1
|
Capella-Monsonís H, Crum RJ, Hussey GS, Badylak SF. Advances, challenges, and future directions in the clinical translation of ECM biomaterials for regenerative medicine applications. Adv Drug Deliv Rev 2024; 211:115347. [PMID: 38844005 DOI: 10.1016/j.addr.2024.115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Extracellular Matrix (ECM) scaffolds and biomaterials have been widely used for decades across a variety of diverse clinical applications and have been implanted in millions of patients worldwide. ECM-based biomaterials have been especially successful in soft tissue repair applications but their utility in other clinical applications such as for regeneration of bone or neural tissue is less well understood. The beneficial healing outcome with the use of ECM biomaterials is the result of their biocompatibility, their biophysical properties and their ability to modify cell behavior after injury. As a consequence of successful clinical outcomes, there has been motivation for the development of next-generation formulations of ECM materials ranging from hydrogels, bioinks, powders, to whole organ or tissue scaffolds. The continued development of novel ECM formulations as well as active research interest in these materials ensures a wealth of possibilities for future clinical translation and innovation in regenerative medicine. The clinical translation of next generation formulations ECM scaffolds faces predictable challenges such as manufacturing, manageable regulatory pathways, surgical implantation, and the cost required to address these challenges. The current status of ECM-based biomaterials, including clinical translation, novel formulations and therapies currently under development, and the challenges that limit clinical translation of ECM biomaterials are reviewed herein.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Viscus Biologics LLC, 2603 Miles Road, Cleveland, OH 44128, USA
| | - Raphael J Crum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - George S Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
2
|
Wang Z, Shi H, Silveira PA, Mithieux SM, Wong WC, Liu L, Pham NTH, Hawkett BS, Wang Y, Weiss AS. Tropoelastin modulates systemic and local tissue responses to enhance wound healing. Acta Biomater 2024; 184:54-67. [PMID: 38871204 DOI: 10.1016/j.actbio.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Wound healing is facilitated by biomaterials-based grafts and substantially impacted by orchestrated inflammatory responses that are essential to the normal repair process. Tropoelastin (TE) based materials are known to shorten the period for wound repair but the mechanism of anti-inflammatory performance is not known. To explore this, we compared the performance of the gold standard Integra Dermal Regeneration Template (Integra), polyglycerol sebacate (PGS), and TE blended with PGS, in a murine full-thickness cutaneous wound healing study. Systemically, blending with TE favorably increased the F4/80+ macrophage population by day 7 in the spleen and contemporaneously induced elevated plasma levels of anti-inflammatory IL-10. In contrast, the PGS graft without TE prompted prolonged inflammation, as evidenced by splenomegaly and greater splenic granulocyte and monocyte fractions at day 14. Locally, the inclusion of TE in the graft led to increased anti-inflammatory M2 macrophages and CD4+T cells at the wound site, and a rise in Foxp3+ regulatory T cells in the wound bed by day 7. We conclude that the TE-incorporated skin graft delivers a pro-healing environment by modulating systemic and local tissue responses. STATEMENT OF SIGNIFICANCE: Tropoelastin (TE) has shown significant benefits in promoting the repair and regeneration of damaged human tissues. In this study, we show that TE promotes an anti-inflammatory environment that facilitates cutaneous wound healing. In a mouse model, we find that inserting a TE-containing material into a full-thickness wound results in defined, pro-healing local and systemic tissue responses. These findings advance our understanding of TE's restorative value in tissue engineering and regenerative medicine, and pave the way for clinical applications.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Huaikai Shi
- Burns Research and Reconstructive Surgery, Anzac Research Institute, NSW 2139, Australia; Asbestos and Dust Disease Research Institute, Concord Hospital, Sydney, NSW 2139, Australia
| | - Pablo A Silveira
- Dendritic Cell Group, ANZAC Research Institute, Concord Hospital, Sydney, NSW 2139, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Wai Cheng Wong
- Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Linyang Liu
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Nguyen T H Pham
- Key Centre for Polymers and Colloids, School of Chemistry, the University of Sydney, NSW 2006, Australia
| | - Brian S Hawkett
- Key Centre for Polymers and Colloids, School of Chemistry, the University of Sydney, NSW 2006, Australia
| | - Yiwei Wang
- Burns Research and Reconstructive Surgery, Anzac Research Institute, NSW 2139, Australia; Jiangsu Provincial Engineering Research Centre of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Anthony S Weiss
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, the University of Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Pidgeon TS, Hollins AW, Mithani SK, Klifto CS. Dermal Regenerative Templates in Orthopaedic Surgery. J Am Acad Orthop Surg 2023; 31:326-333. [PMID: 36812411 DOI: 10.5435/jaaos-d-22-01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023] Open
Abstract
Management of soft-tissue injuries is a critical principle in the treatment of orthopaedic trauma. Understanding the options for soft-tissue reconstruction is vital for successful patient outcomes. Application of dermal regenerative templates (DRTs) in traumatic wounds has created a new rung in the reconstructive ladder bridging the gap between skin graft and flap coverage. There are multiple DRT products with specific clinical indications and mechanisms of action. This review outlines the up-to-date specifications and uses of DRT in commonly seen orthopaedic injuries.
Collapse
Affiliation(s)
- Tyler S Pidgeon
- From the Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC
| | | | | | | |
Collapse
|
4
|
Assessing the response of human primary macrophages to defined fibrous architectures fabricated by melt electrowriting. Bioact Mater 2023; 21:209-222. [PMID: 36101857 PMCID: PMC9440261 DOI: 10.1016/j.bioactmat.2022.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/01/2023] Open
|
5
|
Mamilos A, Winter L, Schmitt VH, Barsch F, Grevenstein D, Wagner W, Babel M, Keller K, Schmitt C, Gürtler F, Schreml S, Niedermair T, Rupp M, Alt V, Brochhausen C. Macrophages: From Simple Phagocyte to an Integrative Regulatory Cell for Inflammation and Tissue Regeneration-A Review of the Literature. Cells 2023; 12:276. [PMID: 36672212 PMCID: PMC9856654 DOI: 10.3390/cells12020276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The understanding of macrophages and their pathophysiological role has dramatically changed within the last decades. Macrophages represent a very interesting cell type with regard to biomaterial-based tissue engineering and regeneration. In this context, macrophages play a crucial role in the biocompatibility and degradation of implanted biomaterials. Furthermore, a better understanding of the functionality of macrophages opens perspectives for potential guidance and modulation to turn inflammation into regeneration. Such knowledge may help to improve not only the biocompatibility of scaffold materials but also the integration, maturation, and preservation of scaffold-cell constructs or induce regeneration. Nowadays, macrophages are classified into two subpopulations, the classically activated macrophages (M1 macrophages) with pro-inflammatory properties and the alternatively activated macrophages (M2 macrophages) with anti-inflammatory properties. The present narrative review gives an overview of the different functions of macrophages and summarizes the recent state of knowledge regarding different types of macrophages and their functions, with special emphasis on tissue engineering and tissue regeneration.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lina Winter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker H. Schmitt
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Friedrich Barsch
- Medical Center, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - David Grevenstein
- Clinic and Polyclinic for Orthopedics and Trauma Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Willi Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), 69120 Heidelberg, Germany
| | - Maximilian Babel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Karsten Keller
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christine Schmitt
- Department of Internal Medicine, St. Vincenz and Elisabeth Hospital of Mainz (KKM), 55131 Mainz, Germany
| | - Florian Gürtler
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Tanja Niedermair
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
6
|
Zhong JX, Raghavan P, Desai TA. Harnessing Biomaterials for Immunomodulatory-Driven Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022; 9:224-239. [PMID: 37333620 PMCID: PMC10272262 DOI: 10.1007/s40883-022-00279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
Abstract The immune system plays a crucial role during tissue repair and wound healing processes. Biomaterials have been leveraged to assist in this in situ tissue regeneration process to dampen the foreign body response by evading or suppressing the immune system. An emerging paradigm within regenerative medicine is to use biomaterials to influence the immune system and create a pro-reparative microenvironment to instigate endogenously driven tissue repair. In this review, we discuss recent studies that focus on immunomodulation of innate and adaptive immune cells for tissue engineering applications through four biomaterial-based mechanisms of action: biophysical cues, chemical modifications, drug delivery, and sequestration. These materials enable augmented regeneration in various contexts, including vascularization, bone repair, wound healing, and autoimmune regulation. While further understanding of immune-material interactions is needed to design the next generation of immunomodulatory biomaterials, these materials have already demonstrated great promise for regenerative medicine. Lay Summary The immune system plays an important role in tissue repair. Many biomaterial strategies have been used to promote tissue repair, and recent work in this area has looked into the possibility of doing repair by tuning. Thus, we examined the literature for recent works showcasing the efficacy of these approaches in animal models of injuries. In these studies, we found that biomaterials successfully tuned the immune response and improved the repair of various tissues. This highlights the promise of immune-modulating material strategies to improve tissue repair.
Collapse
Affiliation(s)
- Justin X. Zhong
- UC Berkeley – UCSF Graduate Program in Bioengineering, San Francisco, CA 94143 USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143 USA
| | - Preethi Raghavan
- UC Berkeley – UCSF Graduate Program in Bioengineering, San Francisco, CA 94143 USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143 USA
| | - Tejal A. Desai
- UC Berkeley – UCSF Graduate Program in Bioengineering, San Francisco, CA 94143 USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
- School of Engineering, Brown University, Providence, RI 02912 USA
| |
Collapse
|
7
|
The Immune-Centric Revolution in the Diabetic Foot: Monocytes and Lymphocytes Role in Wound Healing and Tissue Regeneration-A Narrative Review. J Clin Med 2022; 11:jcm11030889. [PMID: 35160339 PMCID: PMC8836882 DOI: 10.3390/jcm11030889] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Monocytes and lymphocytes play a key role in physiologic wound healing and might be involved in the impaired mechanisms observed in diabetes. Skin wound macrophages are represented by tissue resident macrophages and infiltrating peripheral blood recruited monocytes which play a leading role during the inflammatory phase of wound repair. The impaired transition of diabetic wound macrophages from pro-inflammatory M1 phenotypes to anti-inflammatory pro-regenerative M2 phenotypes might represent a key issue for impaired diabetic wound healing. This review will focus on the role of immune system cells in normal skin and diabetic wound repair. Furthermore, it will give an insight into therapy able to immuno-modulate wound healing processes toward to a regenerative anti-inflammatory fashion. Different approaches, such as cell therapy, exosome, and dermal substitute able to promote the M1 to M2 switch and able to positively influence healing processes in chronic wounds will be discussed.
