1
|
Yuan L, Dang J, Zhang J, Wang L, Zheng H, Li G, Li J, Zhou F, Khan A, Zhang Z, Hu X. A glutathione S-transferase regulates lignin biosynthesis and enhances salt tolerance in tomato. PLANT PHYSIOLOGY 2024; 196:2989-3006. [PMID: 39324634 DOI: 10.1093/plphys/kiae504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Salt stress adversely affects the growth and yield of crops. Glutathione S-transferases (GSTs) are involved in plant growth and responses to biotic and abiotic stresses. In this study, 400 mm NaCl stress significantly induced the expression of Glutathione S-transferase U43 (SlGSTU43) in the roots of the wild-type tomato (Solanum lycopersicum L.) plants. Overexpressing SlGSTU43 enhanced the ability of scavenging reactive oxygen species in tomato leaves and roots under NaCl stress, while SlGSTU43 knock-out mutants showed the opposite performance. RNA sequencing analysis revealed that overexpressing SlGSTU43 affected the expression of genes related to lignin biosynthesis. We demonstrated that SlGSTU43 can regulate the lignin content in tomato through its interaction with SlCOMT2, a key enzyme involved in lignin biosynthesis, and promote the growth of tomato plants under NaCl stress. In addition, SlMYB71 and SlWRKY8 interact each other, and can directly bind to the promoter of SlGSTU43 to transcriptionally activate its expression separately or in combination. When SlMYB71 and SlWRKY8 were silenced in tomato plants individually or collectively, the plants were sensitive to NaCl stress, and their GST activities and lignin contents decreased. Our research indicates that SlGSTU43 can enhance salt stress tolerance in tomato by regulating lignin biosynthesis, which is regulated by interacting with SlCOMT2, as well as SlMYB71 and SlWRKY8. This finding broadens our understanding of GST functions.
Collapse
Affiliation(s)
- Luqiao Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Jiao Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Jiayue Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Linyang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Hao Zheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Guobin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Junxiao Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fan Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Zhengda Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Zhang Y, Liu X, Shi Y, Lang L, Tao S, Zhang Q, Qin M, Wang K, Xu Y, Zheng L, Cao H, Wang H, Zhu Y, Song J, Li K, Xu A, Huang Z. The B-box transcription factor BnBBX22.A07 enhances salt stress tolerance by indirectly activating BnWRKY33.C03. PLANT, CELL & ENVIRONMENT 2024; 47:5424-5442. [PMID: 39189937 DOI: 10.1111/pce.15119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/21/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Salt stress has a detrimental impact on both plant growth and global crop yields. B-box proteins have emerged as pivotal players in plant growth and development regulation. Although the precise role of B-box proteins orchestrating salt stress responses in B. napus (Brassica napus) is not well understood in the current literature, further research and molecular explorations are required. Here, we isolated the B-box protein BnBBX22.A07 from B. napus. The overexpression of BnBBX22.A07 significantly improved the salt tolerance of Arabidopsis (Arabidopsis thaliana) and B. napus. Transcriptomic and histological analysis showed that BnBBX22.A07 enhanced the salt tolerance of B. napus by activating the expression of reactive oxygen species (ROS) scavenging-related genes and decreasing salt-induced superoxide anions and hydrogen peroxide. Moreover, BnBBX22.A07 interacted with BnHY5.C09, which specifically bound to and activated the promoter of BnWRKY33.C03. The presence of BnBBX22.A07 enhanced the activation of BnHY5.C09 on BnWRKY33.C03. Overexpression of BnHY5.C09 and BnWRKY33.C03 improved the salt tolerance of Arabidopsis. Functional analyses revealed that BnBBX22.A07-mediated salt tolerance was partly dependent on WRKY33. Taken together, we demonstrate that BnBBX22.A07 functions positively in salt responses not only by activating ROS scavenging-related genes but also by indirectly activating BnWRKY33.C03. Notably, our study offers a promising avenue for the identification of candidate genes that could be harnessed in breeding endeavours to develop salt-resistant transgenic crops.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Yiji Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Lina Lang
- Shandong Seed Administration Station, Jinan, China
| | - Shunxian Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Qi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Mengfan Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Kai Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Yu Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Lin Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Hanming Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Han Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Yunlin Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Jia Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Cao HX, Michels D, Vu GTH, Gailing O. Applications of CRISPR Technologies in Forestry and Molecular Wood Biotechnology. Int J Mol Sci 2024; 25:11792. [PMID: 39519342 PMCID: PMC11547103 DOI: 10.3390/ijms252111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Forests worldwide are under increasing pressure from climate change and emerging diseases, threatening their vital ecological and economic roles. Traditional breeding approaches, while valuable, are inherently slow and limited by the long generation times and existing genetic variation of trees. CRISPR technologies offer a transformative solution, enabling precise and efficient genome editing to accelerate the development of climate-resilient and productive forests. This review provides a comprehensive overview of CRISPR applications in forestry, exploring its potential for enhancing disease resistance, improving abiotic stress tolerance, modifying wood properties, and accelerating growth. We discuss the mechanisms and applications of various CRISPR systems, including base editing, prime editing, and multiplexing strategies. Additionally, we highlight recent advances in overcoming key challenges such as reagent delivery and plant regeneration, which are crucial for successful implementation of CRISPR in trees. We also delve into the potential and ethical considerations of using CRISPR gene drive for population-level genetic alterations, as well as the importance of genetic containment strategies for mitigating risks. This review emphasizes the need for continued research, technological advancements, extensive long-term field trials, public engagement, and responsible innovation to fully harness the power of CRISPR for shaping a sustainable future for forests.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| | - David Michels
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
4
|
Zhang A, Shang J, Xiao K, Zhang M, Wang S, Zhu W, Wu X, Zha D. WRKY transcription factor 40 from eggplant (Solanum melongena L.) regulates ABA and salt stress responses. Sci Rep 2024; 14:19289. [PMID: 39164381 PMCID: PMC11335892 DOI: 10.1038/s41598-024-69670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Plants are affected by many environmental factors during their various stages of growth, among which salt stress is a key factor. WRKY transcription factors play important roles in the response to stress in plants. In this study, SmWRKY40 from eggplant (Solanum melongena L.) was found to belong to the subfamily of WRKY transcription factor group II, closely related to the evolution of wild tomato ScWRKY40 (Solanum chilense). The expression of SmWRKY40 could be induced by several abiotic stresses (drought, salt, and high temperature) and ABA to different degrees, with salt stress being the most significant. In Arabidopsis thaliana, the seed germination rate of SmWRKY40 overexpression seedlings was significantly higher than those of the wild type under high concentrations of NaCl and ABA, and root elongation of overexpression lines was also longer than wild type under NaCl treatments. SmWRKY40 overexpression lines were found to enhance Arabidopsis tolerance to salt with lower ROS, MDA, higher soluble protein, proline accumulation, and more active antioxidant enzymes. The expression level of genes related to stress and ABA signaling displayed significant differences in SmWRKY40 overexpression line than that of WT. These results indicate that SmWRKY40 regulates ABA and salt stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Aidong Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jing Shang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Kai Xiao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Min Zhang
- Horticultural Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, 430345, Hubei, China
| | - Shengjie Wang
- Shanghai Qiande Seed Industry Co., Ltd, Shanghai, 200235, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xuexia Wu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Dingshi Zha
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
5
|
Li Q, Xian B, Yu Q, Jia R, Zhang C, Zhong X, Zhang M, Fu Y, Liu Y, He H, Li M, Chen S, He Y. The CsAP2-09-CsWRKY25-CsRBOH2 cascade confers resistance against citrus bacterial canker by regulating ROS homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:534-548. [PMID: 38230828 DOI: 10.1111/tpj.16623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
Citrus bacterial canker (CBC) is a serious bacterial disease caused by Xanthomonas citri subsp. citri (Xcc) that adversely impacts the global citrus industry. In a previous study, we demonstrated that overexpression of an Xcc-inducible apetala 2/ethylene response factor encoded by Citrus sinensis, CsAP2-09, enhances CBC resistance. The mechanism responsible for this effect, however, is not known. In the present study, we showed that CsAP2-09 targeted the promoter of the Xcc-inducible WRKY transcription factor coding gene CsWRKY25 directly, activating its transcription. CsWRKY25 was found to localize to the nucleus and to activate transcriptional activity. Plants overexpressing CsWRKY25 were more resistant to CBC and showed higher expression of the respiratory burst oxidase homolog (RBOH) CsRBOH2, in addition to exhibiting increased RBOH activity. Transient overexpression assays in citrus confirmed that CsWRKY25 and CsRBOH2 participated in the generation of reactive oxygen species (ROS) bursts, which were able to restore the ROS degradation caused by CsAP2-09 knockdown. Moreover, CsWRKY25 was found to bind directly to W-box elements within the CsRBOH2 promoter. Notably, CsRBOH2 knockdown had been reported previously to reduce the CBC resistance, while demonstrated in this study, CsRBOH2 transient overexpression can enhance the CBC resistance. Overall, our results outline a pathway through which CsAP2-09-CsWRKY25 transcriptionally reprograms CsRBOH2-mediated ROS homeostasis in a manner conducive to CBC resistance. These data offer new insight into the mechanisms and regulatory pathways through which CsAP2-09 regulates CBC resistance, highlighting its potential utility as a target for the breeding of CBC-resistant citrus varieties.
