1
|
Storck K, Ussar S, Kotz S, Altun I, Hu F, Birk A, Veit J, Kovacevic M. Characterization of Fat Used for the Optimization of the Soft Tissue Envelope of the Nose in Rhinoplasty. Facial Plast Surg 2025; 41:266-273. [PMID: 38688299 DOI: 10.1055/s-0044-1786185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Septorhinoplasty (SRP) is one of the most common aesthetic procedures worldwide. A thin or scarred soft tissue envelope, especially in the context of secondary SRP, can lead to unpredictable scarring, shrinkage, and discoloration of the skin. Other than the careful preparation of the soft tissue mantle, no gold standard exists to minimize the above-mentioned risks. Our aim was to create a thin "separation layer" between the nasal bridge (osseous and cartilaginous) and the skin envelope by autologous fat transfer with the addition of platelet-rich fibrin (PRF) to conceal small irregularities, to improve the quality of the skin soft tissue mantle, and to optimize the mobility of the skin. We report 21 patients who underwent SRP on a voluntary basis. All patients had either thin skin and/or revision SRP with scarring. Macroscopic fat harvested from the periumbilical or rib region was minced and purified. PRF was obtained by centrifugation of autologous whole blood samples and mixed with the fat to form a graft, which was then transferred to the nasal dorsum. Postoperative monitoring of graft survival included sonography and magnetic resonance imaging (MRI) of the nose. The harvested adipose tissue was also analyzed in vitro. In the postoperative follow-up after 1 year, survival of the adipose tissue was demonstrated in all patients by both sonography and MRI. The in vitro analysis showed interindividual differences in the quantity, size, and quality of the transplanted adipocytes. Camouflage of the nasal bridge by using adipose tissue was beneficial for the quality of the skin soft tissue mantle and hence represents a good alternative to known methods. Future aims include the ability to assess the quality of adipose tissue to be transplanted based on clinical parameters. Level of evidence: N/A.
Collapse
Affiliation(s)
- Katharina Storck
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Siegfried Ussar
- Research Unit Adipocytes and Metabolism (ADM), Institute for Diabetes and Obesity at Helmholtz Center Munich, Neuherberg, Germany
| | - Sebastian Kotz
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Irem Altun
- Research Unit Adipocytes and Metabolism (ADM), Institute for Diabetes and Obesity at Helmholtz Center Munich, Neuherberg, Germany
| | - Fiona Hu
- Research Unit Adipocytes and Metabolism (ADM), Institute for Diabetes and Obesity at Helmholtz Center Munich, Neuherberg, Germany
| | - Amelie Birk
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | | | | |
Collapse
|
2
|
Worden AN, Pittard EG, Stern M, Uline MJ, Potts JD. The Role of the CXCL12/CXCR4 Signaling Pathway in Regulating Cellular Migration. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozaf011. [PMID: 40095909 DOI: 10.1093/mam/ozaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
We investigated the CXCL12/CXCR4 signaling pathway as a regulator of adipose-derived stem cell (ADSC) self-assembling toroidal constructs using collagen hydrogels. ADSCs formed toroid rings when cultured on hydrogel surfaces but failed to do so when mixed within the matrix. Gene expression profiling revealed significant upregulation of the CXCL12/CXCR4 pathway in toroid-forming conditions, supported by immunofluorescence studies that confirmed CXCL12 presence in toroids but not in mixed-in cultures. Early toroid formation was marked by the emergence of CXCL12 expression, correlating with cell migration. Targeted inhibition experiments identified the PI3K pathway as a critical regulator, delaying cell migration by ∼16 h, while N-Cadherin, Ras/Raf, and ERK1/2 inhibition either reduced or halted migration over extended periods. Through Western blot analysis, altered expression of α-Smooth muscle actin and focal adhesion kinase under PI3K inhibition was highlighted thus emphasizing their roles in toroid formation. Lastly, initial coculture studies with 4T1 breast cancer cells unexpectedly showed CXCL12 localization primarily in 4T1 cells within mixed toroids, suggesting modified chemotactic signaling. Our findings establish CXCL12/CXCR4 as crucial for ADSC toroid formation and reveal the pathway's complex involvement in cellular organization and migration, presenting a robust model for exploring cell-cell and cell-matrix interactions relevant to tissue engineering and cancer research.
Collapse
Affiliation(s)
- Austin N Worden
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, 6311 Garners Ferry Rd., Columbia, SC 29209, USA
| | - Emma Grace Pittard
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, 6311 Garners Ferry Rd., Columbia, SC 29209, USA
| | - Matt Stern
- Biology Department, Winthrop University, 701 Oakland Ave., Rock Hill, SC 29733, USA
| | - Mark J Uline
- Chemical Engineering Department, University of South Carolina, 301 Main St., Columbia, SC 29208, USA
- Biomedical Engineering Program, University of South Carolina, 300 Main St., Columbia, SC 29208, USA
| | - Jay D Potts
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, 6311 Garners Ferry Rd., Columbia, SC 29209, USA
- Biomedical Engineering Program, University of South Carolina, 300 Main St., Columbia, SC 29208, USA
| |
Collapse
|
3
|
Elekhtiar SA, Abo Gazia MM, Osman A, Abd-Elsalam MM, El-Kemary NM, Elksass S, Alkabes HA, El-Kemary M. A novel skin-like patch based on 3D hydrogel nanocomposite of Polydopamine/TiO 2 nanoparticles and Ag quantum dots accelerates diabetic wound healing compared to stem cell therapy. J Tissue Viability 2025; 34:100850. [PMID: 39729819 DOI: 10.1016/j.jtv.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/29/2024]
Abstract
Despite the advances in the development of therapeutic wearable wound-healing patches, lack self-healing properties and strong adhesion to diabetic skin, hindering their effectiveness. We propose a unique, wearable patch made from a 3D organo-hydrogel nanocomposite containing polydopamine, titanium dioxide nanoparticles, and silver quantum dots (PDA-TiO2@Ag). The designed patch exhibits ultra-stretchable, exceptional-self-healing, self-adhesive, ensuring conformal contact with the skin even during movement. Our patch demonstrated potent antibacterial activity and significantly accelerated wound healing with a high wound closure rate of 99.2 % after 7 days. Remarkably, it enhanced diabetic skin wound healing compared to that achieved by adipose-derived stem cell (ADSC) therapy in a study involving 30 adult male albino rats. Microscopic analysis highlights the promising hierarchical architecture structure of the patch for wound healing applications, suggesting its potential to create a favorable environment for healing and provide long-lasting benefits. Histopathological analysis and immunohistochemical staining revealed faster healing and enhanced cellular response in the patch-treated group compared to both stem cell and control groups. Notably, the patch promoted complete re-epithelization and a significant increase in vascular endothelial growth factor (VEGF) expression on day 7, indicating improved angiogenesis. This self-healing, multifunctional patch offers a promising alternative to stem cell therapy for accelerating diabetic wound healing, showcasing its potential for clinical translation. The combination of durability, biocompatibility, and antibacterial properties makes the patch a promising candidate for advanced wound management and offering faster, more complete restoration than other approaches.
Collapse
Affiliation(s)
- Sally A Elekhtiar
- Department of Histology, Faculty of Medicine, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Maha M Abo Gazia
- Department of Histology, Faculty of Medicine, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Amira Osman
- Department of Histology, Faculty of Medicine, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt; Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13132, Jordan
| | - Marwa M Abd-Elsalam
- Department of Histology, Faculty of Medicine, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Nesma M El-Kemary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Samar Elksass
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Hend A Alkabes
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt; Nile Valley University, Fayoum, 63518 Egypt.
| |
Collapse
|
4
|
Myoken Y, Kawamoto T, Fujita Y, Hayashi S, Toratani S, Yanamoto S. The efficacy of different local flaps for wound closure of defects after removal of necrotic bone in advanced medication-related osteonecrosis of the jaw: A single-center cohort study. J Craniomaxillofac Surg 2025:S1010-5182(24)00362-7. [PMID: 39890573 DOI: 10.1016/j.jcms.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 02/03/2025] Open
Abstract
For this study, the surgical outcomes of patients with advanced medication-related osteonecrosis of the jaw (MRONJ), treated with different local flaps for soft-tissue closure, were evaluated. Cases of stage 2 and 3 MRONJ patients (n = 96) with a 12-month minimum follow-up were retrospectively analyzed. All patients underwent surgical treatment and soft-tissue closure with local flaps, including buccal fat flap (BFF), nasolabial flap (NLF), facial artery musculomucosal flap (FAMM-F), and submental island flap (SIF), based on the size and location of the defects. The occurrence of side effects was also evaluated. At the time of the last follow-up, 97.7% (42 of 43) of the patients in the BFF group, 90.3% (28 of 31) of the NLF patients, 100% (8 of 8) of the FAMM-F patients, and 92.9% (13 of 14) of the SIF patients showed mucosal integrity. No serious complications were observed. Five cases with relapsed MRONJ were in cancer patients who continued both chemotherapy and antiresorptive therapy. Different local flaps for soft-tissue closure after bone surgery in advanced MRONJ patients could provide a mechanically stable and well-vascularized covering of the exposed bone, leading to good healing.
Collapse
Affiliation(s)
- Yoshinari Myoken
- Department of Oral Surgery, Hiroshima Red Cross and Atomic-bomb Survivors Hospital, Hiroshima, Japan.
| | | | - Yoshinori Fujita
- Department of Oral Surgery, Hiroshima Red Cross and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Seiya Hayashi
- Department of Oral Surgery, Hiroshima Red Cross and Atomic-bomb Survivors Hospital, Hiroshima, Japan; Department of Oral Oncology, Hiroshima University, Hiroshima, Japan
| | - Shigeaki Toratani
- Department of Oral Surgery, Hiroshima Red Cross and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Song J, Wu Y, Chen Y, Sun X, Zhang Z. Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing (Review). Mol Med Rep 2025; 31:2. [PMID: 39422035 PMCID: PMC11551531 DOI: 10.3892/mmr.2024.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetic wounds represent a significant complication of diabetes and present a substantial challenge to global public health. Macrophages are crucial effector cells that play a pivotal role in the pathogenesis of diabetic wounds, through their polarization into distinct functional phenotypes. The field of epigenetics has emerged as a rapidly advancing research area, as this phenomenon has the potential to markedly affect gene expression, cellular differentiation, tissue development and susceptibility to disease. Understanding epigenetic mechanisms is crucial to further exploring disease pathogenesis. A growing body of scientific evidence has highlighted the pivotal role of epigenetics in the regulation of macrophage phenotypes. Various epigenetic mechanisms, such as DNA methylation, histone modification and non‑coding RNAs, are involved in the modulation of macrophage phenotype differentiation in response to the various environmental stimuli present in diabetic wounds. The present review provided an overview of the various changes that take place in macrophage phenotypes and functions within diabetic wounds and discussed the emerging role of epigenetic modifications in terms of regulating macrophage plasticity in diabetic wounds. It is hoped that this synthesis of information will facilitate the elucidation of diabetic wound pathogenesis and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Jielin Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Yuqing Wu
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yunli Chen
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Xu Sun
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Zhaohui Zhang
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| |
Collapse
|
6
|
Weerarathna IN, Kumar P, Luharia A, Mishra G. Engineering with Biomedical Sciences Changing the Horizon of Healthcare-A Review. Bioengineered 2024; 15:2401269. [PMID: 39285709 PMCID: PMC11409512 DOI: 10.1080/21655979.2024.2401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/20/2024] [Accepted: 07/18/2024] [Indexed: 01/16/2025] Open
Abstract
In the dynamic realm of healthcare, the convergence of engineering and biomedical sciences has emerged as a pivotal frontier. In this review we go into specific areas of innovation, including medical imaging and diagnosis, developments in biomedical sensors, and drug delivery systems. Wearable biosensors, non-wearable biosensors, and biochips, which include gene chips, protein chips, and cell chips, are all included in the scope of the topic that pertains to biomedical sensors. Extensive research is conducted on drug delivery systems, spanning topics such as the integration of computer modeling, the optimization of drug formulations, and the design of delivery devices. Furthermore, the paper investigates intelligent drug delivery methods, which encompass stimuli-responsive systems such as temperature, redox, pH, light, enzyme, and magnetic responsive systems. In addition to that, the review goes into topics such as tissue engineering, regenerative medicine, biomedical robotics, automation, biomechanics, and the utilization of green biomaterials. The purpose of this analysis is to provide insights that will enhance continuing research and development efforts in engineering-driven biomedical breakthroughs, ultimately contributing to the improvement of healthcare. These insights will be provided by addressing difficulties and highlighting future prospects.
