1
|
Kim J, Karel IZ, Song H, Dewalt M, Orwick S, Buelow DR, Lee K, Brodsky SV, Blissett A, Cocucci E, Baker SD, Lin PH, Pabla NS, Madhavan SM. Genomewide Screen Identifies Peroxisomal Role in APOL1 Podocytopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.15.25322241. [PMID: 40034797 PMCID: PMC11875264 DOI: 10.1101/2025.02.15.25322241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The G1 and G2 variants of the APOL1 gene increase the risk of chronic kidney disease (CKD) in individuals of African descent. In the presence of secondary stressors such as inflammation and hypoxia, these gain-of-function variants can induce podocyte dysfunction and cell death through mechanisms that are not fully understood. To identify genes that influence the cytotoxic effects of APOL1 variants under hypoxic conditions, we conducted a comprehensive whole-genome RNA interference (RNAi) screen. We found that silencing several peroxisomal (PEX) genes significantly intensified the cytotoxicity associated with the G1 and G2 variants, revealing the previously unknown role of peroxisomes in APOL1-related cytotoxicity. Importantly, enhancing peroxisomal function through both genetic and pharmacological approaches led to a significant reduction in cytotoxicity linked to these variants. We also identified a peroxisomal targeting signal at the C-terminus of APOL1 that facilitates its translocation to peroxisomes during hypoxia, and mutations in this signal were found to reduce the cytotoxic effects of the variants. Collectively, our findings underscore the importance of peroxisomal function in the pathogenesis of CKD associated with APOL1 variants and suggest that targeting peroxisomes may represent an effective therapeutic strategy to mitigate CKD risk in vulnerable populations.
Collapse
Affiliation(s)
- Jiyoung Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Isaac Z Karel
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Huijuan Song
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Megan Dewalt
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Shelley Orwick
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Daelynn R Buelow
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Kendyll Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Sergey V Brodsky
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Angie Blissett
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Ema Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Pei-Hui Lin
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Sethu M Madhavan
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
2
|
Drwesh L. In vitro translation in yeast extract to study interactions with cytosolic chaperones. Methods Enzymol 2024; 706:313-344. [PMID: 39455222 DOI: 10.1016/bs.mie.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Saccharomyces cerevisiae, a well-established model organism, serves as a valuable tool for unraveling various eukaryotic cellular processes. Its utility extends to studying protein folding and interactions with chaperones, as it demonstrates a capability to produce and process proteins in a manner closely resembling that of higher eukaryotes. To gain insights into the events taking place following protein synthesis in the cytosol, an in vitro translation system is essential-one that mirrors in vivo processes yet allows for easy manipulation. To address this need, multiple protocols for preparation of cell-free translation lysates from S. cerevisiae have been documented. This chapter introduces an optimized and modified in vitro pull-down approach following protein translation in yeast cell-free extract. The advantages of this system in investigating the interactions of newly synthesized mitochondrial proteins with cytosolic chaperones are described. This procedure exploits the dual advantages of yeast cell-free lysates, serving as both a protein synthesis tool, and a reservoir for cytosolic factors and chaperones. In summary, the depicted approach provides a versatile platform that deepens our understanding of the early cytosolic events in the biogenesis of nascent proteins before reaching their ultimate organelle.
Collapse
Affiliation(s)
- Layla Drwesh
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany; Hertie Institute for Clinical Brain Research, Tuebingen, Germany.
| |
Collapse
|
3
|
Pedersen MP, Wolters JC, de Boer R, Krikken AM, van der Klei IJ. The Hansenula polymorpha mitochondrial carrier family protein Mir1 is dually localized at peroxisomes and mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119742. [PMID: 38702017 DOI: 10.1016/j.bbamcr.2024.119742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Peroxisomes are ubiquitous cell organelles involved in various metabolic pathways. In order to properly function, several cofactors, substrates and products of peroxisomal enzymes need to pass the organellar membrane. So far only a few transporter proteins have been identified. We analysed peroxisomal membrane fractions purified from the yeast Hansenula polymorpha by untargeted label-free quantitation mass spectrometry. As expected, several known peroxisome-associated proteins were enriched in the peroxisomal membrane fraction. In addition, several other proteins were enriched, including mitochondrial transport proteins. Localization studies revealed that one of them, the mitochondrial phosphate carrier Mir1, has a dual localization on mitochondria and peroxisomes. To better understand the molecular mechanisms of dual sorting, we localized Mir1 in cells lacking Pex3 or Pex19, two peroxins that play a role in targeting of peroxisomal membrane proteins. In these cells Mir1 only localized to mitochondria, indicating that Pex3 and Pex19 are required to sort Mir1 to peroxisomes. Analysis of the localization of truncated versions of Mir1 in wild-type H. polymorpha cells revealed that most of them localized to mitochondria, but only one, consisting of the transmembrane domains 3-6, was peroxisomal. Peroxisomal localization of this construct was lost in a MIR1 deletion strain, indicating that full-length Mir1 was required for the localization of the truncated protein to peroxisomes. Our data suggest that only full-length Mir1 sorts to peroxisomes, while Mir1 contains multiple regions with mitochondrial sorting information. Data are available via ProteomeXchange with identifier PXD050324.
Collapse
Affiliation(s)
- Marc Pilegaard Pedersen
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Justina C Wolters
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Arjen M Krikken
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Oh J, Kim DK, Ahn SH, Kim HM, Cho H. A dual role of the conserved PEX19 helix in safeguarding peroxisomal membrane proteins. iScience 2024; 27:109537. [PMID: 38585659 PMCID: PMC10995880 DOI: 10.1016/j.isci.2024.109537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/13/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Accurate localization of membrane proteins is essential for proper cellular functioning and the integrity of cellular membranes. Post-translational targeting of peroxisomal membrane proteins (PMPs) is mediated by the cytosolic chaperone PEX19 and its membrane receptor PEX3. However, the molecular mechanisms underlying PMP targeting are poorly understood. Here, using biochemical and mass spectrometry analysis, we find that a conserved PEX19 helix, αd, is critical to prevent improper exposure of the PEX26 transmembrane domain (TMD) to cytosolic chaperones. Furthermore, the αd helix of PEX19 interacts with the cytosolic domain of the PEX3 receptor, thereby triggering PEX26 release at the correct destination membrane. The peroxisome-deficient PEX3-G138E mutant completely abolishes this secondary interaction, leading to lack of PEX3-induced PEX26 release from PEX19. These findings elucidate a dual molecular mechanism that is essential to membrane protein protection and destination-specific release by a molecular chaperone.
