1
|
Zaharieva MM, Foka P, Karamichali E, Kroumov AD, Philipov S, Ilieva Y, Kim TC, Podlesniy P, Manasiev Y, Kussovski V, Georgopoulou U, Najdenski HM. Photodynamic Inactivation of Bovine Coronavirus with the Photosensitizer Toluidine Blue O. Viruses 2023; 16:48. [PMID: 38257748 PMCID: PMC10818719 DOI: 10.3390/v16010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Coronaviruses (CoVs) belong to the group of enveloped positive-sense single-strand RNA viruses and are causative agents of respiratory, gastro-intestinal, and central nervous systems diseases in many host species, i.e., birds, mammals, and humans. Beta-CoVs revealed a great potential to cross the barrier between species by causing three epidemics/pandemics among humans in the 21st century. Considering the urgent need for powerful antiviral agents for decontamination, prevention, and treatment of BCoV infections, we turned our attention to the possibility of photodynamic inactivation with photosensitizers in combination with light irradiation. In the present study, we evaluated, for the first time, the antiviral activity of toluidine blue O (TBO) against Beta-coronavirus 1 (BCoV) in comparison to methylene blue (MB). First, we determined the in vitro cytotoxicity of MB and TBO on the Madin-Darby bovine kidney (MDBK) cell line with ISO10993-5/Annex C. Thereafter, BCoV was propagated in MDBK cells, and the virus titer was measured with digital droplet PCR, TCID50 assay and plaque assay. The antiviral activity of non-toxic concentrations of TBO was estimated using the direct inactivation approach. All effects were calculated in MAPLE 15® mathematical software by developing programs for non-linear modeling and response surface analysis. The median inhibitory concentration (IC50) of TBO after 72 h of incubation in MDBK cells was 0.85 µM. The antiviral activity of TBO after the direct inactivation of BCoV (MOI = 1) was significantly stronger than that of MB. The median effective concentration (EC50) of TBO was 0.005 µM. The cytopathic effect decreased in a concentration-dependent manner, from 0.0025 to 0.01 µM, and disappeared fully at concentrations between 0.02 and 0.3 µM of TBO. The number of virus particles also decreased, depending on the concentration applied, as proven by ddPCR analysis. In conclusion, TBO exhibits significant potential for direct inactivation of BCoV in vitro, with a very high selectivity index, and should be subjected to further investigation, aiming at its application in veterinary and/or human medical practice.
Collapse
Affiliation(s)
- Maya Margaritova Zaharieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Pelagia Foka
- Department of Microbiology, Laboratory of Molecular Virology, Hellenic Institute Pasteur, Vasilissis Sofias 127, 11521 Athens, Greece; (P.F.); (E.K.)
| | - Eirini Karamichali
- Department of Microbiology, Laboratory of Molecular Virology, Hellenic Institute Pasteur, Vasilissis Sofias 127, 11521 Athens, Greece; (P.F.); (E.K.)
| | - Alexander Dimitrov Kroumov
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Stanislav Philipov
- Chair Human Anatomy, Histology, General and Clinical Pathology and Forensic Medicine, Faculty of Medicine, Hospital Lozenetz, Sofia University “St. Kliment Ohridski”, 2 Kozyak Str., 1407 Sofia, Bulgaria;
| | - Yana Ilieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Tanya Chan Kim
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Petar Podlesniy
- Institute of Biomedical Research of Barcelona, CSIC, Rosselló, 161, 7ª Planta, 08036 Barcelona, Spain;
| | - Yordan Manasiev
- Evgeni Budevski Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vesselin Kussovski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Urania Georgopoulou
- Department of Microbiology, Laboratory of Molecular Virology, Hellenic Institute Pasteur, Vasilissis Sofias 127, 11521 Athens, Greece; (P.F.); (E.K.)
| | - Hristo Miladinov Najdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| |
Collapse
|
2
|
Kovalenko I, Kholina E, Fedorov V, Khruschev S, Vasyuchenko E, Meerovich G, Strakhovskaya M. Interaction of Methylene Blue with Severe Acute Respiratory Syndrome Coronavirus 2 Envelope Revealed by Molecular Modeling. Int J Mol Sci 2023; 24:15909. [PMID: 37958892 PMCID: PMC10650479 DOI: 10.3390/ijms242115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Methylene blue has multiple antiviral properties against Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2). The ability of methylene blue to inhibit different stages of the virus life cycle, both in light-independent and photodynamic processes, is used in clinical practice. At the same time, the molecular aspects of the interactions of methylene blue with molecular components of coronaviruses are not fully understood. Here, we use Brownian dynamics to identify methylene blue binding sites on the SARS-CoV-2 envelope. The local lipid and protein composition of the coronavirus envelope plays a crucial role in the binding of this cationic dye. Viral structures targeted by methylene blue include the S and E proteins and negatively charged lipids. We compare the obtained results with known experimental data on the antiviral effects of methylene blue to elucidate the molecular basis of its activity against coronaviruses.
