1
|
Ye Q, Zhou C, Lin H, Luo D, Jain D, Chai M, Lu Z, Liu Z, Roy S, Dong J, Wang ZY, Wang T. Medicago2035: Genomes, functional genomics, and molecular breeding. MOLECULAR PLANT 2024:S1674-2052(24)00399-X. [PMID: 39741417 DOI: 10.1016/j.molp.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Abstract
Medicago, a genus in the Leguminosae or Fabaceae family, includes the most globally significant forage crops, notably alfalfa (Medicago sativa). Its close diploid relative Medicago truncatula serves as an exemplary model plant for investigating legume growth and development, as well as symbiosis with rhizobia. Over the past decade, advances in Medicago genomics have significantly deepened our understanding of the molecular regulatory mechanisms that underlie various traits. In this review, we comprehensively summarize research progress on Medicago genomics, growth and development (including compound leaf development, shoot branching, flowering time regulation, inflorescence development, floral organ development, and seed dormancy), resistance to abiotic and biotic stresses, and symbiotic nitrogen fixation with rhizobia, as well as molecular breeding. We propose avenues for molecular biology research on Medicago in the coming decade, highlighting those areas that have yet to be investigated or that remain ambiguous.
Collapse
Affiliation(s)
- Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Dong Luo
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, China
| | - Divya Jain
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA
| | - Maofeng Chai
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhipeng Liu
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China.
| | - Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zeng-Yu Wang
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Yang B, Huang X, Zhang Y, Gao X, Ding S, Qi J, Wang X. Genome-Wide Identification of Rubber Tree SCAMP Genes and Functional Characterization of HbSCAMP3. PLANTS (BASEL, SWITZERLAND) 2024; 13:2729. [PMID: 39409598 PMCID: PMC11478556 DOI: 10.3390/plants13192729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Natural rubber produced by the rubber tree is a vital industrial raw material globally. Seven SCAMP gene family members were identified in the rubber tree, and the phylogenetic tree classified HbSCAMPs into three subfamilies. Significant differences were observed among HbSCAMPs in terms of gene length, number of exons, and composition of conserved motifs. The expansion of HbSCAMPs in the rubber tree genome is associated with segmental duplications. The high expression of HbSCAMP1-6 in petioles and HbSCAMP7 in stem tips, along with their distinct responses to drought, salt, and wound stresses, indicates their crucial roles in substance transport and stress adaptation. Transgenic poplar experiments demonstrated that overexpression of HbSCAMP3 significantly promotes plant height growth, with localization in the tobacco plasma membrane, suggesting its involvement in regulating plant growth through membrane transport processes. These findings enhance the understanding of HbSCAMPs in rubber trees and provide new insights into how plants finely tune gene family members to adapt to environmental changes.
Collapse
Affiliation(s)
- Baoyi Yang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Agricultural College, Shihezi University, Shihezi 832003, China;
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (Y.Z.); (X.G.); (S.D.)
| | - Xiao Huang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (Y.Z.); (X.G.); (S.D.)
| | - Yuanyuan Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (Y.Z.); (X.G.); (S.D.)
| | - Xinsheng Gao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (Y.Z.); (X.G.); (S.D.)
| | - Shitao Ding
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (Y.Z.); (X.G.); (S.D.)
| | - Juncang Qi
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Agricultural College, Shihezi University, Shihezi 832003, China;
| | - Xiangjun Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (Y.Z.); (X.G.); (S.D.)
