein amino acid sequences and correlation with independent studies of protein labelling with 15 N verified the data. We provide evidence that HPG-based BONCAT tags a better sample of nascent plant proteins than azidohomoalanine (AHA)-based BONCAT in Arabidopsis and show that the AHA induction of Met metabolism and greater inhibition of cell growth rate than HPG probably limits AHA incorporation at Met sites in Arabidopsis. We show HPG-based BONCAT provides a verifiable method for sampling, which plant proteins are being synthesized at a given time point and enriches a small portion of new protein molecules from the bulk protein pool for identification, quantitation and subsequent biochemical analysis. Enriched nascent polypeptides samples were found to contain significantly fewer common post-translationally modified residues than the same proteins from whole plant extracts, providing evidence for age-related accumulation of post-translational modifications in plants.
Collapse
Affiliation(s)
- Nathan D Tivendale
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Owen Duncan
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
| |
Collapse
|
19
|
Cao H, Duncan O, Islam S, Zhang J, Ma W, Millar AH. Increased Wheat Protein Content via Introgression of an HMW Glutenin Selectively Reshapes the Grain Proteome. Mol Cell Proteomics 2021; 20:100097. [PMID: 34000434 PMCID: PMC8214148 DOI: 10.1016/j.mcpro.2021.100097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/15/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Introgression of a high-molecular-weight glutenin subunit (HMW-GS) allele, 1Ay21∗, into commercial wheat cultivars increased overall grain protein content and bread-making quality, but the role of proteins beyond this HMW-GS itself was unknown. In addition to increased abundance of 1Ay HMW-GS, 115 differentially accumulated proteins (DAPs) were discovered between three cultivars and corresponding introgressed near-isogenic lines. Functional category analysis showed that the DAPs were predominantly other storage proteins and proteins involved in protein synthesis, protein folding, protein degradation, stress response, and grain development. Nearly half the genes encoding the DAPs showed strong coexpression patterns during grain development. Promoters of these genes are enriched in elements associated with transcription initiation and light response, indicating a potential connection between these cis-elements and grain protein accumulation. A model of how this HMW-GS enhances the abundance of machinery for protein synthesis and maturation during grain filling is proposed. This analysis not only provides insights into how introgression of the 1Ay21∗ improves grain protein content but also directs selection of protein candidates for future wheat quality breeding programs.
Collapse
Affiliation(s)
- Hui Cao
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia; School of Molecular Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia; School of Molecular Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Shahidul Islam
- State Agricultural Biotechnology Centre, College of Science Health Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia; Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, Western Australia, Australia
| | - Jingjuan Zhang
- State Agricultural Biotechnology Centre, College of Science Health Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia; Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, Western Australia, Australia
| | - Wujun Ma
- State Agricultural Biotechnology Centre, College of Science Health Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia; Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, Western Australia, Australia.
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia; School of Molecular Science, University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
20
|
The composition and turnover of the Arabidopsis thaliana 80S cytosolic ribosome. Biochem J 2021; 477:3019-3032. [PMID: 32744327 PMCID: PMC7452503 DOI: 10.1042/bcj20200385] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Cytosolic 80S ribosomes contain proteins of the mature cytosolic ribosome (r-proteins) as well as proteins with roles in ribosome biogenesis, protein folding or modification. Here, we refined the core r-protein composition in Arabidopsis thaliana by determining the abundance of different proteins during enrichment of ribosomes from cell cultures using peptide mass spectrometry. The turnover rates of 26 40S subunit r-proteins and 29 60S subunit r-proteins were also determined, showing that half of the ribosome population is replaced every 3–4 days. Three enriched proteins showed significantly shorter half-lives; a protein annotated as a ribosomal protein uL10 (RPP0D, At1g25260) with a half-life of 0.5 days and RACK1b and c with half-lives of 1–1.4 days. The At1g25260 protein is a homologue of the human Mrt4 protein, a trans-acting factor in the assembly of the pre-60S particle, while RACK1 has known regulatory roles in cell function beyond its role in the 40S subunit. Our experiments also identified 58 proteins that are not from r-protein families but co-purify with ribosomes and co-express with r-proteins; 26 were enriched more than 10-fold during ribosome enrichment. Some of these enriched proteins have known roles in translation, while others are newly proposed ribosome-associated factors in plants. This analysis provides an improved understanding of A. thaliana ribosome protein content, shows that most r-proteins turnover in unison in vivo, identifies a novel set of potential plant translatome components, and how protein turnover can help identify r-proteins involved in ribosome biogenesis or regulation in plants.
