1
|
Bartolomeu M, Gomes TJ, Campos F, Vieira C, Loureiro S, Neves MGPMS, Faustino MAF, Gomes ATPC, Almeida A. Wastewater disinfection with photodynamic treatment and evaluation of its ecotoxicological effects. CHEMOSPHERE 2024; 361:142421. [PMID: 38797202 DOI: 10.1016/j.chemosphere.2024.142421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Research has demonstrated the presence of viruses in wastewater (WW), which can remain viable for a long period, posing potential health risks. Conventional WW treatment methods involving UV light, chlorine and ozone efficiently reduce microbial concentrations, however, they produce hazardous byproducts and microbial resistance that are detrimental to human health and the ecosystem. Hence, there is a need for novel disinfection techniques. Antimicrobial Photodynamic Inactivation (PDI) emerges as a promising strategy, utilizing photosensitizers (PS), light, and dioxygen to inactivate viruses. This study aims to assess the efficacy of PDI by testing methylene blue (MB) and the cationic porphyrin TMPyP as PSs, along a low energy consuming white light source (LED) at an irradiance of 50 mW/cm2, for the inactivation of bacteriophage Phi6. Phi6 serves as an enveloped RNA-viruses surrogate model in WW. PDI experiments were conducted in a buffer solution (PBS) and real WW matrices (filtered and non-filtered). Considering the environmental release of the treated effluents, this research also evaluated the ecotoxicity of the resulting solution (post-PDI treatment effluent) on the model organism Daphnia magna, following the Organisation for Economic Cooperation and Development (OECD) immobilization technical 202 guideline. Daphnids were exposed to WW containing the tested PS at different concentrations and dilutions (accounting for the dilution factor during WW release into receiving waters) over 48 h. The results indicate that PDI with MB efficiently inactivated the model virus in the different aqueous matrices, achieving reductions superior to 8 log10 PFU/mL, after treatments of 5 min in PBS and of ca. 90 min in WW. Daphnids survival increased when subjected to the PDI-treated WW with MB, considering the dilution factor. Overall, the effectiveness of PDI in eliminating viruses in WW, the fading of the toxic effects on daphnids after MB' irradiation and the rapid dilution effect upon WW release in the environment highlight the possibility of using MB in WW PDI-disinfection.
Collapse
Affiliation(s)
- Maria Bartolomeu
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal; Universidade Católica Portuguesa, Faculty of Dental Medicine (FMD), Center for Interdisciplinary Research in Health (CIIS), 3504-505, Viseu, Portugal.
| | - Thierry J Gomes
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal
| | - Fábio Campos
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal
| | - Cátia Vieira
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal
| | - Susana Loureiro
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal
| | - M Graça P M S Neves
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Amparo F Faustino
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana T P C Gomes
- Universidade Católica Portuguesa, Faculty of Dental Medicine (FMD), Center for Interdisciplinary Research in Health (CIIS), 3504-505, Viseu, Portugal
| | - Adelaide Almeida
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal.
| |
Collapse
|
2
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
3
|
Gravemann U, Engelmann M, Kinast V, Burkard T, Behrendt P, Schulze TJ, Todt D, Steinmann E. Hepatitis E virus is effectively inactivated by methylene blue plus light treatment. Transfusion 2022; 62:2200-2204. [PMID: 36125237 DOI: 10.1111/trf.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Photodynamic treatment with methylene blue (MB) and visible light is a well-established pathogen inactivation system for human plasma. This technique is routinely used in different countries. MB/light treatment was shown to inactivate several transfusion-transmittable viruses, but its efficiency for the inactivation of the quasi-enveloped hepatitis E virus (HEV) has not yet been investigated. MATERIALS AND METHODS Plasma units were spiked with cell culture-derived HEV and treated with the THERAFLEX MB-Plasma system using various light doses (30, 60, 90, and 120 J/cm2 ). HEV titers in pre- and post-treatment samples were determined by virus titration and a large-volume plating assay to improve the detection limit of the virus assay. RESULTS THERAFLEX MB-Plasma efficiently inactivated HEV in human plasma. Even the lowest light dose of 30 J/cm2 inactivated HEV down to the limit of detection, with a mean log reduction factor of greater than 2.4 for the total process. CONCLUSION Our study demonstrates that the THERAFLEX MB-Plasma system effectively inactivates HEV in human plasma.