Collapse
Affiliation(s)
- Induni N. Weerarathna
- School of Allied Health Sciences, Department of Biomedical Sciences, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Praveen Kumar
- Department of Computer Science and Medical Engineering, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Anurag Luharia
- Department of Radio Physicist and Radio Safety, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Gaurav Mishra
- Department of Radio Diagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| |
Collapse
|
7
|
Gürünlüoğlu K, Satilmiş B, Gül M, Dündar M, Göktürk N, Akbulut S, Koç A, Gürünlüoğlu S, Aslan M, Karaaslan E, Türköz MA, Toplu ÇG, Ateş H, Üremiş MM, Menevşe İN, Kuştepe EK, Sari Ünal S, Altundaş E, Yildiz T, Şahin TT, Yilmaz S, Demircan M. The impact of subdermal adipose derived stem cell injections and early excision on systemic oxidative stress and wound healing in rats with severe scald burns. Burns 2024; 50:2056-2069. [PMID: 39127577 DOI: 10.1016/j.burns.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
AIM This study aims to develop an experimental treatment model effective against oxidative stress in the acute period of severe burns and to analyze the mechanisms of healing large wound defects. METHODS Five rats, including 2 females and 3 males, were used as donors to obtain adipose-derived stem cells (ADSC) from the inguinal fat pad. The stem cells were labeled with green fluorescent protein. The study included four groups of 17 rats, each with grade 3 scalding burns on 30 % of their body surface, and a control group of 10 rats with an equal number of males and females. After early excision, 106 ADSC-derived stem cells were administered subdermally to the burned wound and autografted to the stem cell group (n = 17). The early excision group (n = 17) received early excision and autograft, with 2 ml of normal saline injected subdermally into the burn wound edge. The PLM group (n = 17) was treated with a polylactic membrane (PLM) dressing after the burn. No treatment was given to the burn group (n = 17). Ten rats from all groups were sacrificed on the 4th day post-burn for oxidative stress evaluation. The control group (n = 10) was sacrificed on day 4. Blood and tissue samples were collected post-sacrifice. Oxidative stress and inflammation in the blood, as well as cell damage in the skin, liver, kidneys, and lungs, were investigated histopathologically and biochemically on the 4th day post-burn. On the 70th day after burn, wound healing was examined macroscopically and histopathologically. RESULTS On the 4th day, oxidative stress results showed that the levels of Total Oxidative Capacity (TOC) in the blood were lowest in the stem cell (7.4 [6-8.8]), control (6.7 [5.9-7.6]), and early excision (7.5 [6.6-8.5]) groups, with no significant difference between them. The burn group (14.7 [12.5-16.9]) had the highest TOC levels. The PLM group (9.7 [8.6-10.7]) had lower TOC levels than the burn group but higher levels than the other groups. Histopathological examination on the 4th day revealed low liver caspase-3 immunoreactivity in the stem cell and early excision groups among the burn groups. Caspase-3 immunoreactivity levels were as follows: stem cell group (20 [10-30]), early excision group (25 [15-50]), PLM group (70 [50-100]), control group (0), and burn group (80 [60-120]). Other oxidative stress and end-organ damage outcomes were consistent with these results. All rats in the stem cell group had burn wounds that healed completely by the 70th day. Examination of the skin and its appendages from the stem cell group with an immunofluorescence microscope demonstrated green coloration, indicating incorporation of stem cells. CONCLUSION Stem cells may have the potential to form new skin and its appendages, providing better healing for large skin defects. Early excision treatment, by removing local necrotic tissues after extensive and deep burns, can prevent end-organ damage due to systemic oxidative stress and inflammation. We also believe that when these two treatments are used together, they can achieve the best results.
Collapse
Affiliation(s)
- Kubilay Gürünlüoğlu
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya, Türkiye.
| | - Basri Satilmiş
- Department of Liver Transplantation Institute, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Mehmet Gül
- Department of Histology and Embryology, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Muhammed Dündar
- Department of Medical Genetics, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Nurcan Göktürk
- Department of Medical Biochemistry, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Sami Akbulut
- Department of Liver Transplantation Institute, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Ahmet Koç
- Department of Medical Genetics, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Semra Gürünlüoğlu
- Department of Pathology, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Mehmet Aslan
- Department of Pediatrics, Division of Pediatric Emergency Medicine, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Ezgi Karaaslan
- Department of Histology and Embryology, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Mehmet Akif Türköz
- Department of Radiology, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Çağla Güner Toplu
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Hasan Ateş
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - İrem Nur Menevşe
- Department of Medical Genetics, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Elif Kayhan Kuştepe
- Department of Histology and Embryology, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Seren Sari Ünal
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Ebubekir Altundaş
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Turan Yildiz
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Tevfik Tolga Şahin
- Department of Liver Transplantation Institute, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Sezai Yilmaz
- Department of Liver Transplantation Institute, İnönü University, Faculty of Medicine, Malatya, Türkiye
| | - Mehmet Demircan
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya, Türkiye; Pediatric Intensive Burn Care Unit, İnönü University, Faculty of Medicine, Malatya, Türkiye
| |
Collapse
|
8
|
Liu S, Zhao H, Jiang T, Wan G, Yan C, Zhang C, Yang X, Chen Z. The Angiogenic Repertoire of Stem Cell Extracellular Vesicles: Demystifying the Molecular Underpinnings for Wound Healing Applications. Stem Cell Rev Rep 2024; 20:1795-1812. [PMID: 39001965 DOI: 10.1007/s12015-024-10762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Stem cells-derived extracellular vesicles (SC-EVs) have emerged as promising therapeutic agents for wound repair, recapitulating the biological effects of parent cells while mitigating immunogenic and tumorigenic risks. These EVs orchestrate wound healing processes, notably through modulating angiogenesis-a critical event in tissue revascularization and regeneration. This study provides a comprehensive overview of the multifaceted mechanisms underpinning the pro-angiogenic capacity of EVs from various stem cell sources within the wound microenvironment. By elucidating the molecular intricacies governing their angiogenic prowess, we aim to unravel the mechanistic repertoire underlying their remarkable potential to accelerate wound healing. Additionally, methods to enhance the angiogenic effects of SC-EVs, current limitations, and future perspectives are highlighted, emphasizing the significant potential of this rapidly advancing field in revolutionizing wound healing strategies.
Collapse
Affiliation(s)
- Shuoyuan Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huayuan Zhao
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chi Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Gandolfi S, Sanouj A, Chaput B, Coste A, Sallerin B, Varin A. The role of adipose tissue-derived stromal cells, macrophages and bioscaffolds in cutaneous wound repair. Biol Direct 2024; 19:85. [PMID: 39343924 PMCID: PMC11439310 DOI: 10.1186/s13062-024-00534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Skin healing is a complex and dynamic physiological process that follows mechanical alteration of the skin barrier. Under normal conditions, this complex process can be divided into at least three continuous and overlapping phases: an inflammatory reaction, a proliferative phase that leads to tissue reconstruction and a phase of tissue remodeling. Macrophages critically contribute to the physiological cascade for tissue repair. In fact, as the inflammatory phase progresses, macrophage gene expression gradually shifts from pro-inflammatory M1-like to pro-resolutive M2-like characteristics, which is critical for entry into the repair phase. A dysregulation in this macrophage' shift phenotype leads to the persistence of the inflammatory phase. Mesenchymal stromal cells and specifically the MSC-derived from adipose tissue (ADSCs) are more and more use to treat inflammatory diseases and several studies have demonstrated that ADSCs promote the wound healing thanks to their neoangiogenic, immunomodulant and regenerative properties. In several studies, ADSCs and macrophages have been injected directly into the wound bed, but the delivery of exogenous cells directly to the wound raise the problem of cell engraftment and preservation of pro-resolutive phenotype and viability of the cells. Complementary approaches have therefore been explored, such as the use of biomaterials enriched with therapeutic cell to improve cell survival and function. This review will present a background of the current scaffold models, using adipose derived stromal-cells and macrophage as therapeutic cells for wound healing, through a discussion on the potential impact for future applications in skin regeneration. According to the PRISMA statement, we resumed data from investigations reporting the use ADSCs and bioscaffolds and data from macrophages behavior with functional biomaterials in wound healing models. In the era of tissue engineering, functional biomaterials, that can maintain cell delivery and cellular viability, have had a profound impact on the development of dressings for the treatment of chronic wounds. Promising results have been showed in pre-clinical reports using ADSCs- and macrophages-based scaffolds to accelerate and to improve the quality of the cutaneous healing.
Collapse
Affiliation(s)
- S Gandolfi
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France.
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France.
| | - A Sanouj
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Chaput
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Coste
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Sallerin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
- Department of Pharmacology, Toulouse University Hospital, 1 Av Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Varin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| |
Collapse
|
10
|
Chowdhury A, Mitra Mazumder P. Unlocking the potential of flavonoid-infused drug delivery systems for diabetic wound healing with a mechanistic exploration. Inflammopharmacology 2024:10.1007/s10787-024-01561-5. [PMID: 39217278 DOI: 10.1007/s10787-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Diabetes is one of the common endocrine disorders generally characterized by elevated levels of blood sugar. It can originate either from the inability of the pancreas to synthesize insulin, which is considered as an autoimmune disorder, or the reduced production of insulin, considered as insulin resistivity. A wound can be defined as a condition of damage to living tissues including skin, mucous membrane and other organs as well. Wounds get complicated with respect to time based on specific processes like diabetes mellitus, obesity and immunocompromised conditions. Proper growth and functionality of the epidermis gets sustained due to impaired diabetic wound healing which shows a sign of dysregulated wound healing process. In comparison with synthetic medications, phytochemicals like flavonoids, tannins, alkaloids and glycosides have gained enormous importance relying on their distinct potential to heal diabetic wounds. Flavonoids are one of the most promising and important groups of natural compounds which can be used to treat acute as well as chronic wounds. Flavonoids show excellent properties due to the presence of hydroxyl groups in their chemical structure, which makes this class of compounds different from others. Based on the novel principles of nanotechnology via utilizing suitable drug delivery systems, the delivery of bioactive constituents from plant source amplifies the wound-healing mechanism, minimizes complexities and enhances bioavailability. Hence, the encapsulation and applicability of flavonoids with an emphasis on mechanistic route and wound-healing therapeutics have been highlighted in the subsequent study with focus on multiple drug delivery systems.
Collapse
Affiliation(s)
- Ankit Chowdhury
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
11
|
Ramaut L, Moonen L, Geeroms M, Leemans G, Peters E, Forsyth R, Gutermuth J, Hamdi M. Improvement in Early Scar Maturation by Nanofat Infiltration: Histological and Spectrophotometric Preliminary Results From a Split Scar-Controlled, Randomized, Double-Blinded Clinical Trial. Aesthet Surg J Open Forum 2024; 6:ojae072. [PMID: 39360238 PMCID: PMC11446608 DOI: 10.1093/asjof/ojae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Background The regenerative properties of stromal vascular fraction (SVF) in wound healing and scar formation are a subject of increasing clinical interest. Objectives Although preclinical studies have confirmed the angiogenetic, proliferative, and antifibrotic properties of SVF, there is limited clinical evidence from randomized controlled clinical trials. Methods Twelve patients who underwent abdominoplasty were included in this clinical study. Nanofat was mechanically obtained intraoperatively and infiltrated intradermally in the sutured surgical wound, randomly assigned to either the left or the right side. The abdominal scar was evaluated with the Patient and Observer Scar Assessment Scale, whereas erythema and pigmentation were measured with a reflectance spectrophotometry device (Mexameter, Courage + Khazaka electronic GmbH, Köln,Germany). Histological analysis and electron scan microscopy of tissue biopsies were performed at 8 months. Results The treated side of the scar showed significantly less erythema at 3- and 6-month follow-ups, but this difference reduced after 12 months. Patients reported better scar scores at the 6-month follow-up with a significantly better color at the treated side. Observers reported better overall scar scores at the treated side at 3-, 6-, and 12-month follow-ups, with better vascularization, pigmentation, and thickness. There was no statistically significant difference in terms of histological analysis between the 2 groups. There was no difference in the occurrence of adverse events between both sides. Conclusions Infiltration of nanofat exhibited promising results in surgical scar maturation characterized by less erythema and better texture. More clinical trials with a larger sample size are warranted to better elucidate the possible benefits of SVF on surgical scar formation. Level of Evidence 5
Collapse
|
12
|
Chelu M, Calderon Moreno JM, Musuc AM, Popa M. Natural Regenerative Hydrogels for Wound Healing. Gels 2024; 10:547. [PMID: 39330149 PMCID: PMC11431064 DOI: 10.3390/gels10090547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Regenerative hydrogels from natural polymers have come forth as auspicious materials for use in regenerative medicine, with interest attributed to their intrinsic biodegradability, biocompatibility, and ability to reassemble the extracellular matrix. This review covers the latest advances in regenerative hydrogels used for wound healing, focusing on their chemical composition, cross-linking mechanisms, and functional properties. Key carbohydrate polymers, including alginate, chitosan, hyaluronic acid, and polysaccharide gums, including agarose, carrageenan, and xanthan gum, are discussed in terms of their sources, chemical structures and specific properties suitable for regenerative applications. The review further explores the categorization of hydrogels based on ionic charge, response to physiological stimuli (i.e., pH, temperature) and particularized roles in wound tissue self-healing. Various methods of cross-linking used to enhance the mechanical and biological performance of these hydrogels are also examined. By highlighting recent innovations and ongoing challenges, this article intends to give a detailed understanding of natural hydrogels and their potential to revolutionize regenerative medicine and improve patient healing outcomes.