| |
Collapse
|
3
|
Li M, Pu J, Jia C, Luo D, Zhou Q, Fang X, Nie B, Liu W, Nan Z, Searle IR, Fang L, Liu Z. The genome of Vicia sativa ssp. amphicarpa provides insights into the role of terpenoids in antimicrobial resistance within subterranean fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2654-2671. [PMID: 39039964 DOI: 10.1111/tpj.16939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Vicia sativa ssp. amphicarpa is a unique forage crop capable of simultaneously producing fruits above and below ground, representing a typical amphicarpic plant. In this study, we sequenced and assembled seven pseudo-chromosomes of the genome of V. sativa ssp. amphicarpa (n = 7) yielding a genome size of 1.59 Gb, with a total annotation of 48 932 protein-coding genes. Long terminal repeat (LTR) elements constituted 62.28% of the genome, significantly contributing to the expansion of genome size. Phylogenetic analysis revealed that the divergence between V. sativa ssp. amphicarpa and V. sativa was around 0.88 million years ago (MYA). Comparative transcriptomic and metabolomic analysis of aerial and subterranean pod shells showed biosynthesis of terpenoids in the subterranean pod shells indicating a correlation between the antimicrobial activity of subterranean pod shells and the biosynthesis of terpenoids. Furthermore, functional validation indicates that overexpression of VsTPS5 and VsTPS16 enhances terpenoid biosynthesis for antibacterial activity. Metabolomic analysis suggests the involvement of terpenoids in the antimicrobial properties of subterranean pod shells. Deciphering the genome of V. sativa ssp. amphicarpa elucidated the molecular mechanisms behind the antimicrobial properties of subterranean fruits in amphicarpic plants, providing valuable insights for the study of amphicarpic plant biology.
Collapse
Affiliation(s)
- Mingyu Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jun Pu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Chenglin Jia
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Dong Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qiang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiangling Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Bin Nie
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Wenxian Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Iain Robert Searle
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
4
|
Quan W, Liu X. Tandem mass tag (TMT)-based quantitative proteomics analysis reveals the different responses of contrasting alfalfa varieties to drought stress. BMC Genomics 2024; 25:806. [PMID: 39192174 DOI: 10.1186/s12864-024-10702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Drought stress restricts the growth, distribution and productivity of alfalfa (Medicago sativa L.). In order to study the response differences of alfalfa cultivars to drought stress, we previously carried out physiological and molecular comparative analysis on two alfalfa varieties with contrasting drought resistance (relatively drought-tolerant Longdong and drought-sensitive Algonquin). However, the differences in proteomic factors of the two varieties in response to drought stress still need to be further studied. Therefore, TMT-based quantitative proteomic analysis was performed using leaf tissues of the two alfalfa cultivars to identify and uncover differentially abundant proteins (DAPs). RESULTS In total, 677 DAPs were identified in Algonquin and 277 in Longdong under drought stress. Subsequently, we conducted various bioinformatics analysis on these DAPs, including subcellular location, functional classification and biological pathway enrichment. The first two main COG functional categories of DAPs in both alfalfa varieties after drought stress were 'Translation, ribosomal structure and biogenesis' and 'Posttranslational modification, protein turnover, chaperones'. According to KEGG database, the DAPs of the two alfalfa cultivars after drought treatment were differentially enriched in different biological pathways. The DAPs from Algonquin were enriched in 'photosynthesis' and 'ribosome'. The pathways of 'linoleic acid metabolism', 'protein processing in endoplasmic reticulum' and 'RNA transport' in Longdong were significantly enriched. Finally, we found significant differences in DAP enrichment and expression patterns between Longdong and Algonquin in glycolysis/glycogenesis, TCA cycle, photosynthesis, protein biosynthesis, flavonoid and isoflavonoid biosynthesis, and plant-pathogen interaction pathway after drought treatment. CONCLUSIONS The differences of DAPs involved in various metabolic pathways may explain the differences in the resistance of the two varieties to drought stress. These DAPs can be used as candidate proteins for molecular breeding of alfalfa to cultivate new germplasm with more drought tolerance to adapt to unfavorable environments.
Collapse
Affiliation(s)
- Wenli Quan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Xun Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China.
| |
Collapse
|
5
|
Shen Y, Zou J, Zhang Q, Luo P, Shang W, Sun T, Shi L, Wang Z, Li Y. Identification of PP2Cs in six rosaceae species highlights RcPP2C24 as a negative regulator in rose drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108782. [PMID: 38850728 DOI: 10.1016/j.plaphy.2024.108782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Drought is a major environmental stress that limits plant growth, so it's important to identify drought-responsive genes to understand the mechanism of drought response and breed drought-tolerant roses. Protein phosphatase 2C (PP2C) plays a crucial role in plant abiotic stress response. In this study, we identified 412 putative PP2Cs from six Rosaceae species. These genes were divided into twelve clades, with clade A containing the largest number of PP2Cs (14.1%). Clade A PP2Cs are known for their important role in ABA-mediated drought stress response; therefore, the analysis focused on these specific genes. Conserved motif analysis revealed that clade A PP2Cs in these six Rosaceae species shared conserved C-terminal catalytic domains. Collinearity analysis indicated that segmental duplication events played a significant role in the evolution of clade A PP2Cs in Rosaceae. Analysis of the expression of 11 clade A RcPP2Cs showed that approximately 60% of these genes responded to drought, high temperature, and salt stress. Among them, RcPP2C24 exhibited the highest responsiveness to both drought and ABA. Furthermore, overexpression of RcPP2C24 significantly reduced drought tolerance in transgenic tobacco by increasing stomatal aperture after exposure to drought stress. The transient overexpression of RcPP2C24 weakened the dehydration tolerance of rose petal discs, while its silencing increased their dehydration tolerance. In summary, our study identified PP2Cs in six Rosaceae species and highlighted the negative role of RcPP2C24 on rose's drought tolerance by inhibiting stomatal closure. Our findings provide valuable insights into understanding the mechanism behind rose's response to drought.