Collapse
Affiliation(s)
- Ute Gravemann
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Michael Engelmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Volker Kinast
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.,Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Thomas Burkard
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Patrick Behrendt
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research, Hannover, Germany
| | | | - Daniel Todt
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.,German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany
| |
Collapse
|
4
|
Translational feasibility and efficacy of nasal photodynamic disinfection of SARS-CoV-2. Sci Rep 2022; 12:14438. [PMID: 36002557 PMCID: PMC9400568 DOI: 10.1038/s41598-022-18513-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
The lack of therapeutic options to fight Covid-19 has contributed to the current global pandemic. Despite the emergence of effective vaccines, development of broad-spectrum antiviral treatment remains a significant challenge, in which antimicrobial photodynamic therapy (aPDT) may play a role, especially at early stages of infection. aPDT of the nares with methylene blue (MB) and non-thermal light has been successfully utilized to inactivate both bacterial and viral pathogens in the perioperative setting. Here, we investigated the effect of MB-aPDT to inactivate human betacoronavirus OC43 and SARS-CoV-2 in vitro and in a proof-of-principle COVID-19 clinical trial to test, in a variety of settings, the practicality, technical feasibility, and short-term efficacy of the method. aPDT yielded inactivation of up to 6-Logs in vitro, as measured by RT-qPCR and infectivity assay. From a photo-physics perspective, the in vitro results suggest that the response is not dependent on the virus itself, motivating potential use of aPDT for local destruction of SARS-CoV-2 and its variants. In the clinical trial we observed variable effects on viral RNA in nasal-swab samples as assessed by RT-qPCR attributed to aPDT-induced RNA fragmentation causing falsely-elevated counts. However, the viral infectivity in clinical nares swabs was reduced in 90% of samples and undetectable in 70% of samples. This is the first demonstration based on quantitative clinical viral infectivity measurements that MB-aPDT is a safe, easily delivered and effective front-line technique that can reduce local SARS-CoV-2 viral load.
Collapse
|
5
|
In Vitro Evaluation of the Antiviral Activity of Methylene Blue Alone or in Combination against SARS-CoV-2. J Clin Med 2021; 10:jcm10143007. [PMID: 34300178 PMCID: PMC8307868 DOI: 10.3390/jcm10143007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022] Open
Abstract
A new severe acute respiratory syndrome coronavirus (SARS-CoV-2) causing coronavirus diseases 2019 (COVID-19), which emerged in Wuhan, China in December 2019, has spread worldwide. Currently, very few treatments are officially recommended against SARS-CoV-2. Identifying effective, low-cost antiviral drugs with limited side effects that are affordable immediately is urgently needed. Methylene blue, a synthesized thiazine dye, may be a potential antiviral drug. Antiviral activity of methylene blue used alone or in combination with several antimalarial drugs or remdesivir was assessed against infected Vero E6 cells infected with two clinically isolated SARS-CoV-2 strains (IHUMI-3 and IHUMI-6). Effects both on viral entry in the cell and on post-entry were also investigated. After 48 h post-infection, the viral replication was estimated by RT-PCR. The median effective concentration (EC50) and 90% effective concentration (EC90) of methylene blue against IHUMI-3 were 0.41 ± 0.34 µM and 1.85 ± 1.41 µM, respectively; 1.06 ± 0.46 µM and 5.68 ± 1.83 µM against IHUMI-6. Methylene blue interacted at both entry and post-entry stages of SARS-CoV-2 infection in Vero E6 cells as retrieved for hydroxychloroquine. The effects of methylene blue were additive with those of quinine, mefloquine and pyronaridine. The combinations of methylene blue with chloroquine, hydroxychloroquine, desethylamodiaquine, piperaquine, lumefantrine, ferroquine, dihydroartemisinin and remdesivir were antagonist. These results support the potential interest of methylene blue to treat COVID-19.