Collapse
Affiliation(s)
| | - Jose M. Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (A.M.M.)
| | | | - Monica Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (A.M.M.)
| |
Collapse
|
13
|
Hajihosseintehrani M, Amini A, Heidari M, Gholipourmalekabadi M, Fadaei Fathabady F, Mostafavinia A, Ahmadi H, Khodadadi M, Naser R, Zare F, Alizadeh S, Moeinian N, Chien S, Bayat M. The Application of Photobiomodulation and Stem Cells Seeded on the Scaffold Accelerates the Wound Healing Process in Mice. J Lasers Med Sci 2024; 15:e40. [PMID: 39381785 PMCID: PMC11459249 DOI: 10.34172/jlms.2024.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/08/2024] [Indexed: 10/10/2024]
Abstract
Introduction: The purpose of this research was to test the impact of seeding a hydrogel chitosan scaffold (HCS) with human adipose-derived stem cells (hADSCs) under the influence of photobiomodulation (PBM) on the remodeling step on the wound repairing process in mice. Methods: Thirty mice were randomly assigned to five groups (n=6 per group ): The control group (group 1) consisted of mice without any intervention. In group 2, an HCS was implanted into the wound. In group 3, a combination of HCS+hADSC was inserted into the wound. In group 4, an HCS was inserted into the wound and PBM was applied. In group 5, a combination of HCS+hADSCs was inserted into the wound, followed by PBM treatment. Results: Improvements in the injury closing rate (WCR) and microbial flora were observed in all groups. However, the highest WCRs were observed in group s 5, 4, 3, and 2 (all P values were 0.000). Groups 3-5 showed increased wound strength compared to group s 1 and 2, with group 2 demonstrating better results than group 1 (P values ranged from 0.000 to 0.013). Although group s 3-5 showed increases in certain stereological elements compared to group s 1 and 2, group 2 exhibited superior results in comparison with group 1 (P values ranged from 0.000 to 0.049). Conclusion: The joined use of HCS+hADSCs+PBM significantly accelerated the wound healing process during the maturation phase in healthy mice. This approach demonstrated superior wound healing compared to the use of HCS alone, hADSCs+HCS, or PBM+HCS. The findings suggest an additive effect when HCS+hADSCs+PBM are combined.
Collapse
Affiliation(s)
- Masoumeh Hajihosseintehrani
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mohammadhossein Heidari
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience at the Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Maryam Khodadadi
- Xi’an jiaotong University School of Stomatology, Xi’an, Shaanxi Province, China
| | - Reza Naser
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Zare
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sanaz Alizadeh
- Department of Anatomical Sciences and Cognitive Neuroscience at the Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nafiseh Moeinian
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA
| | - Mohammad Bayat
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA
| |
Collapse
|
14
|
Kim DY, Ko E, Ryu YH, Lee SJ, Jun YJ. Hyaluronic Acid Based Adipose Tissue-Derived Extracellular Matrix Scaffold in Wound Healing: Histological and Immunohistochemical Study. Tissue Eng Regen Med 2024; 21:829-842. [PMID: 38647955 PMCID: PMC11286915 DOI: 10.1007/s13770-024-00644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND In this study, we explored the potential of human adipose tissue-derived extracellular matrix (adECM) sheets augmented with crosslinked hyaluronic acid (HA) as advanced wound dressings. We aimed to enhance healing efficacy while optimizing cost efficiency. METHODS The adECM was processed from healthy donor tissue and combined with crosslinked HA to form ECM-HA sheets (Scaffiller, Medikan, Korea). In vitro experiments involved seeding adipose-derived stem cells (ASCs) onto these sheets and assessing cell survival and cytokine production. In vivo testing utilized a rat wound model, comparing ECM-HA sheet with HA-based dressing and polyurethane foam dressing. Re-epithelialization and collagen deposition were examined through histopathological examinations, whereas immunohistochemistry was used to assess CD31, alpha smooth muscle actin (α-SMA), and Tenascin C expression as contributing factors to wound healing. RESULTS Results indicated that ECM-HA sheets were produced efficiently, with enhanced growth factor production and ASC survival observed in vitro. In vivo, ECM-HA sheets demonstrated accelerated wound healing, evidenced by improved epithelialization, thicker dermis, increased collagen deposition, and enhanced vascularity. Notably, they exhibited reduced myofibroblast activity and increased expression of Tenascin C, suggesting a favorable healing environment. CONCLUSION ECM-HA sheets offer a promising approach for wound management, combining the benefits of adECM and HA. They present improved stability and cost-effectiveness while promoting essential aspects of wound healing such as angiogenesis and collagen formation. This study underscores the therapeutic potential of ECM-HA sheets in clinical applications aimed at facilitating wound repair.
Collapse
Affiliation(s)
- Dong Yeon Kim
- Department of Plastic and Reconstructive Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunjeong Ko
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 137-701, Republic of Korea
| | - Yeon Hee Ryu
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 137-701, Republic of Korea
| | - Su Jin Lee
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 137-701, Republic of Korea
| | - Young Joon Jun
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 137-701, Republic of Korea.
| |
Collapse
|
15
|
Kang Y, Xiong Y, Lu B, Wang Y, Zhang D, Feng J, Chen L, Zhang Z. Application of In Situ Mucoadhesive Hydrogel with Anti-Inflammatory and Pro-Repairing Dual Properties for the Treatment of Chemotherapy-Induced Oral Mucositis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35949-35963. [PMID: 38970482 DOI: 10.1021/acsami.4c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Chemotherapy-induced oral mucositis (CIOM) is a prevalent complication of chemotherapy and significantly affects the treatment process. However, effective treatment for CIOM is lacking due to the unique environment of the oral cavity and the single effect of current drug delivery systems. In this present study, we propose an innovative approach by combining a methacrylate-modified human recombinant collagen III (rhCol3MA) hydrogel system with hyaluronic acid-epigallocatechin gallate (HA-E) and dopamine-modified methacrylate-alginate (AlgDA-MA). HA-E is used as an antioxidant and anti-inflammatory agent and synergizes with AlgDA-MA to improve the wet adhesion of hydrogel. The results of rhCol3MA/HA-E/AlgDA-MA (Col/HA-E/Alg) hydrogel demonstrate suitable physicochemical properties, excellent wet adhesive capacity, and biocompatibility. Notably, the hydrogel could promote macrophage polarization from M1 to M2 and redress human oral keratinocyte (HOK) inflammation by inhibiting NF-κB activation. Wound healing evaluations in vivo demonstrate that the Col/HA-E/Alg hydrogel exhibits a pro-repair effect by mitigating inflammatory imbalances, fostering early angiogenesis, and facilitating collagen repair. In summary, the Col/HA-E/Alg hydrogel could serve as a promising multifunctional dressing for the treatment of CIOM.
Collapse
Affiliation(s)
- Yujie Kang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| | - Yahui Xiong
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
| | - Bingxu Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| | - Yunyi Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| | - Danya Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| | - Jinghao Feng
- Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P. R. China
| | - Lei Chen
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| |
Collapse
|
16
|
Xu LM, Yu XX, Zhang N, Chen YS. Exosomes from umbilical cord mesenchymal stromal cells promote the collagen production of fibroblasts from pelvic organ prolapse. World J Stem Cells 2024; 16:708-727. [PMID: 38948096 PMCID: PMC11212552 DOI: 10.4252/wjsc.v16.i6.708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Pelvic organ prolapse (POP) involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity, and vaginal structure is an essential factor. In POP, the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions. The intricate etiology of POP and the prohibition of transvaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development. Human umbilical cord mesenchymal stromal cells (hucMSCs) present limitations, but their exosomes (hucMSC-Exo) are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling. AIM To investigate the effects of hucMSC-Exo on the functions of primary vaginal fibroblasts and to elucidate the underlying mechanism involved. METHODS Human vaginal wall collagen content was assessed by Masson's trichrome and Sirius blue staining. Gene expression differences in fibroblasts from patients with and without POP were assessed via RNA sequencing (RNA-seq). The effects of hucMSC-Exo on fibroblasts were determined via functional experiments in vitro. RNA-seq data from fibroblasts exposed to hucMSC-Exo and microRNA (miRNA) sequencing data from hucMSC-Exo were jointly analyzed to identify effective molecules. RESULTS In POP, the vaginal wall exhibited abnormal collagen distribution and reduced fibroblast 1 quality and quantity. Treatment with 4 or 6 μg/mL hucMSC-Exo suppressed inflammation in POP group fibroblasts, stimulated primary fibroblast growth, and elevated collagen I (Col1) production in vitro. High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11 (MMP11) expression. CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro. Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression. HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.
Collapse
Affiliation(s)
- Lei-Mei Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai 200011, China
| | - Xin-Xin Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Ning Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Yi-Song Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.
| |
Collapse
|
17
|
Xu LM, Yu XX, Zhang N, Chen YS. Exosomes from umbilical cord mesenchymal stromal cells promote the collagen production of fibroblasts from pelvic organ prolapse. World J Stem Cells 2024; 16:707-726. [DOI: 10.4252/wjsc.v16.i6.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Pelvic organ prolapse (POP) involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity, and vaginal structure is an essential factor. In POP, the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions. The intricate etiology of POP and the prohibition of transvaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development. Human umbilical cord mesenchymal stromal cells (hucMSCs) present limitations, but their exosomes (hucMSC-Exo) are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling.
AIM To investigate the effects of hucMSC-Exo on the functions of primary vaginal fibroblasts and to elucidate the underlying mechanism involved.
METHODS Human vaginal wall collagen content was assessed by Masson’s trichrome and Sirius blue staining. Gene expression differences in fibroblasts from patients with and without POP were assessed via RNA sequencing (RNA-seq). The effects of hucMSC-Exo on fibroblasts were determined via functional experiments in vitro. RNA-seq data from fibroblasts exposed to hucMSC-Exo and microRNA (miRNA) sequencing data from hucMSC-Exo were jointly analyzed to identify effective molecules.
RESULTS In POP, the vaginal wall exhibited abnormal collagen distribution and reduced fibroblast 1 quality and quantity. Treatment with 4 or 6 μg/mL hucMSC-Exo suppressed inflammation in POP group fibroblasts, stimulated primary fibroblast growth, and elevated collagen I (Col1) production in vitro. High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11 (MMP11) expression.
CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro. Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression. HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.
Collapse
Affiliation(s)
- Lei-Mei Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai 200011, China
| | - Xin-Xin Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Ning Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Yi-Song Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
18
|
Rolsma JL, Darch W, Higgins NC, Morgan JT. The tardigrade-derived mitochondrial abundant heat soluble protein improves adipose-derived stem cell survival against representative stressors. Sci Rep 2024; 14:11834. [PMID: 38783150 PMCID: PMC11116449 DOI: 10.1038/s41598-024-62693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Human adipose-derived stem cell (ASC) grafts have emerged as a powerful tool in regenerative medicine. However, ASC therapeutic potential is hindered by stressors throughout their use. Here we demonstrate the transgenic expression of the tardigrade-derived mitochondrial abundant heat soluble (MAHS) protein for improved ASC resistance to metabolic, mitochondrial, and injection shear stress. In vitro, MAHS-expressing ASCs demonstrate up to 61% increased cell survival following 72 h of incubation in phosphate buffered saline containing 20% media. Following up to 3.5% DMSO exposure for up to 72 h, a 14-49% increase in MAHS-expressing ASC survival was observed. Further, MAHS expression in ASCs is associated with up to 39% improved cell viability following injection through clinically relevant 27-, 32-, and 34-gauge needles. Our results reveal that MAHS expression in ASCs supports survival in response to a variety of common stressors associated with regenerative therapies, thereby motivating further investigation into MAHS as an agent for stem cell stress resistance. However, differentiation capacity in MAHS-expressing ASCs appears to be skewed in favor of osteogenesis over adipogenesis. Specifically, activity of the early bone formation marker alkaline phosphatase is increased by 74% in MAHS-expressing ASCs following 14 days in osteogenic media. Conversely, positive area of the neutral lipid droplet marker BODIPY is decreased by up to 10% in MAHS-transgenic ASCs following 14 days in adipogenic media. Interestingly, media supplementation with up to 40 mM glucose is sufficient to restore adipogenic differentiation within 14 days, prompting further analysis of mechanisms underlying interference between MAHS and differentiation processes.
Collapse
Affiliation(s)
- Jordan L Rolsma
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - William Darch
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - Nicholas C Higgins
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - Joshua T Morgan
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
19
|
Rezzonico Jost T, Lozito A, Mangani D, Raimondi A, Klinger F, Morone D, Klinger M, Grassi F, Vinci V. CD304 + adipose tissue-derived mesenchymal stem cell abundance in autologous fat grafts highly correlates with improvement of localized pain syndromes. Pain 2024; 165:811-819. [PMID: 37943081 DOI: 10.1097/j.pain.0000000000003092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/06/2023] [Indexed: 11/10/2023]
Abstract
ABSTRACT Surgery, burns or surgery-free accident are leading causes of scars with altered tissue consistency, a reduced degree of motion and pain. Autologous fat grafting can dramatically improve tissue consistency and elasticity but less frequently results in the reduction of pain. Therefore, we analyzed different cell populations present within the adipose tissue to be engrafted and correlated them with the reduction of pain after surgery. Here, we identify a population of CD3 - CD4 - CD304 + cells present in grafted adipose tissue, whose abundance highly correlates with pain improvement shortly after surgery ( r2 = 0.7243****) as well as persistently over time (3 months later: r2 = 0.6277****, 1 year later: r2 = 0.5346***, and 4 years later: r2 = 0.5223***). These cells are characterized by the absence of the hematopoietic marker CD45, whereas they express CD90 and CD34, which characterize mesenchymal stem cells (MSCs); the concomitant presence of CD10 and CD73 in the plasma membrane supports a function of these cells in pain reduction. We deduce that the enrichment of this adipose tissue-derived MSC subset could enhance the therapeutic properties of adipose grafts and ameliorate localized pain syndromes.