Collapse
Affiliation(s)
- Yuxiao Shen
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinyu Zou
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Qian Zhang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Ping Luo
- College of Horticulture Science, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Zhejiang Moutainous, Zhejiang A & F University, Hangzhou 311300, China
| | - Wenqian Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Tianxiao Sun
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Liyun Shi
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yonghua Li
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
6
|
Dong X, Han B, Chen J, Luo D, Zhou Q, Liu Z. Multiomics Analyses Reveal MsC3H29 Positively Regulates Flavonoid Biosynthesis to Improve Drought Resistance of Autotetraploid Cultivated Alfalfa ( Medicago sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14448-14465. [PMID: 38864675 DOI: 10.1021/acs.jafc.4c02472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Alfalfa (Medicago sativa subsp. sativa), the "queen of forage," is the most important perennial legume, with high productivity and an excellent nutritional profile. Medicago sativa subsp. falcata is a subspecies of the alfalfa complex and exhibits better drought tolerance. However, drought stress significantly hampers their development and yield. The molecular mechanisms underlying the aboveground and underground tissues of sativa and falcata responding to drought stress remain obscure. Here, we performed a comprehensive comparative analysis of the physiological and transcriptomic responses of sativa and falcata under drought stress. The results showed that photosynthesis was inhibited, and antioxidant enzymes were activated under drought stress. MsC3H29, a CCCH-type zinc finger protein, was identified as a hub gene through weighted gene coexpression network analysis (WGCNA) and was significantly induced by drought in underground tissue. The MsC3H29 protein was localized in the nucleus. Overexpression (OE) of MsC3H29 can increase the primary root length and fresh weight of transgenic alfalfa hairy roots, while RNA interference (RNAi) decreases them under drought stress. The 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining revealed that MsC3H29 promoted drought tolerance of alfalfa hairy roots through decreasing ROS accumulation. The targeted metabolome analysis showed that the overexpression of MsC3H29 resulted in higher levels of accumulation for flavonoid monomers, including vicenin, daidzein, apigenin, isorhamnetin, quercetin, and tricin, in transgenic alfalfa hairy roots before and after drought stress, while RNAi led to a reduction. Our study provided a key candidate gene for molecular breeding to improve drought resistance in alfalfa.
Collapse
Affiliation(s)
- Xueming Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Bingcheng Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jiwei Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Dong Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qiang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
7
|
Yu W, Luo L, Qi X, Cao Y, An J, Xie Z, Hu T, Yang P. Insights into the Impact of Trans-Zeatin Overproduction-Engineered Sinorhizobium meliloti on Alfalfa ( Medicago sativa L.) Tolerance to Drought Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8650-8663. [PMID: 38564678 DOI: 10.1021/acs.jafc.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Plant growth-promoting rhizobacteria have been shown to enhance plant tolerance to drought stress through various mechanisms. However, there is limited research on improving drought resistance in alfalfa by genetically modifying PGPR to produce increased levels of cytokinins. Herein, we employed synthetic biology approaches to engineer two novel strains of Sinorhizobium meliloti capable of overproducing trans-Zeatin and investigated their potential in enhancing drought tolerance in alfalfa. Our results demonstrate that alfalfa plants inoculated with these engineered S. meliloti strains exhibited reduced wilting and yellowing while maintaining higher relative water content under drought conditions. The engineered S. meliloti-induced tZ activated the activity of antioxidant enzymes and the accumulation of osmolytes. Additionally, the increased endogenous tZ content in plants alleviated the impact of drought stress on the alfalfa photosynthetic rate. However, under nondrought conditions, inoculation with the engineered S. meliloti strains had no significant effect on alfalfa biomass and nodule formation.