Collapse
|
8
|
Bonvallet PP, Damaraju SM, Modi HN, Stefanelli VL, Lin Q, Saini S, Gandhi A. Biophysical Characterization of a Novel Tri-Layer Placental Allograft Membrane. Adv Wound Care (New Rochelle) 2022; 11:43-55. [PMID: 33975444 PMCID: PMC9831246 DOI: 10.1089/wound.2020.1315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective: Placental tissues, including membranes composed of amnion and chorion, are promising options for the treatment of chronic wounds. Amnion and chorion contain multiple extracellular matrix (ECM) proteins and a multitude of growth factors and cytokines that, when used clinically, assist in the progression of difficult to heal wounds through restoration of a normal healing process. The objective of this study was to characterize the in vitro physical and biological properties of a dehydrated tri-layer placental allograft membrane (TPAM) consisting of a chorion layer sandwiched between two layers of amnion. Approach: Mechanical properties were evaluated by mechanical strength and enzyme degradation assays. The ECM composition of TPAM membranes was evaluated by histological staining while growth factors and cytokine presence was evaluated by a multiplex enzyme-linked immunosorbent assay. Proliferation, migration, and ECM secretion assays were performed with fibroblasts. Immunomodulatory properties were assessed by a pro-inflammatory cytokine reduction assay while the macrophage phenotype was determined by quantifying the ratio of M1 versus M2 secreted factors. Results: The unique three-layer construction improves mechanical handling properties over single- and bi-layer membranes. Results demonstrate that TPAM is rich in ECM proteins, growth factors, cytokines, and tissue inhibitors of metalloproteinases, and favorably influences fibroblast migration, proliferation, and ECM secretion when compared to negative controls. Furthermore, after processing and preservation, these membranes maintain their intrinsic immunomodulatory properties with the ability to suppress pro-inflammatory processes and modulate the M1 and M2 macrophage phenotype toward a pro-regenerative profile when compared to a negative control. Innovation: This is the first study to characterize both the biophysical and biological properties of a tri-layer placental membrane. Conclusion: This work demonstrates that TPAM has improved handling characteristics over single- and bi-layer membranes, stimulates pro-healing cellular responses, and advantageously modulates inflammatory responses, altogether making this scaffold a promising option for treating wounds, especially those that are complex or difficult to heal.
Collapse
Affiliation(s)
- Paul P. Bonvallet
- Product Development, Integra Life Sciences, Corp., Princeton, New Jersey, USA
- Correspondence: Product Development, Integra Life Sciences, Corp., 1100 Campus Road, Princeton, NJ 08540, USA.
| | - Sita M. Damaraju
- Product Development, Integra Life Sciences, Corp., Princeton, New Jersey, USA
| | - Heli N. Modi
- Product Development, Integra Life Sciences, Corp., Princeton, New Jersey, USA
| | | | - Qiaoling Lin
- Product Development, Integra Life Sciences, Corp., Princeton, New Jersey, USA
| | - Sunil Saini
- Product Development, Integra Life Sciences, Corp., Princeton, New Jersey, USA
| | - Ankur Gandhi
- Product Development, Integra Life Sciences, Corp., Princeton, New Jersey, USA
| |
Collapse
|
9
|
Immunomodulation of Skin Repair: Cell-Based Therapeutic Strategies for Skin Replacement (A Comprehensive Review). Biomedicines 2022; 10:biomedicines10010118. [PMID: 35052797 PMCID: PMC8773777 DOI: 10.3390/biomedicines10010118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system has a crucial role in skin wound healing and the application of specific cell-laden immunomodulating biomaterials emerged as a possible treatment option to drive skin tissue regeneration. Cell-laden tissue-engineered skin substitutes have the ability to activate immune pathways, even in the absence of other immune-stimulating signals. In particular, mesenchymal stem cells with their immunomodulatory properties can create a specific immune microenvironment to reduce inflammation, scarring, and support skin regeneration. This review presents an overview of current wound care techniques including skin tissue engineering and biomaterials as a novel and promising approach. We highlight the plasticity and different roles of immune cells, in particular macrophages during various stages of skin wound healing. These aspects are pivotal to promote the regeneration of nonhealing wounds such as ulcers in diabetic patients. We believe that a better understanding of the intrinsic immunomodulatory features of stem cells in implantable skin substitutes will lead to new translational opportunities. This, in turn, will improve skin tissue engineering and regenerative medicine applications.
Collapse
|
10
|
Holl J, Pawlukianiec C, Corton Ruiz J, Groth D, Grubczak K, Hady HR, Dadan J, Reszec J, Czaban S, Kowalewski C, Moniuszko M, Eljaszewicz A. Skin Substitute Preparation Method Induces Immunomodulatory Changes in Co-Incubated Cells through Collagen Modification. Pharmaceutics 2021; 13:2164. [PMID: 34959443 PMCID: PMC8705760 DOI: 10.3390/pharmaceutics13122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic ulcerative and hard-healing wounds are a growing global concern. Skin substitutes, including acellular dermal matrices (ADMs), have shown beneficial effects in healing processes. Presently, the vast majority of currently available ADMs are processed from xenobiotic or cadaveric skin. Here we propose a novel strategy for ADM preparation from human abdominoplasty-derived skin. Skin was processed using three different methods of decellularization involving the use of ionic detergent (sodium dodecyl sulfate; SDS, in hADM 1), non-ionic detergent (Triton X-100 in hADM 2), and a combination of recombinant trypsin and Triton X-100 (in hADM 3). We next evaluated the immunogenicity and immunomodulatory properties of this novel hADM by using an in vitro model of peripheral blood mononuclear cell culture, flow cytometry, and cytokine assays. We found that similarly sourced but differentially processed hADMs possess distinct immunogenicity. hADM 1 showed no immunogenic effects as evidenced by low T cell proliferation and no significant change in cytokine profile. In contrast, hADMs 2 and 3 showed relatively higher immunogenicity. Moreover, our novel hADMs exerted no effect on T cell composition after three-day of coincubation. However, we observed significant changes in the composition of monocytes, indicating their maturation toward a phenotype possessing anti-inflammatory and pro-angiogenic properties. Taken together, we showed here that abdominoplasty skin is suitable for hADM manufacturing. More importantly, the use of SDS-based protocols for the purposes of dermal matrix decellularization allows for the preparation of non-immunogenic scaffolds with high therapeutic potential. Despite these encouraging results, further studies are needed to evaluate the beneficial effects of our hADM 1 on deep and hard-healing wounds.
Collapse
Affiliation(s)
- Jordan Holl
- Department of Regenerative Medicine and Immune Regulation, Faculty of Medicine, Medical University of Bialystok, 15-269 Białystok, Poland; (J.H.); (C.P.); (J.C.R.); (D.G.); (K.G.)
| | - Cezary Pawlukianiec
- Department of Regenerative Medicine and Immune Regulation, Faculty of Medicine, Medical University of Bialystok, 15-269 Białystok, Poland; (J.H.); (C.P.); (J.C.R.); (D.G.); (K.G.)
| | - Javier Corton Ruiz
- Department of Regenerative Medicine and Immune Regulation, Faculty of Medicine, Medical University of Bialystok, 15-269 Białystok, Poland; (J.H.); (C.P.); (J.C.R.); (D.G.); (K.G.)
| | - Dawid Groth
- Department of Regenerative Medicine and Immune Regulation, Faculty of Medicine, Medical University of Bialystok, 15-269 Białystok, Poland; (J.H.); (C.P.); (J.C.R.); (D.G.); (K.G.)
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Faculty of Medicine, Medical University of Bialystok, 15-269 Białystok, Poland; (J.H.); (C.P.); (J.C.R.); (D.G.); (K.G.)
| | - Hady Razak Hady
- 1st Clinical Department of General and Endocrine Surgery, Faculty of Medicine, Medical University of Białystok, 15-276 Białystok, Poland; (H.R.H.); (J.D.)
| | - Jacek Dadan
- 1st Clinical Department of General and Endocrine Surgery, Faculty of Medicine, Medical University of Białystok, 15-276 Białystok, Poland; (H.R.H.); (J.D.)
| | - Joanna Reszec
- Department of Medical Pathomorphology, Faculty of Medicine, Medical University of Białystok, 15-269 Białystok, Poland;
| | - Slawomir Czaban
- Department of Anesthesiology & Intensive Therapy, Faculty of Medicine, Medical University of Białystok, 15-276 Białystok, Poland;
| | - Cezary Kowalewski
- Department of Dermatology and Immunodermatology, Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Faculty of Medicine, Medical University of Bialystok, 15-269 Białystok, Poland; (J.H.); (C.P.); (J.C.R.); (D.G.); (K.G.)