Collapse
Affiliation(s)
- Tanja Rezzonico Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alessia Lozito
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| | - Davide Mangani
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Raimondi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Klinger
- Department of Health Sciences, University of Milan, Ospedale San Paolo, Milan, Italy
| | - Diego Morone
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Marco Klinger
- Plastic Surgery Unit, Department of Medical Biotechnology and Translational Medicine BIOMETRA, Humanitas Clinical and Research Hospital, Reconstructive and Aesthetic Plastic Surgery School, University of Milan, Rozzano, MI, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Valeriano Vinci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
- Humanitas Clinical and Research Center-IRCCS, Rozzano, MI, Italy
| |
Collapse
|
20
|
Park MY, Yoon YS, Park JH, Lee JL, Yu CS. Long-term outcome of stem cell transplantation with and without anti-tumor necrotic factor therapy in perianal fistula with Crohn's disease. World J Stem Cells 2024; 16:257-266. [PMID: 38577230 PMCID: PMC10989284 DOI: 10.4252/wjsc.v16.i3.257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/25/2023] [Accepted: 02/18/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Stem cell transplantation is a promising therapeutic option for curing perianal fistula in Crohn's disease (CD). Anti-tumor necrotic factor (TNF) therapy combined with drainage procedure is effective as well. However, previous studies are limited to proving whether the combination treatment of biologics and stem cell transplantation improves the effect of fistula closure. AIM This study aimed to evaluate the long-term outcomes of stem cell transplantation and compare Crohn's perianal fistula (CPF) closure rates after stem cell transplantation with and without anti-TNF therapy, and to identify the factors affecting CPF closure and recurrence. METHODS The patients with CD who underwent stem cell transplantation for treating perianal fistula in our institution between Jun 2014 and December 2022 were enrolled. Clinical data were compared according to anti-TNF therapy and CPF closure. RESULTS A total of 65 patients were included. The median age of females was 26 years (range: 21-31) and that of males was 29 (44.6%). The mean follow-up duration was 65.88 ± 32.65 months, and complete closure was observed in 50 (76.9%) patients. The closure rates were similar after stem cell transplantation with and without anti-TNF therapy (66.7% vs 81.6% at 3 year, P = 0.098). The patients with fistula closure had short fistulous tract and infrequent proctitis and anorectal stricture (P = 0.027, 0.002, and 0.008, respectively). Clinical factors such as complexity, number of fistulas, presence of concurrent abscess, and medication were not significant for closure. The cumulative 1-, 2-, and 3-year closure rates were 66.2%, 73.8%, and 75.4%, respectively. CONCLUSION Anti-TNF therapy does not increase CPF closure rates in patients with stem cell transplantation. However, both refractory and non-refractory CPF have similar closure rates after additional anti-TNF therapy. Fistulous tract length, proctitis, and anal stricture are risk factors for non-closure in patients with CPF after stem cell transplantation.
Collapse
Affiliation(s)
- Min Young Park
- Division of Colon and Rectal Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Yong Sik Yoon
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea.
| | - Jae Ha Park
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jong Lyul Lee
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Chang Sik Yu
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| |
Collapse
|
21
|
Sreekumar S, Vijayan V, Gangaraj KP, Kiran MS. Apigenin Self-Assembled Collagen Biomatrix for Reprogramming the Obese Wound Microenvironment for Its Management and Repair. ACS APPLIED BIO MATERIALS 2024; 7:1317-1335. [PMID: 38357783 DOI: 10.1021/acsabm.3c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Wound management in obesity is complicated by excessive exudates from wounded areas, pressure ulcerations due to stacking of the fat layer, and vascular rarefaction. The current study explored the development of biomaterials for reprogramming the altered wound microenvironment under obese conditions. Self-assembled collagen biomatrix with trans and de novo browning activator, apigenin, was fabricated as a soft tissue regenerative wound dressing material. The as-synthesized self-assembled collagen biomatrix exhibited excellent thermal, mechanical, and biological stability with a superior wound exudate absorption capacity. The apigenin self-assembled collagen biomatrix exhibited porous 3-D microstructure that mimicked the extracellular matrix that promoted cell adhesion and proliferation. The apigenin self-assembled collagen multifunctional biomatrix triggered adaptive localized thermogenesis in the subcutaneous fat layer, resulting in the activation of angiogenesis and fibroblast spreading and migration. The in vivo wound healing assay performed in DIO-C57BL6 mice showed faster tissue regeneration within 9 days, with well-defined neo-epidermis, blood vessel formation, thick collagen deposition, minimal inflammation, and significant activation of browning in the subcutaneous adipose layer. This study paves the way forward for the development of specialized regenerative biomatrices that reprogram the obese wound bed for faster tissue regeneration.
Collapse
Affiliation(s)
- Sreelekshmi Sreekumar
- Biological Materials Laboratory, Council of Scientific and Industrial Research- Central Leather Research Institute, Chennai, Tamil Nadu India, 600020
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vinu Vijayan
- Biological Materials Laboratory, Council of Scientific and Industrial Research- Central Leather Research Institute, Chennai, Tamil Nadu India, 600020
| | | | - Manikantan Syamala Kiran
- Biological Materials Laboratory, Council of Scientific and Industrial Research- Central Leather Research Institute, Chennai, Tamil Nadu India, 600020
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
22
|
Shahin H, Belcastro L, Das J, Perdiki Grigoriadi M, Saager RB, Steinvall I, Sjöberg F, Olofsson P, Elmasry M, El-Serafi AT. MicroRNA-155 mediates multiple gene regulations pertinent to the role of human adipose-derived mesenchymal stem cells in skin regeneration. Front Bioeng Biotechnol 2024; 12:1328504. [PMID: 38562669 PMCID: PMC10982420 DOI: 10.3389/fbioe.2024.1328504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: The role of Adipose-derived mesenchymal stem cells (AD-MSCs) in skin wound healing remains to be fully characterized. This study aims to evaluate the regenerative potential of autologous AD-MSCs in a non-healing porcine wound model, in addition to elucidate key miRNA-mediated epigenetic regulations that underlie the regenerative potential of AD-MSCs in wounds. Methods: The regenerative potential of autologous AD-MSCs was evaluated in porcine model using histopathology and spatial frequency domain imaging. Then, the correlations between miRNAs and proteins of AD-MSCs were evaluated using an integration analysis in primary human AD-MSCs in comparison to primary human keratinocytes. Transfection study of AD-MSCs was conducted to validate the bioinformatics data. Results: Autologous porcine AD-MSCs improved wound epithelialization and skin properties in comparison to control wounds. We identified 26 proteins upregulated in human AD-MSCs, including growth and angiogenic factors, chemokines and inflammatory cytokines. Pathway enrichment analysis highlighted cell signalling-associated pathways and immunomodulatory pathways. miRNA-target modelling revealed regulations related to genes encoding for 16 upregulated proteins. miR-155-5p was predicted to regulate Fibroblast growth factor 2 and 7, C-C motif chemokine ligand 2 and Vascular cell adhesion molecule 1. Transfecting human AD-MSCs cell line with anti-miR-155 showed transient gene silencing of the four proteins at 24 h post-transfection. Discussion: This study proposes a positive miR-155-mediated gene regulation of key factors involved in wound healing. The study represents a promising approach for miRNA-based and cell-free regenerative treatment for difficult-to-heal wounds. The therapeutic potential of miR-155 and its identified targets should be further explored in-vivo.
Collapse
Affiliation(s)
- Hady Shahin
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linkoping University, Linköping, Sweden
- Faculty of Biotechnology, Modern Sciences and Arts University, October City, Cairo, Egypt
| | - Luigi Belcastro
- Department of Biomedical Engineering, Linkoping University, Linköping, Sweden
| | - Jyotirmoy Das
- Bioinformatics Unit, Core Facility (KEF), Faculty of Medicine and Health Sciences (BKV), Linköping University, Linköping, Sweden
- Clinical Genomics Linköping, SciLife Laboratory, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Rolf B. Saager
- Department of Biomedical Engineering, Linkoping University, Linköping, Sweden
| | - Ingrid Steinvall
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
| | - Folke Sjöberg
- Department of Biomedical and Clinical Sciences, Linkoping University, Linköping, Sweden
| | - Pia Olofsson
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
| | - Moustafa Elmasry
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
| | - Ahmed T. El-Serafi
- Department of Hand Surgery, Plastic Surgery, and Burns, Linkoping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linkoping University, Linköping, Sweden
| |
Collapse
|
23
|
Choi N, Hwang J, Kim DY, Kim J, Song SY, Sung J. Involvement of DKK1 secreted from adipose-derived stem cells in alopecia areata. Cell Prolif 2024; 57:e13562. [PMID: 37991164 PMCID: PMC10905327 DOI: 10.1111/cpr.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/11/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023] Open
Abstract
Adipose-derived stem cells (ASCs) have shown efficacy in promoting hair growth, while DKK1 inhibits the WNT pathway, which is associated with hair loss. Our study focused on investigating the expression of DKK1 in alopecia areata (AA), a condition characterised by significant increases in the DKK1 levels in human and mouse ASCs. Treatment of interferon-γ increased the expression of DKK1 via STAT3 phosphorylation in ASCs. Treatment with recombinant DKK1 resulted in a decrease of cell growth in outer root sheath cells, whereas the use of a DKK1 neutralising antibody promoted hair growth. These results indicate that ASCs secrete DKK1, playing a crucial role in the progression and development of AA. Consequently, we generated DKK1 knockout (KO) ASCs using the Crispr/Cas9 system and evaluated their hair growth-promoting effects in an AA model. The DKK1 KO in ASCs led to enhanced cell motility and reduced cellular senescence by activating the WNT signalling pathway, while it reduced the expression of inflammatory cytokines by inactivating the NF-kB pathway. As expected, the intravenous injection of DKK1-KO-ASCs in AA mice, and the treatment with a conditioned medium derived from DKK1-KO-ASCs in hair organ culture proved to be more effective compared with the use of naïve ASCs and their conditioned medium. Overall, these findings suggest that DKK1 represents a novel therapeutic target for treating AA, and cell therapy using DKK1-KO-ASCs demonstrates greater efficiency.
Collapse
Affiliation(s)
| | | | - Doo Yeong Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical SciencesYonsei UniversityIncheonSouth Korea
| | - Jino Kim
- New Hair Plastic Surgery ClinicSeoulSouth Korea
| | - Seung Yong Song
- Institute for Human Tissue Restoration, Department of Plastic and Reconstructive SurgeryYonsei University College of MedicineSeoulSouth Korea
| | - Jong‐Hyuk Sung
- Epi Biotech Co., Ltd.IncheonSouth Korea
- College of Pharmacy, Yonsei Institute of Pharmaceutical SciencesYonsei UniversityIncheonSouth Korea
| |
Collapse
|
24
|
Ham M, Cho Y, Kang T, Oh T, Kim H, Kim K. Transcriptome-wide analysis reveals GYG2 as a mitochondria-related aging biomarker in human subcutaneous adipose tissue. Aging Cell 2024; 23:e14049. [PMID: 38062989 PMCID: PMC10861210 DOI: 10.1111/acel.14049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 02/15/2024] Open
Abstract
Subcutaneous adipose tissue (SAT), a vital energy reservoir and endocrine organ for maintaining systemic glucose, lipid, and energy homeostasis, undergoes significant changes with age. However, among the existing aging-related markers, only few genes are associated with SAT aging. In this study, weighted gene co-expression network analysis was used on a transcriptome of SAT obtained from the Genotype-Tissue Expression portal to identify biologically relevant, SAT-specific, and age-related marker genes. We found modules that exhibited significant changes with age and identified GYG2 as a novel key aging associated gene. The link between GYG2 and mitochondrial function as well as brown/beige adipocytes was supported using additional bioinformatics and experimental analyses. Additionally, we identified PPARG as the transcription factor of GYG2 expression. The newly discovered GYG2 marker can be used to not only determine the age of SAT but also uncover new mechanisms underlying SAT aging.
Collapse
Affiliation(s)
- Mira Ham
- R&I Unit, Amorepacific CorporationGyeonggi‐doKorea
| | - Yeonju Cho
- R&I Unit, Amorepacific CorporationGyeonggi‐doKorea
| | - Tae‐Wook Kang
- Department of BioinformaticsThe Moagen Inc.DaejeonKorea
| | - Taeyun Oh
- Department of Internal Medicine, Institute of GastroenterologyYonsei University College of MedicineSeoulKorea
| | | | - Kyu‐Han Kim
- R&I Unit, Amorepacific CorporationGyeonggi‐doKorea
| |
Collapse
|
25
|
Mudgal SK, Kumar S, Gaur R, Singh H, Saikia D, Varshney S, Gupta P, Grover A, Varikasuvu SR. Effectiveness of Stem Cell Therapy for Diabetic Foot Ulcers: A Systematic Review and GRADE Compliant Bootstrapped Meta-Analysis of Randomized Clinical Trials. INT J LOW EXTR WOUND 2024:15347346241227530. [PMID: 38298002 DOI: 10.1177/15347346241227530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Diabetic foot (DF) represents a severe complication of diabetes mellitus, imposing substantial psychological and economic burdens on affected individuals. This investigation sought to assess the therapeutic efficacy of stem cell interventions in the management of DF complications. A comprehensive systematic search across PubMed, Embase, CINAHL, Scopus, and the Cochrane library databases was conducted to identify pertinent studies for meta-analysis. Outcome measures encompassed ulcer or wound healing rates, amputation rates, angiogenesis, ankle-brachial index (ABI), and pain-free walking distance. Dichotomous outcomes were expressed as risk differences (RDs) with 95% confidence intervals (CIs), while continuous data were articulated as standardized mean differences (SMDs) with corresponding 95% CIs. Statistical analyses were executed using RevMan 5.3 and Open Meta, with bootstrapped meta-analysis conducted through OpenMEE software. A total of 20 studies, comprising 24 arms and involving 1304 participants, were incorporated into the meta-analysis. The findings revealed that stem cell therapy exhibited superior efficacy compared to conventional interventions in terms of ulcer or wound healing rate [RD = 0.36 (0.28, 0.43)], pain-free walking distance [SMD = 1.27 (0.89, 1.65)], ABI [SMD = 0.61 (0.33, 0.88)], and new vessel development [RD = 0.48 (0.23, 0.78)], while concurrently reducing the amputation rate significantly [RD = -0.19 (-0.25, -0.12)]. Furthermore, no statistically significant difference in adverse events was observed [RD -0.07 (-0.16, 0.02)]. The Grading of Recommendations, Assessment, Development, and Evaluation assessment indicated varying levels of evidence certainty, ranging from very low to moderate, for different outcomes. Bootstrapping analysis substantiated the precision of the results. The meta-analysis underscores the significant superiority of stem cell therapy over conventional approaches in treating DF complications. Future investigations should prioritize large-scale, randomized, double-blind, placebo-controlled, multicenter trials, incorporating rigorous long-term follow-up protocols. These studies are essential for elucidating the optimal cell types and therapeutic parameters that contribute to the most effective treatment strategies for DF management.
