1
|
Mykhailova O, Brandon-Coatham M, Hemmatibardehshahi S, Yazdanbakhsh M, Olafson C, Yi QL, Kanias T, Acker JP. Donor age contributes more to the rheological properties of stored red blood cells than donor sex and biological age distribution. Blood Adv 2025; 9:673-686. [PMID: 39504562 DOI: 10.1182/bloodadvances.2024014475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024] Open
Abstract
ABSTRACT The quality of stored red cell concentrates (RCCs) has been linked to the biological age distribution of red blood cell (RBC) subpopulations. Teenage male RCCs contain higher proportions of biologically old RBCs, with poorer quality. This study sought to assess the contribution of donor sex and age on the deformability characteristics of RBC subpopulations in stored RCCs. On days 5, 14, 28, and 42 of hypothermic storage, RCCs from healthy teenage male (n = 15), senior male (n = 15), teenage female (n = 15), and senior female (n = 15) donors were biologically age profiled. The deformability of the resulting young RBCs and old RBCs (O-RBCs) was assessed using ektacytometry. Over storage, donor age was the biggest factor influencing the rheology of RBC subpopulations. Teenage male RCCs had the largest reduction in Ohyper (osmolality in the hypertonic region corresponding to 50% of the maximum RBC elongation [EImax]). The strongest correlations between Ohyper and mean corpuscular hemoglobin content (R2 > 0.5) were witnessed with O-RBCs from senior donors, and to a lesser extent with teenage males. Teen O-RBCs, particularly from males, had higher elongation indices, both under isotonic conditions and in the presence of an increasing osmotic gradient. Teen RBCs, regardless of biological age, were discovered to be more rigid (higher shear stress required to reach half the EImax). Donor variation in the age distribution of RBC subpopulations and its downstream effect on deformability serves as further evidence that factors beyond storage could potentially affect RCC quality and transfusion outcomes.
Collapse
Affiliation(s)
- Olga Mykhailova
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
| | | | - Sanaz Hemmatibardehshahi
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Mahsa Yazdanbakhsh
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Carly Olafson
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
| | - Qi-Long Yi
- Canadian Blood Services, Ottawa, ON, Canada
| | | | - Jason P Acker
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Rabcuka J, Smethurst PA, Dammert K, Saker J, Aran G, Walsh GM, Tan JCG, Codinach M, McTaggart K, Marks DC, Bakker SJL, McMahon A, Di Angelantonio E, Roberts DJ, Blonski S, Korczyk PM, Shirakami A, Cardigan R, Swietach P. Assessing the kinetics of oxygen-unloading from red cells using FlowScore, a flow-cytometric proxy of the functional quality of blood. EBioMedicine 2025; 111:105498. [PMID: 39674089 PMCID: PMC11730303 DOI: 10.1016/j.ebiom.2024.105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Metrics evaluating the functional quality of red blood cells (RBCs) must consider their role in oxygen delivery. Whereas oxygen-carrying capacity is routinely reported using haemoglobin assays, the rate of oxygen exchange is not measured, yet also important for tissue oxygenation. Since oxygen-unloading depends on the diffusion pathlength inside RBCs, cell geometry offers a plausible surrogate. METHODS We related the time-constant of oxygen-unloading (τ), measured using single-cell oxygen saturation imaging, with flow-cytometric variables recorded on a haematology analyser. Experiments compared freshly-drawn RBCs with stored RBCs, wherein metabolic run-down and spherical remodelling hinder oxygen unloading. FINDINGS Multivariable regression related τ to a ratio of side- and forward-scatter, referred to herein as FlowScore. FlowScore was able to distinguish, with sensitivity and specificity >80%, freshly drawn blood from blood that underwent storage-related kinetic attrition in O2-handling. Moreover, FlowScore predicted τ restoration upon biochemical rejuvenation of stored blood. Since RBC geometry and metabolic state are related, variants of FlowScore estimated [ATP] and [2,3-diphosphoglycerate]. The veracity of FlowScore was confirmed by four blood-banking systems (Australia, Canada, England, Spain). Applying FlowScore to data from the COMPARE study revealed a positive association with the time-delay from sample collection to measurement, which was verified experimentally. The LifeLines dataset revealed age, sex, and smoking among factors affecting FlowScore. INTERPRETATION We establish FlowScore as a widely-accessible and cost-effective surrogate of RBC oxygen-unloading kinetics. As a metric of a cellular process that is sensitive to storage and disease, we propose FlowScore as an RBC quality marker for blood-banking and haematology. FUNDING See Acknowledgements.
Collapse
Affiliation(s)
- Julija Rabcuka
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Peter A Smethurst
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | | | - Jarob Saker
- Sysmex Europe SE, Bornbarch 1, Norderstedt, 22848, Germany
| | - Gemma Aran
- Cell Laboratory, Banc de Sang i Teixits, Barcelona, Spain
| | - Geraldine M Walsh
- Product and Process Development, Canadian Blood Services, Vancouver, Canada
| | - Joanne C G Tan
- Research and Development, Australian Red Cross Lifeblood, Sydney, Australia; Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Margarita Codinach
- Cell Laboratory, Banc de Sang i Teixits, Barcelona, Spain; Transfusional Medicine Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ken McTaggart
- Product and Process Development, Canadian Blood Services, Ottawa, Canada
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Sydney, Australia; Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Amy McMahon
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, UK; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, UK; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK; Health Data Science Research Centre, Human Technopole, Milan, Italy
| | - David J Roberts
- NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Slawomir Blonski
- Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland
| | - Piotr M Korczyk
- Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland
| | | | - Rebecca Cardigan
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK; Department of Haematology, University of Cambridge, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Obaid JMAS, Sakran KAAS, Mohammed SAH, Al-Salahi SLA, Mahdi NAN, AL-Sharabi MAM, AL-Gaadi ASM, AL-Fatahi MNM. Evaluation of IgG and Complement Component C4 Levels in Low-Income Countries, Yemen Republic in Light of Their Proposed Role in the Hemolysis of Stored CPDA-1 Whole Blood. J Blood Med 2024; 15:459-469. [PMID: 39484289 PMCID: PMC11526732 DOI: 10.2147/jbm.s472605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
Objective Hemolysis is the most severe change that occurs in stored blood and can cause severe consequences in patients after transfusion. This study examines the potential role of IgG and complement, exampled by C4, in the hemolysis of stored CPDA-1 blood under poor storage conditions in low-income countries. Methods The study was performed on 30 whole blood units (250 mL) drawn from convenience healthy volunteer donors with CPDA-1 anticoagulant and stored at 2-6 °C for 35 days. Each well-mixed blood bag was sampled at 0, 7, 21 and 35 days and examined for CBC, plasma hemoglobin, hemolysis percent and determination of IgG and C4. Results The plasma hemoglobin level and hemolysis percent increased continuously to reach 1.56 g/dl and 7.05% at the end of storage time. Hemolysis increased alongside the mean IgG concentration that was increased significantly from day 0 of storage (7.68±1.75 g/L) and peaked on day 7 (11.55±1.57 g/L), then declined to reach 8.33±2.09 g/L on day 35. Also, the mean concentration of C4 increased from day 0 of storage (0.15±0.06 g/L) to a peaked on day 21 (0.18±0.04) then declined on day 35 (0.17±0.06 g/L). The coordinated action of IgG and C4 is reflected by the positive correlation of their delta changes (r=0.616, p<0.0001). Conclusion Elevated hemolysis percent in whole CPDA-1 stored blood in Yemen was accompanied by initial increase of IgG and C4 followed by final decline, which indicate their activation and consumption during hemolysis. Further studies for other hemolysis markers and analyses will give a full idea about that.
Collapse
Affiliation(s)
- Jamil M A S Obaid
- Department of Medical Laboratory Sciences, Faculty of Medicine and Health Sciences, Ibb University, Ibb, Yemen
- Department of Medical Microbiology, Faculty of Science, Ibb University, Ibb, Yemen
| | - Khawla A A S Sakran
- Department of Medical Microbiology, Faculty of Science, Ibb University, Ibb, Yemen
| | - Shaima A H Mohammed
- Department of Medical Laboratory Sciences, Faculty of Medicine and Health Sciences, Ibb University, Ibb, Yemen
| | - Shifa`a L A Al-Salahi
- Department of Medical Laboratory Sciences, Faculty of Medicine and Health Sciences, Ibb University, Ibb, Yemen
| | - Nawal A N Mahdi
- Department of Medical Laboratory Sciences, Faculty of Medicine and Health Sciences, Ibb University, Ibb, Yemen
| | - Mohammed A M AL-Sharabi
- Department of Medical Laboratory Sciences, Faculty of Medicine and Health Sciences, Ibb University, Ibb, Yemen
| | | | | |
Collapse
|
4
|
Yee MEM, Covington ML, Zerra PE, McCoy JW, Easley KA, Joiner CH, Bryksin J, Francis RO, Lough CM, Patel N, Kutlar A, Josephson CD, Roback JD, Stowell SR, Fasano RM. Survival of transfused red blood cells from a donor with alpha-thalassemia trait in a recipient with sickle cell disease. Transfusion 2024; 64:1109-1115. [PMID: 38693059 PMCID: PMC11144116 DOI: 10.1111/trf.17857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Post-transfusion survival of donor red blood cells (RBCs) is important for effective chronic transfusion therapy in conditions including sickle cell disease (SCD). Biotin labeling RBCs allows direct in vivo measurement of multiple donor RBC units simultaneously post-transfusion. STUDY DESIGN AND METHODS In an observational trial of patients with SCD receiving monthly chronic transfusion therapy, aliquots of RBCs from one transfusion episode were biotin-labeled and infused along with the unlabeled RBC units. Serial blood samples were obtained to measure RBC survival. Donor units were tested for RBC indices, hemoglobin fractionation, and glucose-6-phosphate dehydrogenase (G6PD) enzyme activity. For microcytic donor RBCs (MCV < 70 fL), HBA1 and HBA2 genetic testing was performed on whole blood. RESULTS We present one recipient, a pediatric patient with SCD and splenectomy who received two RBC units with aliquots from each unit labeled at distinct biotin densities (2 and 18 μg/mL biotin). One donor unit was identified to have microcytosis (MCV 68.5 fL after biotinylation); whole blood sample obtained at a subsequent donation showed 2-gene deletion alpha-thalassemia trait (ɑ-3.7kb/ɑ-3.7kb) and normal serum ferritin. G6PD activity was >60% of normal mean for both. The RBCs with alpha-thalassemia RBC had accelerated clearance and increased surface phosphatidylserine post-transfusion, as compared with the normocytic RBC (half life 65 vs. 86 days, respectively). DISCUSSION Post-transfusion RBC survival may be lower for units from donors with alpha-thalassemia trait, although the impact of thalassemia trait donors on transfusion efficacy requires further study.
Collapse
Affiliation(s)
- Marianne E M Yee
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mischa L Covington
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patricia E Zerra
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - James W McCoy
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kirk A Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Clinton H Joiner
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Janetta Bryksin
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard O Francis
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, New York, USA
| | | | - Niren Patel
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Abdullah Kutlar
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Cassandra D Josephson
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John D Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ross M Fasano
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Mykhailova O, Brandon-Coatham M, Phan C, Yazdanbakhsh M, Olafson C, Yi QL, Kanias T, Acker JP. Red cell concentrates from teen male donors contain poor-quality biologically older cells. Vox Sang 2024; 119:417-427. [PMID: 38418415 DOI: 10.1111/vox.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND AND OBJECTIVES Donor factors influence the quality characteristics of red cell concentrates (RCCs) and the lesions that develop in these heterogeneous blood products during hypothermic storage. Teen male donors' RCCs contain elevated levels of biologically old red blood cells (RBCs). The aim of this study was to interrogate the quality of units of different donor ages and sexes to unravel the complex interplay between donor characteristics, long-term cold storage and, for the first time, RBC biological age. MATERIALS AND METHODS RCCs from teen males, teen females, senior males and senior females were density-separated into less-dense/young (Y-RBCs) and dense/old RBCs (O-RBCs) throughout hypothermic storage for testing. The unseparated and density-separated cells were tested for haematological parameters, stress (oxidative and osmotic) haemolysis and oxygen affinity (p50). RESULTS The O-RBCs obtained from teen donor samples, particularly males, had smaller mean corpuscular volumes and higher mean corpuscular haemoglobin concentrations. While biological age did not significantly affect oxygen affinity, biologically aged O-RBCs from stored RCCs exhibited increased oxidative haemolysis and decreased osmotic fragility, with teenage male RCCs exhibiting the highest propensity to haemolyse. CONCLUSION Previously, donor age and sex were shown to have an impact on the biological age distribution of RBCs within RCCs. Herein, we demonstrated that RBC biological age, particularly O-RBCs, which are found more prevalently in male teens, to be a driving factor of several aspects of poor blood product quality. This study emphasizes that donor factors should continue to be considered for their potential impacts on transfusion outcomes.