Collapse
|
6
|
Priyamvada L, Burgado J, Baker-Wagner M, Kitaygorodskyy A, Olson V, Lingappa VR, Satheshkumar PS. New methylene blue derivatives suggest novel anti-orthopoxviral strategies. Antiviral Res 2021; 191:105086. [PMID: 33992710 PMCID: PMC9629033 DOI: 10.1016/j.antiviral.2021.105086] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/08/2022]
Abstract
Decades after the eradication of smallpox and the discontinuation of routine smallpox vaccination, over half of the world's population is immunologically naïve to variola virus and other orthopoxviruses (OPXVs). Even in those previously vaccinated against smallpox, protective immunity wanes over time. As such, there is a concomitant increase in the incidence of human OPXV infections worldwide. To identify novel antiviral compounds with potent anti-OPXV potential, we characterized the inhibitory activity of PAV-866 and other methylene blue derivatives against the prototypic poxvirus, vaccinia virus (VACV). These compounds inactivated virions prior to infection and consequently inhibited viral binding, fusion and entry. The compounds exhibited strong virucidal activity at non-cytotoxic concentrations, and inhibited VACV infection when added before, during or after viral adsorption. The compounds were effective against other OPXVs including monkeypox virus, cowpox virus and the newly identified Akhmeta virus. Altogether, these findings reveal a novel mode of inhibition that has not previously been demonstrated for small molecule compounds against VACV. Additional studies are in progress to determine the in vivo efficacy of these compounds against OPXVs and further characterize the anti-viral effects of these derivatives.
Collapse
Affiliation(s)
- Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30329, USA
| | - Jillybeth Burgado
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30329, USA
| | | | | | - Victoria Olson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30329, USA
| | | | | |
Collapse
|
7
|
Thijssen M, Devos T, Ejtahed HS, Amini-Bavil-Olyaee S, Pourfathollah AA, Pourkarim MR. Convalescent Plasma against COVID-19: A Broad-Spectrum Therapeutic Approach for Emerging Infectious Diseases. Microorganisms 2020; 8:E1733. [PMID: 33167389 PMCID: PMC7694357 DOI: 10.3390/microorganisms8111733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
In the lack of an effective vaccine and antiviral treatment, convalescent plasma (CP) has been a promising therapeutic approach in past pandemics. Accumulating evidence in the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic corroborates the safety of CP therapy and preliminary data underline the potential efficacy. Recently, the Food and Drug Administration (FDA) permitted CP therapy for coronavirus disease 2019 (COVID-19) patients under the emergency use authorization, albeit additional clinical studies are still needed. The imminent threat of a second or even multiple waves of COVID-19 has compelled health authorities to delineate and calibrate a feasible preparedness algorithm for deploying CP as an immediate therapeutic intervention. The success of preparedness programs depends on the interdisciplinary actions of multiple actors in politics, science, and healthcare. In this review, we evaluate the current status of CP therapy for COVID-19 patients and address the challenges that confront the implementation of CP. Finally, we propose a pandemic preparedness framework for future waves of the COVID-19 pandemic and unknown pathogen outbreaks.