Collapse
Affiliation(s)
- Shiv Kumar Mudgal
- All India Institute of Medical Sciences (AIIMS), Deoghar, Jharkhand, India
| | - Subodh Kumar
- All India Institute of Medical Sciences (AIIMS), Deoghar, Jharkhand, India
| | - Rakhi Gaur
- All India Institute of Medical Sciences (AIIMS), Deoghar, Jharkhand, India
| | - Harminder Singh
- All India Institute of Medical Sciences (AIIMS), Deoghar, Jharkhand, India
| | - Dibyajyoti Saikia
- All India Institute of Medical Sciences (AIIMS), Guwahati, Assam, India
| | - Saurabh Varshney
- All India Institute of Medical Sciences (AIIMS), Deoghar, Jharkhand, India
| | - Pratima Gupta
- All India Institute of Medical Sciences (AIIMS), Deoghar, Jharkhand, India
| | - Ashoo Grover
- Indian Council of Medical Research (ICMR), Head Quarters, New Delhi, India
| | | |
Collapse
|
26
|
Park JS, Kim DY, Hong HS. FGF2/HGF priming facilitates adipose-derived stem cell-mediated bone formation in osteoporotic defects. Heliyon 2024; 10:e24554. [PMID: 38304814 PMCID: PMC10831751 DOI: 10.1016/j.heliyon.2024.e24554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Aims The activity of adipose-derived stem cells (ADSCs) is susceptible to the physiological conditions of the donor. Therefore, employing ADSCs from donors of advanced age or with diseases for cell therapy necessitates a strategy to enhance therapeutic efficacy before transplantation. This study aims to investigate the impact of supplementing Fibroblast Growth Factor 2 (FGF2) and Hepatocyte Growth Factor (HGF) on ADSC-mediated osteogenesis under osteoporotic conditions and to explore the underlying mechanisms of action. Main methods Adipose-derived stem cells (ADSCs) obtained from ovariectomized (OVX) rats were cultured ex vivo. These cells were cultured in an osteogenic medium supplemented with FGF2 and HGF and subsequently autologously transplanted into osteoporotic femur defects using Hydroxyapatite-Tricalcium Phosphate. The assessment of bone formation was conducted four weeks post-transplantation. Key findings Osteoporosis detrimentally affects the viability and osteogenic differentiation potential of ADSCs, often accompanied by a deficiency in FGF2 and HGF signaling. However, priming with FGF2 and HGF facilitated the formation of immature osteoblasts from OVX ADSCs in vitro, promoting the expression of osteoblastogenic proteins, including Runx-2, osterix, and ALP, during the early phase of osteogenesis. Furthermore, FGF2/HGF priming augmented the levels of VEGF and SDF-1α in the microenvironment of OVX ADSCs under osteogenic induction. Importantly, transplantation of OVX ADSCs primed with FGF2/HGF for 6 days significantly enhanced bone formation compared to non-primed cells. The success of bone regeneration was confirmed by the expression of type-1 collagen and osteocalcin in the bone tissue of the deficient area. Significance Our findings corroborate that priming with FGF2/HGF can improve the differentiation potential of ADSCs. This could be applied in autologous stem cell therapy for skeletal disease in the geriatric population.
Collapse
Affiliation(s)
- Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Do Young Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, South Korea
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, 02447, South Korea
| |
Collapse
|
27
|
Shi HS, Yuan X, Wu FF, Li XY, Fan WJ, Yang X, Hu XM, Liu GB. Research progress and challenges in stem cell therapy for diabetic foot: Bibliometric analysis and perspectives. World J Stem Cells 2024; 16:33-53. [PMID: 38292441 PMCID: PMC10824042 DOI: 10.4252/wjsc.v16.i1.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Stem cell therapy has shown great potential for treating diabetic foot (DF). AIM To conduct a bibliometric analysis of studies on the use of stem cell therapy for DF over the past two decades, with the aim of depicting the current global research landscape, identifying the most influential research hotspots, and providing insights for future research directions. METHODS We searched the Web of Science Core Collection database for all relevant studies on the use of stem cell therapy in DF. Bibliometric analysis was carried out using CiteSpace, VOSviewer, and R (4.3.1) to identify the most notable studies. RESULTS A search was conducted to identify publications related to the use of stem cells for DF treatment. A total of 542 articles published from 2000 to 2023 were identified. The United States had published the most papers on this subject. In this field, Iran's Shahid Beheshti University Medical Sciences demonstrated the highest productivity. Furthermore, Dr. Bayat from the same university has been an outstanding researcher in this field. Stem Cell Research & Therapy is the journal with the highest number of publications in this field. The main keywords were "diabetic foot ulcers," "wound healing," and "angiogenesis." CONCLUSION This study systematically illustrated the advances in the use of stem cell therapy to treat DF over the past 23 years. Current research findings suggested that the hotspots in this field include stem cell dressings, exosomes, wound healing, and adipose-derived stem cells. Future research should also focus on the clinical translation of stem cell therapies for DF.
Collapse
Affiliation(s)
- Hong-Shuo Shi
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China
| | - Xin Yuan
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China
| | - Fang-Fang Wu
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China
| | - Xiao-Yu Li
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China
| | - Wei-Jing Fan
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China
| | - Xiao Yang
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China
| | - Xiao-Ming Hu
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China
| | - Guo-Bin Liu
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China.
| |
Collapse
|
28
|
Hancı D, Çelik C, Altun H, Uyar Y. Fascia Lata-Fat Island Graft in Septal Perforation Repair. Facial Plast Surg Aesthet Med 2024. [PMID: 38215258 DOI: 10.1089/fpsam.2023.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
Objective: To measure the success of the fascia lata-fat island graft technique in septal perforation repair as measured by nasal endoscopic examination. Background: This study presents the results of using fascia lata-fat island, a different graft technique, for the repair of septal perforations, offering an alternative to this challenging procedure. Methods: This retrospective study assesses nasal septal perforation repair using the fascia lata-fat island graft technique performed by a single surgeon. Inclusion criteria involved completing 12-month follow-ups within a 3-year review period. Success rates were calculated and evaluated alongside patient characteristics. Results: The median (range) age of the 25 patients included in the study was 34 (25-45) years and 72.0% were men. The septal perforation size of all patients was >2 cm and the etiological cause in all of them was previous septal surgery. All patients were followed for 12 months. The perforation was completely closed in 23 of 25 patients (92%). Conclusion: Using a different graft with an open rhinoplasty approach, we achieved a high success rate in patients with large septal perforations, followed for 1 month with nasal stenting and an average follow-up duration of 12 months.
Collapse
Affiliation(s)
- Deniz Hancı
- Department of Otorhinolaryngology, University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Cem Çelik
- Department of Otorhinolaryngology, University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Hüseyin Altun
- Department of Otorhinolaryngology, Kocaeli Technology and Health University, Kocaeli, Turkey
| | - Yavuz Uyar
- Department of Otorhinolaryngology, University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Turkey
| |
Collapse
|
29
|
Yan D, Song Y, Zhang B, Cao G, Zhou H, Li H, Sun H, Deng M, Qiu Y, Yi W, Sun Y. Progress and application of adipose-derived stem cells in the treatment of diabetes and its complications. Stem Cell Res Ther 2024; 15:3. [PMID: 38167106 PMCID: PMC10763319 DOI: 10.1186/s13287-023-03620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Diabetes mellitus (DM) is a serious chronic metabolic disease that can lead to many serious complications, such as cardiovascular disease, retinopathy, neuropathy, and kidney disease. Once diagnosed with diabetes, patients need to take oral hypoglycemic drugs or use insulin to control blood sugar and slow down the progression of the disease. This has a significant impact on the daily life of patients, requiring constant monitoring of the side effects of medication. It also imposes a heavy financial burden on individuals, their families, and even society as a whole. Adipose-derived stem cells (ADSCs) have recently become an emerging therapeutic modality for DM and its complications. ADSCs can improve insulin sensitivity and enhance insulin secretion through various pathways, thereby alleviating diabetes and its complications. Additionally, ADSCs can promote tissue regeneration, inhibit inflammatory reactions, and reduce tissue damage and cell apoptosis. The potential mechanisms of ADSC therapy for DM and its complications are numerous, and its extensive regenerative and differentiation ability, as well as its role in regulating the immune system and metabolic function, make it a powerful tool in the treatment of DM. Although this technology is still in the early stages, many studies have already proven its safety and effectiveness, providing new treatment options for patients with DM or its complications. Although based on current research, ADSCs have achieved some results in animal experiments and clinical trials for the treatment of DM, further clinical trials are still needed before they can be applied in a clinical setting.
Collapse
Affiliation(s)
- Dongxu Yan
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Guojie Cao
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Haitao Zhou
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Hong Li
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Hao Sun
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Meng Deng
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Yufeng Qiu
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, 127# Changlexi Road, Xi'an, 710032, China.
| |
Collapse
|
30
|
Yin S, Han F, Zhou C, Zhao Y. Effect of rmEGF combined with ELF-EMF on promoting wound healing in rats. Technol Health Care 2024; 32:321-328. [PMID: 38669498 PMCID: PMC11191461 DOI: 10.3233/thc-248028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
BACKGROUND The process of wound healing is complex, and expediting it remains a challenge. The advantages of extremely low frequency electric and magnetic fields (ELF-EMF) are its non-invasive treatment, promotes healing and promotes myogenesis of C2C12 cells. Epidermal growth factor (EGF) is known to play a vital role in promoting wound healing, so a combination of ELF-EMF and EGF can have far-reaching significance. OBJECTIVE To study the effect of recombinant murine epidermal growth factor (rmEGF) combined with ELF-EMF on wound healing. METHODS Thirty-six rats were randomly divided into three groups: normal control group, EGF group, and ELF-EMF+EGF group, and a 20 mm × 20 mm dorsal wound was made. The wound healing rate of rats was calculated on the 3rd, 7th, 11th and 15th day. HE staining was used to observe the micro-morphological changes during the wound healing process. RESULTS The wound healing rate of EGF+ELF-EMF group was better than other groups. On the 15th day of wound healing, the wounds of each group were completely healed. On the 3rd, 7th, 11th and 15th day of HE staining, the early inflammatory cell infiltration, the arrangement of fibroblasts and the number of new capillaries in the wounds of EGF+ELF-EMF group were better than those of the other groups. CONCLUSIONS rmEGF combined with ELF-EMF significantly promotes wound healing in SD rats.
Collapse
Affiliation(s)
- Shuang Yin
- Department of Plastic Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fujun Han
- Department of Plastic Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Emergency Department, SongBei Hospital of The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Neurology, Heilongjiang Mental Hospital, Harbin, Heilongjiang, China
| | - Chenliang Zhou
- Emergency Department, SongBei Hospital of The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yonghou Zhao
- Department of Neurology, Heilongjiang Mental Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
31
|
Wang X, Li R, Zhao H. Enhancing angiogenesis: Innovative drug delivery systems to facilitate diabetic wound healing. Biomed Pharmacother 2024; 170:116035. [PMID: 38113622 DOI: 10.1016/j.biopha.2023.116035] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Diabetic wounds (DW) constitute a substantial burden on global healthcare owing to their widespread occurrence as a complication of diabetes. Angiogenesis, a crucial process, plays a pivotal role in tissue recovery by supplying essential oxygen and nutrients to the injury site. Unfortunately, in diabetes mellitus, various factors disrupt angiogenesis, hindering wound healing. While biomaterials designed to enhance angiogenesis hold promise for the treatment of DWs, there is an urgent need for more in-depth investigations to fully unlock their potential in clinical management. In this review, we explore the intricate mechanisms of angiogenesis that are crucial for DW recovery. We introduce a rational design for angiogenesis-enhancing drug delivery systems (DDS) and provide a comprehensive summary and discussion of diverse biomaterials that enhance angiogenesis for facilitating DW healing. Lastly, we address emerging challenges and prospects in angiogenesis-enhancing DDS for facilitating DW healing, aiming to offer a comprehensive understanding of this critical healthcare issue and potential solutions.