Collapse
Affiliation(s)
- Ilya Kovalenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
- Scientific and Educational Mathematical Center «Sofia Kovalevskaya Northwestern Center for Mathematical Research», Pskov State University, Pskov 180000, Russia
| | - Ekaterina Kholina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Vladimir Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Sergei Khruschev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Ekaterina Vasyuchenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Gennady Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University “MEPHI”, Moscow 115409, Russia
| | - Marina Strakhovskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| |
Collapse
|
3
|
Pollak NM, Olsson M, Ahmed M, Tan J, Lim G, Setoh YX, Wong JCC, Lai YL, Hobson-Peters J, Macdonald J, McMillan D. Rapid Diagnostic Tests for the Detection of the Four Dengue Virus Serotypes in Clinically Relevant Matrices. Microbiol Spectr 2023; 11:e0279622. [PMID: 36682882 PMCID: PMC9927141 DOI: 10.1128/spectrum.02796-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. The identification of specific dengue virus serotype 1 (DENV-1) to DENV-4 can help in understanding the transmission dynamics and spread of dengue disease. The four rapid low-resource serotype-specific dengue tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. Results are obtained directly from clinical sample matrices in 35 min, requiring only a heating block and pipettes for liquid handling. In addition, we demonstrate that the rapid sample preparation step inactivates DENV, improving laboratory safety. Human plasma and serum were spiked with DENV, and DENV was detected with analytical sensitivities of 333 to 22,500 median tissue culture infectious doses (TCID50)/mL. The analytical sensitivities in blood were 94,000 to 333,000 TCID50/mL. Analytical specificity testing confirmed that each test could detect multiple serotype-specific strains but did not respond to strains of other serotypes, closely related flaviviruses, or chikungunya virus. Clinical testing on 80 human serum samples demonstrated test specificities of between 94 and 100%, with a DENV-2 test sensitivity of 100%, detecting down to 0.004 PFU/μL, similar to the sensitivity of the PCR test; the other DENV tests detected down to 0.03 to 10.9 PFU/μL. Collectively, our data suggest that some of our rapid dengue serotyping tests provide a potential alternative to conventional labor-intensive RT-quantitative PCR (RT-qPCR) detection, which requires expensive thermal cycling instrumentation, technical expertise, and prolonged testing times. Our tests provide performance and speed without compromising specificity in human plasma and serum and could become promising tools for the detection of high DENV loads in resource-limited settings. IMPORTANCE The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. This study describes the evaluation of four rapid low-resource serotype-specific dengue tests for the detection of specific DENV serotypes in clinical sample matrices. The tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. These tests have several advantages compared to RT-qPCR detection, such as a simple workflow, rapid sample processing and turnaround times (35 min from sample preparation to detection), minimal equipment needs, and improved laboratory safety through the inactivation of the virus during the sample preparation step. The low-resource formats of these rapid dengue serotyping tests have the potential to support effective dengue disease surveillance and enhance the diagnostic testing capacity in resource-limited countries with both endemic dengue and intense coronavirus disease 2019 (COVID-19) transmission.
Collapse
Affiliation(s)
- Nina M. Pollak
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- DMTC Ltd., Kew, Victoria, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Malin Olsson
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- DMTC Ltd., Kew, Victoria, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Madeeha Ahmed
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Javier Tan
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - George Lim
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Yin Xiang Setoh
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | | - Yee Ling Lai
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Joanne Macdonald
- DMTC Ltd., Kew, Victoria, Australia
- BioCifer Pty. Ltd., Brisbane, Queensland, Australia
| | - David McMillan
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- DMTC Ltd., Kew, Victoria, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
4
|
Effect of ultrasound with methylene blue as sound sensitive agent on virus inactivation. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
5
|
Giménez-Richarte Á, Ortiz de Salazar MI, Giménez-Richarte MP, Collado M, Fernández PL, Clavijo C, Navarro L, Arbona C, Marco P, Ramos-Rincon JM. Transfusion-transmitted arboviruses: Update and systematic review. PLoS Negl Trop Dis 2022; 16:e0010843. [PMID: 36201547 PMCID: PMC9578600 DOI: 10.1371/journal.pntd.0010843] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/18/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The detection of the first cases of transfusion-transmitted West Nile virus in 2002 posed a new challenge for transfusion safety. Institutions like the World Health Organization have stated that blood transfusion centers need to know the epidemiology of the different emerging infectious agents and their impact on blood transfusion. The aim of the study is to review the published cases of arbovirus transmission through transfusion of blood or blood components and to analyze their main clinical and epidemiological characteristics. MATERIAL AND METHODS Systematic literature searches were conducted in MEDLINE, Embase and Scopus. Pairs of review authors selected a variety of scientific publications reporting cases of transfusion-transmitted arboviruses. Main clinical and epidemiological characteristics were reviewed of the cases described. The study protocol was registered in PROSPERO CRD42021270355. RESULTS A total of 74 cases of transfusion-transmitted infections were identified from 10 arboviruses: West Nile virus (n = 42), dengue virus (n = 18), Zika virus (n = 3), yellow fever vaccine virus (n = 3), tick-borne encephalitis virus (n = 2), Japanese encephalitis virus (n = 2), Powassan virus (n = 1), St. Louis encephalitis virus (n = 1), Ross River virus (n = 1) and Colorado tick fever virus (n = 1). The blood component most commonly involved was red blood cells (N = 35, 47.3%; 95% confidence interval [CI] 35.9% to 58.7%). In 54.1% (N = 40; 95% CI: 42.7%-65.47%) of the cases, the recipient was immunosuppressed. Transmission resulted in death in 18.9% (N = 14; 95% CI: 10.0%-27.8%) of the recipients. In addition, 18 additional arboviruses were identified with a potential threat to transfusion safety. DISCUSSION In the last 20 years, the number of published cases of transfusion-transmitted arboviruses increased notably, implicating new arboviruses. In addition, a significant number of arboviruses that may pose a threat to transfusion safety were detected. In the coming years, it is expected that transmission of arboviruses will continue to expand globally. It is therefore essential that all responsible agencies prepare for this potential threat to transfusion safety.