Collapse
Affiliation(s)
- Olga Mykhailova
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | | | - Celina Phan
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Mahsa Yazdanbakhsh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Carly Olafson
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Qi-Long Yi
- Canadian Blood Services, Ottawa, Ontario, Canada
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado, USA
| | - Jason P Acker
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Ebeyer-Masotta M, Eichhorn T, Fischer MB, Weber V. Impact of production methods and storage conditions on extracellular vesicles in packed red blood cells and platelet concentrates. Transfus Apher Sci 2024; 63:103891. [PMID: 38336556 DOI: 10.1016/j.transci.2024.103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The use of blood and blood products can be life-saving, but there are also certain risks associated with their administration and use. Packed red blood cells (pRBCs) and platelet concentrates are the most commonly used blood products in transfusion medicine to treat anemia or acute and chronic bleeding disorders, respectively. During the production and storage of blood products, red blood cells and platelets release extracellular vesicles (EVs) as a result of the storage lesion, which may affect product quality. EVs are subcellular structures enclosed by a lipid bilayer and originate from the endosomal system or from the plasma membrane. They play a pivotal role in intercellular communication and are emerging as important regulators of inflammation and coagulation. Their cargo and their functional characteristics depend on the cell type from which they originate, as well as on their microenvironment, influencing their capacity to promote coagulation and inflammatory responses. Hence, the potential involvement of EVs in transfusion-related adverse events is increasingly recognized and studied. Here, we review the knowledge regarding the effect of production and storage conditions of pRBCs and platelet concentrates on the release of EVs. In this context, the mode of processing and anticoagulation, the influence of additive solutions and leukoreduction, as well as the storage duration will be addressed, and we discuss potential implications of EVs for the clinical outcome of transfusion.
Collapse
Affiliation(s)
- Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Michael B Fischer
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria; Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria.
| |
Collapse
|
7
|
Miglio A, Rocconi F, Cremonini V, D'Alessandro A, Reisz JA, Maslanka M, Lacroix IS, Tiscar G, Di Tommaso M, Antognoni MT. Effect of leukoreduction on the metabolism of equine packed red blood cells during refrigerated storage. J Vet Intern Med 2024; 38:1185-1195. [PMID: 38406982 PMCID: PMC10937500 DOI: 10.1111/jvim.17015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Understanding of the biochemical and morphological lesions associated with storage of equine blood is limited. OBJECTIVE To demonstrate the temporal sequences of lipid and metabolic profiles of equine fresh and stored (up to 42 days) and leukoreduced packed red blood cells (LR-pRBC) and non-leukoreduced packed RBC (nLR-pRBC). ANIMALS Packed RBC units were obtained from 6 healthy blood donor horses enrolled in 2 blood banks. METHODS Observational study. Whole blood was collected from each donor using transfusion bags with a LR filter. Leukoreduction pRBC and nLR-pRBC units were obtained and stored at 4°C for up 42 days. Sterile weekly sampling was performed from each unit for analyses. RESULTS Red blood cells and supernatants progressively accumulated lactate products while high-energy phosphate compounds (adenosine triphosphate and 2,3-Diphosphoglycerate) declined. Hypoxanthine, xanthine, and free fatty acids accumulated in stored RBC and supernatants. These lesions were exacerbated in non-LR-pRBC. CONCLUSION AND CLINICAL IMPORTANCE Leukoreduction has a beneficial effect on RBC energy and redox metabolism of equine pRBC and the onset and severity of the metabolic storage lesions RBC.
Collapse
Affiliation(s)
- Arianna Miglio
- Department of Veterinary MedicineUniversity of PerugiaPerugiaItaly
| | - Francesca Rocconi
- Department of Veterinary MedicineVeterinary University Hospital, University of TeramoTeramoItaly
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver—Anschutz Medical CampusAuroraColoradoUSA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver—Anschutz Medical CampusAuroraColoradoUSA
| | - Mark Maslanka
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver—Anschutz Medical CampusAuroraColoradoUSA
| | - Ian S. Lacroix
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver—Anschutz Medical CampusAuroraColoradoUSA
| | - Giorgio Tiscar
- Department of Veterinary MedicineVeterinary University Hospital, University of TeramoTeramoItaly
| | - Morena Di Tommaso
- Department of Veterinary MedicineVeterinary University Hospital, University of TeramoTeramoItaly
| | | |
Collapse
|
8
|
Fortis SP, Batrinou A, Georgatzakou HT, Tsamesidis I, Alvanidis G, Papageorgiou EG, Stamoulis K, Gkiliopoulos D, Pouroutzidou GK, Theocharidou A, Kontonasaki E, Kriebardis AG. Effect of silica-based mesoporous nanomaterials on human blood cells. Chem Biol Interact 2024; 387:110784. [PMID: 37939894 DOI: 10.1016/j.cbi.2023.110784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Different mesoporous nanomaterials (MSNs) are constantly being developed for a range of therapeutic purposes, but they invariably interact with blood components and may cause hazardous side effects. Therefore, when designing and developing nanoparticles for biomedical applications, hemocompatibility should be one of the primary goals to assess their toxicity at the cellular level of all blood components. The aim of this study was to evaluate the compatibility of human blood cells (erythrocytes, platelets, and leukocytes) after exposure to silica-based mesoporous nanomaterials that had been manufactured using the sol-gel method, with Ca and Ce as doping elements. The viability of lymphocytes and monocytes was unaffected by the presence of MSNs at any concentration. However, it was found that all nanomaterials, at all concentrations, reduced the viability of granulocytes. P-selectin expression of all MSNs at all concentrations was statistically significantly higher in platelet incubation on the first day of storage (day 1) compared to the control. When incubated with MSNs, preserved platelets displayed higher levels of iROS at all MSNs types and concentrations examined. Ce-containing MSNs presented a slightly better hemocompatibility, although it was also dose dependent. Further research is required to determine how the unique characteristics of MSNs may affect various blood components in order to design safe and effective MSNs for various biomedical applications.
Collapse
Affiliation(s)
- Sotirios P Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Anthimia Batrinou
- Department of Food Science and Technology, University of West Attica, 12243, Egaleo, Greece
| | - Hara T Georgatzakou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Ioannis Tsamesidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Grigorios Alvanidis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), Egaleo, Greece
| | | | - Dimitrios Gkiliopoulos
- Laboratory of Chemical and Environmental Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia K Pouroutzidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece; School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Theocharidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), Egaleo, Greece.
| |
Collapse
|
9
|
Stevens-Hernandez CJ, Gyorffy G, Meli A, New HV, Cardigan R, Bruce LJ. Vesiculation in irradiated and cation-leaky-stored red blood cells. Transfusion 2024; 64:150-161. [PMID: 37952228 DOI: 10.1111/trf.17593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/14/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) are released by red blood cells (RBCs) throughout their life-span and also during hypothermic storage when they accumulate in the blood bag. We queried whether stored RBCs with increased cation permeability, either from donors with familial pseudohyperkalaemia (FP) or caused by irradiation, vesiculate more readily. STUDY DESIGN AND METHODS Recent technical advances have revealed at least two sub-populations of MVs in RBC storage units: macrovesicles (2-6 μm) and microvesicles (1-2 μm). Using nanoparticle tracking analysis, imaging flow cytometry, and protein quantification methods, we measured and characterized vesicles released by RBCs from control and FP individuals at three different storage time-points (day 4, day 17, and day 29). The RBCs had either been stored untreated or irradiated on either day 1 or day 14 of storage. RESULTS We found no difference in the number or size of vesicles released between cation-leaky FP RBCs and non-FP controls. Similarly, irradiated and non-irradiated RBCs showed very similar patterns of vesicle release to during cold-storage. The only significant difference in vesicle release was the increase in accumulated vesicles with length of storage time which has been reported previously. DISCUSSION EVs in stored blood are potential contributors to adverse transfusion reactions. The number of vesicles released during 35-day hypothermic storage varies between donors and increases with storage duration. However, increased cation permeability and irradiation do not appear to affect vesicle formation during RBC cold-storage.
Collapse
Affiliation(s)
- Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Gyongyver Gyorffy
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Athinoula Meli
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Helen V New
- Transfusion Directorate, NHS Blood and Transplant, London, UK
| | - Rebecca Cardigan
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| |
Collapse
|
10
|
Sangha GS, Weber CM, Sapp RM, Setua S, Thangaraju K, Pettebone M, Rogers SC, Doctor A, Buehler PW, Clyne AM. Mechanical stimuli such as shear stress and piezo1 stimulation generate red blood cell extracellular vesicles. Front Physiol 2023; 14:1246910. [PMID: 37719461 PMCID: PMC10502313 DOI: 10.3389/fphys.2023.1246910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Generating physiologically relevant red blood cell extracellular vesicles (RBC-EVs) for mechanistic studies is challenging. Herein, we investigated how to generate and isolate high concentrations of RBC-EVs in vitro via shear stress and mechanosensitive piezo1 ion channel stimulation. Methods: RBC-EVs were generated by applying shear stress or the piezo1-agonist yoda1 to RBCs. We then investigated how piezo1 RBC-EV generation parameters (hematocrit, treatment time, treatment dose), isolation methods (membrane-based affinity, ultrafiltration, ultracentrifugation with and without size exclusion chromatography), and storage conditions impacted RBC-EV yield and purity. Lastly, we used pressure myography to determine how RBC-EVs isolated using different methods affected mouse carotid artery vasodilation. Results: Our results showed that treating RBCs at 6% hematocrit with 10 µM yoda1 for 30 min and isolating RBC-EVs via ultracentrifugation minimized hemolysis, maximized yield and purity, and produced the most consistent RBC-EV preparations. Co-isolated contaminants in impure samples, but not piezo1 RBC-EVs, induced mouse carotid artery vasodilation. Conclusion: This work shows that RBC-EVs can be generated through piezo1 stimulation and may be generated in vivo under physiologic flow conditions. Our studies further emphasize the importance of characterizing EV generation and isolation parameters before using EVs for mechanistic analysis since RBC-EV purity can impact functional outcomes.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Callie M Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Ryan M Sapp
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Saini Setua
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kiruphagaran Thangaraju
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Morgan Pettebone
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Stephen C Rogers
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Allan Doctor
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul W Buehler
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| |
Collapse
|
11
|
van der Meer PF, Klei TRL. The quality of red cells stored under blood bank conditions: Is donor age just a number? Transfusion 2023; 63:1413-1416. [PMID: 37525443 DOI: 10.1111/trf.17492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 08/02/2023]
Affiliation(s)
- Pieter F van der Meer
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
- Department of Hematology, Haga Teaching Hospital, The Hague, The Netherlands
| | - Thomas R L Klei
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Chassé M, Fergusson DA, Tinmouth A, Acker JP, Perelman I, Tuttle A, English SW, Hawken S, Forster AJ, Shehata N, Thavorn K, Wilson K, Cober N, Maddison H, Tokessy M. Effect of Donor Sex on Recipient Mortality in Transfusion. N Engl J Med 2023; 388:1386-1395. [PMID: 37043654 DOI: 10.1056/nejmoa2211523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND Conflicting observational evidence exists regarding the association between the sex of red-cell donors and mortality among transfusion recipients. Evidence to inform transfusion practice and policy is limited. METHODS In this multicenter, double-blind trial, we randomly assigned patients undergoing red-cell transfusion to receive units of red cells from either male donors or female donors. Patients maintained their trial-group assignment throughout the trial period, including during subsequent inpatient and outpatient encounters. Randomization was conducted in a 60:40 ratio (male donor group to female donor group) to match the historical allocation of red-cell units from the blood supplier. The primary outcome was survival, with the male donor group as the reference group. RESULTS A total of 8719 patients underwent randomization before undergoing transfusion; 5190 patients were assigned to the male donor group, and 3529 to the female donor group. At baseline, the mean (±SD) age of the enrolled patients was 66.8±16.4 years. The setting of the first transfusion was as an inpatient in 6969 patients (79.9%), of whom 2942 (42.2%) had been admitted under a surgical service. The baseline hemoglobin level before transfusion was 79.5±19.7 g per liter, and patients received a mean of 5.4±10.5 units of red cells in the female donor group and 5.1±8.9 units in the male donor group (difference, 0.3 units; 95% confidence interval [CI], -0.1 to 0.7). Over the duration of the trial, 1141 patients in the female donor group and 1712 patients in the male donor group died. In the primary analysis of overall survival, the adjusted hazard ratio for death was 0.98 (95% CI, 0.91 to 1.06). CONCLUSIONS This trial showed no significant difference in survival between a transfusion strategy involving red-cell units from female donors and a strategy involving red-cell units from male donors. (Funded by the Canadian Institutes of Health Research; iTADS ClinicalTrials.gov number, NCT03344887.).