Collapse
Affiliation(s)
- Xuan Wang
- Department of foot and ankle surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an 710054, China
| | - Runmin Li
- Department of foot and ankle surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an 710054, China
| | - Hongmou Zhao
- Department of foot and ankle surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
32
|
Huang NC, Huang NC, Kang LY, Hsieh PS, Dai LG, Dai NT, Huang CJ. Enhanced Diabetic Rat Wound Healing by Platelet-Rich Plasma Adhesion Zwitterionic Hydrogel. Ann Plast Surg 2024; 92:S2-S11. [PMID: 38285989 DOI: 10.1097/sap.0000000000003796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
BACKGROUND The skin is the largest organ in the human body and serves as a barrier for protective, immune, and sensory functions. Continuous and permanent exposure to the external environment results in different levels of skin and extracellular matrix damage. During skin wound healing, the use of good dressings and addition of growth factors to the wound site can effectively modulate the rate of wound healing. A dressing containing bioactive substances can absorb wound exudates and reduce adhesion between the wound and dressing, whereas growth factors, cytokines, and signaling factors can promote cell motility and proliferation. AIM AND OBJECTIVES We prepared a functional wound dressing by combining platelet-rich plasma (PRP) and zwitterionic hydrogels. Functional wound dressings are rich in various naturally occurring growth factors that can effectively promote the healing process in various types of tissues and absorb wound exudates to reduce adhesion between wounds and dressings. Furthermore, PRP-incorporated zwitterionic hydrogels have been used to repair full-thickness wounds in Sprague-Dawley rats with diabetes (DM SD). MATERIALS AND METHODS Fibroblasts and keratinocytes were cultured with PRP, zwitterionic hydrogels, and PRP-incorporated zwitterionic hydrogels to assess cell proliferation and specific gene expression. Furthermore, PRP-incorporated zwitterionic hydrogels were used to repair full-thickness skin defects in DM SD rats. RESULTS The swelling ratio of hydrogel, hydrogel + PRP1000 (108 platelets/mL), and hydrogel + PRP1000 (109 platelets/mL) groups were similar (~07.71% ± 1.396%, 700.17% ± 1.901%, 687.48% ± 4.661%, respectively) at 144 hours. The tensile strength and Young modulus of the hydrogel and hydrogel + PRP10000 groups were not significantly different. High concentrations of PRP (approximately 108 and 109 platelets/mL) effectively promoted the proliferation of fibroblasts and keratinocytes. The zwitterionic hydrogels were not cytotoxic to any cell type. High PRP concentration-incorporated zwitterionic hydrogels increased the rate of cell proliferation and significantly increased the expression of characteristic genes such as collagen, fibronectin, involucrin, and keratin. Subsequently, zwitterionic hydrogels with high PRP concentrations were used to repair full-thickness skin defects in DM SD rats, and a wound healing rate of more than 90% was recorded on day 12. CONCLUSIONS PRP contains high concentrations of growth factors that promote cell viability, enhance specific gene expression, and have a high medical value in cell therapy. Zwitterionic hydrogels have a 3-dimensional interconnected microporous structure and can resist cell adhesion without causing cytotoxicity. Platelet-rich plasma-incorporated zwitterionic hydrogels further enhance the cellular properties and provide an effective therapeutic option for wound healing.
Collapse
Affiliation(s)
| | - Nien-Chi Huang
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | - Lan-Ya Kang
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | - Pai-Shan Hsieh
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | - Lien-Guo Dai
- Department of Orthopaedic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | | |
Collapse
|
33
|
Panda D, Nayak S. Stem Cell-Based Tissue Engineering Approaches for Diabetic Foot Ulcer: a Review from Mechanism to Clinical Trial. Stem Cell Rev Rep 2024; 20:88-123. [PMID: 37867186 DOI: 10.1007/s12015-023-10640-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Diabetic foot ulcer (DFU) is a complication from incomplete or prolonged wound healing, at times requires amputation, putting substantial health and socioeconomic burden. Wound healing is a dynamic overlapping process that can be regulated by arrays of molecular factors showing redundancy in function. However, dysregulation in the mechanism of angiogenesis, extra cellular matrix (ECM) formation and immune modulation are the major causes for impair wound healing in hyperglycaemic patients. Despite development of wound care research, there is a lack of well-accepted targeted therapy with multidisciplinary approach for DFU treatment. Stem cell therapy holds a promising outcome both in preclinical and clinical trials because of its ability to promote healing via regeneration and specialized tissue differentiation. Among different types of stem cells, regenerative potential of mesenchymal stem cell (MSC) is well demonstrated in both experimental and clinical trial. Still there is a huge knowledge gap among medical practitioners for deciding the best stem cell source, administration route, and safety. This review strengthens the fact that why stem cell therapy is a promising candidate to treat DFU and cited multiple tissue engineering and biomaterial-based approaches for delivering stem cells and their aftermath paracrine events. Based on the pre-clinical and clinical studies, the review tried to come up with optimum stem cell source and delivery route for the treatment of DFU. At last, the review glances on possible direction to enhance therapeutics strategy for the same, including different approaches like: phytocompounds, exosomes, scaffold geometry, cell preconditioning and licensing etc.
Collapse
Affiliation(s)
- Debarchan Panda
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sunita Nayak
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
34
|
Keese M, Zheng J, Yan K, Bieback K, Yard BA, Pallavi P, Reissfelder C, Kluth MA, Sigl M, Yugublu V. Adipose-Derived Mesenchymal Stem Cells Protect Endothelial Cells from Hypoxic Injury by Suppressing Terminal UPR In Vivo and In Vitro. Int J Mol Sci 2023; 24:17197. [PMID: 38139026 PMCID: PMC10742997 DOI: 10.3390/ijms242417197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Adipose-derived stem cells (ASCs) have been used as a therapeutic intervention for peripheral artery disease (PAD) in clinical trials. To further explore the therapeutic mechanism of these mesenchymal multipotent stromal/stem cells in PAD, this study was designed to test the effect of xenogeneic ASCs extracted from human adipose tissue on hypoxic endothelial cells (ECs) and terminal unfolded protein response (UPR) in vitro and in an atherosclerosis-prone apolipoprotein E-deficient mice (ApoE-/- mice) hindlimb ischemia model in vivo. ASCs were added to Cobalt (II) chloride-treated ECs; then, metabolic activity, cell migration, and tube formation were evaluated. Fluorescence-based sensors were used to assess dynamic changes in Ca2+ levels in the cytosolic- and endoplasmic reticulum (ER) as well as changes in reactive oxygen species. Western blotting was used to observe the UPR pathway. To simulate an acute-on-chronic model of PAD, ApoE-/- mice were subjected to a double ligation of the femoral artery (DLFA). An assessment of functional recovery after DFLA was conducted, as well as histology of gastrocnemius. Hypoxia caused ER stress in ECs, but ASCs reduced it, thereby promoting cell survival. Treatment with ASCs ameliorated the effects of ischemia on muscle tissue in the ApoE-/- mice hindlimb ischemia model. Animals showed less muscle necrosis, less inflammation, and lower levels of muscle enzymes after ASC injection. In vitro and in vivo results revealed that all ER stress sensors (BIP, ATF6, CHOP, and XBP1) were activated. We also observed that the expression of these proteins was reduced in the ASCs treatment group. ASCs effectively alleviated endothelial dysfunction under hypoxic conditions by strengthening ATF6 and initiating a transcriptional program to restore ER homeostasis. In general, our data suggest that ASCs may be a meaningful treatment option for patients with PAD who do not have traditional revascularization options.
Collapse
Affiliation(s)
- Michael Keese
- Department of Surgery, Medical Centre Mannheim, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.); (J.Z.); (K.Y.); (P.P.); (C.R.)
- European Center of Angioscience (ECAS), Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany
- Department for Vascular Surgery, Theresienkrankenhaus Mannheim, 68165 Mannheim, Germany
| | - Jiaxing Zheng
- Department of Surgery, Medical Centre Mannheim, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.); (J.Z.); (K.Y.); (P.P.); (C.R.)
- European Center of Angioscience (ECAS), Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany
| | - Kaixuan Yan
- Department of Surgery, Medical Centre Mannheim, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.); (J.Z.); (K.Y.); (P.P.); (C.R.)
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Benito A. Yard
- V Department of Medicine, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Prama Pallavi
- Department of Surgery, Medical Centre Mannheim, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.); (J.Z.); (K.Y.); (P.P.); (C.R.)
- European Center of Angioscience (ECAS), Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christoph Reissfelder
- Department of Surgery, Medical Centre Mannheim, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.); (J.Z.); (K.Y.); (P.P.); (C.R.)
- DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Mark Andreas Kluth
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany;
| | - Martin Sigl
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Vugar Yugublu
- Department of Surgery, Medical Centre Mannheim, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.); (J.Z.); (K.Y.); (P.P.); (C.R.)
| |
Collapse
|
35
|
Downer M, Berry CE, Parker JB, Kameni L, Griffin M. Current Biomaterials for Wound Healing. Bioengineering (Basel) 2023; 10:1378. [PMID: 38135969 PMCID: PMC10741152 DOI: 10.3390/bioengineering10121378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Wound healing is the body's process of injury recovery. Skin healing is divided into four distinct overlapping phases: hemostasis, inflammation, proliferation, and remodeling. Cell-to-cell interactions mediated by both cytokines and chemokines are imperative for the transition between these phases. Patients can face difficulties in the healing process due to the wound being too large, decreased vascularization, infection, or additional burdens of a systemic illness. The field of tissue engineering has been investigating biomaterials as an alternative for skin regeneration. Biomaterials used for wound healing may be natural, synthetic, or a combination of both. Once a specific biomaterial is selected, it acts as a scaffold for skin regeneration. When the scaffold is applied to a wound, it allows for the upregulation of distinct molecular signaling pathways important for skin repair. Although tissue engineering has made great progress, more research is needed in order to support the use of biomaterials for wound healing for clinical translation.
Collapse
Affiliation(s)
- Mauricio Downer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
| | - Charlotte E. Berry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
| | - Jennifer B. Parker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lionel Kameni
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
- Hagey Laboratory for Pediatric Regenerative Medicine, 257 Campus Drive, MC 5148, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Mahjoor M, Fakouri A, Farokhi S, Nazari H, Afkhami H, Heidari F. Regenerative potential of mesenchymal stromal cells in wound healing: unveiling the influence of normoxic and hypoxic environments. Front Cell Dev Biol 2023; 11:1245872. [PMID: 37900276 PMCID: PMC10603205 DOI: 10.3389/fcell.2023.1245872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 10/31/2023] Open
Abstract
The innate and adaptive immune systems rely on the skin for various purposes, serving as the primary defense against harmful environmental elements. However, skin lesions may lead to undesirable consequences such as scarring, accelerated skin aging, functional impairment, and psychological effects over time. The rising popularity of mesenchymal stromal cells (MSCs) for skin wound treatment is due to their potential as a promising therapeutic option. MSCs offer advantages in terms of differentiation capacity, accessibility, low immunogenicity, and their central role in natural wound-healing processes. To accelerate the healing process, MSCs promote cell migration, angiogenesis, epithelialization, and granulation tissue development. Oxygen plays a critical role in the formation and expansion of mammalian cells. The term "normoxia" refers to the usual oxygen levels, defined at 20.21 percent oxygen (160 mm of mercury), while "hypoxia" denotes oxygen levels of 2.91 percent or less. Notably, the ambient O2 content (20%) in the lab significantly differs from the 2%-9% O2 concentration in their natural habitat. Oxygen regulation of hypoxia-inducible factor-1 (HIF-1) mediated expression of multiple genes plays a crucial role in sustaining stem cell destiny concerning proliferation and differentiation. This study aims to elucidate the impact of normoxia and hypoxia on MSC biology and draw comparisons between the two. The findings suggest that expanding MSC-based regenerative treatments in a hypoxic environment can enhance their growth kinetics, genetic stability, and expression of chemokine receptors, ultimately increasing their effectiveness.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arshia Fakouri
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
37
|
Han J, Li X, Liang B, Ma S, Pu Y, Yu F, Lu J, Ma Y, MacHugh DE, Jiang L. Transcriptome profiling of differentiating adipose-derived stem cells across species reveals new genes regulating adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159378. [PMID: 37572997 DOI: 10.1016/j.bbalip.2023.159378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Adipose-derived stem cells (ADSCs) that are enriched in adipose tissue with multilineage differentiation potential have become an important tool in therapeutic research and tissue engineering. Certain breeds of sheep exhibit a unique fat tail trait such that tail tissue accounts for approximately 10 % of body weight and can provide an excellent source of ADSCs. Here, we describe isolation of primary ADSCs from ovine embryonic fat tail tissues that displayed high self-renewal capacity, multilineage differentiation and excellent adipogenic ability. Through transcriptome analysis covering ADSCs differentiating into adipocytes, 37 transcription factors were involved in early transcriptional events that initiate a regulatory cascade of adipogenesis; the entire adipogenic activity consists of a reduction in proliferation ability and upregulation of genes related to lipid generation and energy metabolism, as well as several genes associated with myogenesis. Furthermore, Comparative transcriptome analysis across species (sheep, human, and mouse) revealed enhanced basal metabolic ability in differentiating ovine ADSCs, which may relate to the excellent adipogenic capability of these cells. We also identified a small evolutionarily conserved gene set, consisting of 21 and 22 genes exhibiting increased and decreased expression, respectively. Almost half (20) of these genes have not previously been reported to regulate adipogenesis in mammals. In this study, we identified important regulators that trigger ovine adipocyte differentiation, main biological pathways involved in adipogenesis as well as the evolutionarily conserved genes governing adipogenic process across species. Our study provides a novel excellent biomaterial and novel genes regulating adipogenesis for cellular transplantation therapy and investigations of fat metabolism.