Collapse
Affiliation(s)
- Wenzhe Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Li Luo
- Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University, Shanghai 200444, China
| | - Xiangyu Qi
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jie An
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zhiguo Xie
- Shaanxi Academy of Forestry, Xi'an 710082, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Wang X, Li X, Zhao W, Hou X, Dong S. Current views of drought research: experimental methods, adaptation mechanisms and regulatory strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1371895. [PMID: 38638344 PMCID: PMC11024477 DOI: 10.3389/fpls.2024.1371895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Drought stress is one of the most important abiotic stresses which causes many yield losses every year. This paper presents a comprehensive review of recent advances in international drought research. First, the main types of drought stress and the commonly used drought stress methods in the current experiment were introduced, and the advantages and disadvantages of each method were evaluated. Second, the response of plants to drought stress was reviewed from the aspects of morphology, physiology, biochemistry and molecular progression. Then, the potential methods to improve drought resistance and recent emerging technologies were introduced. Finally, the current research dilemma and future development direction were summarized. In summary, this review provides insights into drought stress research from different perspectives and provides a theoretical reference for scholars engaged in and about to engage in drought research.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Agriculture, Northeast Agricultural University, Heilongjiang, Harbin, China
| | - Xiaomei Li
- College of Agriculture, Heilongjiang Agricultural Engineering Vocational College, Heilongjiang, Harbin, China
| | - Wei Zhao
- College of Agriculture, Northeast Agricultural University, Heilongjiang, Harbin, China
| | - Xiaomin Hou
- Millet Research Institute, Qiqihar Sub-Academy of Heilongjiang Academy of Agricultural Sciences, Heilongjiang, Qiqihar, China
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Heilongjiang, Harbin, China
| |
Collapse
|
9
|
Wang Y, Liu Y, Pan X, Wan Y, Li Z, Xie Z, Hu T, Yang P. A 3-Ketoacyl-CoA Synthase 10 ( KCS10) Homologue from Alfalfa Enhances Drought Tolerance by Regulating Cuticular Wax Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14493-14504. [PMID: 37682587 DOI: 10.1021/acs.jafc.3c03881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Cuticular wax, forming the first line of defense against adverse environmental stresses, comprises very long-chain fatty acids (VLCFAs) and their derivatives. 3-Ketoacyl-CoA synthase (KCS) is a rate-limiting enzyme for VLCFA biosynthesis. In this study, we isolated KCS10, a KCS gene from alfalfa, and analyzed the effect of gene expression on wax production and drought stress in transgenic plants. MsKCS10 overexpression increased compact platelet-like crystal deposition and promoted primary alcohol biosynthesis through acyl reduction pathways in alfalfa leaves. Overexpression of MsKCS10 induced the formation of coiled-rodlet-like crystals and increased n-alkane content through decarbonylation pathways in tobacco and tomato fruits. Overexpression of MsKCS10 enhanced drought tolerance by limiting nonstomatal water loss, improving photosynthesis, and maintaining osmotic potential under drought stress in transgenic tobacco. In summary, MsKCS10 plays an important role in wax biosynthesis, wax crystal morphology, and drought tolerance, although the mechanisms are different among the plant species. MsKCS10 can be targeted in future breeding programs to improve drought tolerance in plants.
Collapse
Affiliation(s)
- Yafang Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yushi Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xinya Pan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yiqi Wan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Ziyan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhiguo Xie
- Shaanxi Academy of Forestry Xi'an, 710082, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
10
|
Liu J, Shi K, Wang S, Zhu J, Wang X, Hong J, Wang Z. MsCYP71 is a positive regulator for drought resistance in alfalfa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107999. [PMID: 37678089 DOI: 10.1016/j.plaphy.2023.107999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Cytochrome P450 (CYP450) family proteins play key roles in plant growth, development, stress responses, and other physiological processes. Here, we cloned the cytochrome P450 gene MsCYP71 in alfalfa and found that the expression of MsCYP71 was induced by drought stress. Silencing the MsCYP71 gene using virus-induced gene silencing technology significantly decreased the drought resistance of alfalfa, as indicated by their lower relative water content, net photosynthetic rate, and chlorophyll fluorescence maximum (Fm); further, the heterologous overexpression of MsCYP71 in tobacco significantly enhanced the drought resistance and Fm of transgenic tobacco. Furthermore, the expression of MsCYP71 across 45 alfalfa accessions under drought stress was investigated. A significant positive correlation between drought resistance and MsCYP71 expression was observed. The 45 alfalfa accessions were clustered into four groups, and drought resistance, Fm, and MsCYP71 were higher in group I than in the other groups, indicating that group I accessions can be used as candidate germplasm resources for the breeding of drought-resistant alfalfa varieties. Overall, our findings indicated that MsCYP71 is a positive regulator of drought resistance in alfalfa, and its expression can be used to evaluate the drought resistance of alfalfa.