Collapse
Affiliation(s)
- Jeonghyun Oh
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Do Kyung Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Seung Hae Ahn
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyunju Cho
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| |
Collapse
|
5
|
Bittner E, Stehlik T, Lam J, Dimitrov L, Heimerl T, Schöck I, Harberding J, Dornes A, Heymons N, Bange G, Schuldiner M, Zalckvar E, Bölker M, Schekman R, Freitag J. Proteins that carry dual targeting signals can act as tethers between peroxisomes and partner organelles. PLoS Biol 2024; 22:e3002508. [PMID: 38377076 PMCID: PMC10906886 DOI: 10.1371/journal.pbio.3002508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/01/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Peroxisomes are organelles with crucial functions in oxidative metabolism. To correctly target to peroxisomes, proteins require specialized targeting signals. A mystery in the field is the sorting of proteins that carry a targeting signal for peroxisomes and as well as for other organelles, such as mitochondria or the endoplasmic reticulum (ER). Exploring several of these proteins in fungal model systems, we observed that they can act as tethers bridging organelles together to create contact sites. We show that in Saccharomyces cerevisiae this mode of tethering involves the peroxisome import machinery, the ER-mitochondria encounter structure (ERMES) at mitochondria and the guided entry of tail-anchored proteins (GET) pathway at the ER. Our findings introduce a previously unexplored concept of how dual affinity proteins can regulate organelle attachment and communication.
Collapse
Affiliation(s)
- Elena Bittner
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Jason Lam
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Lazar Dimitrov
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Thomas Heimerl
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Isabelle Schöck
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Jannik Harberding
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Anita Dornes
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Nikola Heymons
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Randy Schekman
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
6
|
Somborac T, Lutfullahoglu Bal G, Fatima K, Vihinen H, Paatero A, Jokitalo E, Paavilainen VO, Konovalova S. The subset of peroxisomal tail-anchored proteins do not reach peroxisomes via ER, instead mitochondria can be involved. PLoS One 2023; 18:e0295047. [PMID: 38039321 PMCID: PMC10691693 DOI: 10.1371/journal.pone.0295047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
Peroxisomes are membrane-enclosed organelles with important roles in fatty acid breakdown, bile acid synthesis and biosynthesis of sterols and ether lipids. Defects in peroxisomes result in severe genetic diseases, such as Zellweger syndrome and neonatal adrenoleukodystrophy. However, many aspects of peroxisomal biogenesis are not well understood. Here we investigated delivery of tail-anchored (TA) proteins to peroxisomes in mammalian cells. Using glycosylation assays we showed that peroxisomal TA proteins do not enter the endoplasmic reticulum (ER) in both wild type (WT) and peroxisome-lacking cells. We observed that in cells lacking the essential peroxisome biogenesis factor, PEX19, peroxisomal TA proteins localize mainly to mitochondria. Finally, to investigate peroxisomal TA protein targeting in cells with fully functional peroxisomes we used a proximity biotinylation approach. We showed that while ER-targeted TA construct was exclusively inserted into the ER, peroxisome-targeted TA construct was inserted to both peroxisomes and mitochondria. Thus, in contrast to previous studies, our data suggest that some peroxisomal TA proteins do not insert to the ER prior to their delivery to peroxisomes, instead, mitochondria can be involved.
Collapse
Affiliation(s)
- Tamara Somborac
- HiLIFE, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Kaneez Fatima
- HiLIFE, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Anja Paatero
- HiLIFE, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Svetlana Konovalova
- HiLIFE, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Abstract
Peroxisomes are involved in a multitude of metabolic and catabolic pathways, as well as the innate immune system. Their dysfunction is linked to severe peroxisome-specific diseases, as well as cancer and neurodegenerative diseases. To ensure the ability of peroxisomes to fulfill their many roles in the organism, more than 100 different proteins are post-translationally imported into the peroxisomal membrane and matrix, and their functionality must be closely monitored. In this Review, we briefly discuss the import of peroxisomal membrane proteins, and we emphasize an updated view of both classical and alternative peroxisomal matrix protein import pathways. We highlight different quality control pathways that ensure the degradation of dysfunctional peroxisomal proteins. Finally, we compare peroxisomal matrix protein import with other systems that transport folded proteins across membranes, in particular the twin-arginine translocation (Tat) system and the nuclear pore.
Collapse
Affiliation(s)
- Markus Rudowitz
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Ralf Erdmann
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
8
|
Jansen RL, van den Noort M, Krikken AM, Bibi C, Böhm A, Schuldiner M, Zalckvar E, van der Klei IJ. Novel targeting assay uncovers targeting information within peroxisomal ABC transporter Pxa1. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR CELL RESEARCH 2023; 1870:119471. [PMID: 37028652 DOI: 10.1016/j.bbamcr.2023.119471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023]
Abstract
The mechanism behind peroxisomal membrane protein targeting is still poorly understood, with only two yeast proteins believed to be involved and no consensus targeting sequence. Pex19 is thought to bind peroxisomal membrane proteins in the cytosol, and is subsequently recruited by Pex3 at the peroxisomal surface, followed by protein insertion via a mechanism that is as-yet-unknown. However, some peroxisomal membrane proteins still correctly sort in the absence of Pex3 or Pex19, suggesting that multiple sorting pathways exist. Here, we studied sorting of yeast peroxisomal ABC transporter Pxa1. Co-localization analysis of Pxa1-GFP in a collection of 86 peroxisome-related deletion strains revealed that Pxa1 sorting requires Pex3 and Pex19, while none of the other 84 proteins tested were essential. To identify regions with peroxisomal targeting information in Pxa1, we developed a novel in vivo re-targeting assay, using a reporter consisting of the mitochondrial ABC transporter Mdl1 lacking its N-terminal mitochondrial targeting signal. Using this assay, we showed that the N-terminal 95 residues of Pxa1 are sufficient for retargeting this reporter to peroxisomes. Interestingly, truncated Pxa1 lacking residues 1-95 still localized to peroxisomes. This was confirmed via localization of various Pxa1 truncation and deletion constructs. However, localisation of Pxa1 lacking residues 1-95 depended on the presence of its interaction partner Pxa2, indicating that this truncated protein does not contain a true targeting signal.
Collapse
|
9
|
Reduced mitochondria provide an essential function for the cytosolic methionine cycle. Curr Biol 2022; 32:5057-5068.e5. [PMID: 36347252 PMCID: PMC9746703 DOI: 10.1016/j.cub.2022.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
The loss of mitochondria in oxymonad protists has been associated with the redirection of the essential Fe-S cluster assembly to the cytosol. Yet as our knowledge of diverse free-living protists broadens, the list of functions of their mitochondrial-related organelles (MROs) expands. We revealed another such function in the closest oxymonad relative, Paratrimastix pyriformis, after we solved the proteome of its MRO with high accuracy, using localization of organelle proteins by isotope tagging (LOPIT). The newly assigned enzymes connect to the glycine cleavage system (GCS) and produce folate derivatives with one-carbon units and formate. These are likely to be used by the cytosolic methionine cycle involved in S-adenosyl methionine recycling. The data provide consistency with the presence of the GCS in MROs of free-living species and its absence in most endobionts, which typically lose the methionine cycle and, in the case of oxymonads, the mitochondria.