Collapse
Affiliation(s)
- Jiangang Han
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Xiaojie Li
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Benmeng Liang
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Sijia Ma
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Agricultural College, Ningxia University, Yinchuan, Ningxia, China
| | - Yabin Pu
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Fuqing Yu
- National Animal Husbandry Service, Beijing 100193, China
| | - Jian Lu
- National Animal Husbandry Service, Beijing 100193, China
| | - Yuehui Ma
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland.
| | - Lin Jiang
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| |
Collapse
|
38
|
Anastasio AT, Bagheri K, Adams SB. Contemporary Review: The Use of Adipocyte-Derived Mesenchymal Stem Cells in Pathologies of the Foot and Ankle. FOOT & ANKLE ORTHOPAEDICS 2023; 8:24730114231207643. [PMID: 37929076 PMCID: PMC10623921 DOI: 10.1177/24730114231207643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Affiliation(s)
| | - Kian Bagheri
- Department of Orthopedic Surgery, Duke University Hospital, Durham, NC, USA
- Campbell University School of Osteopathic Medicine, Lillington, NC, USA
| | - Samuel B. Adams
- Department of Orthopedic Surgery, Duke University Hospital, Durham, NC, USA
| |
Collapse
|
39
|
Li CW, Young TH, Wang MH, Pei MY, Hsieh TY, Hsu CL, Cheng NC. Low-glucose culture environment can enhance the wound healing capability of diabetic adipose-derived stem cells. Stem Cell Res Ther 2023; 14:236. [PMID: 37667384 PMCID: PMC10478288 DOI: 10.1186/s13287-023-03478-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Application of autologous adipose-derived stem cells (ASC) for diabetic chronic wounds has become an emerging treatment option. However, ASCs from diabetic individuals showed impaired cell function and suboptimal wound healing effects. We proposed that adopting a low-glucose level in the culture medium for diabetic ASCs may restore their pro-healing capabilities. METHODS ASCs from diabetic humans and mice were retrieved and cultured in high-glucose (HG, 4.5 g/L) or low-glucose (LG, 1.0 g/L) conditions. Cell characteristics and functions were investigated in vitro. Moreover, we applied diabetic murine ASCs cultured in HG or LG condition to a wound healing model in diabetic mice to compare their healing capabilities in vivo. RESULTS Human ASCs exhibited decreased cell proliferation and migration with enhanced senescence when cultured in HG condition in vitro. Similar findings were noted in ASCs derived from diabetic mice. The inferior cellular functions could be partially recovered when they were cultured in LG condition. In the animal study, wounds healed faster when treated with HG- or LG-cultured diabetic ASCs relative to the control group. Moreover, higher collagen density, more angiogenesis and cellular retention of applied ASCs were found in wound tissues treated with diabetic ASCs cultured in LG condition. CONCLUSIONS In line with the literature, our study showed that a diabetic milieu exerts an adverse effect on ASCs. Adopting LG culture condition is a simple and effective approach to enhance the wound healing capabilities of diabetic ASCs, which is valuable for the clinical application of autologous ASCs from diabetic patients.
Collapse
Affiliation(s)
- Chun-Wei Li
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Chang Gung University and College of Medicine, Keelung, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Mu-Hui Wang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Ming-Ying Pei
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tsung-Yu Hsieh
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd., Taipei, 100, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
40
|
Xie J, Wang J, Wang X, Chen M, Yao B, Dong Y, Li X, Yang Q, Tredget EE, Xu RH, Wu Y. An Engineered Dermal Substitute with Mesenchymal Stem Cells Enhances Cutaneous Wound Healing. Tissue Eng Part A 2023; 29:491-505. [PMID: 37212289 DOI: 10.1089/ten.tea.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
The treatment of refractory cutaneous wounds remains to be a clinical challenge. There is growing evidence to show that mesenchymal stem cells (MSCs) have great potential in promoting wound healing. However, the therapeutic effects of MSCs are greatly dampened by their poor survival and engraftment in the wounds. To address this limitation, in this study, MSCs were grown into a collagen-glycosaminoglycan (C-GAG) matrix to form a dermis-like tissue sheet, named engineered dermal substitute (EDS). When seeded on C-GAG matrix, MSCs adhered rapidly, migrated into the pores, and proliferated readily. When applied onto excisional wounds in healthy and diabetic mice, the EDS survived well, and accelerated wound closure, compared with C-GAG matrix alone or MSCs in collagen hydrogel. Histological analysis revealed that EDS prolonged the retention of MSCs in the wounds, associated with increased macrophage infiltration and enhanced angiogenesis. RNA-Seq analysis of EDS-treated wounds uncovered the expression of abundant human chemokines and proangiogenic factors and their corresponding murine receptors, suggesting a mechanism of ligand/receptor-mediated signals in wound healing. Thus, our results indicate that EDS prolongs the survival and retention of MSCs in the wounds and enhances wound healing.
Collapse
Affiliation(s)
- Jundong Xie
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Jinmei Wang
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Department of Pharmacology and Toxicology, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Xiaoxiao Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Min Chen
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Bin Yao
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Yankai Dong
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaosong Li
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Qingyang Yang
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Edward E Tredget
- Wound Healing Research Group, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| |
Collapse
|
41
|
Eschborn J, Kruppa P, Georgiou I, Infanger M, Ghods M. Long-term Results After Autologous Fat Transfer for Treatment of Chronic Lower Extremity Wounds. INT J LOW EXTR WOUND 2023; 22:524-530. [PMID: 34180745 DOI: 10.1177/15347346211027684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autologous fat transfer may offer a simple and effective treatment option for chronic wound patients, delivering adipose-derived stem cells, with potent regenerative attributes. Nevertheless, the clinical benefit has not yet been sufficiently demonstrated. A total of 39 wound patients were treated with autologous fat transfer (AFT) and matched with a control group, according to the identified confounding variables "gender" and "method of defect closure." All data were acquired retrospectively. Primary outcome was "wound closure" and "reduction of wound size."After a follow-up of 48 weeks, there was no significant difference in primary outcome (wound closure P = .54) between both groups. The relative wound reduction after fat transfer was 69.9% ± 42.7% compared to 53.4% ± 106.8% in the control group (P = .91). Subgroup analysis of all patients, healed by secondary intention, revealed an increased wound size reduction (P = .03) and wound closure rate (P = .20) in the case group after 12 weeks. No adverse events were recorded. Fat grafting can reduce the wound size if left to secondary healing and may be considered individually for reconstructive purposes. A repeated application of autologous fat might be beneficial due to a temporary effect.
Collapse
Affiliation(s)
| | | | | | | | - Mojtaba Ghods
- Hospital Ernst von Bergmann, Potsdam, Germany
- University of Potsdam, Center of Sports Medicine, Potsdam, Germany
| |
Collapse
|
42
|
Woo SH, Choi JH, Mo YJ, Lee YI, Jeon WB, Lee YS. Engineered elastin-like polypeptide improves the efficiency of adipose-derived stem cell-mediated cutaneous wound healing in type II diabetes mellitus. Heliyon 2023; 9:e20201. [PMID: 37809635 PMCID: PMC10559957 DOI: 10.1016/j.heliyon.2023.e20201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Impaired cutaneous wound healing is a major complication in patients with diabetes mellitus (DM), leading to increased amputation and mortality rates in affected patients. Adipose-derived stem cells (ASCs) are widely used seed cells for promoted tissue regeneration to improve wound closure under diabetic conditions. However, ASCs-based therapies remain limited due to difficulties in maintaining cell quality during transplantation. To overcome this problem, extracellular matrix mimetic biomaterials have been developed for use in biomedical engineering field, including tissue engineering and regenerative medicine. Herein, a biosynthesized arginine-glycine-aspartate amino acid residues (RGD motif, known as a cell adhesion motif)-containing elastin-like polypeptides (REPs) improved the efficacy of ASCs in enhancing wound closure and skin elasticity in diabetic wounds by promoting the expression of angiogenic growth factors. Therefore, REPs can be used as potential supplements to stem cell-based therapeutic approach to accelerate diabetic wound repair.
Collapse
Affiliation(s)
- Seung-Hwa Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Joon Hyuk Choi
- Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea
| | - Yun Jeong Mo
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea
| | - Won Bae Jeon
- Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
43
|
Xiong H, Ren S, Chen J, Yang X, Liu Y, Xu Z, Guo J, Jiang T, Yuan M, Liu Y, Zhang G, Li W, Machens HG, Chen Z. Knockdown of long noncoding RNA SAN rejuvenates aged adipose-derived stem cells via miR-143-3p/ADD3 axis. Stem Cell Res Ther 2023; 14:213. [PMID: 37605290 PMCID: PMC10441736 DOI: 10.1186/s13287-023-03441-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Senescent adipose-derived stem cells (ASCs) exhibit reduced therapeutic efficacy during wound healing. Transcriptional regulation factors including long noncoding RNAs (lncRNAs) reportedly have essential roles in stem cell aging. However, the mechanisms of which lncRNAs influence mesenchymal stem cell aging and how it works need further investigation. METHODS The expression patterns of lncRNA senescence-associated noncoding RNA (SAN) and miR-143-3p in ASCs obtained from old and young volunteer donors were detected by quantitative polymerase chain reaction. ASCs with overexpression or knockdown of SAN and γ-adducin (ADD3) were constructed by lentiviral transduction. Mimic and inhibitor were used to manipulate the cellular level of miR-143-3p in ASCs. The effects of these RNAs on ASCs proliferation, migration and cellular senescence were examined by EdU, transwell and senescence-activated β-galactosidase (SA-β-gal) staining assays. Wound scratch and tube formation assays were conducted to evaluate the capacities of ASCs in promoting fibroblasts migration and endothelial cells angiogenesis. Furthermore, dual-luciferase assays and rescue experiments were performed to identify the RNA interactions. Finally, the therapeutic effects of SAN-depleted aged ASCs were evaluated in a skin injury model. RESULTS The lncRNA SAN (NONHSAT035482.2) was upregulated in aged ASCs; it controlled cellular senescence in ASCs. lncRNA SAN knockdown in ASCs led to ASC functional enhancement and the inhibition of cellular senescence; it also promoted the effects of conditioned medium (CM) on endothelial cell tube formation and fibroblast migration. Mechanistic analysis showed that SAN serves as a sponge for miR-143-3p, thereby regulating the expression of ADD3. The application of SAN-depleted aged ASCs increased re-epithelialization, collagen deposition, neovascularization and led to accelerated skin wound closure, compared with transplantation of aged ASCs. CONCLUSION The lncRNA SAN mediates ASC senescence by regulating the miR-143-3p/ADD3 pathway, providing a potential target for rejuvenation of senescent ASCs and enhancement of wound repair.
Collapse
Affiliation(s)
- Hewei Xiong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhao Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Meng Yuan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yang Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guolei Zhang
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, 81675, Munich, Germany
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
44
|
Ebrahimpour-Malekshah R, Amini A, Mostafavinia A, Ahmadi H, Zare F, Safaju S, Shahbazi A, Chien S, Rezaei F, Hasan A, Bayat M. The stereological, immunohistological, and gene expression studies in an infected ischemic wound in diabetic rats treated by human adipose-derived stem cells and photobiomodulation. Arch Dermatol Res 2023; 315:1717-1734. [PMID: 36808225 DOI: 10.1007/s00403-023-02563-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
We investigated the impacts of photobiomodulation (PBM) and human allogeneic adipose-derived stem cells (ha-ADS) together and or alone applications on the stereological parameters, immunohistochemical characterizing of M1 and M2 macrophages, and mRNA levels of hypoxia-inducible factor (HIF-1α), basic fibroblast growth factor (bFGF), vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor-1α (SDF-1α) on inflammation (day 4) and proliferation phases (day 8) of repairing tissues in an infected delayed healing and ischemic wound model (IDHIWM) in type 1 diabetic (DM1) rats. DM1 was created in 48 rats and an IDHIWM was made in all of them, and they were distributed into 4 groups. Group1 = control rats with no treatment. Group2 = rats received (10 × 100000 ha-ADS). Group3 = rats exposed to PBM (890 nm, 80 Hz, 3.46 J/cm2). Group4 = rats received both PBM and ha-ADS. On day 8, there were significantly higher neutrophils in the control group than in other groups (p < 0.01). There were substantially higher macrophages in the PBM + ha-ADS group than in other groups on days 4 and 8 (p < 0.001). Granulation tissue volume, on both days 4 and 8, was meaningfully greater in all treatment groups than in the control group (all, p = 0.000). Results of M1 and M2 macrophage counts of repairing tissue in the entire treatment groups were considered preferable to those in the control group (p < 0.05). Regarding stereological and macrophage phenotyping, the results of the PBM + ha-ADS group were better than the ha-ADS and PBM groups. Results of the tested gene expression of repairing tissue on inflammation and proliferation steps in PBM and PBM + ha-ADS groups were meaningfully better than the control and ha-ADS groups (p < 0.05). We showed that PBM, ha-ADS, and PBM plus ha-ADS, hastened the proliferation step of healing in an IDHIWM in rats with DM1 by regulation of the inflammatory reaction, macrophage phenotyping, and augmented granulation tissue formation. In addition PBM and PBM plus ha-ADS protocols hastened and increased mRNA levels of HIF-1α, bFGF, SDF-1α, and VEGF-A. Totally, in terms of stereological and immuno-histological tests, and also gene expression HIF-1α and VEGF-A, the results of PBM + ha-ADS were superior (additive) to PBM, and ha-ADS alone treatments.