- Department of Allergology and Internal Medicine, Faculty of Health Sciences, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Faculty of Medicine, Medical University of Bialystok, 15-269 Białystok, Poland; (J.H.); (C.P.); (J.C.R.); (D.G.); (K.G.)
| |
Collapse
|
11
|
Chavez-Dominguez R, Perez-Medina M, Aguilar-Cazares D, Galicia-Velasco M, Meneses-Flores M, Islas-Vazquez L, Camarena A, Lopez-Gonzalez JS. Old and New Players of Inflammation and Their Relationship With Cancer Development. Front Oncol 2021; 11:722999. [PMID: 34881173 PMCID: PMC8645998 DOI: 10.3389/fonc.2021.722999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens or genotoxic agents continuously affect the human body. Acute inflammatory reaction induced by a non-sterile or sterile environment is triggered for the efficient elimination of insults that caused the damage. According to the insult, pathogen-associated molecular patterns, damage-associated molecular patterns, and homeostasis-altering molecular processes are released to facilitate the arrival of tissue resident and circulating cells to the injured zone to promote harmful agent elimination and tissue regeneration. However, when inflammation is maintained, a chronic phenomenon is induced, in which phagocytic cells release toxic molecules damaging the harmful agent and the surrounding healthy tissues, thereby inducing DNA lesions. In this regard, chronic inflammation has been recognized as a risk factor of cancer development by increasing the genomic instability of transformed cells and by creating an environment containing proliferation signals. Based on the cancer immunoediting concept, a rigorous and regulated inflammation process triggers participation of innate and adaptive immune responses for efficient elimination of transformed cells. When immune response does not eliminate all transformed cells, an equilibrium phase is induced. Therefore, excessive inflammation amplifies local damage caused by the continuous arrival of inflammatory/immune cells. To regulate the overstimulation of inflammatory/immune cells, a network of mechanisms that inhibit or block the cell overactivity must be activated. Transformed cells may take advantage of this process to proliferate and gradually grow until they become preponderant over the immune cells, preserving, increasing, or creating a microenvironment to evade the host immune response. In this microenvironment, tumor cells resist the attack of the effector immune cells or instruct them to sustain tumor growth and development until its clinical consequences. With tumor development, evolving, complex, and overlapping microenvironments are arising. Therefore, a deeper knowledge of cytokine, immune, and tumor cell interactions and their role in the intricated process will impact the combination of current or forthcoming therapies.
Collapse
Affiliation(s)
- Rodolfo Chavez-Dominguez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Perez-Medina
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Manuel Meneses-Flores
- Departamento de Patología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Lorenzo Islas-Vazquez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
12
|
Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100176. [PMID: 34251690 PMCID: PMC8489436 DOI: 10.1002/adma.202100176] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Indexed: 05/03/2023]
Abstract
With all the advances in tissue engineering for construction of fully functional skin tissue, complete regeneration of chronic wounds is still challenging. Since immune reaction to the tissue damage is critical in regulating both the quality and duration of chronic wound healing cascade, strategies to modulate the immune system are of importance. Generally, in response to an injury, macrophages switch from pro-inflammatory to an anti-inflammatory phenotype. Therefore, controlling macrophages' polarization has become an appealing approach in regenerative medicine. Recently, hydrogels-based constructs, incorporated with various cellular and molecular signals, have been developed and utilized to adjust immune cell functions in various stages of wound healing. Here, the current state of knowledge on immune cell functions during skin tissue regeneration is first discussed. Recent advanced technologies used to design immunomodulatory hydrogels for controlling macrophages' polarization are then summarized. Rational design of hydrogels for providing controlled immune stimulation via hydrogel chemistry and surface modification, as well as incorporation of cell and molecules, are also dicussed. In addition, the effects of hydrogels' properties on immunogenic features and the wound healing process are summarized. Finally, future directions and upcoming research strategies to control immune responses during chronic wound healing are highlighted.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Avijit Baidya
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
13
|
Ullm F, Pompe T. Fibrillar biopolymer-based scaffolds to study macrophage-fibroblast crosstalk in wound repair. Biol Chem 2021; 402:1309-1324. [PMID: 34392640 DOI: 10.1515/hsz-2021-0164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/09/2021] [Indexed: 01/02/2023]
Abstract
Controlled wound healing requires a temporal and spatial coordination of cellular activities within the surrounding extracellular matrix (ECM). Disruption of cell-cell and cell-matrix communication results in defective repair, like chronic or fibrotic wounds. Activities of macrophages and fibroblasts crucially contribute to the fate of closing wounds. To investigate the influence of the ECM as an active part controlling cellular behavior, coculture models based on fibrillar 3D biopolymers such as collagen have already been successfully used. With well-defined biochemical and biophysical properties such 3D scaffolds enable in vitro studies on cellular processes including infiltration and differentiation in an in vivo like microenvironment. Further, paracrine and autocrine signaling as well as modulation of soluble mediator transport inside the ECM can be modeled using fibrillar 3D scaffolds. Herein, we review the usage of these scaffolds in in vitro coculture models allowing in-depth studies on the crosstalk between macrophages and fibroblasts during different stages of cutaneous wound healing. A more accurate mimicry of the various processes of cellular crosstalk at the different stages of wound healing will contribute to a better understanding of the impact of biochemical and biophysical environmental parameters and help to develop further strategies against diseases such as fibrosis.
Collapse
Affiliation(s)
- Franziska Ullm
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, D-04103Leipzig, Germany
| | - Tilo Pompe
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, D-04103Leipzig, Germany
| |
Collapse
|
14
|
Torregrossa M, Kakpenova A, Simon JC, Franz S. Modulation of macrophage functions by ECM-inspired wound dressings - a promising therapeutic approach for chronic wounds. Biol Chem 2021; 402:1289-1307. [PMID: 34390641 DOI: 10.1515/hsz-2021-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
Nonhealing chronic wounds are among the most common skin disorders with increasing incidence worldwide. However, their treatment is still dissatisfying, that is why novel therapeutic concepts targeting the sustained inflammatory process have emerged. Increasing understanding of chronic wound pathologies has put macrophages in the spotlight of such approaches. Herein, we review current concepts and perspectives of therapeutic macrophage control by ECM-inspired wound dressing materials. We provide an overview of the current understanding of macrophage diversity with particular view on their roles in skin and in physiological and disturbed wound healing processes. Based on this we discuss strategies for their modulation in chronic wounds and how such strategies can be tailored in ECM-inspired wound dressing. The latter utilize and mimic general principles of ECM-mediated cell control, such as binding and delivery of signaling molecules and direct signaling to cells specifically adapted for macrophage regulation in wounds. In this review, we present examples of most recent approaches and discuss ideas for their further development.
Collapse
Affiliation(s)
- Marta Torregrossa
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Ainur Kakpenova
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| |
Collapse
|
15
|
Dewey MJ, Kolliopoulos V, Ngo MT, Harley BAC. Glycosaminoglycan content of a mineralized collagen scaffold promotes mesenchymal stem cell secretion of factors to modulate angiogenesis and monocyte differentiation. MATERIALIA 2021; 18:101149. [PMID: 34368658 PMCID: PMC8336934 DOI: 10.1016/j.mtla.2021.101149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Effective design of biomaterials to aid regenerative repair of craniomaxillofacial (CMF) bone defects requires approaches that modulate the complex interplay between exogenously added progenitor cells and cells in the wound microenvironment, such as osteoblasts, osteoclasts, endothelial cells, and immune cells. We are exploring the role of the glycosaminoglycan (GAG) content in a class of mineralized collagen scaffolds recently shown to promote osteogenesis and healing of craniofacial bone defects. We previously showed that incorporating chondroitin-6-sulfate or heparin improved mineral deposition by seeded human mesenchymal stem cells (hMSCs). Here, we examine the effect of varying scaffold GAG content on hMSC behavior, and their ability to modulate osteoclastogenesis, vasculogenesis, and the immune response. We report the role of hMSC-conditioned media produced in scaffolds containing chondroitin-6-sulfate (CS6), chondroitin-4-sulfate (CS4), or heparin (Heparin) GAGs on endothelial tube formation and monocyte differentiation. Notably, endogenous production by hMSCs within Heparin scaffolds most significantly inhibits osteoclastogenesis via secreted osteoprotegerin (OPG), while the secretome generated by CS6 scaffolds reduced pro-inflammatory immune response and increased endothelial tube formation. All conditioned media down-regulated many pro- and anti-inflammatory cytokines, such as IL6, IL-1β, and CCL18 and CCL17 respectively. Together, these findings demonstrate that modifying mineralized collagen scaffold GAG content can both directly (hMSC activity) and indirectly (production of secreted factors) influence overall osteogenic potential and mineral biosynthesis as well as angiogenic potential and monocyte differentiation towards osteoclastic and macrophage lineages. Scaffold GAG content is therefore a powerful stimulus to modulate reciprocal signaling between multiple cell populations within the bone healing microenvironment.
Collapse
Affiliation(s)
- Marley J Dewey
- Dept. of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Vasiliki Kolliopoulos
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Mai T Ngo
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A C Harley
- Dept. of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
16
|
Heydari P, Kharaziha M, Varshosaz J, Javanmard SH. Current knowledge of immunomodulation strategies for chronic skin wound repair. J Biomed Mater Res B Appl Biomater 2021; 110:265-288. [PMID: 34318595 DOI: 10.1002/jbm.b.34921] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
In orchestrating the wound healing process, the immune system plays a critical role. Hence, controlling the immune system to repair skin defects is an attractive approach. The highly complex immune system includes the coordinated actions of several immune cells, which can produce various inflammatory and antiinflammatory cytokines and affect the healing of skin wounds. This process can be optimized using biomaterials, bioactive molecules, and cell delivery. The present review discusses various immunomodulation strategies for supporting the healing of chronic wounds. In this regard, following the evolution of the immune system and its role in the wound healing mechanism, the interaction between the extracellular mechanism and immune cells for acceleration wound healing will be firstly investigated. Consequently, the immune-based chronic wounds will be briefly examined and the mechanism of progression, and conventional methods of their treatment are evaluated. In the following, various biomaterials-based immunomodulation strategies are introduced to stimulate and control the immune system to treat and regenerate skin defects. Other effective methods of controlling the immune system in wound healing which is the release of bioactive agents (such as antiinflammatory, antigens, and immunomodulators) and stem cell therapy at the site of injury are reviewed.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jaleh Varshosaz
- School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Wound dressings: curbing inflammation in chronic wound healing. Emerg Top Life Sci 2021; 5:523-537. [PMID: 34196717 PMCID: PMC8589427 DOI: 10.1042/etls20200346] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/07/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Chronic wounds represent an economic burden to healthcare systems worldwide and a societal burden to patients, deeply impacting their quality of life. The incidence of recalcitrant wounds has been steadily increasing since the population more susceptible, the elderly and diabetic, are rapidly growing. Chronic wounds are characterised by a delayed wound healing process that takes longer to heal under standard of care than acute (i.e. healthy) wounds. Two of the most common problems associated with chronic wounds are inflammation and infection, with the latter usually exacerbating the former. With this in mind, researchers and wound care companies have developed and marketed a wide variety of wound dressings presenting different compositions but all aimed at promoting healing. This makes it harder for physicians to choose the correct therapy, especially given a lack of public quantitative data to support the manufacturers’ claims. This review aims at giving a brief introduction to the clinical need for chronic wound dressings, focusing on inflammation and evaluating how bio-derived and synthetic dressings may control excess inflammation and promote healing.