Collapse
|
10
|
Peroxisome Proliferator FpPEX11 Is Involved in the Development and Pathogenicity in Fusarium pseudograminearum. Int J Mol Sci 2022; 23:ijms232012184. [PMID: 36293041 PMCID: PMC9603656 DOI: 10.3390/ijms232012184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Fusarium crown rot (FCR) of wheat, an important soil-borne disease, presents a worsening trend year by year, posing a significant threat to wheat production. Fusarium pseudograminearum cv. b was reported to be the dominant pathogen of FCR in China. Peroxisomes are single-membrane organelles in eukaryotes that are involved in many important biochemical metabolic processes, including fatty acid β-oxidation. PEX11 is important proteins in peroxisome proliferation, while less is known in the fungus F. pseudograminearum. The functions of FpPEX11a, FpPEX11b, and FpPEX11c in F. pseudograminearum were studied using reverse genetics, and the results showed that FpPEX11a and FpPEX11b are involved in the regulation of vegetative growth and asexual reproduction. After deleting FpPEX11a and FpPEX11b, cell wall integrity was impaired, cellular metabolism processes including active oxygen metabolism and fatty acid β-oxidation were significantly blocked, and the production ability of deoxynivalenol (DON) decreased. In addition, the deletion of genes of FpPEX11a and FpPEX11b revealed a strongly decreased expression level of peroxisome-proliferation-associated genes and DON-synthesis-related genes. However, deletion of FpPEX11c did not significantly affect these metabolic processes. Deletion of the three protein-coding genes resulted in reduced pathogenicity of F. pseudograminearum. In summary, FpPEX11a and FpPEX11b play crucial roles in the growth and development, asexual reproduction, pathogenicity, active oxygen accumulation, and fatty acid utilization in F. pseudograminearum.
Collapse
|
11
|
Bittner E, Stehlik T, Freitag J. Sharing the wealth: The versatility of proteins targeted to peroxisomes and other organelles. Front Cell Dev Biol 2022; 10:934331. [PMID: 36225313 PMCID: PMC9549241 DOI: 10.3389/fcell.2022.934331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are eukaryotic organelles with critical functions in cellular energy and lipid metabolism. Depending on the organism, cell type, and developmental stage, they are involved in numerous other metabolic and regulatory pathways. Many peroxisomal functions require factors also relevant to other cellular compartments. Here, we review proteins shared by peroxisomes and at least one different site within the cell. We discuss the mechanisms to achieve dual targeting, their regulation, and functional consequences. Characterization of dual targeting is fundamental to understand how peroxisomes are integrated into the metabolic and regulatory circuits of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
12
|
Modeling Adsorption, Conformation, and Orientation of the Fis1 Tail Anchor at the Mitochondrial Outer Membrane. MEMBRANES 2022; 12:membranes12080752. [PMID: 36005667 PMCID: PMC9413518 DOI: 10.3390/membranes12080752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022]
Abstract
Proteins can be targeted to organellar membranes by using a tail anchor (TA), a stretch of hydrophobic amino acids found at the polypeptide carboxyl-terminus. The Fis1 protein (Fis1p), which promotes mitochondrial and peroxisomal division in the yeast Saccharomyces cerevisiae, is targeted to those organelles by its TA. Substantial evidence suggests that Fis1p insertion into the mitochondrial outer membrane can occur without the need for a translocation machinery. However, recent findings raise the possibility that Fis1p insertion into mitochondria might be promoted by a proteinaceous complex. Here, we have performed atomistic and coarse-grained molecular dynamics simulations to analyze the adsorption, conformation, and orientation of the Fis1(TA). Our results support stable insertion at the mitochondrial outer membrane in a monotopic, rather than a bitopic (transmembrane), configuration. Once inserted in the monotopic orientation, unassisted transition to the bitopic orientation is expected to be blocked by the highly charged nature of the TA carboxyl-terminus and by the Fis1p cytosolic domain. Our results are consistent with a model in which Fis1p does not require a translocation machinery for insertion at mitochondria.
Collapse
|
13
|
Drwesh L, Heim B, Graf M, Kehr L, Hansen-Palmus L, Franz-Wachtel M, Macek B, Kalbacher H, Buchner J, Rapaport D. A network of cytosolic (co)chaperones promotes the biogenesis of mitochondrial signal-anchored outer membrane proteins. eLife 2022; 11:77706. [PMID: 35876647 PMCID: PMC9355564 DOI: 10.7554/elife.77706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Signal-anchored (SA) proteins are anchored into the mitochondrial outer membrane (OM) via a single transmembrane segment at their N-terminus while the bulk of the proteins is facing the cytosol. These proteins are encoded by nuclear DNA, translated on cytosolic ribosomes, and are then targeted to the organelle and inserted into its OM by import factors. Recently, research on the insertion mechanisms of these proteins into the mitochondrial OM have gained a lot of attention. In contrast, the early cytosolic steps of their biogenesis are unresolved. Using various proteins from this category and a broad set of in vivo, in organello, and in vitro assays, we reconstituted the early steps of their biogenesis. We identified a subset of molecular (co)chaperones that interact with newly synthesized SA proteins, namely, Hsp70 and Hsp90 chaperones and co-chaperones from the Hsp40 family like Ydj1 and Sis1. These interactions were mediated by the hydrophobic transmembrane segments of the SA proteins. We further demonstrate that interfering with these interactions inhibits the biogenesis of SA proteins to a various extent. Finally, we could demonstrate direct interaction of peptides corresponding to the transmembrane segments of SA proteins with the (co)chaperones and reconstitute in vitro the transfer of such peptides from the Hsp70 chaperone to the mitochondrial Tom70 receptor. Collectively, this study unravels an array of cytosolic chaperones and mitochondrial import factors that facilitates the targeting and membrane integration of mitochondrial SA proteins.
Collapse
Affiliation(s)
- Layla Drwesh
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Benjamin Heim
- Department of Chemistry, Technische Universität München, Munich, Germany
| | - Max Graf
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Linda Kehr
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Lea Hansen-Palmus
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology,, University of Tübingen, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology,, University of Tübingen, Tübingen, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Johannes Buchner
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| |
Collapse
|
14
|
Roboti P, Lawless C, High S. Mitochondrial antiviral-signalling protein is a client of the BAG6 protein quality control complex. J Cell Sci 2022; 135:275354. [PMID: 35543156 PMCID: PMC9264363 DOI: 10.1242/jcs.259596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
The heterotrimeric BAG6 complex coordinates the direct handover of newly synthesised tail-anchored (TA) membrane proteins from an SGTA-bound preloading complex to the endoplasmic reticulum (ER) delivery component TRC40. In contrast, defective precursors, including aberrant TA proteins, form a stable complex with this cytosolic protein quality control factor, enabling such clients to be either productively re-routed or selectively degraded. We identify the mitochondrial antiviral-signalling protein (MAVS) as an endogenous TA client of both SGTA and the BAG6 complex. Our data suggest that the BAG6 complex binds to a cytosolic pool of MAVS before its misinsertion into the ER membrane, from where it can subsequently be removed via ATP13A1-mediated dislocation. This BAG6-associated fraction of MAVS is dynamic and responds to the activation of an innate immune response, suggesting that BAG6 may modulate the pool of MAVS that is available for coordinating the cellular response to viral infection. Summary: Mitochondrial antiviral-signalling protein (MAVS) is a favoured client of the cytosolic BAG6 complex. We discuss how this dynamic interaction may modulate MAVS biogenesis at signalling membranes.