Collapse
Affiliation(s)
- Jia Liu
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kun Shi
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shaopeng Wang
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiahao Zhu
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xijuan Wang
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jun Hong
- National Animal Husbandry Services, Beijing, 100125, China
| | - Zan Wang
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Hasanuzzaman M, Zhou M, Shabala S. How Does Stomatal Density and Residual Transpiration Contribute to Osmotic Stress Tolerance? PLANTS (BASEL, SWITZERLAND) 2023; 12:494. [PMID: 36771579 PMCID: PMC9919688 DOI: 10.3390/plants12030494] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Osmotic stress that is induced by salinity and drought affects plant growth and development, resulting in significant losses to global crop production. Consequently, there is a strong need to develop stress-tolerant crops with a higher water use efficiency through breeding programs. Water use efficiency could be improved by decreasing stomatal transpiration without causing a reduction in CO2 uptake under osmotic stress conditions. The genetic manipulation of stomatal density could be one of the most promising strategies for breeders to achieve this goal. On the other hand, a substantial amount of water loss occurs across the cuticle without any contribution to carbon gain when the stomata are closed and under osmotic stress. The minimization of cuticular (otherwise known as residual) transpiration also determines the fitness and survival capacity of the plant under the conditions of a water deficit. The deposition of cuticular wax on the leaf epidermis acts as a limiting barrier for residual transpiration. However, the causal relationship between the frequency of stomatal density and plant osmotic stress tolerance and the link between residual transpiration and cuticular wax is not always straightforward, with controversial reports available in the literature. In this review, we focus on these controversies and explore the potential physiological and molecular aspects of controlling stomatal and residual transpiration water loss for improving water use efficiency under osmotic stress conditions via a comparative analysis of the performance of domesticated crops and their wild relatives.
Collapse
Affiliation(s)
- Md. Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- School of Biological Science, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
12
|
Wei N, Zhai Q, Li H, Zheng S, Zhang J, Liu W. Genome-Wide Identification of ERF Transcription Factor Family and Functional Analysis of the Drought Stress-Responsive Genes in Melilotus albus. Int J Mol Sci 2022; 23:ijms231912023. [PMID: 36233332 PMCID: PMC9570465 DOI: 10.3390/ijms231912023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
As an important forage legume with high values in feed and medicine, Melilotus albus has been widely cultivated. The AP2/ERF transcription factor has been shown to play an important regulatory role in plant drought resistance, but it has not been reported in the legume forage crop M. albus. To digger the genes of M. albus in response to drought stress, we identified and analyzed the ERF gene family of M. albus at the genome-wide level. A total of 100 MaERF genes containing a single AP2 domain sequence were identified in this study, named MaERF001 to MaERF100, and bioinformatics analysis was performed. Collinearity analysis indicated that segmental duplication may play a key role in the expansion of the M. albus ERF gene family. Cis-acting element predictions suggest that MaERF genes are involved in various hormonal responses and abiotic stresses. The expression patterns indicated that MaERFs responded to drought stress to varying degrees. Furthermore, four up-regulated ERFs (MaERF008, MaERF037, MaERF054 and MaERF058) under drought stress were overexpressed in yeast and indicated their biological functions to confer the tolerance to drought. This work will advance the understanding of the molecular mechanisms underlying the drought response in M. albus. Further study of the promising potential candidate genes identified in this study will provide a valuable resource as the next step in functional genomics studies and improve the possibility of improving drought tolerance in M. albus by transgenic approaches.
Collapse
|