Collapse
|
18
|
Blatt SE, Lurier EB, Risser GE, Spiller KL. Characterizing the Macrophage Response to Immunomodulatory Biomaterials Through Gene Set Analyses. Tissue Eng Part C Methods 2021; 26:156-169. [PMID: 32070241 DOI: 10.1089/ten.tec.2019.0309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The primary regulators of the innate immune response to implanted biomaterials are macrophages, which change phenotype over time to regulate multiple phases of the tissue repair process. Immunomodulatory biomaterials that target macrophage phenotype are a promising approach for promoting tissue repair. Although expression of multiple markers has been widely used to characterize macrophage phenotype, the complexity of the macrophage response to biomaterials makes interpretation difficult. The aim of this study was to put forth an objective method to characterize macrophage phenotype with respect to specific biological processes or standard phenotypes of interest. We investigated the utility of gene set analyses to analyze macrophages as they respond to model biomaterials in comparison to "reference" M1 and M2a macrophage phenotypes. Primary human macrophages were seeded onto crosslinked collagen scaffolds with or without adsorption of the proinflammatory cytokine interferon-gamma (IFNg). Gene expression of a custom-curated panel of 48 genes, representing the M1 and M2a gene signatures as well as other genes important for angiogenesis and tissue repair, was quantified using NanoString on days 3, 5, and 8 of culture. A dataset of phenotype controls, consisting of M0, M1, and M2a macrophages, was used as a source of comparison and to validate the methods of characterization. Gene expression of M1 and M2a markers showed mixed upregulation and downregulation by macrophages seeded on collagen and IFNg-adsorbed collagen scaffolds, highlighting the need for more holistic analyses. Euclidean distance measurements to the reference phenotypes were unable to resolve differences between groups. In contrast, rotation gene set testing with and without gene weighting based on the genes' ability to differentiate between M1, M2a, and M0 controls, followed by gene set variation analysis, showed that collagen scaffolds inhibited the classic M1 phenotype without promoting a classic M2a phenotype, and that IFNg-adsorbed collagen scaffolds promoted the M1 phenotype and inhibited the M2a phenotype. In summary, this work demonstrates a powerful, objective methodology for characterizing the macrophage response to biomaterials in comparison to reference macrophage phenotypes. With the addition of more macrophage phenotypes with defined gene expression signatures, this method could prove beneficial for characterizing complex hybrid phenotypes.
Collapse
Affiliation(s)
- Sarah E Blatt
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Emily B Lurier
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Gregory E Risser
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Kara L Spiller
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Holl J, Kowalewski C, Zimek Z, Fiedor P, Kaminski A, Oldak T, Moniuszko M, Eljaszewicz A. Chronic Diabetic Wounds and Their Treatment with Skin Substitutes. Cells 2021; 10:cells10030655. [PMID: 33804192 PMCID: PMC8001234 DOI: 10.3390/cells10030655] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
With the global prevalence of type 2 diabetes mellitus steeply rising, instances of chronic, hard-healing, or non-healing diabetic wounds and ulcers are predicted to increase. The growing understanding of healing and regenerative mechanisms has elucidated critical regulators of this process, including key cellular and humoral components. Despite this, the management and successful treatment of diabetic wounds represents a significant therapeutic challenge. To this end, the development of novel therapies and biological dressings has gained increased interest. Here we review key differences between normal and chronic non-healing diabetic wounds, and elaborate on recent advances in wound healing treatments with a particular focus on biological dressings and their effect on key wound healing pathways.
Collapse
Affiliation(s)
- Jordan Holl
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Cezary Kowalewski
- Department of Dermatology and Immunodermatology, Medical University of Warsaw, 02-008 Warsaw, Poland;
| | - Zbigniew Zimek
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | - Piotr Fiedor
- Department of General and Transplantation Surgery, Medical University of Warsaw, 02-006 Warsaw, Poland;
| | - Artur Kaminski
- Department of Transplantology and Central Tissue Bank, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Tomasz Oldak
- Polish Stem Cell Bank (PBKM), 00-867 Warsaw, Poland;
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Allergology and Internal Medicine, Medical University of Białystok, 15-276 Białystok, Poland
- Correspondence: (M.M.); (A.E.); Tel.: +48-85-748-59-72 (M.M. & A.E.); Fax: +48-85-748-59-71 (M.M. & A.E.)
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence: (M.M.); (A.E.); Tel.: +48-85-748-59-72 (M.M. & A.E.); Fax: +48-85-748-59-71 (M.M. & A.E.)
| |
Collapse
|
20
|
Capella-Monsonís H, Zeugolis DI. Decellularized xenografts in regenerative medicine: From processing to clinical application. Xenotransplantation 2021; 28:e12683. [PMID: 33709410 DOI: 10.1111/xen.12683] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Decellularized xenografts are an inherent component of regenerative medicine. Their preserved structure, mechanical integrity and biofunctional composition have well established them in reparative medicine for a diverse range of clinical indications. Nonetheless, their performance is highly influenced by their source (ie species, age, tissue) and processing (ie decellularization, crosslinking, sterilization and preservation), which govern their final characteristics and determine their success or failure for a specific clinical target. In this review, we provide an overview of the different sources and processing methods used in decellularized xenografts fabrication and discuss their effect on the clinical performance of commercially available decellularized xenografts.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|
21
|
Witherel CE, Sao K, Brisson BK, Han B, Volk SW, Petrie RJ, Han L, Spiller KL. Regulation of extracellular matrix assembly and structure by hybrid M1/M2 macrophages. Biomaterials 2021; 269:120667. [PMID: 33450585 PMCID: PMC7870567 DOI: 10.1016/j.biomaterials.2021.120667] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
Aberrant extracellular matrix (ECM) assembly surrounding implanted biomaterials is the hallmark of the foreign body response, in which implants become encapsulated in thick fibrous tissue that prevents their proper function. While macrophages are known regulators of fibroblast behavior, how their phenotype influences ECM assembly and the progression of the foreign body response is poorly understood. In this study, we used in vitro models with physiologically relevant macrophage phenotypes, as well as controlled release of macrophage-modulating cytokines from gelatin hydrogels implanted subcutaneously in vivo to investigate the role of macrophages in ECM assembly. Primary human macrophages were polarized to four distinct phenotypes, which have each been associated with fibrosis, including pro-inflammatory M1, pro-healing M2, and a hybrid M1/M2, generated by exposing macrophages to M1-and M2-promoting stimuli simultaneously. Additionally, macrophages were first polarized to M1 and then to M2 (M1→M2) to generate a phenotype typically observed during normal wound healing. Human dermal fibroblasts that were cultured in macrophage-conditioned media upregulated numerous genes involved in regulation of ECM assembly, especially in M2-conditioned media. Hybrid M1/M2 macrophage-conditioned media caused fibroblasts to produce a matrix with thicker and less aligned fibers, while M2 macrophage-conditioned media caused the formation of a more aligned matrix with thinner fibers. Gelatin methacrylate hydrogels containing interleukin-4 (IL4) and IL13-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles were designed to promote the M2 phenotype in a murine subcutaneous in vivo model. NanoString multiplex gene expression analysis of hydrogel explants showed that hydrogels without cytokines caused mostly M1 phenotype markers to be highly expressed at an early time point (3 days), but the release of IL4+IL13 promoted upregulation of M2 markers and genes associated with regulation of ECM assembly, such as Col5a1 and Col6a1. Biochemical analysis and second harmonic generation microscopy showed that the release of IL4+IL13 increased total sulfated glycosaminoglycan content and decreased fibril alignment, which is typically associated with less fibrotic tissue. Together, these results show that hybrid M1/M2 macrophages regulate ECM assembly, and that shifting the balance towards M2 may promote architectural and compositional changes in ECM with enhanced potential for downstream remodeling.
Collapse
Affiliation(s)
- Claire E Witherel
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Kimheak Sao
- Department of Biology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Biao Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Ryan J Petrie
- Department of Biology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
De Angelis B, Gentile P. Reply to: Observation on the article “Long‐term follow‐up comparison of two different bilayer dermal substitutes in tissue regeneration: Clinical outcomes and histological findings”. Int Wound J 2020; 17:1738-1739. [PMID: 32592223 DOI: 10.1111/iwj.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Barbara De Angelis
- Department of Surgical Science University of Rome Tor Vergata Rome Italy
| | - Pietro Gentile
- Department of Surgical Science University of Rome Tor Vergata Rome Italy
| |
Collapse
|
23
|
Ling Y, Xu W, Yang L, Liang C, Xu B. Improved the biocompatibility of cancellous bone with compound physicochemical decellularization process. Regen Biomater 2020; 7:443-451. [PMID: 33149933 PMCID: PMC7597803 DOI: 10.1093/rb/rbaa024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/28/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract
Due to the unique microstructures and components of extracellular matrix (ECM), decellularized scaffolds had been used widely in clinical. The reaction of the host toward decellularized scaffolds depends on their biocompatibility, which should be satisfied before applied in clinical. The aim of this study is to develop a decellularized xenograft material with good biocompatibility for further bone repair, in an effective and gentle method. The existing chemical and physical decellularization techniques including ethylene diamine tetraacetic acid (EDTA), sodium dodecyl sulfate (SDS) and supercritical carbon dioxide (SC-CO2) were combined and modified to decellularize bovine cancellous bone (CB). After decellularization, almost 100% of ɑ-Gal epitopes were removed, the combination of collagen, calcium and phosphate was reserved. The direct and indirect contact with macrophages was used to evaluate the cytotoxicity and immunological response of the materials. Mesenchymal stem cells (MSCs) were used in the in vitro cells’ proliferation assay. The decellularized CB was proved has no cytotoxicity (grade 1) and no immunological response (NO, IL-2, IL-6 and TNF-α secretion inhibited), and could support MSCs proliferated continuedly. These results were similar to that of commercial decellularized human bone. This study suggests the potential of using this kind of combine decellularization process to fabricate heterogeneous ECM scaffolds for clinical application.