Collapse
Affiliation(s)
| | | | | | - Miriam Collado
- Valencian Community Blood Transfusion Center, Valencia, Spain
| | | | - Carlos Clavijo
- Valencian Community Blood Transfusion Center, Valencia, Spain
| | - Laura Navarro
- Valencian Community Blood Transfusion Center, Valencia, Spain
| | - Cristina Arbona
- Valencian Community Blood Transfusion Center, Valencia, Spain
| | - Pascual Marco
- Service of Hematology, General- University Hospital of Alicante-ISABIAL. Alicante, Spain
- Clinical Medicine Department, Miguel Hernandez University of Elche, Alicante, Spain
| | | |
Collapse
|
6
|
Hoad VC, Kiely P, Seed CR, Viennet E, Gosbell IB. An Outbreak of Japanese Encephalitis Virus in Australia; What Is the Risk to Blood Safety? Viruses 2022; 14:1935. [PMID: 36146742 PMCID: PMC9501196 DOI: 10.3390/v14091935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
A widespread outbreak of Japanese encephalitis virus (JEV) was detected in mainland Australia in 2022 in a previous non-endemic area. Given JEV is known to be transfusion-transmissible, a rapid blood-safety risk assessment was performed using a simple deterministic model to estimate the risk to blood safety over a 3-month outbreak period during which 234,212 donors attended. The cumulative estimated incidence in donors was 82 infections with an estimated 4.26 viraemic components issued, 1.58 resulting in transfusion-transmission and an estimated risk of encephalitis of 1 in 4.3 million per component transfused over the risk period. Australia has initiated a robust public health response, including vector control, animal control and movement, and surveillance. Unlike West Nile virus, there is an effective vaccine that is being rolled-out to those at higher risk. Risk evaluation considered options such as restricting those potentially at risk to plasma for fractionation, which incorporates additional pathogen reduction, introducing a screening test, physicochemical pathogen reduction, quarantine, post donation illness policy changes and a new donor deferral. However, except for introducing a new deferral to potentially cover rare flavivirus risks, no option resulted in a clear risk reduction benefit but all posed threats to blood sufficiency or cost. Therefore, the blood safety risk was concluded to be tolerable without specific mitigations.
Collapse
Affiliation(s)
- Veronica C. Hoad
- Clinical Services and Research, Australian Red Cross Lifeblood, West Melbourne, VIC 3003, Australia
| | - Philip Kiely
- Clinical Services and Research, Australian Red Cross Lifeblood, West Melbourne, VIC 3003, Australia
| | - Clive R. Seed
- Clinical Services and Research, Australian Red Cross Lifeblood, West Melbourne, VIC 3003, Australia
| | - Elvina Viennet
- Clinical Services and Research, Australian Red Cross Lifeblood, West Melbourne, VIC 3003, Australia
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Iain B. Gosbell
- Clinical Services and Research, Australian Red Cross Lifeblood, West Melbourne, VIC 3003, Australia
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
7
|
Translational feasibility and efficacy of nasal photodynamic disinfection of SARS-CoV-2. Sci Rep 2022; 12:14438. [PMID: 36002557 PMCID: PMC9400568 DOI: 10.1038/s41598-022-18513-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
The lack of therapeutic options to fight Covid-19 has contributed to the current global pandemic. Despite the emergence of effective vaccines, development of broad-spectrum antiviral treatment remains a significant challenge, in which antimicrobial photodynamic therapy (aPDT) may play a role, especially at early stages of infection. aPDT of the nares with methylene blue (MB) and non-thermal light has been successfully utilized to inactivate both bacterial and viral pathogens in the perioperative setting. Here, we investigated the effect of MB-aPDT to inactivate human betacoronavirus OC43 and SARS-CoV-2 in vitro and in a proof-of-principle COVID-19 clinical trial to test, in a variety of settings, the practicality, technical feasibility, and short-term efficacy of the method. aPDT yielded inactivation of up to 6-Logs in vitro, as measured by RT-qPCR and infectivity assay. From a photo-physics perspective, the in vitro results suggest that the response is not dependent on the virus itself, motivating potential use of aPDT for local destruction of SARS-CoV-2 and its variants. In the clinical trial we observed variable effects on viral RNA in nasal-swab samples as assessed by RT-qPCR attributed to aPDT-induced RNA fragmentation causing falsely-elevated counts. However, the viral infectivity in clinical nares swabs was reduced in 90% of samples and undetectable in 70% of samples. This is the first demonstration based on quantitative clinical viral infectivity measurements that MB-aPDT is a safe, easily delivered and effective front-line technique that can reduce local SARS-CoV-2 viral load.