Collapse
Affiliation(s)
- Peristera Roboti
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Stephen High
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
15
|
Lyschik S, Lauer AA, Roth T, Janitschke D, Hollander M, Will T, Hartmann T, Kopito RR, Helms V, Grimm MOW, Schrul B. PEX19 Coordinates Neutral Lipid Storage in Cells in a Peroxisome-Independent Fashion. Front Cell Dev Biol 2022; 10:859052. [PMID: 35557938 PMCID: PMC9086359 DOI: 10.3389/fcell.2022.859052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular lipid metabolism is tightly regulated and requires a sophisticated interplay of multiple subcellular organelles to adapt to changing nutrient supply. PEX19 was originally described as an essential peroxisome biogenesis factor that selectively targets membrane proteins to peroxisomes. Metabolic aberrations that were associated with compromised PEX19 functions, were solely attributed to the absence of peroxisomes, which is also considered the underlying cause for Zellweger Spectrum Disorders. More recently, however, it was shown that PEX19 also mediates the targeting of the VCP/P97-recuitment factor UBXD8 to the ER from where it partitions to lipid droplets (LDs) but the physiological consequences remained elusive. Here, we addressed the intriguing possibility that PEX19 coordinates the functions of the major cellular sites of lipid metabolism. We exploited the farnesylation of PEX19 and deciphered the organelle-specific functions of PEX19 using systems level approaches. Non-farnesylated PEX19 is sufficient to fully restore the metabolic activity of peroxisomes, while farnesylated PEX19 controls lipid metabolism by a peroxisome-independent mechanism that can be attributed to sorting a specific protein subset to LDs. In the absence of this PEX19-dependent LD proteome, cells accumulate excess triacylglycerols and fail to fully deplete their neutral lipid stores under catabolic conditions, highlighting a hitherto unrecognized function of PEX19 in controlling neutral lipid storage and LD dynamics.
Collapse
Affiliation(s)
- Sven Lyschik
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, Homburg, Germany
| | - Anna A. Lauer
- Experimental Neurology, Saarland University, Homburg, Germany
| | - Tanja Roth
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, Homburg, Germany
| | | | - Markus Hollander
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Thorsten Will
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, Homburg, Germany
- Deutsches Institut für Demenzprävention, Saarland University, Homburg, Germany
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Marcus O. W. Grimm
- Experimental Neurology, Saarland University, Homburg, Germany
- Deutsches Institut für Demenzprävention, Saarland University, Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, Leverkusen, Germany
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, Homburg, Germany
- *Correspondence: Bianca Schrul,
| |
Collapse
|
16
|
Dahan N, Bykov YS, Boydston EA, Fadel A, Gazi Z, Hochberg-Laufer H, Martenson J, Denic V, Shav-Tal Y, Weissman JS, Aviram N, Zalckvar E, Schuldiner M. Peroxisome function relies on organelle-associated mRNA translation. SCIENCE ADVANCES 2022; 8:eabk2141. [PMID: 35020435 PMCID: PMC8754406 DOI: 10.1126/sciadv.abk2141] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/18/2021] [Indexed: 05/26/2023]
Abstract
Crucial metabolic functions of peroxisomes rely on a variety of peroxisomal membrane proteins (PMPs). While mRNA transcripts of PMPs were shown to be colocalized with peroxisomes, the process by which PMPs efficiently couple translation with targeting to the peroxisomal membrane remained elusive. Here, we combine quantitative electron microscopy with proximity-specific ribosome profiling and reveal that translation of specific PMPs occurs on the surface of peroxisomes in the yeast Saccharomyces cerevisiae. This places peroxisomes alongside chloroplasts, mitochondria, and the endoplasmic reticulum as organelles that use localized translation for ensuring correct insertion of hydrophobic proteins into their membranes. Moreover, the correct targeting of these transcripts to peroxisomes is crucial for peroxisomal and cellular function, emphasizing the importance of localized translation for cellular physiology.
Collapse
Affiliation(s)
- Noa Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yury S. Bykov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elizabeth A. Boydston
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amir Fadel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zohar Gazi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hodaya Hochberg-Laufer
- The Mina and Everard Goodman Faculty of Life Sciences, The Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - James Martenson
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St., Cambridge, MA 02138, USA
| | - Vlad Denic
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St., Cambridge, MA 02138, USA
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, The Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Naama Aviram
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
17
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
18
|
Mehlhorn DG, Asseck LY, Grefen C. Looking for a safe haven: tail-anchored proteins and their membrane insertion pathways. PLANT PHYSIOLOGY 2021; 187:1916-1928. [PMID: 35235667 PMCID: PMC8644595 DOI: 10.1093/plphys/kiab298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/05/2021] [Indexed: 06/14/2023]
Abstract
Insertion of membrane proteins into the lipid bilayer is a crucial step during their biosynthesis. Eukaryotic cells face many challenges in directing these proteins to their predestined target membrane. The hydrophobic signal peptide or transmembrane domain (TMD) of the nascent protein must be shielded from the aqueous cytosol and its target membrane identified followed by transport and insertion. Components that evolved to deal with each of these challenging steps range from chaperones to receptors, insertases, and sophisticated translocation complexes. One prominent translocation pathway for most proteins is the signal recognition particle (SRP)-dependent pathway which mediates co-translational translocation of proteins across or into the endoplasmic reticulum (ER) membrane. This textbook example of protein insertion is stretched to its limits when faced with secretory or membrane proteins that lack an amino-terminal signal sequence or TMD. Particularly, a large group of so-called tail-anchored (TA) proteins that harbor a single carboxy-terminal TMD require an alternative, post-translational insertion route into the ER membrane. In this review, we summarize the current research in TA protein insertion with a special focus on plants, address challenges, and highlight future research avenues.
Collapse
Affiliation(s)
- Dietmar G Mehlhorn
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Lisa Y Asseck
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Christopher Grefen
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
19
|
Zimmermann R, Lang S, Lerner M, Förster F, Nguyen D, Helms V, Schrul B. Quantitative Proteomics and Differential Protein Abundance Analysis after the Depletion of PEX3 from Human Cells Identifies Additional Aspects of Protein Targeting to the ER. Int J Mol Sci 2021; 22:ijms222313028. [PMID: 34884833 PMCID: PMC8658024 DOI: 10.3390/ijms222313028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Protein import into the endoplasmic reticulum (ER) is the first step in the biogenesis of around 10,000 different soluble and membrane proteins in humans. It involves the co- or post-translational targeting of precursor polypeptides to the ER, and their subsequent membrane insertion or translocation. So far, three pathways for the ER targeting of precursor polypeptides and four pathways for the ER targeting of mRNAs have been described. Typically, these pathways deliver their substrates to the Sec61 polypeptide-conducting channel in the ER membrane. Next, the precursor polypeptides are inserted into the ER membrane or translocated into the ER lumen, which may involve auxiliary translocation components, such as the TRAP and Sec62/Sec63 complexes, or auxiliary membrane protein insertases, such as EMC and the TMCO1 complex. Recently, the PEX19/PEX3-dependent pathway, which has a well-known function in targeting and inserting various peroxisomal membrane proteins into pre-existent peroxisomal membranes, was also found to act in the targeting and, putatively, insertion of monotopic hairpin proteins into the ER. These either remain in the ER as resident ER membrane proteins, or are pinched off from the ER as components of new lipid droplets. Therefore, the question arose as to whether this pathway may play a more general role in ER protein targeting, i.e., whether it represents a fourth pathway for the ER targeting of precursor polypeptides. Thus, we addressed the client spectrum of the PEX19/PEX3-dependent pathway in both PEX3-depleted HeLa cells and PEX3-deficient Zellweger patient fibroblasts by an established approach which involved the label-free quantitative mass spectrometry of the total proteome of depleted or deficient cells, as well as differential protein abundance analysis. The negatively affected proteins included twelve peroxisomal proteins and two hairpin proteins of the ER, thus confirming two previously identified classes of putative PEX19/PEX3 clients in human cells. Interestingly, fourteen collagen-related proteins with signal peptides or N-terminal transmembrane helices belonging to the secretory pathway were also negatively affected by PEX3 deficiency, which may suggest compromised collagen biogenesis as a hitherto-unknown contributor to organ failures in the respective Zellweger patients.