Collapse
Affiliation(s)
- You Ling
- National Engineering Research Center for Human Tissue Restoration and Function Reconstruction, School of Materials Science and Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou, Guangdong 510006, China
- Department of Scientific Research, National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, Guangdong Academy of Sciences, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou, Guangdong 510500, China
- National Engineering Laboratory for Regenerative Implantable Medical Devices, R&D Center, Grandhope Biotech Co., Ltd, Guangzhou, Guangdong 510530, China
| | - Weikang Xu
- Department of Scientific Research, National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, Guangdong Academy of Sciences, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou, Guangdong 510500, China
| | - Lifeng Yang
- Department of Biosecurity Evaluation, Guangdong Medical Devices Quality Surveillance and Test Institute, No. 1 Guangpu West Road, Huangpu District, Guangzhou, Guangdong 510663, China
| | - Changyan Liang
- Department of Gynecology, Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou 510630, China
| | - Bin Xu
- National Engineering Laboratory for Regenerative Implantable Medical Devices, R&D Center, Grandhope Biotech Co., Ltd, Guangzhou, Guangdong 510530, China
| |
Collapse
|
24
|
Montanaro M, Meloni M, Anemona L, Giurato L, Scimeca M, Izzo V, Servadei F, Smirnov A, Candi E, Mauriello A, Uccioli L. Macrophage Activation and M2 Polarization in Wound Bed of Diabetic Patients Treated by Dermal/Epidermal Substitute Nevelia. INT J LOW EXTR WOUND 2020; 21:377-383. [PMID: 32815405 DOI: 10.1177/1534734620945559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clinical evidences have shown good results using dermal/epidermal substitutes (DESs) to treat diabetic foot ulcers. Recent studies suggest that, in addition to their scaffold action, DESs may favor wound healing by influencing wound bed inflammatory cells. This study aims to investigate whether DES may influence the inflammatory infiltrate and macrophages polarization toward a reparative phenotype. Fifteen diabetic patients with chronic foot ulcers have been randomly enrolled: 5 treated only by standard of care, served as control group (CG), and 10 treated with DES composed of type 1 bovin collagen (Nevelia, SYMATESE) considered as test group (TG). A biopsy was taken at baseline (T0) and after 30 days (T1). From bioptic paraffin specimen histological, immunohistochemical, and immunofluorescence analysis was performed. Immunohistochemistry reactions evaluated the number of M1 macrophage (CD38+) and M2 macrophage (CD163+). TG patients displayed general macrophage activation and their greater polarization toward M2 subpopulation 30 days after DES implant, compared with CG. From T0 to T1 there was a significant decrease of CD38+ (230 ± 42 and 135 ± 48 mm2, respectively; P < .001) and significant increase of CD163+ (102 ± 21 positive cells/mm2 and 366 ± 42 positive cells/mm2, respectively; P < .001). Confocal microscopy confirmed an increase of M2 cells as expressed by the reduced CD68+/CD163+ ratio. After 6 months of observation 6 patients (60%) of the TG completely healed, while only 1 patient (20%) healed in the CG (P < .01). The tested DES makes possible to treat diabetic foot ulcers inducing tissue reparative processes through macrophage activation and M2 reparative polarization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Artem Smirnov
- University of Rome "Tor Vergata," Rome, Italy.,Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Eleonora Candi
- University of Rome "Tor Vergata," Rome, Italy.,IDI-IRCCS, Rome, Italy
| | | | | |
Collapse
|
25
|
Monavarian M, Kader S, Moeinzadeh S, Jabbari E. Regenerative Scar-Free Skin Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:294-311. [PMID: 30938269 DOI: 10.1089/ten.teb.2018.0350] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPACT STATEMENT Millions of people every year develop scars in response to skin injuries after surgery, trauma, or burns with significant undesired physical and psychological effects. This review provides an update on engineering strategies for scar-free wound healing and discusses the role of different cell types, growth factors, cytokines, and extracellular components in regenerative wound healing. The use of pro-regenerative matrices combined with engineered cells with less intrinsic potential for fibrogenesis is a promising strategy for achieving scar-free skin tissue regeneration.
Collapse
Affiliation(s)
- Mehri Monavarian
- 1Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| | - Safaa Kader
- 1Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina.,2Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
| | - Seyedsina Moeinzadeh
- 1Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| | - Esmaiel Jabbari
- 1Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
26
|
Deusenbery CB, Kalan L, Meisel JS, Gardner SE, Grice EA, Spiller KL. Human macrophage response to microbial supernatants from diabetic foot ulcers. Wound Repair Regen 2019; 27:598-608. [DOI: 10.1111/wrr.12752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/13/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Carly B. Deusenbery
- School of Biomedical Engineering Science and Health SystemsDrexel University Philadelphia Pennsylvania
| | - Lindsay Kalan
- Department of Microbiology & ImmunologyUniversity of Wisconsin‐Madison Madison Wisconsin
| | - Jacquelyn S. Meisel
- Department of DermatologyUniversity of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania
- The Center for Bioinformatics and Computational BiologyUniversity of Maryland College Park
| | | | - Elizabeth A. Grice
- Department of DermatologyUniversity of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania
| | - Kara L. Spiller
- School of Biomedical Engineering Science and Health SystemsDrexel University Philadelphia Pennsylvania
| |
Collapse
|
27
|
Varela P, Sartori S, Viebahn R, Salber J, Ciardelli G. Macrophage immunomodulation: An indispensable tool to evaluate the performance of wound dressing biomaterials. J Appl Biomater Funct Mater 2019; 17:2280800019830355. [PMID: 30808227 DOI: 10.1177/2280800019830355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major burden of the healthcare system resides in providing proper medical treatment for all types of chronic wounds, which are usually treated with dressings to induce a faster regeneration. Hence, to reduce healing time and improve the patient's quality of life, it is extremely important to select the most appropriate constituent material for a specific wound dressing. A wide range of wound dressings exist but their mechanisms of action are poorly explored, especially concerning the immunomodulatory effects that occur from the interactions between immune cells and the biomaterial. Tissue-resident and monocyte-derived recruited macrophages are key regulators of wound repair. These phagocytic immune cells exert specific functions during the different stages of wound healing. The recognition of the substantial role of macrophages in the outcome of the wound healing process requires specific understanding of the immunomodulatory effects of commercially available or newly developed wound dressings. For a precise intervention, it is necessary to obtain more knowledge on macrophage polarization in different phases of wound healing in the presence of the dressings. The main purpose of this review is to collect clinical cases in which macrophage immunomodulation was taken into consideration as an indicator of the performances of novel or mainstream wound dressing materials, including those provided with antimicrobial properties.
Collapse
Affiliation(s)
- Patrícia Varela
- 1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,2 Chirurgische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Germany
| | - Susanna Sartori
- 1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Richard Viebahn
- 2 Chirurgische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Germany
| | - Jochen Salber
- 2 Chirurgische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Germany
| | - Gianluca Ciardelli
- 1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
28
|
Mandla S, Davenport Huyer L, Wang Y, Radisic M. Macrophage Polarization with Angiopoietin-1 Peptide QHREDGS. ACS Biomater Sci Eng 2019; 5:4542-4550. [DOI: 10.1021/acsbiomaterials.9b00483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Serena Mandla
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5S 3G9, Canada
| | - Locke Davenport Huyer
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Yufeng Wang
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
29
|
Wofford KL, Cullen DK, Spiller KL. Modulation of macrophage phenotype via phagocytosis of drug-loaded microparticles. J Biomed Mater Res A 2019; 107:1213-1224. [PMID: 30672109 PMCID: PMC6499658 DOI: 10.1002/jbm.a.36617] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
Monocyte-derived macrophages play a critical role in directing wound pathology following injury. Depending on their phenotype, macrophages also promote tissue regeneration. However, the therapeutic administration of macrophages with a controlled phenotype is challenging because macrophages are highly plastic and quickly revert to a detrimental, inflammatory phenotype in response to the environment of a damaged tissue. To address this issue, we developed a novel strategy to modulate macrophage phenotype intracellularly through phagocytosis of drug-loaded microparticles. Poly(lactic-co-glycolic acid) microparticles loaded with the anti-inflammatory drug dexamethasone (Dex) were phagocytosed by monocytes and stored intracellularly for at least 5 days. After differentiation into macrophages, cell phenotype was characterized over time with high-throughput gene expression analysis via NanoString. We found that the microparticles modulated macrophage phenotype for up to 7 days after microparticle uptake, with decreases in inflammation-related genes at early timepoints and upregulation of homing- and phagocytosis-related genes at multiple timepoints in a manner similar to cells treated with continuous free Dex. These data suggest that intracellularly loading macrophages with Dex microparticles via phagocytosis could be a unique methodology to selectively modulate macrophage phenotype over time. This strategy would allow therapeutic administration of macrophages for the treatment of a number of inflammatory disease and disorders. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1213-1224, 2019.