Collapse
Affiliation(s)
- Michaël Chassé
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| | - Dean A Fergusson
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| | - Alan Tinmouth
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| | - Jason P Acker
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| | - Iris Perelman
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| | - Angie Tuttle
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| | - Shane W English
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| | - Steven Hawken
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| | - Alan J Forster
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| | - Nadine Shehata
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| | - Kednapa Thavorn
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| | - Kumanan Wilson
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| | - Nancy Cober
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| | - Heather Maddison
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| | - Melanie Tokessy
- From the Department of Medicine, Centre Hospitalier de l'Université de Montréal, and the Department of Medicine, Faculty of Medicine, and the School of Public Health, Université de Montréal, Montreal (M.C.), the Clinical Epidemiology Program, Ottawa Hospital Research Institute (D.A.F., A. Tinmouth, I.P., A. Tuttle, S.W.E., S.H., A.J.F., K.T.), the Department of Medicine (D.A.F., A. Tinmouth, S.W.E., A.J.F., K.W.), and the School of Epidemiology and Public Health (D.A.F., S.H., K.T., K.W.), University of Ottawa, Canadian Blood Services (D.A.F., A. Tinmouth, J.P.A.), Bruyère Research Institute (K.W.), and the Ottawa Hospital (N.C., H.M., M.T.), Ottawa, the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (J.P.A.), and ICES (formerly the Institute for Clinical Evaluative Sciences) (S.H., A.J.F., K.T.), the Dalla Lana School of Public Health and the Department of Medicine, University of Toronto (N.S.), and the Department of Medicine, University Health Network (N.S.), Toronto - all in Canada
| |
Collapse
|
13
|
Singh HK, Biswas AK, Philip J, Kushwaha N, Mukherjee B, Baranwal AK. A study to assess the relationship between donor uric acid levels and supernatant hemolysis in stored packed red blood cell units. Asian J Transfus Sci 2022; 16:251-256. [PMID: 36687532 PMCID: PMC9855221 DOI: 10.4103/ajts.ajts_61_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/29/2021] [Accepted: 07/18/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Most of the red blood cell (RBC) storage lesions can be attributed to oxidative stress encountered by the RBCs throughout the duration of their storage. Various donor variables at the time of donation may be responsible for the total antioxidant capacity of the supernatant and thus, the "storability" and the magnitude of development of these RBC storage lesions. It is known that uric acid (UA) is responsible for more than 60% of the TAC of the blood. This study aims to explore the relationship between donor UA levels and the difference in percentage hemolysis, an important RBC storage lesion, on day 1 and day 21, in stored packed RBCs (PRBCs) units. MATERIALS AND METHODS The serum UA of 100 healthy voluntary male blood donors was estimated at the time of blood donation. The percentage hemolysis in the supernatant of the leukoreduced citrate phosphate dextrose/saline-adenine-glucose-mannitol RBC units (n = 100) prepared from these donors was calculated on day 1 and day 21. The difference in percentage hemolysis between donors with high normal serum UA levels (>7 mg/dL) was compared to that of the donors with low normal serum UA levels (<5 mg/dL) to observe the effect of donor UA levels on the difference in percentage hemolysis. RESULTS The mean of the differences in percentage hemolysis in the supernatant in low UA group (<5 mg/dL) was higher than the mean of the differences in percentage hemolysis in the supernatant in high UA group (>7 mg/dL) and this was statistically significant (P < 0.001). The donor serum UA level and difference in percentage hemolysis on day 21 and day 1 were found to be negatively co-related. CONCLUSION Higher levels of serum UA of blood donors seem to have a protective effect on the stored PRBC units as shown in this study. Hence, the potential of UA as one of the constituents of RBC additive solutions might lead to the enhancement of the quality of stored PRBC units by decreasing the RBC storage lesions.
Collapse
Affiliation(s)
- Himanshu Kumar Singh
- Department of Immunohematology and Blood Transfusion, Armed Forces Medical College, Pune, Maharashtra, India
| | - Amit Kumar Biswas
- Department of Immunohematology and Blood Transfusion, Armed Forces Medical College, Pune, Maharashtra, India
| | - Joseph Philip
- Department of Transfusion Medicine, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Neerja Kushwaha
- Department of Immunohematology and Blood Transfusion, Armed Forces Medical College, Pune, Maharashtra, India
| | - Bhasker Mukherjee
- Department of Biochemistry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Ajay K. Baranwal
- Department of Immunohematology and Blood Transfusion, Armed Forces Medical College, Pune, Maharashtra, India
| |
Collapse
|
14
|
Metabolic reprogramming under hypoxic storage preserves faster oxygen unloading from stored red blood cells. Blood Adv 2022; 6:5415-5428. [PMID: 35736672 DOI: 10.1182/bloodadvances.2022007774] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/11/2022] [Indexed: 11/20/2022] Open
Abstract
Stored red blood cells (RBCs) incur biochemical and morphological changes, collectively termed the storage lesion. Functionally, the storage lesion manifests as slower oxygen unloading from RBCs, which may compromise the efficacy of transfusions where the clinical imperative is to rapidly boost oxygen delivery to tissues. Recent analysis of large real-world data linked longer storage with increased recipient mortality. Biochemical rejuvenation with a formulation of adenosine, inosine, and pyruvate can restore gas-handling properties, but its implementation is impractical for most clinical scenarios. We tested whether storage under hypoxia, previously shown to slow biochemical degradation, also preserves gas-handling properties of RBCs. A microfluidic chamber, designed to rapidly switch between oxygenated and anoxic superfusates, was used for single-cell oxygen saturation imaging on samples stored for up to 49 days. Aliquots were also analyzed flow-cytometrically for side-scatter (a proposed proxy of O2 unloading kinetics), metabolomics, lipidomics and redox proteomics. For benchmarking, units were biochemically rejuvenated at four weeks of standard storage. Hypoxic storage hastened O2 unloading in units stored to 35 days, an effect that correlated with side-scatter but was not linked to post-translational modifications of hemoglobin. Although hypoxic storage and rejuvenation produced distinct biochemical changes, a subset of metabolites including pyruvate, sedoheptulose 1-phosphate, and 2/3 phospho-D-glycerate, was a common signature that correlated with changes in O2 unloading. Correlations between gas-handling and lipidomic changes were modest. Thus, hypoxic storage of RBCs preserves key metabolic pathways and O2 exchange properties, thereby improving the functional quality of blood products and potentially influencing transfusion outcomes.
Collapse
|
15
|
Ichikawa J, Kouta M, Oogushi M, Komori M. Effects of room temperature and cold storage on the metabolic and haemostatic properties of whole blood for acute normovolaemic haemodilution. PLoS One 2022; 17:e0267980. [PMID: 35560137 PMCID: PMC9106157 DOI: 10.1371/journal.pone.0267980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/19/2022] [Indexed: 11/19/2022] Open
Abstract
Background Acute normovolaemic haemodilution (ANH), as a blood-conservation technique, avoids the need for allogeneic blood transfusions. The historic practice of cold-storing type-O whole blood (WB) in military fields popularised the transfusion of refrigerated WB to treat acute bleeding. In this study, we compared the effects of room temperature (RT) and refrigeration up to 24 hours on the coagulation properties of WB for ANH. Materials and methods Each WB sample, collected from 12 male volunteers, was divided into two parts, one stored at RT and the other refrigerated for 24 hours. Complete blood counts (CBC), blood gas levels, and coagulation profiles were measured, and rotational thromboelastometry (ROTEM) measurements were performed at the initial collection time point (baseline) and at 6, 12, and 24 hours after initial collection. Results The preservation of platelet aggregation response induced by arachidonic acid and adenosine diphosphate was better in cold-stored WB compared to that in RT-stored WB. The platelet aggregation response induced by thrombin receptor-activating peptide 6 was significantly decreased in all samples after 24 hours of storage when compared with that at baseline. The lactate levels in WB stored at RT increased significantly after 6 hours of storage compared to that of cold-stored samples. There were no significant differences in CBC, coagulation parameters, and ROTEM variables between the cold-stored and RT-stored WB samples. Conclusion WB for ANH stored in the refrigerator showed better metabolic characteristics after 6 hours of storage and better aggregation response after 12 hours of storage than WB stored at RT.
Collapse
Affiliation(s)
- Junko Ichikawa
- Department of Anaesthesiology, Tokyo Women’s Medical University Medical Centre East, Tokyo, Japan
- * E-mail:
| | - Masaki Kouta
- Department of Anaesthesiology, Tokyo Women’s Medical University Medical Centre East, Tokyo, Japan
| | - Masako Oogushi
- Department of Anaesthesiology, Tokyo Women’s Medical University Medical Centre East, Tokyo, Japan
| | - Makiko Komori
- Department of Anaesthesiology, Tokyo Women’s Medical University Medical Centre East, Tokyo, Japan
| |
Collapse
|
16
|
Hosgood SA, Elliott TR, Jordan NP, Nicholson ML. The Effects of Free Heme on Functional and Molecular Changes During Ex Vivo Normothermic Machine Perfusion of Human Kidneys. Front Immunol 2022; 13:849742. [PMID: 35585981 PMCID: PMC9108696 DOI: 10.3389/fimmu.2022.849742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Normothermic machine perfusion (NMP) is a technique of kidney preservation designed to restore cellular metabolism after cold ischemia. Kidneys are perfused with an oxygenated banked red blood cell (RBC) based solution for 1h at 36°C. During NMP, RBCs can become damaged, releasing free heme into the perfusate. This can act as a damage-associated molecular pattern (DAMP) activating inflammatory signalling pathways. The aim of this study was to measure the levels of free heme during NMP, assess the effect on kidney function and determine any association with inflammatory and stress related gene expression. Levels of free heme were measured in perfusate samples from a series of donation after circulatory death (DCD) kidneys undergoing NMP as part of a randomised controlled trial (RCT). The age of RBCs and levels of free heme were correlated with perfusion parameters. Changes in gene expression were analysed in a series of kidneys declined for transplantation using the NanoString nCounter Organ Transplant Panel and qRT-PCR. Older units of RBCs were associated with higher levels of free heme and levels increased significantly during NMP (Pre 8.56 ± 7.19µM vs 26.29 ± 15.18µM, P<0.0001). There was no association with levels of free heme and perfusion parameters during NMP (P > 0.05). Transcriptional and qPCR analysis demonstrated the upregulation of differentially expressed genes associated with apoptosis (FOS and JUN), inflammatory cytokines (IL-6, SOCS3, ATF3), chemokines (CXCL8, CXCL2, CC3/L1) and oxidative stress (KLF4) after NMP. However, these did not correlate with levels of free heme (P >0.05). A significant amount of free heme can be detected in the perfusate before and after NMP particularly when older units of red cells are used. Although transcriptional analysis demonstrated significant upregulation of genes involved with apoptotic, inflammatory and oxidative pathways these were not associated with high levels of free heme.
Collapse
|
17
|
Islamzada E, Matthews K, Lamoureux ES, Duffy SP, Scott MD, Ma H. Degradation of red blood cell deformability during cold storage in blood bags. EJHAEM 2022; 3:63-71. [PMID: 35846223 PMCID: PMC9176030 DOI: 10.1002/jha2.343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/02/2023]
Abstract
Red blood cells (RBCs) stored in blood bags develop a storage lesion that include structural, metabolic, and morphologic transformations resulting in a progressive loss of RBC deformability. The speed of RBC deformability loss is donor-dependent, which if properly characterized, could be used as a biomarker to select high-quality RBC units for sensitive recipients or to provide customized storage timelines depending on the donor. We used the microfluidic ratchet device to measure the deformability of red blood cells stored in blood bags every 14 days over a span of 56 days. We observed that storage in blood bags generally prevented RBC deformability loss over the current standard 42-day storage window. However, between 42 and 56 days, the deformability loss profile varied dramatically between donors. In particular, we observed accelerated RBC deformability loss for a majority of male donors, but for none of the female donors. Together, our results suggest that RBC deformability loss could be used to screen for donors who can provide stable RBCs for sensitive transfusion recipients or to identify donors capable of providing RBCs that could be stored for longer than the current 42-day expiration window.