Collapse
Affiliation(s)
- Qiang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- National Citrus Engineering Research Center, Chongqing, 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing, 400712, China
| | - Baohang Xian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Qiyuan Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Ruirui Jia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- National Citrus Engineering Research Center, Chongqing, 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing, 400712, China
| | - Chenxi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Xin Zhong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Miao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Yongyao Fu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Yiqi Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Houzheng He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Man Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Shanchun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- National Citrus Engineering Research Center, Chongqing, 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing, 400712, China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- National Citrus Engineering Research Center, Chongqing, 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing, 400712, China
| |
Collapse
|
6
|
Wang X, Wei C, Huang H, Kang J, Long R, Chen L, Li M, Yang Q. The GARP family transcription factor MtHHO3 negatively regulates salt tolerance in Medicago truncatula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108542. [PMID: 38531119 DOI: 10.1016/j.plaphy.2024.108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/31/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
High salinity is one of the detrimental environmental factors restricting plant growth and crop production throughout the world. This study demonstrated that the GARP family transcription factor MtHHO3 is involved in response to salt stress and abscisic acid (ABA) signaling in Medicago truncatula. The transcription of MtHHO3 was repressed by salt, osmotic stress, and ABA treatment. The seed germination assay showed that, overexpression of MtHHO3 in Arabidopsis thaliana caused hypersensitivity to salt and osmotic stress, but increased resistance to ABA inhibition. Overexpression of MtHHO3 in M. truncatula resulted in decreased tolerance of salinity, while loss-of-function mutants mthho3-1 and mthho3-2 were more resistant to salt stress compared with wild-type plants. qRT-PCR analyses showed that MtHHO3 downregulated the expression of genes in stress and ABA responsive pathways. We further demonstrated that MtHHO3 repressed the transcription of the pathogenesis-related gene MtPR2 by binding to its promoter. Overall, these results indicate that MtHHO3 negatively regulates salt stress response in plants and deepen our understanding of the role of the GARP subfamily transcription factors in modulating salt stress and ABA signaling.
Collapse
Affiliation(s)
- Xue Wang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China.
| | - Chunxue Wei
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Hongmei Huang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Junmei Kang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Ruicai Long
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Lin Chen
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Mingna Li
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Qingchuan Yang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China.
| |
Collapse
|
7
|
Shen T, Xu F, Chen D, Yan R, Wang Q, Li K, Zhang G, Ni L, Jiang M. A B-box transcription factor OsBBX17 regulates saline-alkaline tolerance through the MAPK cascade pathway in rice. THE NEW PHYTOLOGIST 2024; 241:2158-2175. [PMID: 38098211 DOI: 10.1111/nph.19480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/24/2023] [Indexed: 02/09/2024]
Abstract
Rice OsBBX17 encodes a B-box zinc finger transcription factor in which the N-terminal B-box structural domain interacts with OsMPK1. In addition, it directly binds to the G-box of OsHAK2 and OsHAK7 promoters and represses their transcription. Under saline-alkaline conditions, the expression of OsBBX17 was inhibited. Meanwhile, activation of the OsMPK1-mediated mitogen-activated protein kinase cascade pathway caused OsMPK1 to interact with OsBBX17 and phosphorylate OsBBX17 at the Thr-95 site. It reduced OsBBX17 DNA-binding activity and enhanced saline-alkaline tolerance by deregulating transcriptional repression of OsHAK2 and OsHAK7. Genetic assays showed that the osbbx17-KO had an excellent saline-alkaline tolerance, whereas the opposite was in OsBBX17-OE. In addition, overexpression of OsMPK1 significantly improved saline-alkaline tolerance, but knockout of OsMPK1 caused an increased sensitivity. Further overexpression of OsBBX17 in the osmpk1-KO caused extreme saline-alkaline sensitivity, even a quick death. OsBBX17 was validated in saline-alkaline tolerance from two independent aspects, transcriptional level and post-translational protein modification, unveiling a mechanistic framework by which OsMPK1-mediated phosphorylation of OsBBX17 regulates the transcription of OsHAK2 and OsHAK7 to enhance the Na+ /K+ homeostasis, which partially explains light on the molecular mechanisms of rice responds to saline-alkaline stress via B-box transcription factors for the genetic engineering of saline-alkaline tolerant crops.
Collapse
Affiliation(s)
- Tao Shen
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengjuan Xu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Chen
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Runjiao Yan
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingwen Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Kaiyue Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gang Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lan Ni
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyi Jiang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Shang C, Liu X, Chen G, Zheng H, Khan A, Li G, Hu X. SlWRKY80-mediated jasmonic acid pathway positively regulates tomato resistance to saline-alkali stress by enhancing spermidine content and stabilizing Na +/K + homeostasis. HORTICULTURE RESEARCH 2024; 11:uhae028. [PMID: 38559468 PMCID: PMC10980716 DOI: 10.1093/hr/uhae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024]
Abstract
Saline-alkali is an important abiotic stressor influencing tomato production. Exogenous methyl jasmonate (MeJA) is well known to increase tomato resistance to a variety of stresses, although its exact mechanism is yet unknown. In this study we confirmed that 22.5 μmol/l MeJA could significantly improve the saline-alkali stress resistance of tomato. Saline-alkali (300 mM) stress increased the endogenous MeJA and jasmonic acid (JA) contents of tomato by 18.8 and 13.4%, respectively. Exogenous application of 22.5 μmol/l MeJA increased the endogenous MeJA and JA contents in tomato by 15.2 and 15.9%, respectively. Furthermore, we found an important transcription factor, SlWRKY80, which responded to MeJA, and constructed its overexpressing and knockout lines through genetic transformation. It was found that SlWRKY80 actively regulated tomato resistance to saline-alkali stress, and the spraying of exogenous MeJA (22.5 μmol/l) reduced the sensitivity of SlWRKY80 knockout lines to saline-alkali stress. The SlWRKY80 protein directly combines with the promoter of SlSPDS2 and SlNHX4 to positively regulate the transcription of SlSPDS2 and SlNHX4, thereby promoting the synthesis of spermidine and Na+/K+ homeostasis, actively regulating saline-alkali stress. The augmentation of JA content led to a notable reduction of 70.6% in the expression of SlJAZ1, and the release of the SlWRKY80 protein interacting with SlJAZ1. In conclusion, we revealed the mechanism of exogenous MeJA in tomato stress resistance through multiple metabolic pathways, elucidated that exogenous MeJA further promotes spermidine synthesis and Na+/K+ homeostasis by activating the expression of SlWRKY80, which provides a new theoretical basis for the study of the JA stress resistance mechanism and the production of tomato.
Collapse
Affiliation(s)
- Chunyu Shang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaoyan Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Guo Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Hao Zheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, 22620, Pakistan
| | - Guobin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| |
Collapse
|
9
|
Ma B, Zhang J, Guo S, Xie X, Yan L, Chen H, Zhang H, Bu X, Zheng L, Wang Y. RtNAC055 promotes drought tolerance via a stomatal closure pathway linked to methyl jasmonate/hydrogen peroxide signaling in Reaumuria trigyna. HORTICULTURE RESEARCH 2024; 11:uhae001. [PMID: 38419969 PMCID: PMC10901477 DOI: 10.1093/hr/uhae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 03/02/2024]
Abstract
The stomata regulate CO2 uptake and efficient water usage, thereby promoting drought stress tolerance. NAC proteins (NAM, ATAF1/2, and CUC2) participate in plant reactions following drought stress, but the molecular mechanisms underlying NAC-mediated regulation of stomatal movement are unclear. In this study, a novel NAC gene from Reaumuria trigyna, RtNAC055, was found to enhance drought tolerance via a stomatal closure pathway. It was regulated by RtMYC2 and integrated with jasmonic acid signaling and was predominantly expressed in stomata and root. The suppression of RtNAC055 could improve jasmonic acid and H2O2 production and increase the drought tolerance of transgenic R. trigyna callus. Ectopic expression of RtNAC055 in the Arabidopsis atnac055 mutant rescued its drought-sensitive phenotype by decreasing stomatal aperture. Under drought stress, overexpression of RtNAC055 in poplar promoted ROS (H2O2) accumulation in stomata, which accelerated stomatal closure and maintained a high photosynthetic rate. Drought upregulated the expression of PtRbohD/F, PtP5CS2, and PtDREB1.1, as well as antioxidant enzyme activities in heterologous expression poplars. RtNAC055 promoted H2O2 production in guard cells by directly binding to the promoter of RtRbohE, thus regulating stomatal closure. The stress-related genes RtDREB1.1/P5CS1 were directly regulated by RtNAC055. These results indicate that RtNAC055 regulates stomatal closure by maintaining the balance between the antioxidant system and H2O2 level, reducing the transpiration rate and water loss, and improving photosynthetic efficiency and drought resistance.