Collapse
Affiliation(s)
- Kathryn L Wofford
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
- Center for Neurotrauma, Neurodegeneration and Restoration, CMC VA Medical Center, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration and Restoration, CMC VA Medical Center, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Chen H, Erndt-Marino J, Diaz-Rodriguez P, Kulwatno J, Jimenez-Vergara AC, Thibeault SL, Hahn MS. In vitro evaluation of anti-fibrotic effects of select cytokines for vocal fold scar treatment. J Biomed Mater Res B Appl Biomater 2019; 107:1056-1067. [PMID: 30184328 PMCID: PMC7011756 DOI: 10.1002/jbm.b.34198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/30/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
Scarring of the vocal fold lamina propria (LP) can cause considerable voice disorders due to reduced pliability in scar tissue, attributed in part to abnormal extracellular matrix (ECM) deposition produced by the fibrotic vocal fold fibroblast (fVFF). Cytokines with anti-fibrotic potential have been investigated to limit abnormal LP ECM, but are limited by the need for repeat injections. Moreover, the potentially significant role played by activated macrophages (AMOs) is usually not considered even though the interaction between AMO and fibrotic fibroblasts is known to regulate scar formation across different tissues. AMO are also regulated by cytokines that are used for LP scar removal, but little is known about AMO behaviors in response to these cytokines within the context of LP scar. In the present study, we evaluated anti-fibrotic effects of hepatocyte growth factor (HGF), interleukin-10 (IL-10) and interleukin-6 (IL-6) in a 3D, in vitro fVFF-AMO co-culture system using poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Data from all cytokines was synthesized into a heat-map that enabled assessment of specific associations between AMO and fVFF phenotypes. Cumulatively, our results indicated that both HGF and IL-10 are potentially anti-fibrotic (reduction in fibrotic markers and enhancement in normal, anti-fibrotic VFF markers), while IL-6 displays more complex, marker specific effects. Possible associations between AMO and fVFF phenotypes were found and may highlight a potential desirable macrophage phenotype. These data support the therapeutic potential of HGF and IL-10 for LP scar treatment, and shed light on future strategies aimed at targeting specific AMO phenotypes. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1056-1067, 2019.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Josh Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Jonathan Kulwatno
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Susan L Thibeault
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
31
|
Rowley AT, Nagalla RR, Wang S, Liu WF. Extracellular Matrix-Based Strategies for Immunomodulatory Biomaterials Engineering. Adv Healthc Mater 2019; 8:e1801578. [PMID: 30714328 DOI: 10.1002/adhm.201801578] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/08/2019] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a complex and dynamic structural scaffold for cells within tissues and plays an important role in regulating cell function. Recently it has become appreciated that the ECM contains bioactive motifs that can directly modulate immune responses. This review describes strategies for engineering immunomodulatory biomaterials that utilize natural ECM-derived molecules and have the potential to harness the immune system for applications ranging from tissue regeneration to drug delivery. A top-down approach utilizes full-length ECM proteins, including collagen, fibrin, or hyaluronic acid-based materials, as well as matrices derived from decellularized tissue. These materials have the benefit of maintaining natural conformation and structure but are often heterogeneous and encumber precise control. By contrast, a bottom-up approach leverages immunomodulatory domains, such as Arg-Gly-Asp (RGD), matrix metalloproteinase (MMP)-sensitive peptides, or leukocyte-associated immunoglobulin-like receptor-1(LAIR-1) ligands, by incorporating them into synthetic materials. These materials have tunable control over immune cell functions and allow for combinatorial approaches. However, the synthetic approach lacks the full natural context of the original ECM protein. These two approaches provide a broad range of engineering techniques for immunomodulation through material interactions and hold the potential for the development of future therapeutic applications.
Collapse
Affiliation(s)
- Andrew T. Rowley
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
| | - Raji R. Nagalla
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
| | - Szu‐Wen Wang
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
- Department of Materials Science and EngineeringUniversity of California Irvine CA 92697 USA
| | - Wendy F. Liu
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
- The Edwards Lifesciences Center for Advanced Cardiovascular TechnologyUniversity of California Irvine CA 92697 USA
| |
Collapse
|
32
|
Witherel CE, Abebayehu D, Barker TH, Spiller KL. Macrophage and Fibroblast Interactions in Biomaterial-Mediated Fibrosis. Adv Healthc Mater 2019; 8:e1801451. [PMID: 30658015 PMCID: PMC6415913 DOI: 10.1002/adhm.201801451] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Indexed: 01/08/2023]
Abstract
Biomaterial-mediated inflammation and fibrosis remain a prominent challenge in designing materials to support tissue repair and regeneration. Despite the many biomaterial technologies that have been designed to evade or suppress inflammation (i.e., delivery of anti-inflammatory drugs, hydrophobic coatings, etc.), many materials are still subject to a foreign body response, resulting in encapsulation of dense, scar-like extracellular matrix. The primary cells involved in biomaterial-mediated fibrosis are macrophages, which modulate inflammation, and fibroblasts, which primarily lay down new extracellular matrix. While macrophages and fibroblasts are implicated in driving biomaterial-mediated fibrosis, the signaling pathways and spatiotemporal crosstalk between these cell types remain loosely defined. In this review, the role of M1 and M2 macrophages (and soluble cues) involved in the fibrous encapsulation of biomaterials in vivo is investigated, with additional focus on fibroblast and macrophage crosstalk in vitro along with in vitro models to study the foreign body response. Lastly, several strategies that have been used to specifically modulate macrophage and fibroblast behavior in vitro and in vivo to control biomaterial-mediated fibrosis are highlighted.
Collapse
Affiliation(s)
- Claire E. Witherel
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | - Daniel Abebayehu
- University of Virginia, Department of Biomedical Engineering, School of Engineering & School of Medicine, 415 Lane Road, Charlottesville, Virginia 22904, USA
| | - Thomas H. Barker
- University of Virginia, Department of Biomedical Engineering, School of Engineering & School of Medicine, 415 Lane Road, Charlottesville, Virginia 22904, USA
| | - Kara L. Spiller
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA,
| |
Collapse
|
33
|
Sallent I, Capella-Monsonís H, Zeugolis DI. Production and Characterization of Chemically Cross-Linked Collagen Scaffolds. Methods Mol Biol 2019; 1944:23-38. [PMID: 30840233 DOI: 10.1007/978-1-4939-9095-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chemical cross-linking of collagen-based devices is used as a means of increasing the mechanical stability and control the degradation rate upon implantation. Herein, we describe techniques to produce cross-linked with glutaraldehyde (GTA; amine terminal cross-linker), 4-arm polyethylene glycol succinimidyl glutarate (4SP; amine terminal cross-linker), diphenyl phosphoryl azide (DPPA; carboxyl terminal cross-linker), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC; carboxyl terminal cross-linker) collagen films. In addition, we provide protocols to characterize the biophysical (swelling), biomechanical (tensile), and biological (metabolic activity, proliferation and viability using human dermal fibroblasts and THP-1 macrophages) properties of the cross-linked collagen scaffolds.
Collapse
Affiliation(s)
- Ignacio Sallent
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Héctor Capella-Monsonís
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland.
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
34
|
Ščigalková I, Bystroňová J, Kovářová L, Pravda M, Velebný V, Riabov V, Klüter H, Kzhyshkowska J, Vrana NE. The effect of healing phenotype-inducing cytokine formulations within soft hydrogels on encapsulated monocytes and incoming immune cells. RSC Adv 2019; 9:21396-21404. [PMID: 35521319 PMCID: PMC9066154 DOI: 10.1039/c9ra02878a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/17/2019] [Indexed: 11/21/2022] Open
Abstract
Hydrogels made from the derivatives of gelatin and hyaluronic acid were used as coatings to control the immune responses.
Collapse
Affiliation(s)
| | | | - Lenka Kovářová
- Contipro a.s
- 561 02 Dolni Dobrouc
- Czech Republic
- Institute of Physical Chemistry
- Faculty of Chemistry
| | | | | | - Vladimir Riabov
- Institute for Transfusion Medicine and Immunology
- Medical Faculty Mannheim
- University of Heidelberg
- 68167 Mannheim
- Germany
| | - Harald Klüter
- Institute for Transfusion Medicine and Immunology
- Medical Faculty Mannheim
- University of Heidelberg
- 68167 Mannheim
- Germany
| | - Julia Kzhyshkowska
- Institute for Transfusion Medicine and Immunology
- Medical Faculty Mannheim
- University of Heidelberg
- 68167 Mannheim
- Germany
| | - Nihal Engin Vrana
- Protip Medical
- 67000 Strasbourg
- France
- Inserm UMR 1121, Biomaterials and Bioengineering
- 67085 Strasbourg
| |
Collapse
|
35
|
de Jesus Palacios-Rodríguez A, Flores-Moreno M, Edith Castellano L, Carriles R, Quintero-Ortega I, Murguía-Pérez M, Cruz G, Vargas-Mancilla J, Vega-González A, Mendoza-Novelo B. Effect of varying the crosslinking degree of a pericardial implant with oligourethane on the repair of a rat full-thickness abdominal wall defect. J Biomater Appl 2018; 33:903-914. [PMID: 30526211 DOI: 10.1177/0885328218817890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The stability and bioactivity of biologic implants rely mainly on the control of the crosslinking process of collagen. However, the most common methods have no control on the crosslinking degree producing it excessively. This study outlines the role of crosslinking of collagen-based implants with oligourethane on the host response following reconstruction of a rat full-thickness abdominal wall defect. We decellularized and crosslinked bovine pericardial tissue to achieve two crosslinking degrees. For the decellularized implants, named as non-crosslinked (N-CL), the collagen-amines were 0.42 ± 0.02 mmol/mg. Crosslinking by the oligourethane reduced the primary amine concentration to 0.28 ± 0.01 and 0.19 ± 0.01 mmol/mg; these values were classified as low (∼30%, L-CL) and medium crosslinking (∼50%, M-CL), respectively. By imaging the implants using second harmonic generation microscopy, we observed undulated bundles of collagen fibers organized in multi-directed layers localized in N-CL and L-CL samples. Post-implantation, a negligible change in the organization of collagen fibers in the crosslinked implants was observed, suggesting that the in vivo biodegradation was delayed. An enlargement of the implant area was also observed, without rupture, in all three (N-CL, L-CL, M-CL) materials, whereas adhesion to the omentum, but not to the bowel, was observed. The number of blood vessels after 90-day implantation in N-CL and L-CL was 13 ± 1 and 12 ± 1 per field, respectively, while the number significantly decreased to 2 ± 1 in M-CL. The results suggest that the controlled degree of crosslinking in oligourethane-modified biologic implants can be used as a strategy to balance biodegradation and remodeling in surgical repair of soft tissues.