Collapse
Affiliation(s)
- Emel Islamzada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kerryn Matthews
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Mechanical EngineeringUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Erik S. Lamoureux
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Mechanical EngineeringUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Simon P. Duffy
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- British Columbia Institute of TechnologyBurnabyBritish ColumbiaCanada
| | - Mark D. Scott
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Canadian Blood ServicesOttawaOntarioCanada
| | - Hongshen Ma
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Mechanical EngineeringUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- School of Biomedical EngineeringUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Vancouver Prostate CentreVancouver General HospitalVancouverBritish ColumbiaCanada
| |
Collapse
|
18
|
Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Islamzada E, Matthews K, Lamoureux E, Duffy SP, Scott MD, Ma H. Blood unit segments accurately represent the biophysical properties of red blood cells in blood bags but not hemolysis. Transfusion 2021; 62:448-456. [PMID: 34877683 DOI: 10.1111/trf.16757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/25/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The biophysical properties of red blood cells (RBCs) provide potential biomarkers for the quality of donated blood. Blood unit segments provide a simple and nondestructive way to sample RBCs in clinical studies of transfusion efficacy, but it is not known whether RBCs sampled from segments accurately represent the biophysical properties of RBCs in blood bags. STUDY DESIGN AND METHODS RBCs were sampled from blood bags and segments every two weeks during 8 weeks of storage at 4°C. RBC deformability was measured by deformability-based sorting using the microfluidic ratchet device in order to derive a rigidity score. Standard hematological parameters, including mean corpuscular volume (MCV), red cell distribution width (RDW), mean cell hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and hemolysis were measured at the same time points. RESULTS Deformability of RBCs stored in blood bags was retained over 4 weeks storage, but a progressive loss of deformability was observed at weeks 6 and 8. This trend was mirrored in blood unit segments with a strong correlation to the blood bag data. Strong correlations were also observed between blood bag and segment for MCV, MCHC, and MCH but not for hemolysis. CONCLUSION RBCs sampled from blood unit segments accurately represent the biophysical properties of RBCs in blood bags but not hemolysis. Blood unit segments provide a simple and nondestructive sample for measuring RBC biophysical properties in clinical studies.
Collapse
Affiliation(s)
- Emel Islamzada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kerryn Matthews
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erik Lamoureux
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Simon P Duffy
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Institute of Technology, Vancouver, British Columbia, Canada
| | - Mark D Scott
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Canadian Blood Services, Vancouver, British Columbia, Canada
| | - Hongshen Ma
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Yoshida T, McMahon E, Croxon H, Dunham A, Gaccione P, Abbasi B, Beckman N, Omert L, Field S, Waters A. The oxygen saturation of red blood cell concentrates: The basis for a novel index of red cell oxidative stress. Transfusion 2021; 62:183-193. [PMID: 34761414 DOI: 10.1111/trf.16715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/10/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Oxidative stress is a major driving force in the development of storage lesions in red cell concentrates (RCCs). Unlike manufactured pharmaceuticals, differences in component preparation methods and genetic/physiological status of donors result in nonuniform biochemical characteristics of RCCs. Various characteristics of donated blood on oxygen saturation (SO2 ) distribution were investigated, and a model to estimate potential oxidative stress burden of stored RCC at transfusion is proposed. STUDY DESIGN AND METHODS The oxygen content of freshly prepared RCCs (770) was quantified noninvasively as fractional hemoglobin saturation (SO2 ) with visible reflectance spectrometry. Using separate RCCs and mimicking typical handling of RCCs during routine storage, evolution of SO2 was followed for construction of an empirical model. Based on this model, the oxygen exposure index (OEI) was formulated to estimate the accumulated oxygen exposure burden of RCC at the time of transfusion. RESULTS The SO2 of RCCs varied widely at donation (mean 43% ± 1.3%; range 20%-93%). Multivariate regression model showed that sex and processing method had small effects on SO2 (R2 = 0.12), indicating that variability was mainly attributed to other individual donor characteristics. Storage simulation model indicated that median SO2 increased gradually over 6 weeks (approx. 1.3 fold), while OEI increased at a faster rate (approx. eight-fold). CONCLUSION In addition to storage age, the OEI provides a potential new metric to assess the quality of RCCs at the time of transfusion in terms of their oxidative stress. In future studies, a single noninvasive measurement during storage could link OEI to clinical outcomes in transfusion recipients.
Collapse
Affiliation(s)
| | - Emma McMahon
- Irish Blood Transfusion Service, Dublin, Ireland
| | - Harry Croxon
- Irish Blood Transfusion Service, Dublin, Ireland
| | | | | | - Babak Abbasi
- Information Systems and Supply Chain, RMIT University, Melbourne, Victoria, Australia
| | | | | | - Stephen Field
- Irish Blood Transfusion Service, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
21
|
Zheng R, Brunius C, Shi L, Zafar H, Paulson L, Landberg R, Naluai ÅT. Prediction and evaluation of the effect of pre-centrifugation sample management on the measurable untargeted LC-MS plasma metabolome. Anal Chim Acta 2021; 1182:338968. [PMID: 34602206 DOI: 10.1016/j.aca.2021.338968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022]
Abstract
Optimal handling is the most important means to ensure adequate sample quality. We aimed to investigate whether pre-centrifugation delay time and temperature could be accurately predicted and to what extent variability induced by pre-centrifugation management can be adjusted for. We used untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics to predict and evaluate the influence of pre-centrifugation temperature and delayed time on plasma samples. Pre-centrifugation temperature (4, 25 and 37 °C; classification rate 87%) and time (5-210 min; Q2 = 0.82) were accurately predicted using Random Forest (RF). Metabolites uniquely reflecting temperature and temperature-time interactions were discovered using a combination of RF and generalized linear models. Time-related metabolite profiles suggested a perturbed stability of the metabolome at all temperatures in the investigated time period (5-210 min), and the variation at 4 °C was observed in particular before 90 min. Fourteen and eight metabolites were selected and validated for accurate prediction of pre-centrifugation temperature (classification rate 94%) and delay time (Q2 = 0.90), respectively. In summary, the metabolite profile was rapidly affected by pre-centrifugation delay at all temperatures and thus the pre-centrifugation delay should be as short as possible for metabolomics analysis. The metabolite panels provided accurate predictions of pre-centrifugation delay time and temperature in healthy individuals in a separate validation sample. Such predictions could potentially be useful for assessing legacy samples where relevant metadata is lacking. However, validation in larger populations and different phenotypes, including disease states, is needed.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Carl Brunius
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Chalmers Mass Spectrometry Infrastructure, Chalmers University of Technology, Gothenburg, Sweden
| | - Lin Shi
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an, China.
| | - Huma Zafar
- Biobank West, Sahlgrenska University Hospital, Region Västra Götaland, Sweden
| | - Linda Paulson
- Biobank West, Sahlgrenska University Hospital, Region Västra Götaland, Sweden
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Åsa Torinsson Naluai
- Biobank West, Sahlgrenska University Hospital, Region Västra Götaland, Sweden; Institute of Biomedicine, Biobank Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Donovan K, Meli A, Cendali F, Park KC, Cardigan R, Stanworth S, McKechnie S, D’Alessandro A, Smethurst PA, Swietach P. Stored blood has compromised oxygen unloading kinetics that can be normalized with rejuvenation and predicted from corpuscular side-scatter. Haematologica 2021; 107:298-302. [PMID: 34498445 PMCID: PMC8719080 DOI: 10.3324/haematol.2021.279296] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 01/07/2023] Open
Affiliation(s)
- Killian Donovan
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Athinoula Meli
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kyung Chan Park
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Rebecca Cardigan
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Simon Stanworth
- Transfusion Medicine, NHS Blood and Transplant, Oxford, UK,Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK,Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Stuart McKechnie
- Adult Intensive Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter A. Smethurst
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK,PAWEL SWIETACH -
| |
Collapse
|
23
|
Coagulation Abnormalities in Renal Pathology of Chronic Kidney Disease: The Interplay between Blood Cells and Soluble Factors. Biomolecules 2021; 11:biom11091309. [PMID: 34572522 PMCID: PMC8467225 DOI: 10.3390/biom11091309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022] Open
Abstract
Coagulation abnormalities in renal pathology are associated with a high thrombotic and hemorrhagic risk. This study aims to investigate the hemostatic abnormalities that are related to the interaction between soluble coagulation factors and blood cells, and the effects of hemodialysis (HD) on it, in end stage renal disease (ESRD) patients. Thirty-two ESRD patients under HD treatment and fifteen healthy controls were included in the study. Whole blood samples from the healthy and ESRD subjects were collected before and after the HD session. Evaluation of coagulation included primary and secondary hemostasis screening tests, proteins of coagulation, fibrinolytic and inhibitory system, and ADAMTS-13 activity. Phosphatidylserine (PS) exposure and intracellular reactive oxygen species (iROS) levels were also examined in red blood cells and platelets, in addition to the platelet activation marker CD62P. Platelet function analysis showed pathological values in ESRD patients despite the increased levels of activation markers (PS, CD62P, iROS). Activities of most coagulation, fibrinolytic, and inhibitory system proteins were within the normal range, but HD triggered an increase in half of them. Additionally, the increased baseline levels of ADAMTS-13 inhibitor were further augmented by the dialysis session. Finally, pathological levels of PS and iROS were measured in red blood cells in close correlation with variations in several coagulation factors and platelet characteristics. This study provides evidence for a complex coagulation phenotype in ESRD. Signs of increased bleeding risk coexisted with prothrombotic features of soluble factors and blood cells in a general hyperfibrinolytic state. Hemodialysis seems to augment the prothrombotic potential, while the persisted platelet dysfunction might counteract the increased predisposition to thrombotic events post-dialysis. The interaction of red blood cells with platelets, the thrombus, the endothelium, the soluble components of the coagulation pathways, and the contribution of extracellular vesicles on hemostasis as well as the identification of the unknown origin ADAMTS-13 inhibitor deserve further investigation in uremia.
Collapse
|
24
|
Szczesny-Malysiak E, Mohaissen T, Bulat K, Kaczmarska M, Wajda A, Marzec KM. Sex-dependent membranopathy in stored human red blood cells. Haematologica 2021; 106:2779-2782. [PMID: 34233452 PMCID: PMC8485678 DOI: 10.3324/haematol.2021.278895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 11/09/2022] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Ewa Szczesny-Malysiak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow
| | - Katarzyna Bulat
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow
| | - Magdalena Kaczmarska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow
| | - Aleksandra Wajda
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza St., 30-059 Krakow
| | - Katarzyna M Marzec
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow.
| |
Collapse
|
25
|
Page GP, Kanias T, Guo YJ, Lanteri MC, Zhang X, Mast AE, Cable RG, Spencer BR, Kiss JE, Fang F, Endres-Dighe SM, Brambilla D, Nouraie M, Gordeuk VR, Kleinman S, Busch MP, Gladwin MT. Multiple-ancestry genome-wide association study identifies 27 loci associated with measures of hemolysis following blood storage. J Clin Invest 2021; 131:146077. [PMID: 34014839 DOI: 10.1172/jci146077] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
BackgroundThe evolutionary pressure of endemic malaria and other erythrocytic pathogens has shaped variation in genes encoding erythrocyte structural and functional proteins, influencing responses to hemolytic stress during transfusion and disease.MethodsWe sought to identify such genetic variants in blood donors by conducting a genome-wide association study (GWAS) of 12,353 volunteer donors, including 1,406 African Americans, 1,306 Asians, and 945 Hispanics, whose stored erythrocytes were characterized by quantitative assays of in vitro osmotic, oxidative, and cold-storage hemolysis.ResultsGWAS revealed 27 significant loci (P < 5 × 10-8), many in candidate genes known to modulate erythrocyte structure, metabolism, and ion channels, including SPTA1, ALDH2, ANK1, HK1, MAPKAPK5, AQP1, PIEZO1, and SLC4A1/band 3. GWAS of oxidative hemolysis identified variants in genes encoding antioxidant enzymes, including GLRX, GPX4, G6PD, and SEC14L4 (Golgi-transport protein). Genome-wide significant loci were also tested for association with the severity of steady-state (baseline) in vivo hemolytic anemia in patients with sickle cell disease, with confirmation of identified SNPs in HBA2, G6PD, PIEZO1, AQP1, and SEC14L4.ConclusionsMany of the identified variants, such as those in G6PD, have previously been shown to impair erythrocyte recovery after transfusion, associate with anemia, or cause rare Mendelian human hemolytic diseases. Candidate SNPs in these genes, especially in polygenic combinations, may affect RBC recovery after transfusion and modulate disease severity in hemolytic diseases, such as sickle cell disease and malaria.