Collapse
Affiliation(s)
- Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (S.L.); (M.L.)
- Correspondence: (R.Z.); (B.S.)
| | - Sven Lang
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (S.L.); (M.L.)
| | - Monika Lerner
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (S.L.); (M.L.)
| | - Friedrich Förster
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands;
| | - Duy Nguyen
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66041 Saarbrücken, Germany; (D.N.); (V.H.)
| | - Volkhard Helms
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66041 Saarbrücken, Germany; (D.N.); (V.H.)
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (S.L.); (M.L.)
- Correspondence: (R.Z.); (B.S.)
| |
Collapse
|
20
|
Infant T, Deb R, Ghose S, Nagotu S. Post-translational modifications of proteins associated with yeast peroxisome membrane: An essential mode of regulatory mechanism. Genes Cells 2021; 26:843-860. [PMID: 34472666 PMCID: PMC9291962 DOI: 10.1111/gtc.12892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Peroxisomes are single membrane‐bound organelles important for the optimum functioning of eukaryotic cells. Seminal discoveries in the field of peroxisomes are made using yeast as a model. Several proteins required for the biogenesis and function of peroxisomes are identified to date. As with proteins involved in other major cellular pathways, peroxisomal proteins are also subjected to regulatory post‐translational modifications. Identification, characterization and mapping of these modifications to specific amino acid residues on proteins are critical toward understanding their functional significance. Several studies have tried to identify post‐translational modifications of peroxisomal proteins and determine their impact on peroxisome structure and function. In this manuscript, we provide an overview of the various post‐translational modifications that govern the peroxisome dynamics in yeast.
Collapse
Affiliation(s)
- Terence Infant
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Suchetana Ghose
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
21
|
Coukos R, Yao D, Sanchez MI, Strand ET, Olive ME, Udeshi ND, Weissman JS, Carr SA, Bassik MC, Ting AY. An engineered transcriptional reporter of protein localization identifies regulators of mitochondrial and ER membrane protein trafficking in high-throughput CRISPRi screens. eLife 2021; 10:69142. [PMID: 34414886 PMCID: PMC8423448 DOI: 10.7554/elife.69142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
The trafficking of specific protein cohorts to correct subcellular locations at correct times is essential for every signaling and regulatory process in biology. Gene perturbation screens could provide a powerful approach to probe the molecular mechanisms of protein trafficking, but only if protein localization or mislocalization can be tied to a simple and robust phenotype for cell selection, such as cell proliferation or fluorescence-activated cell sorting (FACS). To empower the study of protein trafficking processes with gene perturbation, we developed a genetically encoded molecular tool named HiLITR (High-throughput Localization Indicator with Transcriptional Readout). HiLITR converts protein colocalization into proteolytic release of a membrane-anchored transcription factor, which drives the expression of a chosen reporter gene. Using HiLITR in combination with FACS-based CRISPRi screening in human cell lines, we identified genes that influence the trafficking of mitochondrial and ER tail-anchored proteins. We show that loss of the SUMO E1 component SAE1 results in mislocalization and destabilization of many mitochondrial tail-anchored proteins. We also demonstrate a distinct regulatory role for EMC10 in the ER membrane complex, opposing the transmembrane-domain insertion activity of the complex. Through transcriptional integration of complex cellular functions, HiLITR expands the scope of biological processes that can be studied by genetic perturbation screening technologies.
Collapse
Affiliation(s)
- Robert Coukos
- Department of Genetics, Stanford University, Stanford, United States
| | - David Yao
- Department of Genetics, Stanford University, Stanford, United States
| | - Mateo I Sanchez
- Department of Genetics, Stanford University, Stanford, United States.,Chan Zuckerberg Biohub, Stanford, United States
| | - Eric T Strand
- Department of Genetics, Stanford University, Stanford, United States
| | - Meagan E Olive
- Broad Institute of MIT and Harvard, Cambridge, United States
| | | | - Jonathan S Weissman
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, United States
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, United States.,Chan Zuckerberg Biohub, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
22
|
Drwesh L, Rapaport D. Biogenesis pathways of α-helical mitochondrial outer membrane proteins. Biol Chem 2021; 401:677-686. [PMID: 32017702 DOI: 10.1515/hsz-2019-0440] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/21/2020] [Indexed: 01/23/2023]
Abstract
Mitochondria harbor in their outer membrane (OM) proteins of different topologies. These proteins are encoded by the nuclear DNA, translated on cytosolic ribosomes and inserted into their target organelle by sophisticated protein import machineries. Recently, considerable insights have been accumulated on the insertion pathways of proteins into the mitochondrial OM. In contrast, little is known regarding the early cytosolic stages of their biogenesis. It is generally presumed that chaperones associate with these proteins following their synthesis in the cytosol, thereby keeping them in an import-competent conformation and preventing their aggregation and/or mis-folding and degradation. In this review, we outline the current knowledge about the biogenesis of different mitochondrial OM proteins with various topologies, and highlight the recent findings regarding their import pathways starting from early cytosolic events until their recognition on the mitochondrial surface that lead to their final insertion into the mitochondrial OM.
Collapse
Affiliation(s)
- Layla Drwesh
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| |
Collapse
|
23
|
Fenech EJ, Ben-Dor S, Schuldiner M. Double the Fun, Double the Trouble: Paralogs and Homologs Functioning in the Endoplasmic Reticulum. Annu Rev Biochem 2021; 89:637-666. [PMID: 32569522 DOI: 10.1146/annurev-biochem-011520-104831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolution of eukaryotic genomes has been propelled by a series of gene duplication events, leading to an expansion in new functions and pathways. While duplicate genes may retain some functional redundancy, it is clear that to survive selection they cannot simply serve as a backup but rather must acquire distinct functions required for cellular processes to work accurately and efficiently. Understanding these differences and characterizing gene-specific functions is complex. Here we explore different gene pairs and families within the context of the endoplasmic reticulum (ER), the main cellular hub of lipid biosynthesis and the entry site for the secretory pathway. Focusing on each of the ER functions, we highlight specificities of related proteins and the capabilities conferred to cells through their conservation. More generally, these examples suggest why related genes have been maintained by evolutionary forces and provide a conceptual framework to experimentally determine why they have survived selection.