Collapse
Affiliation(s)
| | | | | | - Ramón Carriles
- 2 Centro de Investigaciones en Optica AC, León, Guanajuato, Mexico
| | - Iraís Quintero-Ortega
- 1 División de Ciencias Ingenierías, Universidad de Guanajuato, León Guanajuato, Mexico
| | | | - Guillermo Cruz
- 4 Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Mexico, EDOMEX
| | | | - Arturo Vega-González
- 1 División de Ciencias Ingenierías, Universidad de Guanajuato, León Guanajuato, Mexico
| | | |
Collapse
|
36
|
Lucich EA, Rendon JL, Valerio IL. Advances in addressing full-thickness skin defects: a review of dermal and epidermal substitutes. Regen Med 2018; 13:443-456. [PMID: 29985763 DOI: 10.2217/rme-2017-0047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
full-thickness skin defects remain a reconstructive challenge. Novel regenerative modalities can aid in addressing these defects. A literature review of currently available dermal and epidermal regenerates was performed. The mechanism and application for each skin substitute was analyzed to provide a guide for these modalities. Available epidermal substitutes include autografts and allografts and may be cultured or noncultured. Dermal regenerate templates exist in biologic and synthetic varieties that differ in the source animal and processing. Epidermal and dermal skin substitutes are promising adjunctive tools for addressing certain soft tissue defects and have improved outcomes in reconstructive procedures. The following article provides a comprehensive review of the biologic materials available and the types of complex wounds amenable to their use.
Collapse
Affiliation(s)
- Elizabeth A Lucich
- Department of Plastic Surgery, Spectrum Health/Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Juan L Rendon
- Department of Plastic Surgery, The Ohio State Wexner Medical Center, Columbus, OH 43212, USA
| | - Ian L Valerio
- Department of Plastic Surgery, The Ohio State Wexner Medical Center, Columbus, OH 43212, USA
| |
Collapse
|
37
|
Hortensius RA, Ebens JH, Dewey MJ, Harley BAC. Incorporation of the Amniotic Membrane as an Immunomodulatory Design Element in Collagen Scaffolds for Tendon Repair. ACS Biomater Sci Eng 2018; 4:4367-4377. [PMID: 30693317 DOI: 10.1021/acsbiomaterials.8b01154] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tendon injuries often require surgical intervention and even then result in poor outcomes due to scar formation and repeated failure. Biomaterial implants offer the potential to address multiple underlying concerns preventing improved tendon repair. Here, we describe modifications to the composition of an anisotropic collagen-glycosaminoglycan (CG) scaffold biomaterial, incorporating amniotic membrane (AM)-derived matrix to alter the inflammatory response and establish conditions for improved regenerative repair. We explored two methods of AM matrix incorporation to address multiple concerns associated with tendon repair. Amniotic membrane-derived matrix was incorporated directly into the scaffold microstructure during fabrication to form a C/AM composite. Alternatively, decellularized amniotic matrix was wrapped around the traditional collagen-chondroitin sulfate (C/CS) scaffold to form a core-shell composite (C/CS plus AM wrap) in a manner similar to current collagen membrane wraps used in rotator cuff and Achilles tendon surgeries to improve the mechanical strength of the repair. Human mesenchymal stem cells (MSCs) cultured within these materials were evaluated for metabolic health and immunomodulatory gene expression in response to inflammatory media challenge of interleukin 1 β and tumor necrosis factor α. The scaffolds were able to maintain MSC metabolic activity in all media conditions over the course of a 7 day culture. Expression of genes encoding for pro-inflammatory cytokines were down-regulated in AM containing scaffolds, suggesting the potential to employ AM-modified CG scaffolds for tendon-repair applications.
Collapse
Affiliation(s)
- Rebecca A Hortensius
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jill H Ebens
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Marley J Dewey
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
38
|
Grosick R, Alvarado-Vazquez PA, Messersmith AR, Romero-Sandoval EA. High glucose induces a priming effect in macrophages and exacerbates the production of pro-inflammatory cytokines after a challenge. J Pain Res 2018; 11:1769-1778. [PMID: 30237731 PMCID: PMC6136416 DOI: 10.2147/jpr.s164493] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction Painful diabetic neuropathy is associated with chronic inflammation, in which macrophages are the key effectors. We utilized an in vitro approach to determine the effects of high glucose on macrophage phenotype. Materials and methods We exposed human THP-1 macrophages to normal glucose (5 mM) and a clinically relevant high glucose environment (15 mM) and measured the expression and concentration of molecules associated with a diabetic cellular phenotype. Results We found that THP-1 macrophages in high glucose conditions did not influence the basal expression of cyclooxygenase-2, Toll-like receptor-4, or class A scavenger receptor mRNA, or the concentrations of the cytokines interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, and IL-10, but induced a priming effect on tumor necrosis factor (TNF)-α. Then, we stimulated THP-1 macrophages with a strong pro-inflammatory stimulus lipopolysaccharide (LPS; 5 µg/mL). After stimulation with LPS, we observed an exacerbated increase in TNF-α, IL-6, and MCP-1 concentration in the high glucose condition compared to the normal glucose environment. THP-1 macrophages in high glucose conditions developed tolerance to IL-10 anti-inflammatory effects (TNF-α production) when challenged with LPS. Conclusion Our in vitro approach allows the study of macrophages as potential targets for therapeutic purposes since it compares them to primary human macrophages exposed to high glucose and macrophages from patients with diabetes or complications of painful diabetic neuropathy (i.e. ulcers, adipocytes, and pancreas).
Collapse
Affiliation(s)
- Rachel Grosick
- Department of Pharmaceutical and Administrative Science, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | | | - Amy R Messersmith
- Department of Pharmaceutical and Administrative Science, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | | |
Collapse
|
39
|
Friedrich EE, Lanier ST, Niknam-Bienia S, Arenas GA, Rajendran D, Wertheim JA, Galiano RD. Residual sodium dodecyl sulfate in decellularized muscle matrices leads to fibroblast activation in vitro and foreign body response in vivo. J Tissue Eng Regen Med 2017; 12:e1704-e1715. [PMID: 29084373 DOI: 10.1002/term.2604] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022]
Abstract
Detergents such as sodium dodecyl sulfate (SDS) are commonly used to extract cells from tissues in a process called "decellularization". Residual SDS is difficult to completely remove and may lead to an undesirable host response towards an implanted biomaterial. In this study, we developed a modification for SDS cell extraction from muscle equally efficient to previous methods but leading to significantly less residual SDS remnants in the matrices. Muscle-derived matrices were prepared via 2 SDS-based decellularization methods, which led to removal of either 81.4% or 98.4% of the SDS. In vitro, matrices were seeded with thp1 macrophages and primary human foreskin fibroblasts. By Day 2, both matrices demonstrated similar macrophage polarization; however, fibroblasts cultured on matrices with greater residual SDS expressed higher levels of mRNA associated with fibroblast activation: α-smooth muscle actin and connective tissue growth factor. In vivo, Collagen I gels spiked with increasing concentrations of SDS displayed a corresponding decrease in cell infiltration when implanted subcutaneously in rats after 4 days. Finally, as a model for muscle regeneration, matrices produced by each method were implanted in rat latissimus dorsi defects. At POD 30 greater levels of IL-1β mRNA were present in defects treated with matrices containing higher levels of SDS, indicating a more severe inflammatory response. Although matrices containing higher levels of residual SDS became encapsulated by POD 30 and showed evidence of a foreign body response, matrices with the lower levels of SDS integrated into the defect area with lower levels of inflammatory and fibrosis-related gene expression.
Collapse
Affiliation(s)
- Emily E Friedrich
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Steven T Lanier
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Solmaz Niknam-Bienia
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gabriel A Arenas
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Divya Rajendran
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason A Wertheim
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.,Department of Surgery, Jesse Brown VA Medical Center, Chicago, IL, USA.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Robert D Galiano
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
40
|
Ferraro NM, Dampier W, Weingarten MS, Spiller KL. Deconvolution of heterogeneous wound tissue samples into relative macrophage phenotype composition via models based on gene expression. Integr Biol (Camb) 2017; 9:328-338. [PMID: 28290581 DOI: 10.1039/c7ib00018a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macrophages, the primary cell of the innate immune system, act on a spectrum of phenotypes that correspond to diverse functions. Dysregulation of macrophage phenotype is associated with many diseases. In particular, defective transition from pro-inflammatory (M1) to anti-inflammatory (M2) behavior has been implicated as a potential source of sustained inflammation that prevents healing of chronic wounds such as diabetic ulcers. In order to design effective treatments, an understanding of the relative presence of macrophage phenotypes during tissue repair is necessary. Inferring the relative phenotype composition is currently challenging due to the heterogeneous nature of the macrophages themselves and also of tissue samples. We propose here a method to deconvolute gene expression from heterogeneous tissue samples into the composition of two primary macrophage phenotypes (M1 and M2). Our final method uses gene expression signatures for each phenotype cultivated in vitro as input to a predictive model that infers sample composition with an average error of 0.16, and whose predictions fit known compositions prepared in vitro with an R2 value of 0.90. Finally, we apply this model to describe macrophage behavior in human diabetic ulcer healing using clinically isolated ulcer tissue samples. The model predicted that non-healing diabetic ulcers contained higher proportions of M1 macrophages compared to healing diabetic ulcers, in agreement with numerous studies that have implicated a dysfunctional M1-to-M2 transition in the impaired healing of diabetic ulcers. These results show proof of concept that the model holds utility in making predictions regarding macrophage behavior in heterogeneous samples, with potential application as a wound healing diagnostic.