Collapse
Affiliation(s)
- Grier P Page
- Division of Biostatistics and Epidemiology, RTI International, Atlanta, Georgia, USA
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado, USA
| | - Yuelong J Guo
- Division of Biostatistics and Epidemiology, RTI International, Durham, North Carolina, USA
| | - Marion C Lanteri
- Vitalant Research Institute and the Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Xu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alan E Mast
- Blood Research Institute, Blood Center of Wisconsin, and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | - Joseph E Kiss
- Vitalant Northeast Division, Pittsburgh, Pennsylvania, USA
| | - Fang Fang
- Division of Biostatistics and Epidemiology, RTI International, Durham, North Carolina, USA
| | - Stacy M Endres-Dighe
- Division of Biostatistics and Epidemiology, RTI International, Rockville, Maryland, USA
| | - Donald Brambilla
- Division of Biostatistics and Epidemiology, RTI International, Rockville, Maryland, USA
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Victor R Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Michael P Busch
- Vitalant Research Institute and the Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
26
|
Tzounakas VL, Anastasiadi AT, Valsami SI, Stamoulis KE, Papageorgiou EG, Politou M, Papassideri IS, Kriebardis AG, Antonelou MH. Osmotic hemolysis is a donor-specific feature of red blood cells under various storage conditions and genetic backgrounds. Transfusion 2021; 61:2538-2544. [PMID: 34146350 DOI: 10.1111/trf.16558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Transfusion research has recently focused on the discovery of red blood cell (RBC) storage capacity biomarkers and the elucidation of donor variation effects. This shift of focus can further strengthen personalization of transfusion therapy, by revealing probable links between donor biology, RBC storage lesion profile, and posttransfusion performance. STUDY DESIGN AND METHODS We performed a paired correlation analysis of osmotic fragility in freshly drawn RBCs and during cold storage in different preservative solutions at weekly intervals until unit's expiration date (n = 231), or following 24 h reconstitution in allogeneic plasma (n = 32) from healthy controls or transfusion-dependent beta-thalassemia patients. RESULTS We observed exceptional correlation profiles (r > 0.700, p < 10-5 in most cases) of RBC osmotic fragility in the ensemble of samples, as well as in subgroups characterized by distinct genetic backgrounds (sex, beta-thalassemia traits, glucose-6-phosphate dehydrogenase deficiency) and storage strategies (additive solutions, whole blood, RBC concentrates). The mean corpuscular fragility (MCF) of fresh and stored RBCs at each storage time significantly correlated with the MCF of stored RBCs measured at all subsequent time points of the storage period (e.g., MCF values of storage day 21 correlated with those of storage days 28, 35 and 42). A similar correlation profile was also observed between the osmotic hemolysis of fresh/stored RBCs before and following in vitro reconstitution in plasma from healthy controls or beta-thalassemia patients. CONCLUSION Our findings highlighted the potential of osmotic fragility to serve as a donor-signature on RBCs at every step of any individual transfusion chain (donor, blood product, and probably, recipient).
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Serena I Valsami
- Blood Bank and Hematology Laboratory, Aretaieion Hospital, School of Medicine, NKUA, Athens, Greece
| | | | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna Politou
- Blood Bank and Hematology Laboratory, Aretaieion Hospital, School of Medicine, NKUA, Athens, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
27
|
Abstract
Background: Resuscitation from hemorrhagic shock (HS) by blood transfusion restores oxygen (O2) delivery and provides hemodynamic stability. Current regulations allow red blood cells (RBCs) to be stored and used for up to 42 days. During storage, RBCs undergo many structural and functional changes. These storage lesions have been associated with adverse events and increased mortality after transfusion, increasing the need for improved RBC storage protocols. This study evaluates the efficacy of anaerobically stored RBCs to resuscitate rats from severe HS compared with conventionally stored RBCs. Methods and results: Rat RBCs were stored under anaerobic, anaerobic/hypercapnic, or conventional conditions for a period of 3 weeks. Hemorrhage was induced by controlled bleeding, shock was maintained for 30 min, and RBCs were transfused to restore and maintain blood pressure near the prhemorrhage level. All storage conditions met current regulatory 24-h posttransfusion recovery requirements. Transfusion of anaerobically stored RBCs required significantly less RBC volume to restore and maintain hemodynamics. Anaerobic or anaerobic/hypercapnic RBCs restored hemodynamics better than conventionally stored RBCs. Resuscitation with conventionally stored RBCs impaired indices of left ventricular cardiac function, increased hypoxic tissue staining and inflammatory markers, and affected organ function compared with anaerobically stored RBCs. Conclusions: Resuscitation from HS via transfusion of anaerobically stored RBCs recovered cardiac function, restored hemodynamic stability, and improved outcomes.
Collapse
|
28
|
Tzounakas VL, Stamoulis KE, Anastasiadi AT, Papassideri IS, Kriebardis AG, Rinalducci S, Antonelou MH. Leukoreduction makes a difference: A pair proteomics study of extracellular vesicles in red blood cell units. Transfus Apher Sci 2021; 60:103166. [PMID: 34053881 DOI: 10.1016/j.transci.2021.103166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prestorage filtration of blood to remove contaminating donor leukocytes and platelets has substantially increased the safety level of transfusion therapy. We have previously shown that leukoreduction has a mitigating effect on the storage lesion profile by lowering the extent of hemolysis and of RBC aging and removal phenotypes, including surface signaling and microvesiculation. Even though protein composition may determine the fate of EVs in the recipient, the probable effect of leukoreduction on the EV proteome has been scarcely investigated. In the present paired study, we characterized the proteome of EVs released in prestorage leukoreduced (L) and nonleukoreduced (N) RBC units prepared from the same donors, by immunoblotting and qualitative proteomics analyses at two storage intervals. Apart from common proteofrms typically associated with the established EV biogenesis mechanisms, the comparative proteomics analyses revealed that both leukoreduction and storage duration affect the complexity of the EV proteome. Membrane and cytoskeleton-related proteins and regulators, metabolic enzymes and plasma proteins exhibited storage duration dependent variation in L- and N-EVs. Specific proteoforms prevailed in each EV group, such as transferrin in L-units or platelet glycoproteins, leukocyte surface molecules, MHC HLA, histones and tetraspanin CD9 in N-units. Of note, several unique proteins have been associated with immunomodulatory, vasoregulatory, coagulatory and anti-bacterial activities or cell adhesion events. The substantial differences between EV composition under the two RBC preparation methods shed light in the underlying EV biogenesis mechanisms and stimuli and may lead to different EV interactions and effects to target cells post transfusion.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Alkmini T Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G Kriebardis
- Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo City, Greece
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
29
|
Processing methods and storage duration impact extracellular vesicle counts in red blood cell units. Blood Adv 2021; 4:5527-5539. [PMID: 33166402 DOI: 10.1182/bloodadvances.2020001658] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are active components of red blood cell (RBC) concentrates and may be associated with beneficial and adverse effects of transfusion. Elucidating controllable factors associated with EV release in RBC products is thus important to better manage the quality and properties of RBC units. Erythrocyte-derived EVs (EEVs) and platelet-derived EVs (PEVs) were counted in 1226 RBC units (administered to 280 patients) using a standardized cytometry-based method. EV size and CD47 and annexin V expression were also measured. The effects of donor characteristics, processing methods, and storage duration on EV counts were analyzed by using standard comparison tests, and analysis of covariance was used to determine factors independently associated with EV counts. PEV as well as EEV counts were higher in whole-blood-filtered RBC units compared with RBC-filtered units; PEV counts were associated with filter type (higher with filters associated with higher residual platelets), and CD47 expression was higher on EEVs in RBC units stored longer. Multivariate analysis showed that EEV counts were strongly associated with filter type (P < .0001), preparation, and storage time (+25.4 EEV/µL per day [P = .01] and +42.4 EEV/µL per day [P < .0001], respectively). The only independent factor associated with PEV counts was the residual platelet count in the unit (+67.1 PEV/µL; P < .0001). Overall, processing methods have an impact on EV counts and characteristics, leading to large variations in EV quantities transfused into patients. RBC unit processing methods might be standardized to control the EV content of RBC units if any impacts on patient outcomes can be confirmed. The IMIB (Impact of Microparticles in Blood) study is ancillary to the French ABLE (Age of Transfused Blood in Critically Ill Adults) trial (ISRCTN44878718).
Collapse
|
30
|
Meli A, McAndrew M, Frary A, Rehnstrom K, Stevens-Hernandez CJ, Flatt JF, Griffiths A, Stefanucci L, Astle W, Anand R, New HV, Bruce LJ, Cardigan R. Familial pseudohyperkalemia induces significantly higher levels of extracellular potassium in early storage of red cell concentrates without affecting other standard measures of quality: A case control and allele frequency study. Transfusion 2021; 61:2439-2449. [PMID: 33960432 DOI: 10.1111/trf.16440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/15/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Familial pseudohyperkalemia (FP) is characterized by an increased rate of potassium leakage in refrigerated red cells and is associated with the minor allele of the single nucleotide polymorphism rs148211042 (R723Q) in the ABCB6 gene. The study aims were to obtain the minor allele frequencies of ABCB6 variants and to measure supernatant potassium accumulation, and other red cell storage parameters, in red cell concentrates (RCC) from carriers of variant rs148211042 under standard blood bank conditions. STUDY DESIGN Whole blood units were collected from 6 FP individuals and 11 controls and processed into RCC in additive solution. RCC were sampled and tested over cold storage for full blood count, extracellular potassium, glucose, lactate, microvesicle release, deformability, hemolysis, pH, adenosine triphosphate, and 2,3-diphosphoglycerate. RESULTS Screening of genotyped cohorts identified that variant rs148211042 is present in 1 in 394 British citizens of European ancestry. FP RCC had significantly higher supernatant potassium at all time points from day 3 onwards (p < .001) and higher mean cell volume (p = .032) than controls. The initial rate of potassium release was higher in FP RCC; supernatant potassium reached 46.0 (23.8-57.6) mmol/L (mean [range]) by day 5, increasing to 68.9 (58.8-73.7) mmol/L by day 35. Other quality parameters were not significantly different between FP RCC and controls. CONCLUSION These data suggest that if a blood donor has FP, reducing the RCC shelf-life to 5 days may be insufficient to reduce the risk of hyperkalemia in clinical scenarios such as neonatal large volume transfusion.
Collapse
Affiliation(s)
- Athinoula Meli
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Margaret McAndrew
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Amy Frary
- Department of Haematology, University of Cambridge, Cambridge, UK.,National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Karola Rehnstrom
- Department of Haematology, University of Cambridge, Cambridge, UK.,National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christian J Stevens-Hernandez
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK.,Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Joanna F Flatt
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
| | | | - Luca Stefanucci
- Department of Haematology, University of Cambridge, Cambridge, UK.,British Heart Foundation Centre of Excellence, Cambridge, UK
| | - William Astle
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK.,MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Rekha Anand
- Clinical Directorate, NHS Blood and Transplant, Birmingham, UK
| | - Helen V New
- Clinical Directorate, NHS Blood and Transplant, London, UK.,Centre for Haematology, Imperial College London, London, UK
| | - Lesley J Bruce
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK.,Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
| | - Rebecca Cardigan
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
D'Alessandro A, Fu X, Kanias T, Reisz JA, Culp-Hill R, Guo Y, Gladwin MT, Page G, Kleinman S, Lanteri M, Stone M, Busch MP, Zimring JC. Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity. Haematologica 2021; 106:1290-1302. [PMID: 32241843 PMCID: PMC8094095 DOI: 10.3324/haematol.2020.246603] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Red blood cell storage in the blood bank promotes the progressive accumulation of metabolic alterations that may ultimately impact the erythrocyte capacity to cope with oxidant stressors. However, the metabolic underpinnings of the capacity of RBCs to resist oxidant stress and the potential impact of donor biology on this phenotype are not known. Within the framework of the REDS-III RBC-Omics study, RBCs from 8,502 healthy blood donors were stored for 42 days and tested for their propensity to hemolyze following oxidant stress. A subset of extreme hemolyzers donated a second unit of blood, which was stored for 10, 23, and 42 days and profiled again for oxidative hemolysis and metabolomics (599 samples). Alterations of RBC energy and redox homeostasis were noted in donors with high oxidative hemolysis. RBCs from females, donors over 60 years old, donors of Asian/South Asian race-ethnicity, and RBCs stored in additive solution-3 were each independently characterized by improved antioxidant metabolism compared to, respectively, males, donors under 30 years old, Hispanic and African American race ethnicity donors, and RBCs stored in additive solution-1. Merging metabolomics data with results from an independent GWAS study on the same cohort, we identified metabolic markers of hemolysis and G6PD-deficiency, which were associated with extremes in oxidative hemolysis and dysregulation in NADPH and glutathione-dependent detoxification pathways of oxidized lipids. Donor sex, age, ethnicity, additive solution and G6PD status impact the metabolism of the stored erythrocyte and its susceptibility to hemolysis following oxidative insults.