Collapse
Affiliation(s)
- Emma J Fenech
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| |
Collapse
|
24
|
Ihenacho UK, Meacham KA, Harwig MC, Widlansky ME, Hill RB. Mitochondrial Fission Protein 1: Emerging Roles in Organellar Form and Function in Health and Disease. Front Endocrinol (Lausanne) 2021; 12:660095. [PMID: 33841340 PMCID: PMC8027123 DOI: 10.3389/fendo.2021.660095] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial fission protein 1 (Fis1) was identified in yeast as being essential for mitochondrial division or fission and subsequently determined to mediate human mitochondrial and peroxisomal fission. Yet, its exact functions in humans, especially in regard to mitochondrial fission, remains an enigma as genetic deletion of Fis1 elongates mitochondria in some cell types, but not others. Fis1 has also been identified as an important component of apoptotic and mitophagic pathways suggesting the protein may have multiple, essential roles. This review presents current perspectives on the emerging functions of Fis1 and their implications in human health and diseases, with an emphasis on Fis1's role in both endocrine and neurological disorders.
Collapse
Affiliation(s)
| | - Kelsey A. Meacham
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Megan Cleland Harwig
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael E. Widlansky
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - R. Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
25
|
Lin W, Feng Z, Prasanth KR, Liu Y, Nagy PD. Dynamic interplay between the co-opted Fis1 mitochondrial fission protein and membrane contact site proteins in supporting tombusvirus replication. PLoS Pathog 2021; 17:e1009423. [PMID: 33725015 PMCID: PMC7997005 DOI: 10.1371/journal.ppat.1009423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/26/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Plus-stranded RNA viruses have limited coding capacity and have to co-opt numerous pro-viral host factors to support their replication. Many of the co-opted host factors support the biogenesis of the viral replication compartments and the formation of viral replicase complexes on subverted subcellular membrane surfaces. Tomato bushy stunt virus (TBSV) exploits peroxisomal membranes, whereas the closely-related carnation Italian ringspot virus (CIRV) hijacks the outer membranes of mitochondria. How these organellar membranes can be recruited into pro-viral roles is not completely understood. Here, we show that the highly conserved Fis1 mitochondrial fission protein is co-opted by both TBSV and CIRV via direct interactions with the p33/p36 replication proteins. Deletion of FIS1 in yeast or knockdown of the homologous Fis1 in plants inhibits tombusvirus replication. Instead of the canonical function in mitochondrial fission and peroxisome division, the tethering function of Fis1 is exploited by tombusviruses to facilitate the subversion of membrane contact site (MCS) proteins and peroxisomal/mitochondrial membranes for the biogenesis of the replication compartment. We propose that the dynamic interactions of Fis1 with MCS proteins, such as the ER resident VAP tethering proteins, Sac1 PI4P phosphatase and the cytosolic OSBP-like oxysterol-binding proteins, promote the formation and facilitate the stabilization of virus-induced vMCSs, which enrich sterols within the replication compartment. We show that this novel function of Fis1 is exploited by tombusviruses to build nuclease-insensitive viral replication compartment.
Collapse
Affiliation(s)
- Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - K. Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - Yuyan Liu
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| |
Collapse
|
26
|
Jiang H. Quality control pathways of tail-anchored proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118922. [PMID: 33285177 DOI: 10.1016/j.bbamcr.2020.118922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/14/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022]
Abstract
Tail-anchored (TA) proteins have an N-terminal domain in the cytosol and a C-terminal transmembrane domain anchored to a variety of organelle membranes. TA proteins are recognized by targeting factors at the transmembrane domain and C-terminal sequence and are guided to distinct membranes. The promiscuity of targeting sequences and the dysfunction of targeting pathways cause mistargeting of TA proteins. TA proteins are under surveillance by quality control pathways. For resident TA proteins at mitochondrial and ER membranes, intrinsic instability or stimuli induced degrons of the cytosolic and transmembrane domains are sensed by quality control factors to initiate degradation of TA proteins. These pathways are summarized as TA protein degradation-Cytosol (TAD-C) and TAD-Membrane (TAD-M) pathways. For mistargeted and a subset of solitary TA proteins at mitochondrial and peroxisomal membranes, a unique pathway has been revealed in recent years. Msp1/ATAD1 is an AAA-ATPase dually-localized to mitochondrial and peroxisomal membranes. It directly recognizes mistargeted and solitary TA proteins and dislocates them out of membrane. Dislocated substrates are subsequently ubiquitinated by the ER-resident Doa10 ubiquitin E3 ligase complex for degradation. We summarize and discuss the substrate recognition, dislocation and degradation mechanisms of the Msp1 pathway.
Collapse
Affiliation(s)
- Hui Jiang
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100871, China.
| |
Collapse
|
27
|
Covill-Cooke C, Toncheva VS, Kittler JT. Regulation of peroxisomal trafficking and distribution. Cell Mol Life Sci 2020; 78:1929-1941. [PMID: 33141311 PMCID: PMC7966214 DOI: 10.1007/s00018-020-03687-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
Peroxisomes are organelles that perform a wide range of essential metabolic processes. To ensure that peroxisomes are optimally positioned in the cell, they must be transported by both long- and short-range trafficking events in response to cellular needs. Here, we review our current understanding of the mechanisms by which the cytoskeleton and organelle contact sites alter peroxisomal distribution. Though the focus of the review is peroxisomal transport in mammalian cells, findings from flies and fungi are used for comparison and to inform the gaps in our understanding. Attention is given to the apparent overlap in regulatory mechanisms for mitochondrial and peroxisomal trafficking, along with the recently discovered role of the mitochondrial Rho-GTPases, Miro, in peroxisomal dynamics. Moreover, we outline and discuss the known pathological and pharmacological conditions that perturb peroxisomal positioning. We conclude by highlighting several gaps in our current knowledge and suggest future directions that require attention.
Collapse
Affiliation(s)
| | - Viktoriya S Toncheva
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
28
|
Gupta A, Becker T. Mechanisms and pathways of mitochondrial outer membrane protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148323. [PMID: 33035511 DOI: 10.1016/j.bbabio.2020.148323] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022]
Abstract
Outer membrane proteins integrate mitochondria into the cellular environment. They warrant exchange of small molecules like metabolites and ions, transport proteins into mitochondria, form contact sites to other cellular organelles for lipid exchange, constitute a signaling platform for apoptosis and inflammation and mediate organelle fusion and fission. The outer membrane contains two types of integral membrane proteins. Proteins with a transmembrane β-barrel structure and proteins with a single or multiple α-helical membrane spans. All outer membrane proteins are produced on cytosolic ribosomes and imported into the target organelle. Precursors of β-barrel and α-helical proteins are transported into the outer membrane via distinct import routes. The translocase of the outer membrane (TOM complex) transports β-barrel precursors across the outer membrane and the sorting and assembly machinery (SAM complex) inserts them into the target membrane. The mitochondrial import (MIM) complex constitutes the major integration site for α-helical embedded proteins. The import of some MIM-substrates involves TOM receptors, while others are imported in a TOM-independent manner. Remarkably, TOM, SAM and MIM complexes dynamically interact to import a large set of different proteins and to coordinate their assembly into protein complexes. Thus, protein import into the mitochondrial outer membrane involves a dynamic platform of protein translocases.