Collapse
|
21
|
Garcia-Molina A, Marino G, Lehmann M, Leister D. Systems biology of responses to simultaneous copper and iron deficiency in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2119-2138. [PMID: 32578228 DOI: 10.1111/tpj.14887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/09/2020] [Indexed: 05/29/2023]
Abstract
Plant responses to coincident nutrient deficiencies cannot be predicted from the responses to individual deficiencies. Although copper (Cu) and iron (Fe) are essential micronutrients for plant growth that are often and concurrently limited in soils, the combinatorial response to Cu-Fe deficiency remains elusive. In the present study, we characterised the responses of Arabidopsis thaliana plants deprived of Cu, Fe or both (-Cu-Fe) at the level of plant development, mineral composition, and reconfiguration of transcriptomes, proteomes and metabolomes. Compared to single deficiencies, simultaneous -Cu-Fe leads to a distinct pattern in leaf physiology and microelement concentration characterised by lowered protein content and enhanced manganese and zinc levels. Conditional networking analysis of molecular changes indicates that biological processes also display different co-expression patterns among single and double deficiencies. Indeed, the interaction between Cu and Fe deficiencies causes distinct expression profiles for 15% of all biomolecules, leading to specific enhancement of general stress responses and protein homeostasis mechanisms, at the same time as severely arresting photosynthesis. Accordingly, central carbon metabolites, in particular photosynthates, decrease especially under -Cu-Fe conditions, whereas the pool of free amino acids increases. Further meta-analysis of transcriptomes and proteomes corroborated that protein biosynthesis and folding capacity were readjusted during the combinatorial response and unveiled important rearrangements in the metabolism of organic acids. Consequently, our results demonstrate that the response to -Cu-Fe imposes a distinct reconfiguration of large sets of molecules, not triggered by single deficiencies, resulting into a switch from autotrophy to heterotrophy and involving organic acids such as fumaric acid as central mediators of the response.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Giada Marino
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Martin Lehmann
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| | - Dario Leister
- Faculty of Biology, Plant Molecular Biology (Botany), Ludwig-Maximilians Universität München, Großhadernerstr. 2-4, Planegg-Martinsried, D-82152, Germany
| |
Collapse
|
22
|
Garcia-Molina A, Kleine T, Schneider K, Mühlhaus T, Lehmann M, Leister D. Translational Components Contribute to Acclimation Responses to High Light, Heat, and Cold in Arabidopsis. iScience 2020; 23:101331. [PMID: 32679545 PMCID: PMC7364123 DOI: 10.1016/j.isci.2020.101331] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/26/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022] Open
Abstract
Plant metabolism is broadly reprogrammed during acclimation to abiotic changes. Most previous studies have focused on transitions from standard to single stressful conditions. Here, we systematically analyze acclimation processes to levels of light, heat, and cold stress that subtly alter physiological parameters and assess their reversibility during de-acclimation. Metabolome and transcriptome changes were monitored at 11 different time points. Unlike transcriptome changes, most alterations in metabolite levels did not readily return to baseline values, except in the case of cold acclimation. Similar regulatory networks operate during (de-)acclimation to high light and cold, whereas heat and high-light responses exhibit similar dynamics, as determined by surprisal and conditional network analyses. In all acclimation models tested here, super-hubs in conditional transcriptome networks are enriched for components involved in translation, particularly ribosomes. Hence, we suggest that the ribosome serves as a common central hub for the control of three different (de-)acclimation responses.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Kevin Schneider
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Martin Lehmann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
23
|
Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Kopka J. Systematic Review of Plant Ribosome Heterogeneity and Specialization. FRONTIERS IN PLANT SCIENCE 2020; 11:948. [PMID: 32670337 PMCID: PMC7332886 DOI: 10.3389/fpls.2020.00948] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/10/2020] [Indexed: 05/25/2023]
Abstract
Plants dedicate a high amount of energy and resources to the production of ribosomes. Historically, these multi-protein ribosome complexes have been considered static protein synthesis machines that are not subject to extensive regulation but only read mRNA and produce polypeptides accordingly. New and increasing evidence across various model organisms demonstrated the heterogeneous nature of ribosomes. This heterogeneity can constitute specialized ribosomes that regulate mRNA translation and control protein synthesis. A prominent example of ribosome heterogeneity is seen in the model plant, Arabidopsis thaliana, which, due to genome duplications, has multiple paralogs of each ribosomal protein (RP) gene. We support the notion of plant evolution directing high RP paralog divergence toward functional heterogeneity, underpinned in part by a vast resource of ribosome mutants that suggest specialization extends beyond the pleiotropic effects of single structural RPs or RP paralogs. Thus, Arabidopsis is a highly suitable model to study this phenomenon. Arabidopsis enables reverse genetics approaches that could provide evidence of ribosome specialization. In this review, we critically assess evidence of plant ribosome specialization and highlight steps along ribosome biogenesis in which heterogeneity may arise, filling the knowledge gaps in plant science by providing advanced insights from the human or yeast fields. We propose a data analysis pipeline that infers the heterogeneity of ribosome complexes and deviations from canonical structural compositions linked to stress events. This analysis pipeline can be extrapolated and enhanced by combination with other high-throughput methodologies, such as proteomics. Technologies, such as kinetic mass spectrometry and ribosome profiling, will be necessary to resolve the temporal and spatial aspects of translational regulation while the functional features of ribosomal subpopulations will become clear with the combination of reverse genetics and systems biology approaches.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Yin-Chen Hsieh
- Bioinformatics Subdivision, Wageningen University, Wageningen, Netherlands
| | - Joachim Kopka
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|