Collapse
Affiliation(s)
| | - Xiaoyun Fu
- Bloodworks Northwest Research Institute, Seattle, WA, USA
| | | | - Julie A Reisz
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel Culp-Hill
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | | | - Mark T Gladwin
- University of Pittsburgh Medical Center, Pittsburgh PA, USA
| | | | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA
| | | | | | | |
Collapse
|
32
|
Antognoni MT, Marenzoni ML, Misia AL, Avellini L, Chiaradia E, Gavazza A, Miglio A. Effect of Leukoreduction on Hematobiochemical Parameters and Storage Hemolysis in Canine Whole Blood Units. Animals (Basel) 2021; 11:ani11040925. [PMID: 33805143 PMCID: PMC8064101 DOI: 10.3390/ani11040925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/28/2023] Open
Abstract
Simple Summary During the storage of blood units, cells undergo many changes, defined as storage lesions; these are biochemical, morphological and immunological modifications and seem to be responsible for adverse post-transfusion effects in recipients. The pre-storage leukoreduction seems to reduce them. The aims of this study are both to evaluate the human filter effectiveness and the effect of pre-storage leukoreduction in stored canine whole blood units. We tested whole blood units, leukoreduced and not, obtained from seven enrolled subjects, until the 42nd day. The white blood cell (WBC) and platelet (PLT) counts are reported to express the leukoreduction effectiveness. As indicators of storage-induced hemolysis, the lactate dehydrogenase activity (LDH) and sodium, potassium, and chlorine electrolytes were measured in plasma, and the red blood cell (RBC) count, hemoglobin concentration (Hgb), and hematocrit (Hct) were obtained with the complete blood count (CBC). The mean corpuscular volume (MCV) values and morphological index obtained from blood smear evaluation were used as indices of morphological changes. We observed that the leukoreduction filter for human use is equally effective on canine whole blood and that leukoreduction has a partially protective role to prevent some storage lesions. Abstract Storage lesions (SLs) occur when the red blood cell quality is altered during the preservation of blood units. Pre-storage leukoreduction would limit the number of SLs. The aims of this study were to evaluate the effectiveness of a leukoreduction filter for human use and the effect of pre-storage leukoreduction on some ematobiochemical parameters in stored canine whole blood. Seven canine blood units were tested. Each one was divided into two units—one leukoreduced (LRWB) and one non-leukoreduced (nLRWB). On each unit, we determined the complete blood count (CBC), lactate-dehydrogenase (LDH), electrolytes (Na+, K+, Cl−), morphological index (MI) and hemolysis, on storage days 0, 7, 14, 21, 28, 35, and 42. Leukoreduction allowed a 98.30% recovery of the RBC count, retaining 99.69% and 94.91% of WBCs and PLTs, respectively. We detected a significant increase of LDH and MI with strongly higher values in nLRWB compared to LRWB. A progressive increase in electrolytes and LDH concentrations was observed as indices of stored hemolysis. LDH showed significantly lower values in LRWB units compared to nLRWB, suggesting its release from leukocytes. In the majority of units, hemolysis reached 1% on the 42nd day of storage. We assert the human leukoreduction filter effectiveness on canine whole blood, and we recommend using nLRWB before day 14, especially for critically ill patients. The difference of the basal hemolysis (day 0) percentages observed between subjects suggests that more studies should be performed to confirm a possible inter-individual donor biological variability of RBC membrane resistance, as happens in humans.
Collapse
Affiliation(s)
- Maria Teresa Antognoni
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Maria Luisa Marenzoni
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Ambra Lisa Misia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Luca Avellini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Alessandra Gavazza
- School of Bioscences and Veterinary Medicine, University of Camerino, 62024 Camerino, Italy;
| | - Arianna Miglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
- Correspondence:
| |
Collapse
|
33
|
Tzounakas VL, Anastasiadi AT, Stefanoni D, Cendali F, Bertolone L, Gamboni F, Dzieciatkowska M, Rousakis P, Vergaki A, Soulakis V, Tsitsilonis OE, Stamoulis K, Papassideri IS, Kriebardis ANG, D'Alessandro A, Antonelou MH. β-thalassemia minor is a beneficial determinant of red blood cell storage lesion. Haematologica 2021; 107:112-125. [PMID: 33730845 PMCID: PMC8719105 DOI: 10.3324/haematol.2020.273946] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/01/2022] Open
Abstract
Blood donor genetics and lifestyle affect the quality of red blood cell (RBC) storage. Heterozygotes for beta thalassemia (bThal+) constitute a non-negligible proportion of blood donors in the Mediterranean and other geographical areas. The unique hematological profile of bThal+ could affect the capacity of enduring storage stress, however, the storability of bThal+ RBC is largely unknown. In this study, RBC from 18 bThal+ donors were stored in the cold and profiled for primary (hemolysis) and secondary (phosphatidylserine exposure, potassium leakage, oxidative stress) quality measures, and metabolomics, versus sex- and age-matched controls. The bThal+ units exhibited better levels of storage hemolysis and susceptibility to lysis following osmotic, oxidative and mechanical insults. Moreover, bThal+ RBC had a lower percentage of surface removal signaling, reactive oxygen species and oxidative defects to membrane components at late stages of storage. Lower potassium accumulation and higher uratedependent antioxidant capacity were noted in the bThal+ supernatant. Full metabolomics analyses revealed alterations in purine and arginine pathways at baseline, along with activation of the pentose phosphate pathway and glycolysis upstream to pyruvate kinase in bThal+ RBC. Upon storage, substantial changes were observed in arginine, purine and vitamin B6 metabolism, as well as in the hexosamine pathway. A high degree of glutamate generation in bThal+ RBC was accompanied by low levels of purine oxidation products (IMP, hypoxanthine, allantoin). The bThal mutations impact the metabolism and the susceptibility to hemolysis of stored RBC, suggesting good post-transfusion recovery. However, hemoglobin increment and other clinical outcomes of bThal+ RBC transfusion deserve elucidation by future studies.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Athens
| | - Alkmini T Anastasiadi
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Athens
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Pantelis Rousakis
- Department of Biology, Section of Animal and Human Physiology, School of Science, NKUA, Athens
| | - Athina Vergaki
- Regional Blood Transfusion Center, "Agios Panteleimon" General Hospital of Nikea, Piraeus
| | - Vassilis Soulakis
- Regional Blood Transfusion Center, "Agios Panteleimon" General Hospital of Nikea, Piraeus
| | - Ourania E Tsitsilonis
- Department of Biology, Section of Animal and Human Physiology, School of Science, NKUA, Athens
| | | | - Issidora S Papassideri
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Athens
| | - A Nastasios G Kriebardis
- Department of Biomedical Science, School of Health and Caring Science, University of West Attica (UniWA), Egaleo
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO.
| | - Marianna H Antonelou
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Athens.
| |
Collapse
|
34
|
Zare S, Mousavi Hosseini K, Maghsudlu M, Shahabi M. miRNA96 expression level within red blood cells is probably associated with RSL indicators during the storage of red blood cell units. Transfus Apher Sci 2021; 60:103122. [PMID: 33766457 DOI: 10.1016/j.transci.2021.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Many biochemical and hematological changes occur during the storage of RBC units. Collectively, these changes are known as RSLs. Previous studies found miRNA96 as non-coding RNA that its expression level changed during RBC storage. However, its correlation with mechanical and biochemical RSL indicators is not yet determined. Therefore, this study aimed to assess possible correlations between miRNA96a and some RSLs indicators to clarify its biomarker capability for evaluating the storage quality of RBC units. MATERIALS AND METHODS Samples were collected from ten leuko-reduced RBC units on days 0, 14, 28, and 42 of storage. miRNA96 gene expression level and RSLs indicators including hemolysis, mechanical fragility index (MFI), total antioxidant capacity (TAC), lipid peroxidation (TBARs), thiol groups, and RBC indices were measured on the days mentioned above. RESULTS Significant correlations were found between the changes in miRNA96 expression level and the levels of hemolysis, TAC, TBARs, and MFI indices (p values < 0.05). The donors were classified into the high risk group and low risk group, according to four important characteristics and lifestyle habits (smoking, physical activity, age, and BMI). The high risk group had a significantly lower rate of hemolysis, free hemoglobin, MFI, TAC, and a higher rate of lipid peroxidation compared to low risk group (p values < 0.05). CONCLUSION The finding suggested that upregulation of miRNA96 could prevent hemolysis of RBCs, despite the accumulation of oxidative injuries in them. The miRNA96 expression level was probably a potential predictor for mechanical and biochemical RSL indicators.
Collapse
Affiliation(s)
- Somayeh Zare
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Hemmat Expressway, IBTO Building, Tehran, Iran.
| | - Kamran Mousavi Hosseini
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Hemmat Expressway, IBTO Building, Tehran, Iran.
| | - Mahtab Maghsudlu
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Hemmat Expressway, IBTO Building, Tehran, Iran.
| | - Majid Shahabi
- High Institute for Research and Education in Transfusion Medicine, Blood Transfusion Research Center, Hemmat Expressway, IBTO Building, Tehran, Iran.
| |
Collapse
|
35
|
White J, Moira L, Gao X, Tarasev M, Chakraborty S, Emanuele M, Hines PC. Can red blood cell function assays assess response to red cell-modifying therapies? Clin Hemorheol Microcirc 2021; 80:127-138. [PMID: 33459699 DOI: 10.3233/ch-200944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Red blood cell (RBC)-modifying therapies have provided new opportunities for patients with sickle cell disease, although the absence of validated biomarkers of RBC function is a barrier to FDA approval and clinical adoption. Flow Adhesion (FA) and Mechanical Fragility (MF) biomarkers objectively stratify individuals with SCD into pro-adhesive vs pro-hemolytic phenotypes respectively, which may potentially help predict therapeutic responses. OBJECTIVE A Phase 3 clinical trial to determine the effectiveness of vepoloxamer, an RBC-modifying therapy in sickle cell disease (SCD), failed to meet its primary clinical outcome. The aim of this study was to determine whether standardized flow adhesion and mechanical fragility bioassays could differentiate cellular level "responders" from "non-responders" to vepoloxamer treatment. METHODS Standardized biomarkers of RBC function (adhesion and mechanical fragility) were utilized in this study to assess the effect of veploxamer on blood samples collected from SCD subjects and to determine whether our assays could differentiate cellular-level "responders" from "non-responders" to vepoloxamer treatment. A Wilcoxon signed-rank test was used to test for differences in adhesion in response to varying vepoloxamer treatments and a Wilcoxon Mann-Whitney test was used to assess differences in mechanical fragility, pre- and post-vepoloxamer treatment. A p-value<0.05 was considered significant. RESULTS In this study, we report that in vitro treatment with vepoloxamer reduced adhesion by >75%in 54%of patient samples and induced changes in the membranes of sickle erythrocytes (SSRBCs) making sickle cells behave more like normal erythrocytes (AARBCs) in terms of their resistance to hemolysis. CONCLUSION This study demonstrates that the standardized flow adhesion and mechanical fragility biomarkers described here may be useful tools to predict clinical responders to RBC-modifying therapies.
Collapse
Affiliation(s)
- Jennell White
- Department of Pharmacology, Wayne State University, Detroit, MI, USA.,Functional Fluidics, Detroit, MI, USA
| | | | | | - Michael Tarasev
- Functional Fluidics, Detroit, MI, USA.,Blaze Medical Devices, Ann Arbor, MI, USA
| | | | | | - Patrick C Hines
- Functional Fluidics, Detroit, MI, USA.,Critical Care Medicine, Children's Hospital of Michigan, Detroit, MI, USA
| |
Collapse
|
36
|
Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy. Int J Mol Sci 2020; 22:E153. [PMID: 33375718 PMCID: PMC7796437 DOI: 10.3390/ijms22010153] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Red blood cells (RBCs) release extracellular vesicles (EVs) including both endosome-derived exosomes and plasma-membrane-derived microvesicles (MVs). RBC-derived EVs (RBCEVs) are secreted during erythropoiesis, physiological cellular aging, disease conditions, and in response to environmental stressors. RBCEVs are enriched in various bioactive molecules that facilitate cell to cell communication and can act as markers of disease. RBCEVs contribute towards physiological adaptive responses to hypoxia as well as pathophysiological progression of diabetes and genetic non-malignant hematologic disease. Moreover, a considerable number of studies focus on the role of EVs from stored RBCs and have evaluated post transfusion consequences associated with their exposure. Interestingly, RBCEVs are important contributors toward coagulopathy in hematological disorders, thus representing a unique evolving area of study that can provide insights into molecular mechanisms that contribute toward dysregulated hemostasis associated with several disease conditions. Relevant work to this point provides a foundation on which to build further studies focused on unraveling the potential roles of RBCEVs in health and disease. In this review, we provide an analysis and summary of RBCEVs biogenesis, composition, and their biological function with a special emphasis on RBCEV pathophysiological contribution to coagulopathy. Further, we consider potential therapeutic applications of RBCEVs.
Collapse
Affiliation(s)
- Kiruphagaran Thangaraju
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
| | - Sabari Nath Neerukonda
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Upendra Katneni
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
| | - Paul W. Buehler
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.T.); (P.W.B.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
37
|
Sex-related aspects of the red blood cell storage lesion. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 19:224-236. [PMID: 33085592 DOI: 10.2450/2020.0141-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Several factors contribute to the manifestation of red blood cell (RBC) storage lesions, with one of the most interesting being the "donor variation effect". Since many haematological characteristics of blood donors are sex-dependent, sex hormones and their age-dependent variation may affect the storage profile of RBCs. MATERIALS AND METHODS Fresh blood from 200 healthy male and female donors underwent haematological, biochemical and physiological analysis. Three selected groups of donors (men, n=8; pre-menopausal women, n=8; and post-menopausal women, n=4) exhibiting as similar as possible baseline values were recruited for blood donation in leukoreduced CPD/SAGM units. RBC indices, haemolysis and propensity for haemolysis, reactive oxygen species (ROS) and plasma antioxidant capacity were measured bi-weekly. RESULTS Female blood was characterised by lower plasma antioxidant capacity and free haemoglobin (Hb) levels in vivo, in spite of the higher RBC osmotic fragility, compared to male blood. Comparatively low Hb concentration was also measured in stored RBCs from female donors, as in vivo. Mean corpuscular Hb (MCH), mean corpuscular Hb concentration (MCHC), and plasma antioxidant capacity were also lower in female donors throughout storage, even though baseline levels were equal to those of the male group. There was no difference in propensity of stored RBCs for haemolysis between male and female units but intracellular ROS levels were significantly lower in female RBCs. Increased end-of-storage extracellular potassium and recruitment of protein stress markers (clusterin, Hb) to the RBC membrane were observed in the units of post- vs pre-menopausal female donors at mid-storage onwards. DISCUSSION Donor's sex has an impact on Hb concentration and redox parameters of stored RBCs. In addition, menopause seems to promote RBC membrane remodelling, at least during prolonged storage. Our pilot study provides new insights on the different effects on RBC storage lesion according to sex.