Collapse
Affiliation(s)
- Arushi Gupta
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
29
|
Ferdigg A, Dimmer KS, Rapaport D, Vitali DG. Hydrogenosomal tail-anchored proteins are targeted to both mitochondria and ER upon their expression in yeast cells. PLoS One 2020; 15:e0237982. [PMID: 32817700 PMCID: PMC7446849 DOI: 10.1371/journal.pone.0237982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/06/2020] [Indexed: 11/18/2022] Open
Abstract
Some organisms, like Trichomonas vaginalis, contain mitochondria-related hydrogen-producing organelles, called hydrogenosomes. The protein targeting into these organelles is proposed to be similar to the well-studied mitochondria import. Indeed, S. cerevisiae mitochondria and T. vaginalis hydrogenosomes share some components of protein import complexes. However, it is still unknown whether targeting signals directing substrate proteins to hydrogenosomes can support in other eukaryotes specific mitochondrial localization. To address this issue, we investigated the intracellular localization of three hydrogenosomal tail-anchored proteins expressed in yeast cells. We observed that these proteins were targeted to both mitochondria and ER with a variable dependency on the mitochondrial MIM complex. Our results suggest that the targeting signal of TA proteins are only partially conserved between hydrogenosomes and yeast mitochondria.
Collapse
Affiliation(s)
- Andrè Ferdigg
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Kai S. Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
- * E-mail: (DR); (DGV)
| | - Daniela G. Vitali
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
- * E-mail: (DR); (DGV)
| |
Collapse
|
30
|
da Fonseca ACC, Matias D, Geraldo LHM, Leser FS, Pagnoncelli I, Garcia C, do Amaral RF, da Rosa BG, Grimaldi I, de Camargo Magalhães ES, Cóppola-Segovia V, de Azevedo EM, Zanata SM, Lima FRS. The multiple functions of the co-chaperone stress inducible protein 1. Cytokine Growth Factor Rev 2020; 57:73-84. [PMID: 32561134 DOI: 10.1016/j.cytogfr.2020.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
Stress inducible protein 1 (STI1) is a co-chaperone acting with Hsp70 and Hsp90 for the correct client proteins' folding and therefore for the maintenance of cellular homeostasis. Besides being expressed in the cytosol, STI1 can also be found both in the cell membrane and the extracellular medium playing several relevant roles in the central nervous system (CNS) and tumor microenvironment. During CNS development, in association with cellular prion protein (PrPc), STI1 regulates crucial events such as neuroprotection, neuritogenesis, astrocyte differentiation and survival. In cancer, STI1 is involved with tumor growth and invasion, is undoubtedly a pro-tumor factor, being considered as a biomarker and possibly therapeutic target for several malignancies. In this review, we discuss current knowledge and new findings on STI1 function as well as its role in tissue homeostasis, CNS and tumor progression.
Collapse
Affiliation(s)
| | - Diana Matias
- Molecular Bionics Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Luiz Henrique Medeiros Geraldo
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; Université de Paris, PARCC, INSERM, Paris, 75015, France
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Iohana Pagnoncelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Celina Garcia
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Rackele Ferreira do Amaral
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Barbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Eduardo Sabino de Camargo Magalhães
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; European Research Institute for the Biology of Aging, University of Groningen, Groningen, 9713 AV, Netherlands
| | - Valentín Cóppola-Segovia
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Evellyn Mayla de Azevedo
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Silvio Marques Zanata
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil.
| |
Collapse
|
31
|
Abstract
Due to their topology tail-anchored (TA) proteins must target to the membrane independently of the co-translational route defined by the signal sequence recognition particle (SRP), its receptor and the translocon Sec61. More than a decade of work has extensively characterized a highly conserved pathway, the yeast GET or mammalian TRC40 pathway, which is capable of countering the biogenetic challenge posed by the C-terminal TA anchor. In this review we briefly summarize current models of this targeting route and focus on emerging aspects such as the intricate interplay with the proteostatic network of cells and with other targeting pathways. Importantly, we consider the lessons provided by the in vivo analysis of the pathway in different model organisms and by the consideration of its full client spectrum in more recent studies. This analysis of the state of the field highlights directions in which the current models may be experimentally probed and conceptually extended.
Collapse
Affiliation(s)
- Nica Borgese
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy.
| | - Javier Coy-Vergara
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany
| | - Sara Francesca Colombo
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Blanche Schwappach
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
32
|
Abstract
Mitochondria are essential organelles of eukaryotic cells. They consist of hundreds of different proteins that exhibit crucial activities in respiration, catabolic metabolism and the synthesis of amino acids, lipids, heme and iron-sulfur clusters. With the exception of a handful of hydrophobic mitochondrially encoded membrane proteins, all these proteins are synthesized on cytosolic ribosomes, targeted to receptors on the mitochondrial surface, and transported across or inserted into the outer and inner mitochondrial membrane before they are folded and assembled into their final native structure. This review article provides a comprehensive overview of the mechanisms and components of the mitochondrial protein import systems with a particular focus on recent developments in the field.
Collapse
Affiliation(s)
- Katja G Hansen
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663, Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663, Kaiserslautern, Germany.
| |
Collapse
|
33
|
Covill-Cooke C, Toncheva VS, Drew J, Birsa N, López-Doménech G, Kittler JT. Peroxisomal fission is modulated by the mitochondrial Rho-GTPases, Miro1 and Miro2. EMBO Rep 2020; 21:e49865. [PMID: 31894645 PMCID: PMC7001505 DOI: 10.15252/embr.201949865] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022] Open
Abstract
Peroxisomes are essential for a number of cellular functions, including reactive oxygen species metabolism, fatty acid β‐oxidation and lipid synthesis. To ensure optimal functionality, peroxisomal size, shape and number must be dynamically maintained; however, many aspects of how this is regulated remain poorly characterised. Here, we show that the localisation of Miro1 and Miro2—outer mitochondrial membrane proteins essential for mitochondrial trafficking—to peroxisomes is not required for basal peroxisomal distribution and long‐range trafficking, but rather for the maintenance of peroxisomal size and morphology through peroxisomal fission. Mechanistically, this is achieved by Miro negatively regulating Drp1‐dependent fission, a function that is shared with the mitochondria. We further find that the peroxisomal localisation of Miro is regulated by its first GTPase domain and is mediated by an interaction through its transmembrane domain with the peroxisomal‐membrane protein chaperone, Pex19. Our work highlights a shared regulatory role of Miro in maintaining the morphology of both peroxisomes and mitochondria, supporting a crosstalk between peroxisomal and mitochondrial biology.