Collapse
Affiliation(s)
- Marijn Thijssen
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium;
| | - Timothy Devos
- Department of Haematology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Centre, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 1411413137, Iran;
- Endocrinology and Metabolism Research Centre, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 1411413137, Iran
| | - Samad Amini-Bavil-Olyaee
- Biosafety Development Group, Cellular Sciences Department, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA;
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran 14117-13116, Iran;
| | - Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium;
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, P.O. Box 71348-45794, Shiraz 71348-54794, Iran
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran 14665-1157, Iran
| |
Collapse
|
8
|
Gendrot M, Andreani J, Duflot I, Boxberger M, Le Bideau M, Mosnier J, Jardot P, Fonta I, Rolland C, Bogreau H, Hutter S, La Scola B, Pradines B. Methylene blue inhibits replication of SARS-CoV-2 in vitro. Int J Antimicrob Agents 2020; 56:106202. [PMID: 33075512 PMCID: PMC7566888 DOI: 10.1016/j.ijantimicag.2020.106202] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022]
Abstract
In December 2019, a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus diseases 2019 (COVID-19) emerged in Wuhan, China. Currently there is no antiviral treatment recommended against SARS-CoV-2. Identifying effective antiviral drugs is urgently required. Methylene blue has already demonstrated in vitro antiviral activity in photodynamic therapy as well as antibacterial, antifungal and antiparasitic activities in non-photodynamic assays. In this study. non-photoactivated methylene blue showed in vitro activity at very low micromolar range with an EC50 (median effective concentration) of 0.30 ± 0.03 μM and an EC90 (90% effective concentration) of 0.75 ± 0.21 μM at a multiplicity of infection (MOI) of 0.25 against SARS-CoV-2 (strain IHUMI-3). The EC50 and EC90 values for methylene blue are lower than those obtained for hydroxychloroquine (1.5 μM and 3.0 μM) and azithromycin (20.1 μM and 41.9 μM). The ratios Cmax/EC50 and Cmax/EC90 in blood for methylene blue were estimated at 10.1 and 4.0, respectively, following oral administration and 33.3 and 13.3 following intravenous administration. Methylene blue EC50 and EC90 values are consistent with concentrations observed in human blood. We propose that methylene blue is a promising drug for treatment of COVID-19. In vivo evaluation in animal experimental models is now required to confirm its antiviral effects on SARS-CoV-2. The potential interest of methylene blue to treat COVID-19 needs to be confirmed by prospective comparative clinical studies.
Collapse
Affiliation(s)
- Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix-Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Julien Andreani
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Isabelle Duflot
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Manon Boxberger
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Marion Le Bideau
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix-Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Priscilla Jardot
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix-Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Clara Rolland
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Hervé Bogreau
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix-Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Sébastien Hutter
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, Marseille, France.
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France; Centre National de Référence du Paludisme, Marseille, France.
| |
Collapse
|
9
|
Rustanti L, Hobson-Peters J, Colmant AMG, Hall RA, Young PR, Reichenberg S, Tolksdorf F, Sumian C, Gravemann U, Seltsam A, Marks DC, Faddy HM. Inactivation of Japanese encephalitis virus in plasma by methylene blue combined with visible light and in platelet concentrates by ultraviolet C light. Transfusion 2020; 60:2655-2660. [PMID: 32830340 DOI: 10.1111/trf.16021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
Japanese encephalitis virus (JEV) is endemic to tropical areas in Asia and the Western Pacific. It can cause fatal encephalitis, although most infected individuals are asymptomatic. JEV is mainly transmitted to humans through the bite of an infected mosquito, but can also be transmitted through blood transfusion. To manage the potential risk of transfusion transmission, pathogen inactivation (PI) technologies, such as THERAFLEX MB-Plasma and THERAFLEX UV-Platelets systems, have been developed. We examined the efficacy of these two PI systems to inactivate JEV. STUDY DESIGN AND METHODS Japanese encephalitis virus-spiked plasma units were treated using the THERAFLEX MB-Plasma system (visible light doses, 20, 40, 60, and 120 [standard] J/cm2) in the presence of methylene blue at approximately 0.8 μmol/L and spiked platelet concentrates (PCs) were treated using the THERAFLEX UV-Platelets system (UVC doses, 0.05, 0.10, 0.15, and 0.20 [standard] J/cm2). Samples were taken before the first and after each illumination dose and tested for infectivity using an immunoplaque assay. RESULTS Treatment of plasma with the THERAFLEX MB-Plasma system resulted in an average of 6.59 log reduction in JEV infectivity at one-sixth of the standard visible light dose (20 J/cm2). For PCs, treatment with the THERAFLEX UV-Platelet system resulted in an average of 7.02 log reduction in JEV infectivity at the standard UVC dose (0.20 J/cm2). CONCLUSIONS The THERAFLEX MB-Plasma and THERAFLEX UV-Platelets systems effectively inactivated JEV in plasma or PCs, and thus these PI technologies could be an effective option to reduce the risk of JEV transfusion transmission.