Collapse
Affiliation(s)
- Binjie Ma
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Jie Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuyu Guo
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xinlei Xie
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lang Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Huijing Chen
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Hongyi Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiangqi Bu
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Linlin Zheng
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yingchun Wang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
10
|
Wang Z, Li X, Gao XR, Dai ZR, Peng K, Jia LC, Wu YK, Liu QC, Zhai H, Gao SP, Zhao N, He SZ, Zhang H. IbMYB73 targets abscisic acid-responsive IbGER5 to regulate root growth and stress tolerance in sweet potato. PLANT PHYSIOLOGY 2024; 194:787-804. [PMID: 37815230 DOI: 10.1093/plphys/kiad532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
Root development influences plant responses to environmental conditions, and well-developed rooting enhances plant survival under abiotic stress. However, the molecular and genetic mechanisms underlying root development and abiotic stress tolerance in plants remain unclear. In this study, we identified the MYB transcription factor-encoding gene IbMYB73 by cDNA-amplified fragment length polymorphism and RNA-seq analyses. IbMYB73 expression was greatly suppressed under abiotic stress in the roots of the salt-tolerant sweet potato (Ipomoea batatas) line ND98, and its promoter activity in roots was significantly reduced by abscisic acid (ABA), NaCl, and mannitol treatments. Overexpression of IbMYB73 significantly inhibited adventitious root growth and abiotic stress tolerance, whereas IbMYB73-RNAi plants displayed the opposite pattern. IbMYB73 influenced the transcription of genes involved in the ABA pathway. Furthermore, IbMYB73 formed homodimers and activated the transcription of ABA-responsive protein IbGER5 by binding to an MYB binding sites I motif in its promoter. IbGER5 overexpression significantly inhibited adventitious root growth and abiotic stress tolerance concomitantly with a reduction in ABA content, while IbGER5-RNAi plants showed the opposite effect. Collectively, our results demonstrated that the IbMYB73-IbGER5 module regulates ABA-dependent adventitious root growth and abiotic stress tolerance in sweet potato, which provides candidate genes for the development of elite crop varieties with well-developed root-mediated abiotic stress tolerance.
Collapse
Affiliation(s)
- Zhen Wang
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xu Li
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiao-Ru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhuo-Ru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Kui Peng
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li-Cong Jia
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yin-Kui Wu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qing-Chang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-Pei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shao-Zhen He
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Zhang J, Zhao H, Chen L, Lin J, Wang Z, Pan J, Yang F, Ni X, Wang Y, Wang Y, Li R, Pi E, Wang S. Multifaceted roles of WRKY transcription factors in abiotic stress and flavonoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303667. [PMID: 38169626 PMCID: PMC10758500 DOI: 10.3389/fpls.2023.1303667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Increasing biotic and abiotic stresses are seriously impeding the growth and yield of staple crops and threatening global food security. As one of the largest classes of regulators in vascular plants, WRKY transcription factors play critical roles governing flavonoid biosynthesis during stress responses. By binding major W-box cis-elements (TGACCA/T) in target promoters, WRKYs modulate diverse signaling pathways. In this review, we optimized existing WRKY phylogenetic trees by incorporating additional plant species with WRKY proteins implicated in stress tolerance and flavonoid regulation. Based on the improved frameworks and documented results, we aim to deduce unifying themes of distinct WRKY subfamilies governing specific stress responses and flavonoid metabolism. These analyses will generate experimentally testable hypotheses regarding the putative functions of uncharacterized WRKY homologs in tuning flavonoid accumulation to enhance stress resilience.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
12
|
Ndayambaza B, Si J, Deng Y, Jia B, He X, Zhou D, Wang C, Zhu X, Liu Z, Qin J, Wang B, Bai X. The Euphrates Poplar Responses to Abiotic Stress and Its Unique Traits in Dry Regions of China (Xinjiang and Inner Mongolia): What Should We Know? Genes (Basel) 2023; 14:2213. [PMID: 38137039 PMCID: PMC10743205 DOI: 10.3390/genes14122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
At the moment, drought, salinity, and low-temperature stress are ubiquitous environmental issues. In arid regions including Xinjiang and Inner Mongolia and other areas worldwide, the area of tree plantations appears to be rising, triggering tree growth. Water is a vital resource in the agricultural systems of countries impacted by aridity and salinity. Worldwide efforts to reduce quantitative yield losses on Populus euphratica by adapting tree plant production to unfavorable environmental conditions have been made in response to the responsiveness of the increasing control of water stress. Although there has been much advancement in identifying the genes that resist abiotic stresses, little is known about how plants such as P. euphratica deal with numerous abiotic stresses. P. euphratica is a varied riparian plant that can tolerate drought, salinity, low temperatures, and climate change, and has a variety of water stress adaptability abilities. To conduct this review, we gathered all available information throughout the Web of Science, the Chinese National Knowledge Infrastructure, and the National Center for Biotechnology Information on the impact of abiotic stress on the molecular mechanism and evolution of gene families at the transcription level. The data demonstrated that P. euphratica might gradually adapt its stomatal aperture, photosynthesis, antioxidant activities, xylem architecture, and hydraulic conductivity to endure extreme drought and salt stress. Our analyses will give readers an understanding of how to manage a gene family in desert trees and the influence of abiotic stresses on the productivity of tree plants. They will also give readers the knowledge necessary to improve biotechnology-based tree plant stress tolerance for sustaining yield and quality trees in China's arid regions.
Collapse
Affiliation(s)
- Boniface Ndayambaza
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Si
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
| | - Yanfang Deng
- Qilian Mountain National Park Qinghai Provincial Administration, Xining 810000, China;
| | - Bing Jia
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui He
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Resources and Environment, Baotou Teachers’ College, Inner Mongolia University of Science and Technology, Baotou 014030, China
| | - Dongmeng Zhou
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglin Zhu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijin Liu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Qin
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyang Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Bai
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Shen L, Xia X, Zhang L, Yang S, Yang X. SmWRKY11 acts as a positive regulator in eggplant response to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108209. [PMID: 38006793 DOI: 10.1016/j.plaphy.2023.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Salt stress is one of the most threatening abiotic stresses to plants, which can seriously affect plant growth, development, reproduction, and yield. However, the mechanisms of plant against salt stress largely remain unclear. Herein, SmWRKY11, an assumed WRKY transcription factor, was functionally characterized in eggplant against salt stress. SmWRKY11 was significantly up-regulated by salt, dehydration stress, and ABA treatment. SmWRKY11 located in the nucleus, and the Plant_zn_clust conserved domain exhibited transcriptional activation activity. Silencing of SmWRKY11 enhanced the susceptibility of eggplant to salt stress, accompanied by significantly down-regulation of transcript expression levels of salt stress defense-related genes SmNCED1, SmGSTU10, and positive regulator of salt stress response SmERF1 as well as increase of hydrogen peroxide (H2O2) content and decrease of the enzyme activities of catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). In addition, silencing of SmERF1 also could significantly down-regulate SmWRKY11 expression in eggplant response to salt stress. By luciferase reporter assay and chromatin immunoprecipitation PCR assay, SmERF1 expression was found to be indirectly activated by SmWRKY11. These data indicate that SmWRKY11 acts as a positive regulator by forming positive feedback loop with SmERF1 via an indirect regulatory manner in eggplant response to salt stress.
Collapse
Affiliation(s)
- Lei Shen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| | - Xin Xia
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| | - Longhao Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| | - Shixin Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| | - Xu Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Liang S, Li Y, Chen Y, Huang H, Zhou R, Ma T. Application and prospects of single-cell and spatial omics technologies in woody plants. FORESTRY RESEARCH 2023; 3:27. [PMID: 39526269 PMCID: PMC11524316 DOI: 10.48130/fr-2023-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2024]
Abstract
Over the past decade, high-throughput sequencing and high-resolution single-cell transcriptome sequencing technologies have undergone rapid development, leading to significant breakthroughs. Traditional molecular biology methods are limited in their ability to unravel cellular-level heterogeneity within woody plant tissues. Consequently, techniques such as single-cell transcriptomics, single-cell epigenetics, and spatial transcriptomics are rapidly gaining popularity in the study of woody plants. In this review, we provide a comprehensive overview of the development of these technologies, with a focus on their applications and the challenges they present in single-cell transcriptome research in woody plants. In particular, we delve into the similarities and differences among the results of current studies and analyze the reasons behind these differences. Furthermore, we put forth potential solutions to overcome the challenges encountered in single-cell transcriptome applications in woody plants. Finally, we discuss the application directions of these techniques to address key challenges in woody plant research in the future.