Collapse
|
8
|
Elveborg S, Monteil VM, Mirazimi A. Methods of Inactivation of Highly Pathogenic Viruses for Molecular, Serology or Vaccine Development Purposes. Pathogens 2022; 11:271. [PMID: 35215213 PMCID: PMC8879476 DOI: 10.3390/pathogens11020271] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022] Open
Abstract
The handling of highly pathogenic viruses, whether for diagnostic or research purposes, often requires an inactivation step. This article reviews available inactivation techniques published in peer-reviewed journals and their benefits and limitations in relation to the intended application. The bulk of highly pathogenic viruses are represented by enveloped RNA viruses belonging to the Togaviridae, Flaviviridae, Filoviridae, Arenaviridae, Hantaviridae, Peribunyaviridae, Phenuiviridae, Nairoviridae and Orthomyxoviridae families. Here, we summarize inactivation methods for these virus families that allow for subsequent molecular and serological analysis or vaccine development. The techniques identified here include: treatment with guanidium-based chaotropic salts, heat inactivation, photoactive compounds such as psoralens or 1.5-iodonaphtyl azide, detergents, fixing with aldehydes, UV-radiation, gamma irradiation, aromatic disulfides, beta-propiolacton and hydrogen peroxide. The combination of simple techniques such as heat or UV-radiation and detergents such as Tween-20, Triton X-100 or Sodium dodecyl sulfate are often sufficient for virus inactivation, but the efficiency may be affected by influencing factors including quantity of infectious particles, matrix constitution, pH, salt- and protein content. Residual infectivity of the inactivated virus could have disastrous consequences for both laboratory/healthcare personnel and patients. Therefore, the development of inactivation protocols requires careful considerations which we review here.
Collapse
Affiliation(s)
- Simon Elveborg
- Department of Clinical Microbiology, Uppsala University Hospital, 751 85 Uppsala, Sweden;
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Vanessa M. Monteil
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
| | - Ali Mirazimi
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
- National Veterinary Institute, 751 89 Uppsala, Sweden
| |
Collapse
|
9
|
In Vitro Evaluation of the Antiviral Activity of Methylene Blue Alone or in Combination against SARS-CoV-2. J Clin Med 2021; 10:jcm10143007. [PMID: 34300178 PMCID: PMC8307868 DOI: 10.3390/jcm10143007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022] Open
Abstract
A new severe acute respiratory syndrome coronavirus (SARS-CoV-2) causing coronavirus diseases 2019 (COVID-19), which emerged in Wuhan, China in December 2019, has spread worldwide. Currently, very few treatments are officially recommended against SARS-CoV-2. Identifying effective, low-cost antiviral drugs with limited side effects that are affordable immediately is urgently needed. Methylene blue, a synthesized thiazine dye, may be a potential antiviral drug. Antiviral activity of methylene blue used alone or in combination with several antimalarial drugs or remdesivir was assessed against infected Vero E6 cells infected with two clinically isolated SARS-CoV-2 strains (IHUMI-3 and IHUMI-6). Effects both on viral entry in the cell and on post-entry were also investigated. After 48 h post-infection, the viral replication was estimated by RT-PCR. The median effective concentration (EC50) and 90% effective concentration (EC90) of methylene blue against IHUMI-3 were 0.41 ± 0.34 µM and 1.85 ± 1.41 µM, respectively; 1.06 ± 0.46 µM and 5.68 ± 1.83 µM against IHUMI-6. Methylene blue interacted at both entry and post-entry stages of SARS-CoV-2 infection in Vero E6 cells as retrieved for hydroxychloroquine. The effects of methylene blue were additive with those of quinine, mefloquine and pyronaridine. The combinations of methylene blue with chloroquine, hydroxychloroquine, desethylamodiaquine, piperaquine, lumefantrine, ferroquine, dihydroartemisinin and remdesivir were antagonist. These results support the potential interest of methylene blue to treat COVID-19.