Collapse
|
38
|
Changes in Complement Levels and Activity of Red Blood Cells, Fresh Frozen Plasma, and Platelet Concentrates During Storage. Indian J Hematol Blood Transfus 2020; 37:140-146. [PMID: 33707847 DOI: 10.1007/s12288-020-01338-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Complement cascade plays an important role in the field of transfusion medicine. The study aimed to detect the complement levels of different blood components and different blood types to explore the risk of transfusion of stored blood. The samples including red blood cells (n = 110), fresh frozen plasma (n = 120), and platelet concentrates (n = 104) from healthy blood donors in our center were collected. Complement components (C3, C4, C3b, C3d, and CH50) were assayed to evaluate the activation of complement. The complement levels of various blood components at different storage times were observed. The differences in complement levels of four blood types in various blood components were compared. The complement levels of red blood cells in storage were low, with no significant changes (P > 0.05). C3b and C3d levels in platelets began to significantly increase after storage for 3 days (P < 0.05). The fresh frozen plasma during storage had higher complement levels, and the concentrations of C3 and C4 decreased and C3b and C3d increased at month 4 (P < 0.05). The differences in complement levels of four blood types in various blood components did not significantly change (P > 0.05), but the C3b and C3d levels of AB fresh frozen plasma remained stable during storage, which different from other blood types. The transfusion of red blood cells was relatively safe in terms of complement activation. The activation of complement proteins occurred during the storage of platelet and plasma, except group AB plasma.
Collapse
|
39
|
Blood Donors' Age, Haemoglobin Type, G6PD Status, and Blood Group Impact Storability of CPDA-1 Banked Whole Blood: A Repeated-Measure Cohort Study in Cape Coast, Ghana. Adv Hematol 2020; 2020:4959518. [PMID: 32550847 PMCID: PMC7277056 DOI: 10.1155/2020/4959518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 11/18/2022] Open
Abstract
Background The high prevalence of haemoglobin variants and glucose 6-phosphate dehydrogenase disorder (G6PDd) in sub-Saharan Africa means that substantial proportions of donor blood units carry these red cell abnormalities. Aim This study investigated the impact that inherited haemoglobin variants and/or G6PD status have on whole blood banked at 4–6°C for 35 days. Method This repeated-measure cohort study was undertaken on 103 donor blood units collected into blood bag containing CPDA-1 anticoagulant. On days 0, 7, 14, 21, and 35, full blood count, osmotic-induced haemolysis, and plasma K+ levels were estimated. Also, on day 0, G6PD status, haemoglobin variants, % foetal haemoglobin, and blood group of donor units were determined using methaemoglobin reductase, cellulose acetate electrophoresis, modified Bekte alkali denaturation assay, and slide haemagglutination test, respectively. Result Overall, although plasma K+ levels increased during storage, donor units from individuals ≥20 years, G6PD normal, Hb AC, or blood group B had comparatively higher percentage change in plasma K+ during storage. Osmotically induced haemolysis of donor units was significantly decreased in Hb AC (compared with Hb A or AS) donor units on days 7, 14, 21, and 35 (p < 0.0001 in each case). G6PDd donor units had comparatively reduced osmotic-induced lysis compared with G6PD normal units, reaching a statistical significance on day 35 (p = 0.043). Also, Hb AC units had comparatively nonstatistically higher plasma K+ at all time points (compared with Hb A or AS). Furthermore, whereas donor units from individuals ≥20 years showed significantly higher median free haemoglobin on day 21 (compared to donor <20 years), when donor units were stratified per Hb variants, only Hb AS units had median free haemoglobin below the 0.8% threshold after 35 days' storage. Conclusion Age of donor, blood group, Hb AC variant, and G6PD status may be important considerations in the storability of whole blood.
Collapse
|
40
|
Islamzada E, Matthews K, Guo Q, Santoso AT, Duffy SP, Scott MD, Ma H. Deformability based sorting of stored red blood cells reveals donor-dependent aging curves. LAB ON A CHIP 2020; 20:226-235. [PMID: 31796943 DOI: 10.1039/c9lc01058k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A fundamental challenge in the transfusion of red blood cells (RBCs) is that a subset of donated RBC units may not provide optimal benefit to transfusion recipients. This variability stems from the inherent ability of donor RBCs to withstand the physical and chemical insults of cold storage, which ultimately dictate their survival in circulation. The loss of RBC deformability during cold storage is well-established and has been identified as a potential biomarker for the quality of donated RBCs. While RBC deformability has traditionally been indirectly inferred from rheological characteristics of the bulk suspension, there has been considerable interest in directly measuring the deformation of RBCs. Microfluidic technologies have enabled single cell measurement of RBC deformation but have not been able to consistently distinguish differences between RBCs between healthy donors. Using the microfluidic ratchet mechanism, we developed a method to sensitively and consistently analyze RBC deformability. We found that the aging curve of RBC deformability varies significantly across donors, but is consistent for each donor over multiple donations. Specifically, certain donors seem capable of providing RBCs that maintain their deformability during two weeks of cold storage in standard test tubes. The ability to distinguish between RBC units with different storage potential could provide a valuable opportunity to identify donors capable of providing RBCs that maintain their integrity, in order to reserve these units for sensitive transfusion recipients.
Collapse
Affiliation(s)
- Emel Islamzada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Canada and Centre for Blood Research, University of British Columbia, Canada
| | - Kerryn Matthews
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada.
| | - Quan Guo
- Department of Mechanical Engineering, University of British Columbia, Canada.
| | - Aline T Santoso
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada.
| | - Simon P Duffy
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada. and British Columbia Institute of Technology, Canada
| | - Mark D Scott
- Department of Pathology and Laboratory Medicine, University of British Columbia, Canada and Centre for Blood Research, University of British Columbia, Canada and Canadian Blood Services, Canada
| | - Hongshen Ma
- Department of Pathology and Laboratory Medicine, University of British Columbia, Canada and Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada. and School of Biomedical Engineering, University of British Columbia, Canada
| |
Collapse
|
41
|
Shih AW, Apelseth TO, Cardigan R, Marks DC, Bégué S, Greinacher A, de Korte D, Seltsam A, Shaz BH, Wikman A, Barty RL, Heddle NM, Acker JP. Not all red cell concentrate units are equivalent: international survey of processing and in vitro quality data. Vox Sang 2019; 114:783-794. [PMID: 31637738 DOI: 10.1111/vox.12836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION In vitro qualitative differences exist in red cell concentrates (RCCs) units processed from whole blood (WB) depending on the method of processing. Minimal literature exists on differences in processing and variability in quality data. Therefore, we collected information from blood manufacturers worldwide regarding (1) details of WB collection and processing used to produce RCCs and (2) quality parameters and testing as part of routine quality programmes. METHODS A secure web-based survey was developed, refined after pilot data collection and distributed to blood centres. Descriptive analyses were performed. RESULTS Data from ten blood centres in nine countries were collected. Six blood centres (60%) processed RCCs using the top-and-top (TAT) method which produces RCCs and plasma, and eight centres (80%) used the bottom-and-top (BAT) which additionally produces buffy coat platelets. Five of the centres used both processing methods; however, four favoured BAT processing. One centre utilized the Reveos automated system exclusively. All centres performed pre-storage leucoreduction. Other parameters demonstrated variability, including active cooling at collection, length of hold before processing, donor haemoglobin limits, acceptable collection weights, collection sets, time to leucoreduction, centrifugation speeds, extraction devices and maximum RCC shelf life. Quality marker testing also differed amongst blood centres. Trends towards higher RCC unit volume, haemolysis and residual leucoctyes were seen in the TAT compared with BAT processing across centres. CONCLUSION Methods and parameters of WB processing and quality testing of RCCs differ amongst surveyed blood manufacturers. Further studies are needed to assess variations and to potentially improve methods and product quality.
Collapse
Affiliation(s)
- Andrew W Shih
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Vancouver Coastal Health Authority, Vancouver, BC, Canada
| | - Torunn Oveland Apelseth
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Cardigan
- National Health Service Blood and Transplant, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Denese C Marks
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - Stéphane Bégué
- Établissement Français du Sang, La-Plaine-Saint-Denis, France
| | - Andreas Greinacher
- Department of Transfusion Medicine, University Medical Center Greifswald, Greifswald, Germany
| | | | | | - Beth H Shaz
- New York Blood Center, New York City, NY, USA
| | - Agneta Wikman
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - Rebecca L Barty
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
| | - Nancy M Heddle
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
- Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada
| |
Collapse
|
42
|
Donnenberg AD, Kanias T, Triulzi DJ, Dennis CJ, Meyer EM, Gladwin M. Improved quantitative detection of biotin-labeled red blood cells by flow cytometry. Transfusion 2019; 59:2691-2698. [PMID: 31172532 PMCID: PMC9236723 DOI: 10.1111/trf.15354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 07/28/2023]
Abstract
BACKGROUND Biotin-labeled red blood cells (BioRBC) can be tracked after transfusion, providing a convenient and safe way to measure RBC survival in vivo. RBC survival is of interest for determining optimal blood storage conditions and for assessing the impact of genetic and biologic variants in blood donors on the survival of transfused RBCs. Here we present an improved, platform-independent assay for quantifying biotin on BioRBC. This approach is also useful for detecting BioRBC in peripheral blood samples as rare events. STUDY DESIGN AND METHODS We optimized the signal-to-noise ratio of the detecting reagent (phycoerythrin-conjugated streptavidin [SA-PE]) by determining the SA-PE concentration yielding the greatest separation index between BioRBC and unlabeled RBCs. We calibrated the fluorescence intensity measurements to molecules of equivalent soluble fluorochrome (MESF), a quantitative metric of fluorochrome binding and therefore of biotin bound per RBC. We then characterized the limit of blank and limit of quantification (LoQ) for BioRBC labeled at different densities. RESULTS Biotin-labeled RBCs at sulfo-NHS-biotin concentrations of 3 to 30 μg/mL (27-271 nmol/mL RBCs) ranged from approximately 32,000 to 200,000 MESF/RBC. The LoQ ranged from one in 274,000 to one in 649,000, depending on biotin-labeling density. CONCLUSION Increased sensitivity to detect BioRBC may facilitate tracking over longer periods and/or reduction of the BioRBC dose. Total RBC-bound biotin dose has been shown to correlate with the likelihood of developing antibodies to BioRBC. Lowering the dose of labeled cells may help avoid this eventuality.
Collapse
Affiliation(s)
- Albert D. Donnenberg
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Darrell J. Triulzi
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Institute for Transfusion Medicine, Pittsburgh, Pennsylvania
| | | | - E. Michael Meyer
- Hillman Cancer Center Cytometry Facility, Pittsburgh, Pennsylvania
| | - Mark Gladwin
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
D'Alessandro A, Zimring JC, Busch M. Chronological storage age and metabolic age of stored red blood cells: are they the same? Transfusion 2019; 59:1620-1623. [PMID: 30865302 DOI: 10.1111/trf.15248] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 01/24/2023]
Abstract
Red blood cell (RBC) storage in the blood bank is characterized by the progressive loss of metabolic regulation, a phenomenon that targets energy and antioxidant metabolism; While the progression of the storage lesion is inevitable, the rate at which this phenomenon occurs varies from donor to donor; Red blood cells from some donors at the end of storage are metabolically superior to RBCs from other donors at the beginning of storage, suggesting that the age of blood alone may not be a sufficiently accurate predictor of stored blood quality; and Animal studies and large-scale omics screening in blood donors have helped identify mechanistic contributors to the metabolic heterogeneity of stored blood units.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, Division of Hematology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| |
Collapse
|
44
|
Bouchard BA, Orfeo T, Keith HN, Lavoie EM, Gissel M, Fung M, Mann KG. Microparticles formed during storage of red blood cell units support thrombin generation. J Trauma Acute Care Surg 2019; 84:598-605. [PMID: 29251713 DOI: 10.1097/ta.0000000000001759] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Intact red blood cells (RBCs) appear to support thrombin generation in in vitro models of blood coagulation. During storage of RBC units, biochemical, structural, and physiological changes occur including alterations to RBC membranes and release of microparticles, which are collectively known as storage lesion. The clinical consequences of microparticle formation in RBC units are unclear. This study was performed to assess thrombin generation via the prothrombinase complex by washed RBCs and RBC-derived microparticles as a function of RBC unit age. METHODS Well-characterized kinetic and flow cytometric assays were used to quantify and characterize microparticles isolated from leukocyte-reduced RBC units during storage for 42 days under standard blood banking conditions. RESULTS Stored RBCs exhibited known features of storage lesion including decreasing pH, cell lysis, and release of microparticles demonstrated by scanning electron microscopy. The rate of thrombin formation by RBC units linearly increased during storage, with the microparticle fraction accounting for approximately 70% of the prothrombinase activity after 35 days. High-resolution flow cytometric analyses of microparticle isolates identified phosphatidylserine-positive RBC-derived microparticles; however, their numbers over time did not correlate with thrombin formation in that fraction. CONCLUSION Red blood cell-derived microparticles capable of supporting prothrombinase function accumulate during storage, suggesting an increased potential of transfused units as they age to interact in unplanned ways with ongoing hemostatic processes in injured individuals, especially given the standard blood bank practice of using the oldest units available.