Collapse
Affiliation(s)
- Shaoming Liang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Heng Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ran Zhou
- School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Fang Y, Wang D, Xiao L, Quan M, Qi W, Song F, Zhou J, Liu X, Qin S, Du Q, Liu Q, El-Kassaby YA, Zhang D. Allelic variation in transcription factor PtoWRKY68 contributes to drought tolerance in Populus. PLANT PHYSIOLOGY 2023; 193:736-755. [PMID: 37247391 PMCID: PMC10469405 DOI: 10.1093/plphys/kiad315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/31/2023]
Abstract
Drought stress limits woody species productivity and influences tree distribution. However, dissecting the molecular mechanisms that underpin drought responses in forest trees can be challenging due to trait complexity. Here, using a panel of 300 Chinese white poplar (Populus tomentosa) accessions collected from different geographical climatic regions in China, we performed a genome-wide association study (GWAS) on seven drought-related traits and identified PtoWRKY68 as a candidate gene involved in the response to drought stress. A 12-bp insertion and/or deletion and three nonsynonymous variants in the PtoWRKY68 coding sequence categorized natural populations of P. tomentosa into two haplotype groups, PtoWRKY68hap1 and PtoWRKY68hap2. The allelic variation in these two PtoWRKY68 haplotypes conferred differential transcriptional regulatory activities and binding to the promoters of downstream abscisic acid (ABA) efflux and signaling genes. Overexpression of PtoWRKY68hap1 and PtoWRKY68hap2 in Arabidopsis (Arabidopsis thaliana) ameliorated the drought tolerance of two transgenic lines and increased ABA content by 42.7% and 14.3% compared to wild-type plants, respectively. Notably, PtoWRKY68hap1 (associated with drought tolerance) is ubiquitous in accessions in water-deficient environments, whereas the drought-sensitive allele PtoWRKY68hap2 is widely distributed in well-watered regions, consistent with the trends in local precipitation, suggesting that these alleles correspond to geographical adaptation in Populus. Moreover, quantitative trait loci analysis and an electrophoretic mobility shift assay showed that SHORT VEGETATIVE PHASE (PtoSVP.3) positively regulates the expression of PtoWRKY68 under drought stress. We propose a drought tolerance regulatory module in which PtoWRKY68 modulates ABA signaling and accumulation, providing insight into the genetic basis of drought tolerance in trees. Our findings will facilitate molecular breeding to improve the drought tolerance of forest trees.
Collapse
Affiliation(s)
- Yuanyuan Fang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Dan Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Liang Xiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Weina Qi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Fangyuan Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Xin Liu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, People’s Republic of China
| | - Shitong Qin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| | - Qing Liu
- The Institute of Agriculture and Food Research, CSIRO Agriculture and Food, Black Mountain, Canberra ACT 2601, Australia
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Deqiang Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People’s Republic of China
| |
Collapse
|
16
|
Feng CH, Niu MX, Zhao S, Guo S, Yin W, Xia X, Su Y. Aspartyl tRNA-synthetase (AspRS) gene family enhances drought tolerance in poplar through BABA-PtrIBIs-PtrVOZ signaling module. BMC Genomics 2023; 24:473. [PMID: 37605104 PMCID: PMC10441740 DOI: 10.1186/s12864-023-09556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Drought stress is a prevalent abiotic stress that significantly hinders the growth and development of plants. According to studies, β-aminobutyric acid (BABA) can influence the ABA pathway through the AtIBI1 receptor gene to enhance cold resistance in Arabidopsis. However, the Aspartate tRNA-synthetase (AspRS) gene family, which acts as the receptor for BABA, has not yet been investigated in poplar. Particularly, it is uncertain how the AspRS gene family (PtrIBIs)r can resist drought stress after administering various concentrations of BABA to poplar. RESULTS In this study, we have identified 12 AspRS family genes and noted that poplar acquired four PtrIBI pairs through whole genome duplication (WGD). We conducted cis-action element analysis and found a significant number of stress-related action elements on different PtrIBI genes promoters. The expression of most PtrIBI genes was up-regulated under beetle and mechanical damage stresses, indicating their potential role in responding to leaf damage stress. Our results suggest that a 50 mM BABA treatment can alleviate the damage caused by drought stress in plants. Additionally, via transcriptome sequencing, we observed that the partial up-regulation of BABA receptor genes, PtrIBI2/4/6/8/11, in poplars after drought treatment. We hypothesize that poplar responds to drought stress through the BABA-PtrIBIs-PtrVOZ coordinated ABA signaling pathway. Our research provides molecular evidence for understanding how plants respond to drought stress through external application of BABA. CONCLUSIONS In summary, our study conducted genome-wide analysis of the AspRS family of P. trichocarpa and identified 12 PtrIBI genes. We utilized genomics and bioinformatics to determine various characteristics of PtrIBIs such as chromosomal localization, evolutionary tree, gene structure, gene doubling, promoter cis-elements, and expression profiles. Our study found that certain PtrIBI genes are regulated by drought, beetle, and mechanical damage implying their crucial role in enhancing poplar stress tolerance. Additionally, we observed that external application of low concentrations of BABA increased plant drought resistance under drought stress. Through the BABA-PtrIBIs-PtrVOZ signaling module, poplar plants were able to transduce ABA signaling and regulate their response to drought stress. These results suggest that the PtrIBI genes in poplar have the potential to improve drought tolerance in plants through the topical application of low concentrations of BABA.
Collapse
Affiliation(s)
- Cong-Hua Feng
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Meng-Xue Niu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shilei Zhao
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yanyan Su
- College of Agronomy, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
17
|
Li Q, Qin X, Zhang M, Yu Q, Jia R, Fan J, Huang X, Fu J, Zhang C, Xian B, Yang W, Long Q, Peng A, Yao L, Chen S, He Y. CsBZIP40 confers resistance against citrus bacterial canker by repressing CsWRKY43-CsPrx53/CsSOD13 cascade mediated ROS scavenging. HORTICULTURE RESEARCH 2023; 10:uhad138. [PMID: 37575655 PMCID: PMC10421728 DOI: 10.1093/hr/uhad138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
As the bacterial etiologic agent causing citrus bacterial canker (CBC), Xanthomonas citri subsp. citri (Xcc) seriously impacts citrus plantation and fruit production globally. In an earlier study, we demonstrated that CsBZIP40 can positively impact CBC resistance in the sweet orange (Citrus sinensis). However, the mechanistic basis for the protective benefits conferred by CsBZIP40 is yet to be delineated. Here, we show that CsBZIP40 positively regulates CBC resistance and reactive oxygen species (ROS) homeostasis in transgenic sweet orange overexpressing CsBZIP40. CsBZIP40 directly binds to the TGA-box of the CsWRKY43 promoter to repress its transcriptional activity. CsWRKY43 overexpression induces CBC susceptibility in transgenic sweet oranges. In contrast, its inhibition produces strong resistance to CBC. CsWRKY43 directly binds to the W-boxes of the CsPrx53 and CsSOD13 promoters to positively regulate the activities of these antioxidant enzymes, resulting in the negative regulation of ROS homeostasis and CBC resistance in sweet orange plants. CsPrx53/CsSOD13 knockdown enhances ROS accumulation and CBC resistance. Overall, our results outline a regulatory pathway through which CsBZIP40 transcriptionally represses CsWRKY43-CsPrx53/CsSOD13 cascade-mediated ROS scavenging in a manner conducive to CBC resistance. These mechanisms underscore the potential importance of CsBZIP40, CsWRKY43, CsPrx53, and CsSOD13, providing promising strategies for the prevention of CBC.