Collapse
|
10
|
Gendrot M, Andreani J, Duflot I, Boxberger M, Le Bideau M, Mosnier J, Jardot P, Fonta I, Rolland C, Bogreau H, Hutter S, La Scola B, Pradines B. Methylene blue inhibits replication of SARS-CoV-2 in vitro. Int J Antimicrob Agents 2020; 56:106202. [PMID: 33075512 PMCID: PMC7566888 DOI: 10.1016/j.ijantimicag.2020.106202] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022]
Abstract
In December 2019, a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus diseases 2019 (COVID-19) emerged in Wuhan, China. Currently there is no antiviral treatment recommended against SARS-CoV-2. Identifying effective antiviral drugs is urgently required. Methylene blue has already demonstrated in vitro antiviral activity in photodynamic therapy as well as antibacterial, antifungal and antiparasitic activities in non-photodynamic assays. In this study. non-photoactivated methylene blue showed in vitro activity at very low micromolar range with an EC50 (median effective concentration) of 0.30 ± 0.03 μM and an EC90 (90% effective concentration) of 0.75 ± 0.21 μM at a multiplicity of infection (MOI) of 0.25 against SARS-CoV-2 (strain IHUMI-3). The EC50 and EC90 values for methylene blue are lower than those obtained for hydroxychloroquine (1.5 μM and 3.0 μM) and azithromycin (20.1 μM and 41.9 μM). The ratios Cmax/EC50 and Cmax/EC90 in blood for methylene blue were estimated at 10.1 and 4.0, respectively, following oral administration and 33.3 and 13.3 following intravenous administration. Methylene blue EC50 and EC90 values are consistent with concentrations observed in human blood. We propose that methylene blue is a promising drug for treatment of COVID-19. In vivo evaluation in animal experimental models is now required to confirm its antiviral effects on SARS-CoV-2. The potential interest of methylene blue to treat COVID-19 needs to be confirmed by prospective comparative clinical studies.
Collapse
Affiliation(s)
- Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix-Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Julien Andreani
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Isabelle Duflot
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Manon Boxberger
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Marion Le Bideau
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix-Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Priscilla Jardot
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix-Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Clara Rolland
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Hervé Bogreau
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix-Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Sébastien Hutter
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France.
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France; Centre National de Référence du Paludisme, Marseille, France.
| |
Collapse
|
11
|
Rustanti L, Hobson-Peters J, Colmant AMG, Hall RA, Young PR, Reichenberg S, Tolksdorf F, Sumian C, Gravemann U, Seltsam A, Marks DC, Faddy HM. Inactivation of Japanese encephalitis virus in plasma by methylene blue combined with visible light and in platelet concentrates by ultraviolet C light. Transfusion 2020; 60:2655-2660. [PMID: 32830340 DOI: 10.1111/trf.16021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
Japanese encephalitis virus (JEV) is endemic to tropical areas in Asia and the Western Pacific. It can cause fatal encephalitis, although most infected individuals are asymptomatic. JEV is mainly transmitted to humans through the bite of an infected mosquito, but can also be transmitted through blood transfusion. To manage the potential risk of transfusion transmission, pathogen inactivation (PI) technologies, such as THERAFLEX MB-Plasma and THERAFLEX UV-Platelets systems, have been developed. We examined the efficacy of these two PI systems to inactivate JEV. STUDY DESIGN AND METHODS Japanese encephalitis virus-spiked plasma units were treated using the THERAFLEX MB-Plasma system (visible light doses, 20, 40, 60, and 120 [standard] J/cm2) in the presence of methylene blue at approximately 0.8 μmol/L and spiked platelet concentrates (PCs) were treated using the THERAFLEX UV-Platelets system (UVC doses, 0.05, 0.10, 0.15, and 0.20 [standard] J/cm2). Samples were taken before the first and after each illumination dose and tested for infectivity using an immunoplaque assay. RESULTS Treatment of plasma with the THERAFLEX MB-Plasma system resulted in an average of 6.59 log reduction in JEV infectivity at one-sixth of the standard visible light dose (20 J/cm2). For PCs, treatment with the THERAFLEX UV-Platelet system resulted in an average of 7.02 log reduction in JEV infectivity at the standard UVC dose (0.20 J/cm2). CONCLUSIONS The THERAFLEX MB-Plasma and THERAFLEX UV-Platelets systems effectively inactivated JEV in plasma or PCs, and thus these PI technologies could be an effective option to reduce the risk of JEV transfusion transmission.