Collapse
Affiliation(s)
- Lina Rustanti
- Research and Development, Australian Red Cross Lifeblood, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Ute Gravemann
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Australia
| | - Helen M Faddy
- Research and Development, Australian Red Cross Lifeblood, Australia.,School of Health and Sport Sciences, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
10
|
Girard YA, Santa Maria F, Lanteri MC. Inactivation of yellow fever virus with amotosalen and ultraviolet A light pathogen-reduction technology. Transfusion 2020; 60:622-627. [PMID: 31957887 PMCID: PMC7078960 DOI: 10.1111/trf.15673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND The reemergence of yellow fever virus (YFV) in Africa and Brazil, and massive vaccine campaigns triggered to contain the outbreaks, have raised concerns over blood transfusion safety and availability with increased risk of YFV transfusion-transmitted infections (TTIs) by native and vaccine-acquired YFV. Blood donor deferral for 2 to 4 weeks following live attenuated YFV vaccination, and deferral for travel to endemic/epidemic areas, may result in blood donor loss and impact platelet component (PC) stocks. This study investigated the efficacy of INTERCEPT Blood System pathogen reduction (PR) with use of amotosalen and ultraviolet A (UVA) light to inactivate high levels of YFV in PCs. MATERIALS Four units of apheresis platelets prepared in 35% plasma/65% platelet additive solution (PC-PAS) and 4 units of PC in 100% human plasma (PC-Plasma) were spiked with high infectious titers of YFV (YFV-17D vaccine strain). YFV-17D infectious titers were measured by plaque assay and expressed as plaque-forming units (PFU) before and after amotosalen/UVA treatment to determine log reduction. RESULTS The mean YFV-17D infectious titers in PC before inactivation were 5.5 ± 0.1 log PFU/mL in PC-PAS and 5.3 ± 0.1 log PFU/mL in PC-Plasma. No infectivity was detected immediately after amotosalen/UVA treatment. CONCLUSION The amotosalen/UVA PR system inactivated high titers of infectious YFV-17D in PC. This PR technology could reduce the risk of YFV TTI and help secure PC supplies in areas experiencing YFV outbreaks where massive vaccination campaigns are required.
Collapse
Affiliation(s)
- Yvette A Girard
- Department of Microbiology, Cerus Corporation, Concord, California
| | | | - Marion C Lanteri
- Department of Scientific Affairs, Cerus Corporation, Concord, California
| |
Collapse
|
11
|
Pathogen reduction of blood components during outbreaks of infectious diseases in the European Union: an expert opinion from the European Centre for Disease Prevention and Control consultation meeting. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:433-448. [PMID: 31846608 DOI: 10.2450/2019.0288-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Pathogen reduction (PR) of selected blood components is a technology that has been adopted in practice in various ways. Although they offer great advantages in improving the safety of the blood supply, these technologies have limitations which hinder their broader use, e.g. increased costs. In this context, the European Centre for Disease Prevention and Control (ECDC), in co-operation with the Italian National Blood Centre, organised an expert consultation meeting to discuss the potential role of pathogen reduction technologies (PRT) as a blood safety intervention during outbreaks of infectious diseases for which (in most cases) laboratory screening of blood donations is not available. The meeting brought together 26 experts and representatives of national competent authorities for blood from thirteen European Union and European Economic Area (EU/EEA) Member States (MS), Switzerland, the World Health Organization, the European Directorate for the Quality of Medicines and Health Care of the Council of Europe, the US Food and Drug Administration, and the ECDC. During the meeting, the current use of PRTs in the EU/EEA MS and Switzerland was verified, with particular reference to emerging infectious diseases (see Appendix). In this article, we also present expert discussions and a common view on the potential use of PRT as a part of both preparedness and response to threats posed to blood safety by outbreaks of infectious disease.
Collapse
|