Collapse
Affiliation(s)
- Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Xiujuan Qin
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Miao Zhang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Qiyuan Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Ruirui Jia
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Jie Fan
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Xin Huang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Jia Fu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Chenxi Zhang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Baohang Xian
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Wen Yang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
| | - Qin Long
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Aihong Peng
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Lixiao Yao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Shanchun Chen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Yongrui He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing 400712, China
- National Citrus Engineering Research Center, Beibei, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| |
Collapse
|
18
|
Zhang T, Zhang C, Zhang X, Liang Z, Xia P. Multi-algorithm cooperation research of WRKY genes under nitrogen stress in Panax notoginseng. PROTOPLASMA 2023; 260:1081-1096. [PMID: 36564534 DOI: 10.1007/s00709-022-01832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/17/2022] [Indexed: 06/07/2023]
Abstract
WRKY transcription factors play an important role in the immune system and the innate defense response of plants. WRKY transcription factors have great feedback on nitrogen stress. In this study, bioinformatics was used to detect the WRKYs of Panax notoginseng (PnWRKYs). The response of PnWRKYs under nitrogen stress was also well studied. PnWRKYs were distributed on 11 chromosomes. According to PnWRKY and Arabidopsis thaliana WRKY (AtWRKY) domains, these PnWRKY proteins were divided into three groups by phylogenetic analysis. MEME analysis showed that almost every member contained motif 1 and motif 2. PlantCARE online predicted the cis-acting elements of the promoter. PnWRKY gene family members obtained 22 pairs of repeat fragments by collinearity analysis. The expression levels of PnWRKYs in different parts (roots, flowers, and leafs) were analyzed by the gene expression pattern. They reflected tissue-specific expressions. The qRT-PCR experiments were used to detect 74 PnWRKYs under nitrogen stress. The results showed that the expression levels of 8 PnWRKYs were significantly induced. The PnWRKY gene family may be involved in biotic/abiotic stresses and hormone induction. This study will not only lay the foundation to explore the functions of PnWRKYs but also provide candidate genes for the future improvement of P. notoginseng.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Caijuan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xuemin Zhang
- Tianjin TASLY Modern Chinese Medicine Resources Co., Ltd, Tianjin, 300402, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
19
|
Wang W, Chen K, Chen N, Gao J, Zhang W, Gong J, Tong S, Chen Y, Li Y, Feng Y, Jiang Y, Ma T. Chromatin accessibility dynamics insight into crosstalk between regulatory landscapes in poplar responses to multiple treatments. TREE PHYSIOLOGY 2023; 43:1023-1041. [PMID: 36851850 DOI: 10.1093/treephys/tpad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/22/2023] [Indexed: 06/11/2023]
Abstract
Perennial trees develop and coordinate endogenous response signaling pathways, including their crosstalk and convergence, to cope with various environmental stresses which occur simultaneously in most cases. These processes are involved in gene transcriptional regulations that depend on dynamic interactions between regulatory proteins and corresponding chromatin regions, but the mechanisms remain poorly understood in trees. In this study, we detected chromatin regulatory landscapes of poplar under abscisic acid, methyl jasmonate, salicylic acid and sodium chloride (NaCl) treatment, through integrating ATAC-seq and RNA-seq data. Our results showed that the degree of chromatin accessibility for a given gene is closely related to its expression level. However, unlike the gene expression that shows treatment-specific response patterns, changes in chromatin accessibility exhibit high similarities under these treatments. We further proposed and experimentally validated that a homologous gene copy of RESPONSIVE TO DESICCATION 26 mediates the crosstalk between jasmonic acid and NaCl signaling pathways by directly regulating the stress-responsive genes and that circadian clock-related transcription factors like REVEILLE8 play a central role in response of poplar to these treatments. Overall, our study provides a chromatin insight into the molecular mechanism of transcription regulatory networks in response to different environmental stresses and raises the key roles of the circadian clock of poplar to adapt to adverse environments.
Collapse
Affiliation(s)
- Weiwei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Kai Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ningning Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jinwen Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenyan Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jue Gong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shaofei Tong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yanlin Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuanzhong Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Yu S, Yang L, Gao K, Zhou J, Lan X, Xie J, Zhong C. Dioscorea composita WRKY5 positively regulates AtSOD1 and AtABF2 to enhance drought and salt tolerances. PLANT CELL REPORTS 2023:10.1007/s00299-023-03038-1. [PMID: 37269374 DOI: 10.1007/s00299-023-03038-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
KEY MESSAGE DcWRKY5 increases the antioxidant enzyme activity and proline accumulation, oppositely, reduces the accumulation of ROS and MDA, through directly activating the genes expression, finally enhances the salt and drought tolerance. Drought and salinity are two main environmental factors that limit the large-scale cultivation of the medicinal plant Dioscorea composita (D. composita). WRKY transcription factors (TFs) play vital roles in regulating drought and salt tolerance in plants. Nevertheless, the molecular mechanism of WRKY TF mediates drought and salt resistance of D. composita remains largely unknown. Here, we isolated and characterized a WRKY TF from D. composita, namely DcWRKY5, which was localized to the nucleus and bound to the W-box cis-acting elements. Expression pattern analysis showed that it was highly expressed in root and significantly up-regulated in the presence of salt, polyethylene glycol-6000 (PEG-6000) and abscisic acid (ABA). Heterologous expression of DcWRKY5 increased salt and drought tolerance in Arabidopsis, but was insensitive to ABA. In addition, compared with the wild type, the DcWRKY5 overexpressing transgenic lines had more proline, higher antioxidant enzyme (POD, SOD, and CAT) activities, less reactive oxygen species (ROS) and malondialdehyde (MDA). Correspondingly, the overexpression of DcWRKY5 modulated the expression of genes related to salt and drought stresses, such as AtSS1, AtP5CS1, AtCAT, AtSOD1, AtRD22, and AtABF2. Dual luciferase assay and Y1H were further confirmed that DcWRKY5 activate the promoter of AtSOD1 and AtABF2 through directly binding to the enrichment region of the W-box cis-acting elements. These results suggest that DcWRKY5 is a positive regulator of the drought and salt tolerance in D. composita and has potential applications in transgenic breeding.
Collapse
Affiliation(s)
- Shangjie Yu
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Luyin Yang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Kaixiang Gao
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jianchan Zhou
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xin Lan
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jun Xie
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Chunmei Zhong
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
21
|
He A, Ma Z, Li Y, Huang C, Yong JWH, Huang J. Spatiotemporal, physiological and transcriptomic dynamics of wild jujube seedlings under saline conditions. TREE PHYSIOLOGY 2023; 43:832-850. [PMID: 36617163 DOI: 10.1093/treephys/tpad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 05/13/2023]
Abstract
Soil salinity is a major constraint limiting jujube production in China. Wild jujube (Ziziphus jujuba var. spinosa (Bunge) Hu ex H. F. Chow) is widely used as the rootstock of jujube (Z. jujuba) to overcome the saline conditions. To understand the adaptive mechanism in wild jujube under saline conditions, we combined spatiotemporal and physiological assessments with transcriptomic analysis on wild jujube seedlings undergoing various salt treatments. These salt treatments showed dose and duration effects on biomass, photosynthesis, (K+) and (Na+) accumulation. Salt treatments induced higher levels of salicylic acid in roots and leaves, whereas foliar abscisic acid was also elevated after 8 days. The number of differential expression genes increased with higher doses and also longer exposure of NaCl treatments, with concomitant changes in the enriched Gene Ontology terms that were indicative of altered physiological activities. Gene co-expression network analysis identified the core gene sets associated with salt-induced changes in leaves, stems and roots, respectively. The nitrogen transporters, potassium transporters and a few transcription factors belonging to WRKY/MYB/bHLH families were clustered as the hub genes responding to salt treatments, which were related to elevated nitrogen and K+/Na+. Ectopic overexpression of two WRKY transcription factor genes (ZjWRKY6 and ZjWRKY65) conferred stronger salt-tolerance in Arabidopsis thaliana transformants by enhancing the activities of antioxidant enzymes, decreasing malondialdehyde accumulation and maintaining K+/Na+ homeostasis. This study provided evidence about the spatiotemporal, physiological and transcriptomic dynamics of wild jujube during salt stress and identified potential genes for further research to improve salt tolerance in jujube.
Collapse
Affiliation(s)
- Aobing He
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alaer 843300, China
| | - Zhibo Ma
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Yunfei Li
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Chen Huang
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden
| | - Jian Huang
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alaer 843300, China
| |
Collapse
|
22
|
Yu S, He Z, Gao K, Zhou J, Lan X, Zhong C, Xie J. Dioscorea composita WRKY12 is involved in the regulation of salt tolerance by directly activating the promoter of AtRCI2A. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:746-758. [PMID: 36827956 DOI: 10.1016/j.plaphy.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/05/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Dioscorea composita (D. composita) is an important medicinal plant worldwide with high economic value. However, its large-scale cultivation was limited by soil salinization. Identification of genes and their mechanisms of action in response to salt stress are critically important. In the present study, we isolated a classical WRKY transcription factor from D. composita, namely DcWRKY12, and analyzed its function in salt tolerance. Expression pattern analysis showed DcWRKY12 is mainly expressed in roots and significantly induced by NaCl, polyethylene glycol-6000 (PEG-6000), and abscisic acid (ABA). Phenotypic and physiological analyses revealed that heterologous expression of DcWRKY12 enhanced salt and osmotic stress tolerance by increasing antioxidant enzyme activity, osmoregulatory substance content, maintaining relative water content and ion homeostasis, decreasing reactive oxygen species and malondialdehyde content. Correspondingly, the overexpression of DcWRKY12 modulated the expression of salt stress-responsive and ion transport-related genes. Dual luciferase assay and Y1H were further confirmed that DcWRKY12 activates the promoter of AtRCI2A through directly binding to the specific W-box cis-acting elements. These results suggest that DcWRKY12 is a positive regulator of salt tolerance in D. composita and has potential applications in salt stress.