Collapse
Affiliation(s)
- Lina Rustanti
- Research and Development, Australian Red Cross Lifeblood, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Ute Gravemann
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Australia
| | - Helen M Faddy
- Research and Development, Australian Red Cross Lifeblood, Australia.,School of Health and Sport Sciences, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
12
|
Generation and characterization of Japanese encephalitis virus expressing GFP reporter gene for high throughput drug screening. Antiviral Res 2020; 182:104884. [PMID: 32750466 PMCID: PMC7395821 DOI: 10.1016/j.antiviral.2020.104884] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Japanese encephalitis virus (JEV), a major cause of Japanese encephalitisis, is an arbovirus that belongs to the genus Flavivirus of the family Flaviviridae. Currently, there is no effective drugs available for the treatment of JEV infection. Therefore, it is important to establish efficient antiviral screening system for the development of antiviral drugs. In this study, we constructed a full-length infectious clone of eGFP-JEV reporter virus by inserting the eGFP gene into the capsid-coding region of the viral genome. The reporter virus RNA transfected-BHK-21 cells generated robust eGFP fluorescence signals that were correlated well with viral replication. The reporter virus displayed growth kinetics similar to wild type (WT) virus although replicated a little slower. Using a known JEV inhibitor, NITD008, we demonstrated that the reporter virus could be used to identify inhibitors against JEV. Furthermore, an eGFP-JEV-based high throughput screening (HTS) assay was established in a 96-well format and used for screening of 1443 FDA-approved drugs. Sixteen hit drugs were identified to be active against JEV. Among them, five compounds which are lonafarnib, cetylpyridinium chlorid, cetrimonium bromide, nitroxoline and hexachlorophene, are newly discovered inhibitors of JEV, providing potential new therapies for treatment of JEV infection.
Collapse
|
13
|
Arroyo JL, Martínez E, Amunárriz C, Muñoz C, Romón I, Álvarez I, García JM. Methylene blue-treated plasma, versus quarantine fresh frozen plasma, for acute thrombotic thrombocytopenic purpura treatment: Comparison between centres and critical review on longitudinal data. Transfus Apher Sci 2020; 59:102771. [PMID: 32605805 PMCID: PMC7152885 DOI: 10.1016/j.transci.2020.102771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 03/23/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022]
Abstract
Introduction Therapeutic plasma exchange (TPE) is the first-line treatment for acute thrombotic thrombocytopenic purpura (TTP). Methylene blue-plasma (MBP) has been used for over 20 years, but its efficacy in this setting remains controversial. Patients and methods: this is a comparative analysis of the experience of two Centres, with different plasma products, to evaluate their efficacy in TTP. One centre used quarantine plasma (QP), and MBP the other. We performed a retrospective longitudinal study, analysing the clinical files of TTP patients of a 13-year data evaluation period. Duration of treatment and transfusion parameters, medical record, laboratory testing, concomitant medication, and survival rate, were assessed for every episode. Results During the study period, 12 (55.5 %) and 10 (45.5 %) new cases were treated with QP and MBP, respectively. There were no significant differences between the mean numbers of TPE processes, days elapsed from diagnosis to TPE, and plasma volume transfused. The QP TPE episodes of treatment were significantly associated with an increased time to recovery compared with MBP episodes of treatment (p = 0.004). Conclusion MBP was as effective as QP in the treatment of TTP patients. Since recovery was more favourable when MBP was used, we consider MBP remains a suitable alternative to treat TTP patients.
Collapse
Affiliation(s)
| | - Eva Martínez
- Servicio de Transfusión, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Carmen Muñoz
- Centro Comunitario de Sangre y Tejidos de Asturias, Oviedo, Spain
| | - Iñigo Romón
- Servicio de Transfusión, Hospital Marqués de Valdecilla, Santander, Spain
| | | | - José María García
- Servicio de Transfusión, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
14
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
15
|
Faddy HM, Fryk JJ, Hall RA, Young PR, Reichenberg S, Tolksdorf F, Sumian C, Gravemann U, Seltsam A, Marks DC. Inactivation of yellow fever virus in plasma after treatment with methylene blue and visible light and in platelet concentrates following treatment with ultraviolet C light. Transfusion 2019; 59:2223-2227. [PMID: 31050821 DOI: 10.1111/trf.15332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Yellow fever virus (YFV) is endemic to tropical and subtropical areas in South America and Africa, and is currently a major public health threat in Brazil. Transfusion transmission of the yellow fever vaccine virus has been demonstrated, which is indicative of the potential for viral transfusion transmission. An approach to manage the potential YFV transfusion transmission risk is the use of pathogen inactivation (PI) technology systems, such as THERAFLEX MB-Plasma and THERAFLEX UV-Platelets (Macopharma). We aimed to investigate the efficacy of these PI technology systems to inactivate YFV in plasma or platelet concentrates (PCs). STUDY DESIGN AND METHODS YFV spiked plasma units were treated using THERAFLEX MB-Plasma system (visible light doses: 20, 40, 60, and 120 [standard] J/cm2 ) in the presence of methylene blue (approx. 0.8 μmol/L) and spiked PCs were treated using THERAFLEX UV-Platelets system (ultraviolet C doses: 0.05, 0.10, 0.15, and 0.20 [standard] J/cm2 ). Samples were taken before the first and after each illumination dose and tested for residual virus using a modified plaque assay. RESULTS YFV infectivity was reduced by an average of 4.77 log or greater in plasma treated with the THERAFLEX MB-Plasma system and by 4.8 log or greater in PCs treated with THERAFLEX UV-Platelets system. CONCLUSIONS Our study suggests the THERAFLEX MB-Plasma and the THERAFLEX UV-Platelets systems can efficiently inactivate YFV in plasma or PCs to a similar degree as that for other arboviruses. Given the reduction levels observed in this study, these PI technology systems could be an effective option for managing YFV transfusion-transmission risk in plasma and PCs.