Collapse
Affiliation(s)
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sobhan Safaju
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Shahbazi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Noveratech LLC of Louisville, Louisville, KY, USA
| | - Fatemehalsadat Rezaei
- College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY, 40536, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar.
- Biomedical Research Centre, Qatar University, 2713, Doha, Qatar.
| | - Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville, Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
45
|
Cai Y, Zhang F, Feng J, Wu B, Li H, Xiao S, Lu F, Wei Z, Deng C. Long-term follow-up and exploration of the mechanism of stromal vascular fraction gel in chronic wounds. Stem Cell Res Ther 2023; 14:163. [PMID: 37337292 DOI: 10.1186/s13287-023-03389-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Chronic refractory wounds easily relapse and seriously affect the patients' quality of life. Previous studies have shown that stromal vascular fraction gel (SVF-gel) significantly promotes the early healing of chronic wounds; however, the mechanisms of SVF-gel function per se remain unclear, and a long-term follow-up is lacking. This study aims to explore the mechanisms of SVF-gel promoting the healing of chronic wounds and follow up the long-term efficacy of SVF-gel. METHODS Autologous SVF-gel transplantation was performed in 20 patients with chronic wounds (from March 2016 to September 2019), and the size of the wound before and after SVF-gel transplantation was observed. The conditioned medium (CM) was harvested from SVF-gel under serum-free, serum-deprivation and 10% fetal bovine serum (FBS) microenvironment in vitro, respectively. The concentration of the growth factors in the two kinds of gel-CM was tested, and their effects on the proliferation and migration of human dermal fibroblasts (HDFs) were detected. RESULTS All patients had 100% wound closure eventually, and the average time to complete closure was 28.3 ± 9.7 days. The time of follow-up ranged from 2 to 6 years, and there was no wound recurrence. Interestingly, the concentrations of epidermal growth factor and transforming growth factor β1 of the CM were higher in serum-free and serum-deprivation condition than in 10% FBS microenvironment (p < 0.05). Correspondingly, the proliferation and migration ability of HDFs treated with gel-CM from serum-free condition were stronger than those treated with gel-CM from serum-deprivation (2% FBS) or 10% FBS microenvironment (p < 0.05). CONCLUSION These results indicate that it is safe, effective, and lasting in effect to treat chronic wounds with SVF-gel and mechanisms of action that include secreting various cytokines and promoting cell proliferation and migration ability. TRIAL REGISTRATION Chinese Clinical Trail Registry, ChiCTR2000034624. Registered 12 July 2020-Retrospectively registered, http://www.chictr.org.cn/showproj.aspx?proj=56058.
Collapse
Affiliation(s)
- Yuan Cai
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Fang Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bihua Wu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Hai Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China.
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
46
|
Panthi VK, Imran M, Chaudhary A, Paudel KR, Mohammed Y. The significance of quercetin-loaded advanced nanoformulations for the management of diabetic wounds. Nanomedicine (Lond) 2023; 18:391-411. [PMID: 37140389 DOI: 10.2217/nnm-2022-0281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Quercetin is a well-known plant flavanol that exhibits multiple biological activities, including antioxidant, anti-inflammatory and anticancer activities. The role of quercetin in wound healing has been widely explored by a range of researchers in different models. However, the physicochemical properties, such as solubility and permeability, of this compound are low, which ultimately limits its bioavailability on the target site. To overcome these limitations for successful therapy, scientists have developed a range of nanoformulations that provide effective therapeutic potential. In this review, the broad mechanism of quercetin for acute and chronic wounds is covered. A compilation of recent advances on the horizon of wound healing via quercetin is incorporated with several advanced nanoformulations.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Department of Pharmacy, College of Pharmacy & Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Mohammad Imran
- Therapeutic Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Arshi Chaudhary
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Keshav Raj Paudel
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Yousuf Mohammed
- Therapeutic Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, 4102, Australia
| |
Collapse
|
47
|
Wang H, Jiang HY, Zhang YX, Jin HY, Fei BY, Jiang JL. Mesenchymal stem cells transplantation for perianal fistulas: a systematic review and meta-analysis of clinical trials. Stem Cell Res Ther 2023; 14:103. [PMID: 37101285 PMCID: PMC10134595 DOI: 10.1186/s13287-023-03331-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Perianal fistulas, characterised as granulomatous inflammation of fistulas around the anal canal, are associated with significant morbidity resulting in a negative impact on quality of life and a tremendous burden to the healthcare system. Treatment of anal fistulas usually consists of anal surgery; however, results of closure rates are not satisfactory especially with complex perianal fistulas, after which many patients may suffer from anal incontinence. Recently, the administration of mesenchymal stem cells (MSCs) has shown promising efficacy. Herein, we aim to explore whether MSCs are effective for complex perianal fistulas and if they have either short-term, medium-term, long-term or over-long-term efficacy. Additionally, we want to elucidate whether factors such as drug dosage, MSC source, cell type, and disease aetiology influence treatment efficacy. We searched four online databases and analysed data based on information within the clinical trials registry. The outcomes of eligible trials were analysed with Review Manager 5.4.1. Relative risk and related 95% confidence interval were calculated to compare the effect between the MSCs and control groups. In addition, the Cochrane risk of bias tool was applied to evaluate the bias risk of eligible studies. Meta-analyses showed that therapy with MSCs was superior to conventional treatment for complex perianal fistulas in short-, long- and over-long-term follow-up phases. However, there was no statistical difference in treatment efficacy in the medium term between the two methods. Subgroup meta-analyses showed factors including cell type, cell source and cell dosage were superior compared to the control, but there was no significant difference between different experimental groups of those factors. Besides, local MSCs therapy has shown more promising results for fistulas as a result of Crohn's Disease (CD). Although we tend to maintain that MSCs therapy is effective for cryptoglandular fistulas equally, more studies are needed to confirm this conclusion in the future. SHORT CONCLUSION MSCs Transplantation could be a new therapeutic method for complex perianal fistulas of both cryptoglandular and CD origin showing high efficacy in the short-term to over-long-term phases, as well as high efficacy in sustained healing. The difference in cell types, cell sources and cell dosages did not influence MSCs' efficacy.
Collapse
Affiliation(s)
- H Wang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - H Y Jiang
- Life Spring AKY Pharmaceuticals, Changchun, China
| | - Y X Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - H Y Jin
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - B Y Fei
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - J L Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
48
|
Fuchs B, Birt A, Moellhoff N, Kuhlmann C, Giunta R, Wiggenhauser PS. The use of commercial fibrin glue in dermal replacement material reduces angiogenic and lymphangiogenic gene and protein expression in vitro. J Biomater Appl 2023; 37:1858-1873. [PMID: 37082911 DOI: 10.1177/08853282231171681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
BACKGROUND Commercial fibrin glue is increasingly finding its way into clinical practice in surgeries to seal anastomosis, and initiate hemostasis or tissue repair. Human biological glue is also being discussed as a possible cell carrier. To date, there are only a few studies addressing the effects of fibrin glue on the cell-molecular level. This study examines the effects of fibrin glue on angiogenesis and lymphangiogenesis, as well as adipose-derived stem cells (ASCs) with a focus on gene and protein expression in scaffolds regularly used for tissue engineering approaches. METHODS Collagen-based dermal regeneration matrices (DRM) were seeded with human umbilical vein endothelial cells (HUVEC), human dermal lymphatic endothelial cells (LECs), or adipose-derived stem cells (ASC) and fixed with or without fibrin glue according to the experimental group. Cultures were maintained for 1 and 7 days. Finally, angiogenic and lymphangiogenic gene and protein expression were measured with special regard to subtypes of vascular endothelial growth factor (VEGF) and corresponding receptors using Multiplex-qPCR and ELISA assays. In addition, the hypoxia-induced factor 1-alpha (HIF1a) mediated intracellular signaling pathways were included in assessments to analyze a hypoxic encapsulating effect of fibrin polymers. RESULTS All cell types reacted to fibrin glue application with an alteration of gene and protein expression. In particular, vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor B (VEGFB), vascular endothelial growth factor C (VEGFC), vascular endothelial growth receptor 1 (VEGFR1/FLT1), vascular endothelial growth receptor 2 (VEGFR2/KDR), vascular endothelial growth receptor 3 (VEGFR3/FLT4) and Prospero Homeobox 1 (PROX1) were depressed significantly depending on fibrin glue. Especially short-term fibrin effect led to a continuous downregulation of respective gene and protein expression in HUVECs, LECs, and ASCs. CONCLUSION Our findings demonstrate the impact of fibrin glue application in dermal regeneration with special regard to angiogenesis and lymphangiogenesis. In particular, a short fibrin treatment of 24 hours led to a decrease in gene and protein levels of LECS, HUVECs, and ASCs. In contrast, the long-term application showed less effect on gene and protein expressions. Therefore, this work demonstrated the negative effects of fibrin-treated cells in tissue engineering approaches and could affect wound healing during dermal regeneration.
Collapse
Affiliation(s)
- Benedikt Fuchs
- Department of Hand, Plastic and Aesthetic Surgery, LMU, Munich, Germany
| | - Alexandra Birt
- Department of Hand, Plastic and Aesthetic Surgery, LMU, Munich, Germany
| | | | | | - Riccardo Giunta
- Department of Hand, Plastic and Aesthetic Surgery, LMU, Munich, Germany
| | | |
Collapse
|
49
|
Behzadifar S, Barras A, Plaisance V, Pawlowski V, Szunerits S, Abderrahmani A, Boukherroub R. Polymer-Based Nanostructures for Pancreatic Beta-Cell Imaging and Non-Invasive Treatment of Diabetes. Pharmaceutics 2023; 15:pharmaceutics15041215. [PMID: 37111699 PMCID: PMC10143373 DOI: 10.3390/pharmaceutics15041215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes poses major economic, social, and public health challenges in all countries worldwide. Besides cardiovascular disease and microangiopathy, diabetes is a leading cause of foot ulcers and lower limb amputations. With the continued rise of diabetes prevalence, it is expected that the future burden of diabetes complications, early mortality, and disabilities will increase. The diabetes epidemic is partly caused by the current lack of clinical imaging diagnostic tools, the timely monitoring of insulin secretion and insulin-expressing cell mass (beta (β)-cells), and the lack of patients' adherence to treatment, because some drugs are not tolerated or invasively administrated. In addition to this, there is a lack of efficient topical treatment capable of stopping the progression of disabilities, in particular for treating foot ulcers. In this context, polymer-based nanostructures garnered significant interest due to their tunable physicochemical characteristics, rich diversity, and biocompatibility. This review article emphasizes the last advances and discusses the prospects in the use of polymeric materials as nanocarriers for β-cell imaging and non-invasive drug delivery of insulin and antidiabetic drugs in the management of blood glucose and foot ulcers.
Collapse
Affiliation(s)
- Shakila Behzadifar
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| |
Collapse
|
50
|
Fuchs B, Birt A, Moellhoff N, Kuhlmann C, Giunta RE, Wiggenhauser PS. Adipose-Derived Stem Cells Improve Angiogenesis and Lymphangiogenesis in a Hypoxic Dermal Regeneration Model In Vitro. Medicina (B Aires) 2023; 59:medicina59040706. [PMID: 37109664 PMCID: PMC10142758 DOI: 10.3390/medicina59040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Background and Objectives: Impaired wound healing represents an unsolved medical issue with a high impact on patients’ quality of life and global health care. Even though hypoxia is a significant limiting factor for wound healing, it reveals stimulating effects in gene and protein expression at cellular levels. In particular, hypoxically treated human adipose tissue-derived stem cells (ASCs) have previously been used to stimulate tissue regeneration. Therefore, we hypothesized that they could promote lymphangiogenesis or angiogenesis. Materials and Methods: Dermal regeneration matrices were seeded with human umbilical vein endothelial cells (HUVECs) or human dermal lymphatic endothelial cells (LECs) that were merged with ASCs. Cultures were maintained for 24 h and 7 days under normoxic or hypoxic conditions. Finally, gene and protein expression were measured regarding subtypes of VEGF, corresponding receptors, and intracellular signaling pathways, especially hypoxia-inducible factor-mediated pathways using multiplex-RT-qPCR and ELISA assays. Results: All cell types reacted to hypoxia with an alteration of gene expression. In particular, vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor B (VEGFB), vascular endothelial growth factor C (VEGFC), vascular endothelial growth factor receptor 1 (VEGFR1/FLT1), vascular endothelial growth factor receptor 2 (VEGFR2/KDR), vascular endothelial growth factor receptor 3 (VEGFR3/FLT4), and prospero homeobox 1 (PROX1) were overexpressed significantly depending on upregulation of hypoxia-inducible factor 1 alpha (HIF-1a). Moreover, co-cultures with ASCs showed a more intense change in gene and protein expression profiles and gained enhanced angiogenic and lymphangiogenic potential. In particular, long-term hypoxia led to continuous stimulation of HUVECs by ASCs. Conclusions: Our findings demonstrated the benefit of hypoxic conditioned ASCs in dermal regeneration concerning angiogenesis and lymphangiogenesis. Even a short hypoxic treatment of 24 h led to the stimulation of LECs and HUVECs in an ASC-co-culture. Long-term hypoxia showed a continuous influence on gene expressions. Therefore, this work emphasizes the supporting effects of hypoxia-conditioned-ASC-loaded collagen scaffolds on wound healing in dermal regeneration.
Collapse
Affiliation(s)
- Benedikt Fuchs
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Alexandra Birt
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Constanze Kuhlmann
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Riccardo E. Giunta
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Paul Severin Wiggenhauser
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| |
Collapse
|