Collapse
Affiliation(s)
- Shangjie Yu
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Zhanxin He
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Kaixiang Gao
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Jianchan Zhou
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Xin Lan
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China
| | - Chunmei Zhong
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China.
| | - Jun Xie
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou, 510642, PR China.
| |
Collapse
|
23
|
Gao S, Li C, Chen X, Li S, Liang N, Wang H, Zhan Y, Zeng F. Basic helix-loop-helix transcription factor PxbHLH02 enhances drought tolerance in Populus (Populus simonii × P. nigra). TREE PHYSIOLOGY 2023; 43:185-202. [PMID: 36054366 DOI: 10.1093/treephys/tpac107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in plant morphogenesis and various abiotic and biotic stress responses. However, further exploration is required of drought-responsive bHLH family members and their detailed regulatory mechanisms in Populus. Two bHLH TF genes, PxbHLH01/02, were identified in Populus simonii × P. nigra and cloned. The aim of this study was to examine the role of bHLH TFs in drought tolerance in P. simonii × P. nigra. The results showed that the amino acid sequences of the two genes were homologous to Arabidopsis thaliana UPBEAT1 (AtUPB1) and overexpression of PxbHLH01/02 restored normal root length in the AtUPB1 insertional mutant (upb1-1). The PxbHLH01/02 gene promoter activity analysis suggested that they were involved in stress responses and hormone signaling. Furthermore, Arabidopsis transgenic lines overexpressing PxbHLH01/02 exhibited higher stress tolerance compared with the wild-type. Populus simonii × P. nigra overexpressing PxbHLH02 increased drought tolerance and exhibited higher superoxide dismutase and peroxidase activities, lower H2O2 and malondialdehyde content, and lower relative conductivity. The results of transcriptome sequencing (RNA-seq) and quantitative real-time PCR suggested that the response of PxbHLH02 to drought stress was related to abscisic acid (ABA) signal transduction. Overall, the findings of this study suggest that PxbHLH02 from P. simonii × P. nigra functions as a positive regulator of drought stress responses by regulating stomatal aperture and promoting ABA signal transduction.
Collapse
Affiliation(s)
- Shangzhu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Caihua Li
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050041, China
| | - Xiaohui Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Sida Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Nansong Liang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hengtao Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
24
|
PsnWRKY70 Negatively Regulates NaHCO3 Tolerance in Populus. Int J Mol Sci 2022; 23:ijms232113086. [DOI: 10.3390/ijms232113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Poplar is an important afforestation and ornamental tree species in Northeast China. The distribution area of saline-alkali land is approximately 765 hm2 in Northeast China. The breeding of saline-alkali-resistant transgenic trees could be an effective method of afforestation in saline-alkali land. WRKY transcription factors play a crucial role in abiotic stress. In this study, we analyzed the genetic stability of the two-year-old PsnWRKY70 transgenic poplars. The results showed that PsnWRKY70 of transgenic poplars had been expressed stably and normally at the mRNA level. The gene interference expression (RE) lines had no significant effect on the growth of PsnWRKY70 under NaHCO3 stress, and the alkali damage index of RE lines was significantly lower than that of WT and overexpression (OE) lines at day 15 under NaHCO3 stress. POD activity was significantly higher in RE lines than in WT. The MDA content of the RE line was lower than that of the WT line. Transcriptome analysis showed that RE lines up-regulated genes enriched in cell wall organization or biogenesis pathway-related genes such as EXPA8, EXPA4, EXPA3, EXPA1, EXPB3, EXP10, PME53, PME34, PME36, XTH9, XTH6, XTH23, CESA1, CESA3, CES9; FLA11, FLA16 and FLA7 genes. These genes play an important role in NaHCO3 stress. Our study showed that the interference expression of the PsnWRKY70 gene can enhance the tolerance of NaHCO3 in poplar.
Collapse
|
25
|
Lv M, Luo W, Ge M, Guan Y, Tang Y, Chen W, Lv J. A Group I WRKY Gene, TaWRKY133, Negatively Regulates Drought Resistance in Transgenic Plants. Int J Mol Sci 2022; 23:ijms231912026. [PMID: 36233327 PMCID: PMC9569464 DOI: 10.3390/ijms231912026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
WRKYs are one of the largest transcription factor (TF) families and play an important role in plant resistance to various stresses. TaWRKY133, a group I WRKY protein, responds to a variety of abiotic stresses, including PEG treatment. The TaWRKY133 protein is located in the nucleus of tobacco epidermal cells, and both its N-terminal and C-terminal domains exhibit transcriptional activation activity. Overexpression of TaWRKY133 reduced drought tolerance in Arabidopsis thaliana, as reflected by a lower germination rate, shorter roots, higher stomatal aperture, poorer growth and lower antioxidant enzyme activities under drought treatment. Moreover, expression levels of stress-related genes (DREB2A, RD29A, RD29B, ABF1, ABA2, ABI1, SOD (Cu/Zn), POD1 and CAT1) were downregulated in transgenic Arabidopsis under drought stress. Gene silencing of TaWRKY133 enhanced the drought tolerance of wheat, as reflected in better growth, higher antioxidant enzyme activities, and higher expression levels of stress-related genes including DREB1, DREB3, ABF, ERF3, SOD (Fe), POD, CAT and P5CS. In conclusion, these results suggest that TaWRKY133 might reduce drought tolerance in plants by regulating the expression of stress-related genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Weimin Chen
- Correspondence: (W.C.); (J.L.); Tel.: +86-180-0924-4163 (W.C.); +86-135-7219-6187 (J.L.)
| | - Jinyin Lv
- Correspondence: (W.C.); (J.L.); Tel.: +86-180-0924-4163 (W.C.); +86-135-7219-6187 (J.L.)
| |
Collapse
|
26
|
Price L, Han Y, Angessa T, Li C. Molecular Pathways of WRKY Genes in Regulating Plant Salinity Tolerance. Int J Mol Sci 2022; 23:10947. [PMID: 36142857 PMCID: PMC9502527 DOI: 10.3390/ijms231810947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Salinity is a natural and anthropogenic process that plants overcome using various responses. Salinity imposes a two-phase effect, simplified into the initial osmotic challenges and subsequent salinity-specific ion toxicities from continual exposure to sodium and chloride ions. Plant responses to salinity encompass a complex gene network involving osmotic balance, ion transport, antioxidant response, and hormone signaling pathways typically mediated by transcription factors. One particular transcription factor mega family, WRKY, is a principal regulator of salinity responses. Here, we categorize a collection of known salinity-responding WRKYs and summarize their molecular pathways. WRKYs collectively play a part in regulating osmotic balance, ion transport response, antioxidant response, and hormone signaling pathways in plants. Particular attention is given to the hormone signaling pathway to illuminate the relationship between WRKYs and abscisic acid signaling. Observed trends among WRKYs are highlighted, including group II WRKYs as major regulators of the salinity response. We recommend renaming existing WRKYs and adopting a naming system to a standardized format based on protein structure.
Collapse
Affiliation(s)
- Lewis Price
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Yong Han
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
- Department of Primary Industries and Regional Development, Perth, WA 6151, Australia
| | - Tefera Angessa
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
27
|
CRISPR-Based Genome Editing and Its Applications in Woody Plants. Int J Mol Sci 2022; 23:ijms231710175. [PMID: 36077571 PMCID: PMC9456532 DOI: 10.3390/ijms231710175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 12/21/2022] Open
Abstract
CRISPR/Cas-based genome editing technology provides straightforward, proficient, and multifunctional ways for the site-directed modification of organism genomes and genes. The application of CRISPR-based technology in plants has a vast potential value in gene function research, germplasm innovation, and genetic improvement. The complexity of woody plants genome may pose significant challenges in the application and expansion of various new editing techniques, such as Cas9, 12, 13, and 14 effectors, base editing, particularly for timberland species with a long life span, huge genome, and ploidy. Therefore, many novel optimisms have been drawn to molecular breeding research based on woody plants. This review summarizes the recent development of CRISPR/Cas applications for essential traits, including wood properties, flowering, biological stress, abiotic stress, growth, and development in woody plants. We outlined the current problems and future development trends of this technology in germplasm and the improvement of products in woody plants.
Collapse
|
28
|
Yuan S, Hu D, Wang Y, Shao C, Liu T, Zhang C, Cheng F, Hou X, Li Y. BcWRKY1 confers salt sensitivity via inhibiting Reactive oxygen species scavenging. PLANT MOLECULAR BIOLOGY 2022; 109:741-759. [PMID: 35553313 DOI: 10.1007/s11103-022-01272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
WRKY transcription factors play important roles in abiotic stress by directly regulating stress-related genes. However, the molecular mechanism of its involvement in salt stress in pak-choi is still poorly understood. In this study, we elucidated the function of BcWRKY1 from pak-choi (Brassica rapa ssp. chinensis) in salt stress. The expression level of BcWRKY1 showed the highest in rosette leaves among different tissues and was induced by salt and ABA treatment in pak-choi. Subcellular localization showed that BcWRKY1 was located in nucleus. The transgenic Arabidopsis overexpressing BcWRKY1 exhibited enhanced salt sensitivity and higher H2O2 contents, which were further confirmed by silencing BcWRKY1 in pak-choi. In addition, the expression of ZAT12 was negatively regulated with BcWRKY1 under salt stress both in pak-choi and Arabidopsis. Yeast one-hybrid and dual luciferase reporter assay showed that BcWRKY1 could bind to the promoter of BcZAT12, and BcsAPX expression was activated by BcZAT12. To sum up, we propose a BcWRKY1-BcZAT12-BcsAPX regulatory model that involves in pak-choi salt stress response.