Collapse
Affiliation(s)
- Helen M Faddy
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jesse J Fryk
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Ute Gravemann
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Denese C Marks
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Aubry M, Laughhunn A, Santa Maria F, Lanteri MC, Stassinopoulos A, Musso D. Amustaline (S-303) treatment inactivates high levels of Chikungunya virus in red-blood-cell components. Vox Sang 2018; 113:232-241. [PMID: 29314033 DOI: 10.1111/vox.12626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Chikungunya virus (CHIKV) infections have been reported in all continents, and the potential risk for CHIKV transfusion-transmitted infections (TTIs) was demonstrated by the detection of CHIKV RNA-positive donations in several countries. TTIs can be reduced by pathogen inactivation (PI) of blood products. In this study, we evaluated the efficacy of amustaline and glutathione (S-303/GSH) to inactivate CHIKV in red-blood-cell concentrates (RBCs). MATERIAL AND METHODS Red-blood-cells were spiked with high level of CHIKV. Infectious titres and RNA loads were measured before and after PI treatment. Residual CHIKV infectivity was also assessed after five successive cell culture passages. RESULTS The mean CHIKV titres in RBCs before inactivation was 5·81 ± 0·18 log10 50% tissue culture infectious dose (TCID50 )/mL, and the mean viral RNA load was 10·49 ± 0·15 log10 genome equivalent (GEq)/mL. No CHIKV TCID was detected after S-303 treatment nor was replicative CHIKV particles and viral RNA present after five cell culture passages of samples obtained immediately after S-303 treatment. CONCLUSION Chikungunya virus was previously shown to be inactivated by the PI technology using amotosalen and ultraviolet A light for the treatment of plasma and platelets. This new study demonstrates that S-303/GSH can inactivate high titres of CHIKV in RBCs.
Collapse
Affiliation(s)
- M Aubry
- Pôle de recherche et de veille sur les maladies infectieuses émergentes, Institut Louis Malardé, Tahiti, French Polynesia.,Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | | | | | | | | | - D Musso
- Pôle de recherche et de veille sur les maladies infectieuses émergentes, Institut Louis Malardé, Tahiti, French Polynesia.,Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| |
Collapse
|
17
|
Fryk JJ, Marks DC, Hobson-Peters J, Watterson D, Hall RA, Young PR, Reichenberg S, Tolksdorf F, Sumian C, Gravemann U, Seltsam A, Faddy HM. Reduction of Zika virus infectivity in platelet concentrates after treatment with ultraviolet C light and in plasma after treatment with methylene blue and visible light. Transfusion 2017; 57:2677-2682. [PMID: 28718518 DOI: 10.1111/trf.14256] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Zika virus (ZIKV) has emerged as a potential threat to transfusion safety worldwide. Pathogen inactivation is one approach to manage this risk. In this study, the efficacy of the THERAFLEX UV-Platelets system and THERAFLEX MB-Plasma system to inactivate ZIKV in platelet concentrates (PCs) and plasma was investigated. STUDY DESIGN AND METHODS PCs spiked with ZIKV were treated with the THERAFLEX UV-Platelets system at 0.05, 0.10, 0.15, and 0.20 J/cm2 UVC. Plasma spiked with ZIKV was treated with the THERAFLEX MB-Plasma system at 20, 40, 60, and 120 J/cm2 light at 630 nm with at least 0.8 µmol/L methylene blue (MB). Samples were taken before the first and after each illumination dose and tested for residual virus. For each system the level of viral reduction was determined. RESULTS Treatment of PCs with THERAFLEX UV-Platelets system resulted in a mean of 5 log reduction in ZIKV infectivity at the standard UVC dose (0.20 J/cm2 ), with dose dependency observed with increasing UVC dose. For plasma treated with MB and visible light, ZIKV infectivity was reduced by a mean of at least 5.68 log, with residual viral infectivity reaching the detection limit of the assay at 40 J/cm2 (one-third the standard dose). CONCLUSIONS Our study demonstrates that the THERAFLEX UV-Platelets system and THERAFLEX MB-Plasma system can reduce ZIKV infectivity in PCs and pooled plasma to the detection limit of the assays used. These findings suggest both systems have the capacity to be an effective option to manage potential ZIKV transfusion transmission risk.