Collapse
Affiliation(s)
- Christian Covill-Cooke
- Neuroscience, Physiology and Pharmacology Department, University College London, London, UK
| | - Viktoriya S Toncheva
- Neuroscience, Physiology and Pharmacology Department, University College London, London, UK
| | - James Drew
- Neuroscience, Physiology and Pharmacology Department, University College London, London, UK
| | - Nicol Birsa
- Neuroscience, Physiology and Pharmacology Department, University College London, London, UK
| | | | - Josef T Kittler
- Neuroscience, Physiology and Pharmacology Department, University College London, London, UK
| |
Collapse
|
34
|
Shan SO. Guiding tail-anchored membrane proteins to the endoplasmic reticulum in a chaperone cascade. J Biol Chem 2019; 294:16577-16586. [PMID: 31575659 PMCID: PMC6851334 DOI: 10.1074/jbc.rev119.006197] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Newly synthesized integral membrane proteins must traverse the aqueous cytosolic environment before arrival at their membrane destination and are prone to aggregation, misfolding, and mislocalization during this process. The biogenesis of integral membrane proteins therefore poses acute challenges to protein homeostasis within a cell and requires the action of effective molecular chaperones. Chaperones that mediate membrane protein targeting not only need to protect the nascent transmembrane domains from improper exposure in the cytosol, but also need to accurately select client proteins and actively guide their clients to the appropriate target membrane. The mechanisms by which cellular chaperones work together to coordinate this complex process are only beginning to be delineated. Here, we summarize recent advances in studies of the tail-anchored membrane protein targeting pathway, which revealed a network of chaperones, cochaperones, and targeting factors that together drive and regulate this essential process. This pathway is emerging as an excellent model system to decipher the mechanism by which molecular chaperones overcome the multiple challenges during post-translational membrane protein biogenesis and to gain insights into the functional organization of multicomponent chaperone networks.
Collapse
Affiliation(s)
- Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
35
|
Fresenius HL, Wohlever ML. Sorting out how Msp1 maintains mitochondrial membrane proteostasis. Mitochondrion 2019; 49:128-134. [PMID: 31394253 DOI: 10.1016/j.mito.2019.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
Robust membrane proteostasis networks are essential for cells to withstand proteotoxic stress arising from environmental insult and intrinsic errors in protein production (Labbadia and Morimoto, 2015; Hegde and Zavodszky, 2019). Failures in mitochondrial membrane proteostasis are associated with cancer, aging, and a range of cardiovascular and neurodegenerative diseases (Wallace et al., 2010; Martin, 2012; Gustafsson and Gottlieb, 2007). As a result, mitochondria possess numerous pathways to maintain proteostasis (Avci and Lemberg, 2015; Shi et al., 2016; Weidberg and Amon, 2018; Shpilka and Haynes, 2018; Quirós et al., 2016; Sorrentino et al., 2017). Mitochondrial Sorting of Proteins 1 (Msp1) is a membrane anchored AAA ATPase that extracts proteins from the outer mitochondrial membrane (OMM) (Chen et al., 2014; Okreglak and Walter, 2014). In the past few years, several papers have addressed various aspects of Msp1 function. Here, we summarize these recent advances to build a basic model for how Msp1 maintains mitochondrial membrane proteostasis while also highlighting outstanding questions in the field.
Collapse
Affiliation(s)
- Heidi L Fresenius
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Matthew L Wohlever
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
36
|
Becker T, Song J, Pfanner N. Versatility of Preprotein Transfer from the Cytosol to Mitochondria. Trends Cell Biol 2019; 29:534-548. [PMID: 31030976 DOI: 10.1016/j.tcb.2019.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022]
Abstract
Mitochondrial biogenesis requires the import of a large number of precursor proteins from the cytosol. Although specific membrane-bound preprotein translocases have been characterized in detail, it was assumed that protein transfer from the cytosol to mitochondria mainly involved unselective binding to molecular chaperones. Recent findings suggest an unexpected versatility of protein transfer to mitochondria. Cytosolic factors have been identified that bind to selected subsets of preproteins and guide them to mitochondrial receptors in a post-translational manner. Cotranslational import processes are emerging. Mechanisms for crosstalk between protein targeting to mitochondria and other cell organelles, in particular the endoplasmic reticulum (ER) and peroxisomes, have been uncovered. We discuss how a network of cytosolic machineries and targeting pathways promote and regulate preprotein transfer into mitochondria.
Collapse
Affiliation(s)
- Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
37
|
Coyne LP, Chen XJ. Consequences of inner mitochondrial membrane protein misfolding. Mitochondrion 2019; 49:46-55. [PMID: 31195097 DOI: 10.1016/j.mito.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 06/06/2019] [Indexed: 02/04/2023]
Abstract
Proteins embedded in the inner mitochondrial membrane (IMM) perform essential cellular functions. Maintaining the folding state of these proteins is therefore of the utmost importance, and this is ensured by IMM chaperones and proteases that refold and degrade unassembled and misfolded proteins. However, the physiological consequences specific to IMM protein misfolding remain obscure because deletion of these chaperones/proteases (the typical experimental strategy) often affects many mitochondrial processes other than protein folding and turnover. Thus, novel experimental systems are needed to evaluate the direct effects of misfolded protein on the membrane. Such a system has been developed in recent years. Studies suggest that numerous pathogenic mutations in isoform 1 of adenine nucleotide translocase (Ant1) cause its misfolding on the IMM. In this review, we first discuss potential mechanisms by which dominant Ant1 mutations may cause disease, highlighting IMM protein misfolding, per se, as a likely pathological factor. Then we discuss the intramitochondrial effects of Ant1 misfolding such as IMM proteostatic stress, respiratory chain dysfunction, and mtDNA instability. Finally, we summarize the mounting evidence that IMM proteostatic stress can perturb mitochondrial protein import to cause the toxic accumulation of mitochondrial proteins in the cytosol: a cell stress mechanism termed mitochondrial Precursor Overaccumulation Stress (mPOS).
Collapse
Affiliation(s)
- Liam P Coyne
- Departments of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Xin Jie Chen
- Departments of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
38
|
Jansen RLM, Klei IJ. The peroxisome biogenesis factors Pex3 and Pex19: multitasking proteins with disputed functions. FEBS Lett 2019; 593:457-474. [DOI: 10.1002/1873-3468.13340] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Renate L. M. Jansen
- Molecular Cell Biology Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen The Netherlands
| | - Ida J. Klei
- Molecular Cell Biology Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen The Netherlands
| |
Collapse
|
39
|
Farré JC, Mahalingam SS, Proietto M, Subramani S. Peroxisome biogenesis, membrane contact sites, and quality control. EMBO Rep 2018; 20:embr.201846864. [PMID: 30530632 DOI: 10.15252/embr.201846864] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/08/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Peroxisomes are conserved organelles of eukaryotic cells with important roles in cellular metabolism, human health, redox homeostasis, as well as intracellular metabolite transfer and signaling. We review here the current status of the different co-existing modes of biogenesis of peroxisomal membrane proteins demonstrating the fascinating adaptability in their targeting and sorting pathways. While earlier studies focused on peroxisomes as autonomous organelles, the necessity of the ER and potentially even mitochondria as sources of peroxisomal membrane proteins and lipids has come to light in recent years. Additionally, the intimate physical juxtaposition of peroxisomes with other organelles has transitioned from being viewed as random encounters to a growing appreciation of the expanding roles of such inter-organellar membrane contact sites in metabolic and regulatory functions. Peroxisomal quality control mechanisms have also come of age with a variety of mechanisms operating both during biogenesis and in the cellular response to environmental cues.
Collapse
Affiliation(s)
- Jean-Claude Farré
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Shanmuga S Mahalingam
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Marco Proietto
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, CA, USA
| |
Collapse
|