Collapse
Affiliation(s)
- Shuilin Yuan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Die Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
| | - Yuan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Cen Shao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Tongkun Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Changwei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Xilin Hou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ying Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
29
|
Tong S, Wang Y, Chen N, Wang D, Liu B, Wang W, Chen Y, Liu J, Ma T, Jiang Y. PtoNF-YC9-SRMT-PtoRD26 module regulates the high saline tolerance of a triploid poplar. Genome Biol 2022; 23:148. [PMID: 35799188 PMCID: PMC9264554 DOI: 10.1186/s13059-022-02718-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/25/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Sensing and responding to stresses determine the tolerance of plants to adverse environments. The triploid Chinese white poplar is widely cultivated in North China because of its adaptation to a wide range of habitats including highly saline ones. However, its triploid genome complicates any detailed investigation of the molecular mechanisms underlying its adaptations. RESULTS We report a haplotype-resolved genome of this triploid poplar and characterize, using reverse genetics and biochemical approaches, a MYB gene, SALT RESPONSIVE MYB TRANSCRIPTION FACTOR (SRMT), which combines NUCLEAR FACTOR Y SUBUNIT C 9 (PtoNF-YC9) and RESPONSIVE TO DESICCATION 26 (PtoRD26), to regulate an ABA-dependent salt-stress response signaling. We reveal that the salt-inducible PtoRD26 is dependent on ABA signaling. We demonstrate that ABA or salt drives PtoNF-YC9 shuttling into the nucleus where it interacts with SRMT, resulting in the rapid expression of PtoRD26 which in turn directly regulates SRMT. This positive feedback loop of SRMT-PtoRD26 can rapidly amplify salt-stress signaling. Interference with either component of this regulatory module reduces the salt tolerance of this triploid poplar. CONCLUSION Our findings reveal a novel ABA-dependent salt-responsive mechanism, which is mediated by the PtoNF-YC9-SRMT-PtoRD26 module that confers salt tolerance to this triploid poplar. These genes may therefore also serve as potential and important modification targets in breeding programs.
Collapse
Affiliation(s)
- Shaofei Tong
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yubo Wang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Ningning Chen
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Deyan Wang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Bao Liu
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Weiwei Wang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yang Chen
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| | - Tao Ma
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| | - Yuanzhong Jiang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| |
Collapse
|
30
|
Yang Y, Karthikeyan A, Yin J, Jin T, Ren R, Fang F, Cai H, Liu M, Wang D, Li K, Zhi H. The E3 Ligase GmPUB21 Negatively Regulates Drought and Salinity Stress Response in Soybean. Int J Mol Sci 2022; 23:6893. [PMID: 35805901 PMCID: PMC9266294 DOI: 10.3390/ijms23136893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
E3-ubiquitin ligases are known to confer abiotic stress responses in plants. In the present study, GmPUB21, a novel U-box E3-ubiquitin ligase-encoding gene, was isolated from soybean and functionally characterized. The expression of GmPUB21, which possesses E3-ubiquitin ligase activity, was found to be significantly up-regulated by drought, salinity, and ABA treatments. The fusion protein GmPUB21-GFP was localized in the cytoplasm, nucleus, and plasma membrane. Transgenic lines of the Nicotiana benthamiana over-expressing GmPUB21 showed more sensitive to osmotic, salinity stress and ABA in seed germination and inhibited mannitol/NaCl-mediated stomatal closure. Moreover, higher reactive oxygen species accumulation was observed in GmPUB21 overexpressing plants after drought and salinity treatment than in wild-type (WT) plants. Contrarily, silencing of GmPUB21 in soybean plants significantly enhanced the tolerance to drought and salinity stresses. Collectively, our results revealed that GmPUB21 negatively regulates the drought and salinity tolerance by increasing the stomatal density and aperture via the ABA signaling pathway. These findings improved our understanding of the role of GmPUB21 under drought and salinity stresses in soybean.
Collapse
Affiliation(s)
- Yunhua Yang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Jinlong Yin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Tongtong Jin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Rui Ren
- Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China;
| | - Fei Fang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Han Cai
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Mengzhuo Liu
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Dagang Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| | - Haijian Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean—Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (J.Y.); (T.J.); (F.F.); (H.C.); (M.L.); (D.W.)
| |
Collapse
|
31
|
Huang L, Li Z, Sun C, Yin S, Wang B, Duan T, Liu Y, Li J, Pu G. Genome-wide identification, molecular characterization, and gene expression analyses of honeysuckle NHX antiporters suggest their involvement in salt stress adaptation. PeerJ 2022; 10:e13214. [PMID: 35462769 PMCID: PMC9029436 DOI: 10.7717/peerj.13214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/12/2022] [Indexed: 01/12/2023] Open
Abstract
Background Ion homeostasis is an essential process for the survival of plants under salt stress. Na+/H+ antiporters (NHXs) are secondary ion transporters that regulate Na+ compartmentalization or efflux reduce Na+ toxicity and play a critical role during plant development and stress responses. Methods and Results To gain insight into the functional divergence of NHX genes in honeysuckle, a total of seven LjNHX genes were identified on the whole genome level and were renamed according to their chromosomal positions. All LjNHXs possessed the Na+/H+ exchanger domain and the amiloride-binding site was presented in all NHX proteins except LjNHX4. The phylogenetic analysis divided the seven NHX genes into Vac-clade (LjNHX1/2/3/4/5/7) and PM-clade (LjNHX6) based on their subcellular localization and validated by the distribution of conserved protein motifs and exon/intron organization analysis. The protein-protein interaction network showed that LjNHX4/5/6/7 shared the same putatively interactive proteins, including SOS2, SOS3, HKT1, and AVP1. Cis-acting elements and gene ontology (GO) analysis suggested that most LjNHXs involve in the response to salt stress through ion transmembrane transport. The expression profile analysis revealed that the expression levels of LjNHX3/7 were remarkably affected by salinity. These results suggested that LjNHXs play significant roles in honeysuckle development and response to salt stresses. Conclusions The theoretical foundation was established in the present study for the further functional characterization of the NHX gene family in honeysuckle.
Collapse
Affiliation(s)
- Luyao Huang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Chunyong Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shijie Yin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tongyao Duan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gaobin Pu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
32
|
Yan T, Mei C, Song H, Shan D, Sun Y, Hu Z, Wang L, Zhang T, Wang J, Kong J. Potential roles of melatonin and ABA on apple dwarfing in semi-arid area of Xinjiang China. PeerJ 2022; 10:e13008. [PMID: 35382008 PMCID: PMC8977067 DOI: 10.7717/peerj.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 01/11/2023] Open
Abstract
Dwarfing is a typic breeding trait for mechanical strengthening and relatively high yield in modern apple orchards. Clarification of the mechanisms associated with dwarfing is important for use of molecular technology to breed apple. Herein, we identified four dwarfing apple germplasms in semi-arid area of Xinjiang, China. The internodal distance of these four germplasms were significantly shorter than non-dwarfing control. Their high melatonin (MT) contents are negatively associated with their malondialdehyde (MDA) levels and oxidative damage. In addition, among the detected hormones including auxin (IAA), gibberellin (GA), brassinolide (BR), zeatin-riboside (ZR), and abscisic acid (ABA), only ABA and ZR levels were in good correlation with the dwarfing phenotype. The qPCR results showed that the expression of melatonin synthetic enzyme genes MdASMT1 and MdSNAT5, ABA synthetic enzyme gene MdAAO3 and degradative gene MdCYP707A, ZR synthetic enzyme gene MdIPT5 all correlated well with the enhanced levels of MT, ABA and the reduced level of of ZR in the dwarfing germplasms. Furthermore, the significantly higher expression of ABA marker genes (MdRD22 and MdRD29) and the lower expression of ZR marker genes (MdRR1 and MdRR2) in all the four dwarf germplasms were consistent with the ABA and ZR levels. Considering the yearly long-term drought occurring in Xinjiang, China, it seems that dwarfing with high contents of MT and ABA may be a good strategy for these germplasms to survive against drought stress. This trait of dwarfing may also benefit apple production and breeding in this semi-arid area.