Collapse
Affiliation(s)
- Jesse J Fryk
- Research and Development, Australian Red Cross Blood Service
| | - Denese C Marks
- Research and Development, Australian Red Cross Blood Service
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Ute Gravemann
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Helen M Faddy
- Research and Development, Australian Red Cross Blood Service.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Santa Maria F, Laughhunn A, Lanteri MC, Aubry M, Musso D, Stassinopoulos A. Inactivation of Zika virus in platelet components using amotosalen and ultraviolet A illumination. Transfusion 2017; 57:2016-2025. [DOI: 10.1111/trf.14161] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Maite Aubry
- Pôle de Recherche et de Veille sur les Maladies Infectieuses Émergentes, Institut Louis Malardé; Tahiti Polynésie Française
| | - Didier Musso
- Pôle de Recherche et de Veille sur les Maladies Infectieuses Émergentes, Institut Louis Malardé; Tahiti Polynésie Française
| | | |
Collapse
|
19
|
Ashshi AM, Alghamdi S, El-Shemi AG, Almdani S, Refaat B, Mohamed AM, Ghazi HO, Azhar EI, Al-Allaf FA. Seroprevalence of Asymptomatic Dengue Virus Infection and Its Antibodies Among Healthy/Eligible Saudi Blood Donors: Findings From Holy Makkah City. Virology (Auckl) 2017; 8:1-5. [PMID: 28469422 PMCID: PMC5348084 DOI: 10.1177/1178122x17691261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/08/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Threat to blood transfusion-transmitted dengue virus (DENV) and its antibodies has recently emerged worldwide. Dengue fever is an endemic disease in Saudi Arabia, particularly in its Western region. The aim of this study was to estimate the seroprevalence of asymptomatic DENV infection and its antibodies among eligible Saudi blood donors. METHODS Serum samples from 910 healthy/eligible adult male Saudi blood donors, who reside in Holy Makkah City of Saudi Arabia, were collected between March 2015 and August 2016 and screened for the detection of DENV nonstructural protein 1 (NS1) antigen and anti-DENV IgM and IgG antibodies using commercial enzyme-linked immunosorbent assay kits (Panbio, Brisbane, QLD, Australia). RESULTS Among the tested donors, 48 (5.3%) were seropositive for DENV-NS1 antigen, whereas 50 (5.5%) and 354 (38.9%) were seropositive for anti-DENV IgM and IgG antibodies, respectively. Seropositivity for DENV-NS1 antigen and/or anti-DENV IgM antibody among the tested donors reflects their ongoing asymptomatic viremic infectious stage with DENV during their donation time, whereas high prevalence of anti-DENV IgG seropositivity reflects the high endemicity of dengue disease in this region of Saudi Arabia. CONCLUSIONS These results show high prevalence of asymptomatic DENV infection and its antibodies among Saudi blood donors, raising the importance of establishing blood screening for dengue disease at different blood donation services and units in Saudi Arabia to improve the guarantee of blood transfusions and to control DENV dissemination.
Collapse
Affiliation(s)
- Ahmed M Ashshi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| | - Saad Alghamdi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| | - Adel G El-Shemi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sabir Almdani
- Immunology Unit, Regional Laboratory of Holy Makkah, Holy Makkah, Saudi Arabia
| | - Bassem Refaat
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| | - Amr M Mohamed
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, Saudi Arabia.,Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Hani O Ghazi
- Department of Medical Microbiology, College of Medicine, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| | - Esam I Azhar
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal A Al-Allaf
- Department of Human Genetics, College of Medicine, Umm Al-Qura University, Holy Makkah, Saudi Arabia
| |
Collapse
|
20
|
Mitigating the Risk of Transfusion-Transmitted Dengue in Australia. JOURNAL OF BLOOD TRANSFUSION 2016; 2016:3059848. [PMID: 27957384 PMCID: PMC5124463 DOI: 10.1155/2016/3059848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/16/2016] [Indexed: 12/16/2022]
Abstract
Dengue viruses (DENV 1–4) are a risk to transfusion safety, with several transfusion-transmitted (TT) cases reported globally. DENV 1–4 are endemic in over 100 countries, with seasonal outbreaks occurring in northeastern Australia. To mitigate TT-DENV risk in Australia, fresh blood components are not manufactured from donors returning from any area (domestic/overseas) with known dengue transmission. Alternatively, TT-DENV risk may be mitigated using an appropriate blood donor screening assay. We aimed to determine the rate of dengue infection in donors during dengue outbreaks in Australia. Plasma samples were collected from blood donors during local dengue outbreaks. All samples were tested for the presence of DENV RNA and selected samples were tested for DENV antigen (nonstructural protein 1, NS1) with two assays. No donors residing in high risk areas had detectable levels of DENV RNA or NS1 and no cases of DENV viremia were detected in blood donors residing in areas of Australia experiencing DENV outbreaks. Definitive conclusions could not be drawn from this study; however, the lack of detection of DENV RNA or antigen in donations suggests that the current risk of TT-DENV is low and maintaining the fresh component restriction for “at-risk” donors is appropriate.
Collapse
|