Collapse
Affiliation(s)
- Beth A Bouchard
- From the Department of Biochemistry (B.A.B., T.O., H.N.K., E.M.L., M.G., K.G.M.), and Blood Bank and Transfusion Medicine, Department of Pathology (M.F.), The Larner College of Medicine at the University of Vermont, Burlington, Vermont
| | | | | | | | | | | | | |
Collapse
|
45
|
D'Alessandro A. From omics technologies to personalized transfusion medicine. Expert Rev Proteomics 2019; 16:215-225. [PMID: 30654673 DOI: 10.1080/14789450.2019.1571917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Blood transfusion is the single most frequent in-hospital medical procedure, a life-saving intervention for millions of recipients worldwide every year. Storage in the blood bank is an enabling strategy for this critical procedure, as it logistically solves the issue of making ~110 million units available for transfusion every year. Unfortunately, storage in the blood bank promotes a series of biochemical and morphological changes to the red blood cell that compromise the integrity and functionality of the erythrocyte in vitro and in animal models, and could negatively impact transfusion outcomes in the recipient. Areas covered: While commenting on the clinical relevance of the storage lesion is beyond the scope of this manuscript, here we will review recent advancements in our understanding of the storage lesion as gleaned through omics technologies. We will focus on how the omics-scale appreciation of the biological variability at the donor and recipient level is impacting our understanding of red blood cell storage biology. Expert commentary: Omics technologies are paving the way for personalized transfusion medicine, a discipline that promises to revolutionize a critical field in medical practice. The era of recipient-tailored additives, processing, and storage strategies may not be too far distant in the future.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
- b Department of Medicine - Division of Hematology , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
46
|
Wannez A, Devalet B, Chatelain B, Chatelain C, Dogné JM, Mullier F. Extracellular Vesicles in Red Blood Cell Concentrates: An Overview. Transfus Med Rev 2019; 33:125-130. [PMID: 30910256 DOI: 10.1016/j.tmrv.2019.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 01/28/2023]
Abstract
Red blood cell (RBC) concentrates may be stored for up to 42 days before transfusion to a patient. During storage extracellular vesicles (EVs) develop and can be detected in significant amounts in RBC concentrates. The concentration of EVs is affected by component preparation methods, storage solutions, and inter-donor variation. Laboratory investigations have focused on the effect of EVs on in vitro assays of thrombin generation and immune responses. Assays for EVs in RBC concentrates are not standardized. The aims of this review are to describe the factors that determine the presence of erythrocyte-EVs in RBC concentrates, the current techniques used to characterize them, and the potential role of EV analysis as a quality control maker for RBC storage.
Collapse
Affiliation(s)
- Adeline Wannez
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium; University of Namur, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Department of Pharmacy, Namur, Belgium.
| | - Bérangère Devalet
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Department of Hematology, Yvoir, Belgium
| | - Bernard Chatelain
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium
| | - Christian Chatelain
- University of Namur, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Department of Pharmacy, Namur, Belgium
| | - Jean-Michel Dogné
- University of Namur, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Department of Pharmacy, Namur, Belgium
| | - François Mullier
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium
| |
Collapse
|
47
|
Abstract
Microparticles are submicron vesicles shed from aging erythrocytes as a characteristic feature of the red blood cell (RBC) storage lesion. Exposure of pulmonary endothelial cells to RBC-derived microparticles promotes an inflammatory response, but the mechanisms underlying microparticle-induced endothelial cell activation are poorly understood. In the present study, cultured murine lung endothelial cells (MLECs) were treated with microparticles isolated from aged murine packed RBCs or vehicle. Microparticle-treated cells demonstrated increased expression of the adhesion molecules ICAM and E-selectin, as well as the cytokine, IL-6. To identify mechanisms that mediate these effects of microparticles on MLECs, cells were treated with microparticles covalently bound to carboxyfluorescein succinimidyl ester (CFSE) and cellular uptake of microparticles was quantified via flow cytometry. Compared with controls, there was a greater proportion of CFSE-positive MLECs from 15 min up to 24 h, suggesting endocytosis of the microparticles by endothelial cells. Colocalization of microparticles with lysosomes was observed via immunofluorescence, indicating endocytosis and endolysosomal trafficking. This process was inhibited by endocytosis inhibitors. SiRNA knockdown of Rab5 signaling protein in endothelial cells resulted in impaired microparticle uptake as compared with nonsense siRNA-treated cells, as well as an attenuation of the inflammatory response to microparticle treatment. Taken together, these data suggest that endocytosis of RBC-derived microparticles by lung endothelial cells results in endothelial cell activation. This response seems to be mediated, in part, by the Rab5 signaling protein.
Collapse
|
48
|
Peters AL, van de Weerdt EK, Prinsze F, de Korte D, Juffermans NP, Vlaar APJ. Donor characteristics do not influence transfusion-related acute lung injury incidence in a secondary analysis of two case-control studies. Transfus Clin Biol 2019; 26:10-17. [PMID: 30686333 DOI: 10.1016/j.tracli.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/25/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To investigate the relation between donor characteristics and TRALI incidence. BACKGROUND Transfusion-related acute lung injury (TRALI) is a potentially fatal complication of transfusion. In pre-clinical studies and several clinical studies, TRALI has been related to loss of product quality during red blood cell (RBC) storage, called the "storage lesion". Donor characteristics, as for example age, genetics and life style choices influence this "storage lesion". We hypothesized that donor sex, age and blood type is related to TRALI incidence. METHODS/MATERIALS We performed a secondary analysis of two cohort studies, designed to identify TRALI risk factors by matching TRALI patients to transfused controls. We obtained donor sex, age and blood type from the Dutch Blood Bank Sanquin and investigated TRALI incidence in patients who were exposed to a certain donor characteristic. We used Kruskal-Wallis testing to compare the number of transfused products and Chi2 testing to compare proportions of TRALI patients and transfused control. RESULTS After implementation of the male-donor only plasma strategy, patients received more transfusion products from male donors. However, we did not detect a relation between TRALI incidence and donor sex. Both TRALI patients and transfused controls received mainly products from donors over 41 years old, but donor age did not influence TRALI risk. Donor blood type, the transfusion of blood type-compatible and blood type-matched products also had no influence on TRALI incidence. CONCLUSION We conclude that in two cohorts of TRALI patients, donor age, donor sex and donor blood type are unrelated to TRALI.
Collapse
Affiliation(s)
- A L Peters
- Laboratory of Experimental Intensive Care and Anesthesia, Academic Medical Center, Amsterdam, The Netherlands; Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands; Department Product and Process Development, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - E K van de Weerdt
- Laboratory of Experimental Intensive Care and Anesthesia, Academic Medical Center, Amsterdam, The Netherlands; Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands; Department Product and Process Development, Sanquin Blood Supply, Amsterdam, The Netherlands.
| | - F Prinsze
- Department of Donor Studies, Sanquin Research, Amsterdam, The Netherlands
| | - D de Korte
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands; Department Product and Process Development, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - N P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesia, Academic Medical Center, Amsterdam, The Netherlands; Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands; Department Product and Process Development, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - A P J Vlaar
- Laboratory of Experimental Intensive Care and Anesthesia, Academic Medical Center, Amsterdam, The Netherlands; Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands; Department Product and Process Development, Sanquin Blood Supply, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Thielen AJF, Meulenbroek EM, Baas I, Bruggen R, Zeerleder SS, Wouters D. Complement Deposition and IgG Binding on Stored Red Blood Cells Are Independent of Storage Time. Transfus Med Hemother 2018; 45:378-384. [PMID: 30574054 DOI: 10.1159/000486759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
Background In the Netherlands, red blood cells (RBCs) are allowed to be stored up to 35 days at 2-6 °C in saline-adenine-glucose-mannitol (SAGM). During storage, RBCs undergo several changes that are collectively known as storage lesion. We investigated to what extent complement deposition and antibody binding occurred during RBC storage and investigated phagocytic uptake in vitro. Methods RBCs were stored for different lengths of time at 2-6 °C in SAGM. Complement deposition and antibody binding were assessed upon storage and after incubation with serum. M1- and M2-type macrophages were generated from blood monocytes to investigate RBC phagocytosis. Results No complement deposition was directly observed on stored RBCs, while incubation of RBCs with serum resulted in variable donor-dependent C3 deposition and IgG binding, both independent of storage time. Only 1-4% phagocytosis of stored RBCs by macrophages was observed. Conclusion RBCs are susceptible to complement deposition and antibody binding independent of storage time. Limited phagocytic uptake by macrophages was observed in vitro.
Collapse
Affiliation(s)
- Astrid J F Thielen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | | | - Inge Baas
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Robin Bruggen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Sacha S Zeerleder
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Kanias T, Stone M, Page GP, Guo Y, Endres-Dighe SM, Lanteri MC, Spencer BR, Cable RG, Triulzi DJ, Kiss JE, Murphy EL, Kleinman S, Gladwin MT, Busch MP, Mast AE. Frequent blood donations alter susceptibility of red blood cells to storage- and stress-induced hemolysis. Transfusion 2018; 59:67-78. [PMID: 30474858 DOI: 10.1111/trf.14998] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/14/2018] [Accepted: 05/27/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Frequent whole blood donations increase the prevalence of iron depletion in blood donors, which may subsequently interfere with normal erythropoiesis. The purpose of this study was to evaluate the associations between donation frequency and red blood cell (RBC) storage stability in a racially/ethnically diverse population of blood donors. STUDY DESIGN Leukoreduced RBC concentrate-derived samples from 13,403 donors were stored for 39 to 42 days (1-6°C) and then evaluated for storage, osmotic, and oxidative hemolysis. Iron status was evaluated by plasma ferritin measurement and self-reported intake of iron supplements. Donation history in the prior 2 years was obtained for each subject. RESULTS Frequent blood donors enrolled in this study were likely to be white, male, and of older age (56.1 ± 5.0 years). Prior donation intensity was negatively associated with oxidative hemolysis (p < 0.0001) in multivariate analyses correcting for age, sex, and race/ethnicity. Increased plasma ferritin concentration was associated with increased RBC susceptibility to each of the three measures of hemolysis (p < 0.0001 for all), whereas self-reported iron intake was associated with reduced susceptibility to osmotic and oxidative hemolysis (p < 0.0001 for both). CONCLUSIONS Frequent blood donations may alter the quality of blood components by modulating RBC predisposition to hemolysis. RBCs collected from frequent donors with low ferritin have altered susceptibility to hemolysis. Thus, frequent donation and associated iron loss may alter the quality of stored RBC components collected from iron-deficient donors. Further investigation is necessary to assess posttransfusion safety and efficacy in patients receiving these RBC products.
Collapse
Affiliation(s)
- Tamir Kanias
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mars Stone
- Blood Systems Research Institute, San Francisco, and Department of Laboratory Medicine, University of California, San Francisco, California
| | | | - Yuelong Guo
- RTI International, Research Triangle Park, North Carolina
| | | | - Marion C Lanteri
- Blood Systems Research Institute, San Francisco, and Department of Laboratory Medicine, University of California, San Francisco, California
| | | | | | - Darrell J Triulzi
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,The Institute for Transfusion Medicine, Pittsburgh, Pennsylvania
| | - Joseph E Kiss
- The Institute for Transfusion Medicine, Pittsburgh, Pennsylvania
| | - Edward L Murphy
- Blood Systems Research Institute, San Francisco, and Department of Laboratory Medicine, University of California, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael P Busch
- Blood Systems Research Institute, San Francisco, and Department of Laboratory Medicine, University of California, San Francisco, California
| | - Alan E Mast
- Blood Research Institute, Blood Center of Wisconsin, and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee
| | | |
Collapse
|