Collapse
Affiliation(s)
- Tianci Yan
- College of Horticulture, China Agricultural University, Beijing, China,Sanya Institute of China Agricultural University, Sanya, Hainan, China
| | - Chuang Mei
- Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture, Urumqi, Xinjiang Uygur Autonomous Region, China,Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Handong Song
- College of Horticulture, China Agricultural University, Beijing, China
| | - Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zehui Hu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Tong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jixun Wang
- Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture, Urumqi, Xinjiang Uygur Autonomous Region, China,Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing, China,Sanya Institute of China Agricultural University, Sanya, Hainan, China
| |
Collapse
|
33
|
Tong S, Chen N, Wang D, Ai F, Liu B, Ren L, Chen Y, Zhang J, Lou S, Liu H, Liu J, Ma T, Jiang Y. The U-box E3 ubiquitin ligase PalPUB79 positively regulates ABA-dependent drought tolerance via ubiquitination of PalWRKY77 in Populus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2561-2575. [PMID: 34382303 PMCID: PMC8633511 DOI: 10.1111/pbi.13681] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/09/2021] [Indexed: 05/22/2023]
Abstract
The abscisic acid (ABA) signalling pathway is involved in the plant response to osmotic stress caused by drought and/or salinity. Although the ABA signalling pathway has been elucidated in Arabidopsis, it remains elusive in woody poplars. In this study, genome-wide analyses of U-box genes in poplars revealed that a U-box E3 ubiquitin ligase gene, PalPUB79, is significantly induced following drought, salinity and ABA signalling. PalPUB79 overexpression enhanced drought tolerance in transgenic poplars, while PalPUB79 RNAi lines were more sensitive to drought. PalPUB79 positively regulated ABA signalling pathway. Furthermore, PalPUB79 interacted with PalWRKY77, a negative transcriptional regulator of ABA signalling, and mediated its ubiquitination for degradation, therefore counteracting its inhibitory effect on PalRD26 transcription. However, the finding that PalWRKY77 negatively regulates PalPUB79 expression was indicative of a negative feedback loop between PalWRKY77 and PalPUB79 during ABA signalling in poplar. These findings provide novel insight into the mechanism through which PalPUB79 enhances the ABA-mediated stress response in woody poplars.
Collapse
Affiliation(s)
- Shaofei Tong
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of EducationCollege of Life ScienceSichuan UniversityChengduChina
| | - Ningning Chen
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of EducationCollege of Life ScienceSichuan UniversityChengduChina
| | - Deyan Wang
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of EducationCollege of Life ScienceSichuan UniversityChengduChina
| | - Fandi Ai
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of EducationCollege of Life ScienceSichuan UniversityChengduChina
| | - Bao Liu
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of EducationCollege of Life ScienceSichuan UniversityChengduChina
| | - Liwen Ren
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of EducationCollege of Life ScienceSichuan UniversityChengduChina
| | - Yang Chen
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of EducationCollege of Life ScienceSichuan UniversityChengduChina
| | - Junlin Zhang
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of EducationCollege of Life ScienceSichuan UniversityChengduChina
| | - Shangling Lou
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of EducationCollege of Life ScienceSichuan UniversityChengduChina
| | - Huanhuan Liu
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of EducationCollege of Life ScienceSichuan UniversityChengduChina
| | - Jianquan Liu
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of EducationCollege of Life ScienceSichuan UniversityChengduChina
- State Key Laboratory of Grassland Agro‐EcosystemInstitute of Innovation Ecology & College of Life ScienceLanzhou UniversityLanzhouChina
| | - Tao Ma
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of EducationCollege of Life ScienceSichuan UniversityChengduChina
| | - Yuanzhong Jiang
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of EducationCollege of Life ScienceSichuan UniversityChengduChina
| |
Collapse
|
34
|
Huang L, Li Z, Fu Q, Liang C, Liu Z, Liu Q, Pu G, Li J. Genome-Wide Identification of CBL-CIPK Gene Family in Honeysuckle ( Lonicera japonica Thunb.) and Their Regulated Expression Under Salt Stress. Front Genet 2021; 12:751040. [PMID: 34795693 PMCID: PMC8593244 DOI: 10.3389/fgene.2021.751040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
In plants, calcineurin B-like proteins (CBLs) are a unique group of Ca2+ sensors that decode Ca2+ signals by activating a family of plant-specific protein kinases known as CBL-interacting protein kinases (CIPKs). CBL-CIPK gene families and their interacting complexes are involved in regulating plant responses to various environmental stimuli. To gain insight into the functional divergence of CBL-CIPK genes in honeysuckle, a total of six LjCBL and 17 LjCIPK genes were identified. The phylogenetic analysis along with the gene structure analysis divided both CBL and CBL-interacting protein kinase genes into four subgroups and validated by the distribution of conserved protein motifs. The 3-D structure prediction of proteins shown that most LjCBLs shared the same Protein Data Bank hit 1uhnA and most LjCIPKs shared the 6c9Da. Analysis of cis-acting elements and gene ontology implied that both LjCBL and LjCIPK genes could be involved in hormone signal responsiveness and stress adaptation. Protein-protein interaction prediction suggested that LjCBL4 is hypothesized to interact with LjCIPK7/9/15/16 and SOS1/NHX1. Gene expression analysis in response to salinity stress revealed that LjCBL2/4, LjCIPK1/15/17 under all treatments gradually increased over time until peak expression at 72 h. These results demonstrated the conservation of salt overly sensitive pathway genes in honeysuckle and a model of Ca2+-LjCBL4/LjSOS3-LjCIPK16/LjSOS2 module-mediated salt stress signaling in honeysuckle is proposed. This study provides insight into the characteristics of the CBL-CIPK gene families involved in honeysuckle salt stress responses, which could serve as a foundation for gene transformation technology, to obtain highly salt-tolerant medicinal plants in the context of the global reduction of cultivated land.
Collapse
Affiliation(s)
- Luyao Huang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhuangzhuang Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Qingxia Fu
- Department of Pharmacy, Linyi People's Hospital, Linyi, China
| | - Conglian Liang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenhua Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gaobin Pu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
35
|
Genome-Wide Analysis of the Homeobox Gene Family and Identification of Drought-Responsive Members in Populus trichocarpa. PLANTS 2021; 10:plants10112284. [PMID: 34834651 PMCID: PMC8653966 DOI: 10.3390/plants10112284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
Homeobox (HB) genes play critical roles in the regulation of plant morphogenesis, growth and development. Here, we identified a total of 156 PtrHB genes from the Populus trichocarpa genome. According to the topologies and taxonomy of the phylogenetic tree constructed by Arabidopsis thaliana HB members, all PtrHB proteins were divided into six subgroups, namely HD-ZIP, ZF-HD, HB-PHD, TALE, WOX and HB-OTHERS. Multiple alignments of conserved homeodomains (HDs) revealed the conserved loci of each subgroup, while gene structure analysis showed similar exon–intron gene structures, and motif analysis indicated the similarity of motif number and pattern in the same subgroup. Promoter analysis indicated that the promoters of PtrHB genes contain a series of cis-acting regulatory elements involved in responding to various abiotic stresses, indicating that PtrHBs had potential functions in these processes. Collinearity analysis revealed that there are 96 pairs of 127 PtrHB genes mainly distributing on Chromosomes 1, 2, and 5. We analyzed the spatio-temporal expression patterns of PtrHB genes, and the virus-induced gene silencing (VIGS) of PtrHB3 gene resulted in the compromised tolerance of poplar seedlings to mannitol treatment. The bioinformatics on PtrHB family and preliminary exploration of drought-responsive genes can provide support for further study of the family in woody plants, especially in drought-related biological processes. It also provides a direction for developing new varieties of poplar with drought resistance. Overall, our results provided significant information for further functional analysis of PtrHB genes in poplar and demonstrated that PtrHB3 is a dominant gene regulating tolerance to water stress treatment in poplar seedlings.
Collapse
|
36
|
Zhu Y, Wang Q, Guo W, Gao Z, Wang Y, Xu Y, Liu Y, Ma Z, Yan F, Li J. Screening and identification of salt-tolerance genes in Sophora alopecuroides and functional verification of SaAQP. PLANTA 2021; 254:77. [PMID: 34535825 DOI: 10.1007/s00425-021-03726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Overexpression of SaAQP can improve the salt tolerance of transgenic soybean hairy roots and A. thaliana. Salt stress severely affects crop yield and food security. There is a need to improve the salt tolerance of crops, but the discovery and utilization of salt-tolerance genes remains limited. Owing to its strong stress tolerance, Sophora alopecuroides is ideal for the identification of salt-tolerance genes. Therefore, we aimed to screen and identify the salt-tolerance genes in S. alopecuroides. With a yeast expression library of seedlings, salt-tolerant genes were screened using a salt-containing medium to simulate salt stress. By combining salt-treatment screening and transcriptome sequencing, 11 candidate genes related to salt tolerance were identified, including genes for peroxidase, inositol methyltransferase, aquaporin, cysteine synthase, pectinesterase, and WRKY. The expression dynamics of candidate genes were analyzed after salt treatment of S. alopecuroides, and salt tolerance was verified in yeast BY4743. The candidate genes participated in the salt-stress response in S. alopecuroides, and their overexpression significantly improved the salt tolerance of yeast. Salt tolerance mediated by SaAQP was further verified in soybean hairy roots and Arabidopsis thaliana, and it was found that SaAQP might enhance the salt tolerance of A. thaliana by participating in a reactive oxygen species scavenging mechanism. This result provides new genetic resources in plant breeding for salt resistance.
Collapse
Affiliation(s)
- Youcheng Zhu
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Qingyu Wang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Wenyun Guo
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Ziwei Gao
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Ying Wang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Yang Xu
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Yajing Liu
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Zhipeng Ma
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Fan Yan
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Jingwen Li
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| |
Collapse
|