Collapse
Affiliation(s)
- Nicole M Ferraro
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
41
|
Graney PL, Roohani-Esfahani SI, Zreiqat H, Spiller KL. In vitro response of macrophages to ceramic scaffolds used for bone regeneration. J R Soc Interface 2017; 13:rsif.2016.0346. [PMID: 27466438 DOI: 10.1098/rsif.2016.0346] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/04/2016] [Indexed: 01/09/2023] Open
Abstract
Macrophages, the primary cells of the inflammatory response, are major regulators of healing, and mediate both bone fracture healing and the inflammatory response to implanted biomaterials. However, their phenotypic contributions to biomaterial-mediated bone repair are incompletely understood. Therefore, we used gene expression and protein secretion analysis to investigate the interactions in vitro between primary human monocyte-derived macrophages and ceramic scaffolds that have been shown to have varying degrees of success in promoting bone regeneration in vivo Specifically, baghdadite (Ca3ZrSi2O9) and strontium-hardystonite-gahnite (Sr-Ca2ZnSi2O7-ZnAl2O4) scaffolds were chosen as two materials that enhanced bone regeneration in vivo in large defects under load compared with clinically used tricalcium phosphate-hydroxyapatite (TCP-HA). Principal component analysis revealed that the scaffolds differentially regulated macrophage phenotype. Temporal changes in gene expression included shifts in markers of pro-inflammatory M1, anti-inflammatory M2a and pro-remodelling M2c macrophage phenotypes. Of note, TCP-HA scaffolds promoted upregulation of many M1-related genes and downregulation of many M2a- and M2c-related genes. Effects of the scaffolds on macrophages were attributed primarily to direct cell-scaffold interactions because of only minor changes observed in transwell culture. Ultimately, elucidating macrophage-biomaterial interactions will facilitate the design of immunomodulatory biomaterials for bone repair.
Collapse
Affiliation(s)
- Pamela L Graney
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Seyed-Iman Roohani-Esfahani
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2026, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2026, Australia
| | - Kara L Spiller
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Witherel CE, Yu T, Concannon M, Dampier W, Spiller KL. Immunomodulatory Effects of Human Cryopreserved Viable Amniotic Membrane in a Pro-Inflammatory Environment In Vitro. Cell Mol Bioeng 2017; 10:451-462. [PMID: 29225709 PMCID: PMC5720175 DOI: 10.1007/s12195-017-0494-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Chronic wounds remain a major clinical challenge. Human cryopreserved viable amniotic membrane (hCVAM) is among the most successful therapies, but the mechanisms of action remain loosely defined. Because proper regulation of macrophage behavior is critical for wound healing with biomaterial therapies, we hypothesized that hCVAM would positively regulate macrophage behavior in vitro, and that soluble factors released from the hCVAM would be important for this effect. MATERIALS AND METHODS Primary human pro-inflammatory (M1) macrophages were seeded directly onto intact hCVAM or cultured in separation via transwell inserts (Soluble Factors) in the presence of pro-inflammatory stimuli (interferon-γ and lipopolysaccharide) to simulate the chronic wound environment. Macrophages were characterized after 1 and 6 days using multiplex gene expression analysis of 37 macrophage phenotype- and angiogenesis-related genes via NanoString™, and protein content from conditioned media collected at days 1, 3 and 6 was analyzed via enzyme linked immunosorbent assays. RESULTS AND DISCUSSION Gene expression analysis showed that Soluble Factors promoted significant upregulation of pro-inflammatory marker IL1B on day 1 yet downregulation of TNF on day 6 compared to the M1 macrophage control. In contrast, intact hCVAM, which includes both extracellular matrix, viable cells, and soluble factors, promoted downregulation of pro-inflammatory markers TNF, CCL5 and CCR7 on day 1 and endothelial receptor TIE1 on day 6, and upregulation of the anti-inflammatory marker IL10 on day 6 compared to the M1 Control. Other genes related to inflammation and angiogenesis (MMP9, VEGF, SPP1, TGFB1, etc.) were differentially regulated between the Soluble Factors and intact hCVAM groups at both time points, though they were not expressed at significantly different levels compared to the M1 Control. Interestingly, Soluble Factors promoted increased secretion of the proinflammatory cytokine tumor necrosis factor-α (TNF-α), while direct contact with hCVAM inhibited secretion of TNF, relative to the M1 Control. Both Soluble Factors and intact hCVAM inhibited secretion of MMP9 and VEGF, pro-inflammatory proteins that are critical for angiogenesis and remodeling, compared to the M1 Control, with intact hCVAM having a stronger effect. CONCLUSIONS In a simulated pro-inflammatory environment, intact hCVAM has distinct anti-inflammatory effects on primary human macrophages, and direct macrophage contact with intact hCVAM is required for these effects. These findings are important for the design of next generation immunomodulatory biomaterials for wound repair and regenerative medicine that may include living cells, soluble factors, or a controlled drug delivery system.
Collapse
Affiliation(s)
- Claire E. Witherel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA
| | - Tony Yu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA
| | - Mark Concannon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA USA
| | - Kara L. Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA
| |
Collapse
|
43
|
Pentecost AE, Witherel CE, Gogotsi Y, Spiller KL. Anti-inflammatory effects of octadecylamine-functionalized nanodiamond on primary human macrophages. Biomater Sci 2017; 5:2131-2143. [PMID: 28875995 PMCID: PMC5719499 DOI: 10.1039/c7bm00294g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic inflammatory disorders such as rheumatoid arthritis are characterized by excessive pro-inflammatory or "M1" activation of macrophages, the primary cells of the innate immune system. Current treatments include delivery of glucocorticoids (e.g. dexamethasone - Dex), which reduce pro-inflammatory M1 behaviour in macrophages. However, these treatments have many off-target effects on cells other than macrophages, resulting in broad immunosuppression. To limit such side effects, drug-incorporated nano- and microparticles may be used to selectively target macrophages via phagocytosis, because of their roles as highly effective phagocytes in the body. In this study, surface-modified nanodiamond (ND) was explored as a platform for the delivery of dexamethasone to macrophages because of ND's rich surface chemistry, which contributes to ND's high potential as a versatile drug delivery platform. After finding that octadecylamine-functionalized nanodiamond (ND-ODA) enhanced adsorption of Dex compared to carboxylated ND, the effects of Dex, ND-ODA, and Dex-adsorbed ND-ODA on primary human macrophage gene expression were characterized. Surprisingly, even in the absence of Dex, ND-ODA had strong anti-inflammatory effects, as determined by multiplex gene expression via NanoString and by protein secretion analysis via ELISA. ND-ODA also inhibited expression of M2a markers yet increased the expression of M2c markers and phagocytic receptors. Interestingly, the adsorption of Dex to ND-ODA further increased some anti-inflammatory effects, but abrogated the effect on phagocytic receptors, compared to its individual components. Overall, the ability of ND-ODA to promote anti-inflammatory and pro-phagocytic behaviour in macrophages, even in the absence of loaded drugs, suggests its potential for use as an anti-inflammatory therapeutic to directly target macrophages through phagocytosis.
Collapse
Affiliation(s)
- A E Pentecost
- Department of Materials Science and Engineering, College of Engineering, Drexel University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Wound healing is one of the most complex processes that our bodies must perform. While our ability to repair wounds is often taken for granted, conditions such as diabetes, obesity, or simply old age can significantly impair this process. With the incidence of all three predicted to continue growing into the foreseeable future, there is an increasing push to develop strategies that facilitate healing. Biomaterials are an attractive approach for modulating all aspects of repair, and have the potential to steer the healing process towards regeneration. In this review, we will cover recent advances in developing biomaterials that actively modulate the process of wound healing, and will provide insight into how biomaterials can be used to simultaneously rewire multiple phases of the repair process.
Collapse
Affiliation(s)
- Anna Stejskalová
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK.
| | - Benjamin D Almquist
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
45
|
Gaffney L, Wrona EA, Freytes DO. Potential Synergistic Effects of Stem Cells and Extracellular Matrix Scaffolds. ACS Biomater Sci Eng 2017. [DOI: 10.1021/acsbiomaterials.7b00083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lewis Gaffney
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Emily A. Wrona
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Donald O. Freytes
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
46
|
Erndt-Marino JD, Jimenez-Vergara AC, Diaz-Rodriguez P, Kulwatno J, Diaz-Quiroz JF, Thibeault S, Hahn MS. In vitro evaluation of a basic fibroblast growth factor-containing hydrogel toward vocal fold lamina propria scar treatment. J Biomed Mater Res B Appl Biomater 2017; 106:1258-1267. [PMID: 28580765 DOI: 10.1002/jbm.b.33936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/11/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022]
Abstract
Scarring of the vocal fold lamina propria can lead to debilitating voice disorders that can significantly impair quality of life. The reduced pliability of the scar tissue-which diminishes proper vocal fold vibratory efficiency-results in part from abnormal extracellular matrix (ECM) deposition by vocal fold fibroblasts (VFF) that have taken on a fibrotic phenotype. To address this issue, bioactive materials containing cytokines and/or growth factors may provide a platform to transition fibrotic VFF within the scarred tissue toward an anti-fibrotic phenotype, thereby improving the quality of ECM within the scar tissue. However, for such an approach to be most effective, the acute host response resulting from biomaterial insertion/injection likely also needs to be considered. The goal of the present work was to evaluate the anti-fibrotic and anti-inflammatory capacity of an injectable hydrogel containing tethered basic fibroblast growth factor (bFGF) in the dual context of scar and biomaterial-induced acute inflammation. An in vitro co-culture system was utilized containing both activated, fibrotic VFF and activated, pro-inflammatory macrophages (MΦ) within a 3D poly(ethylene glycol) diacrylate (PEGDA) hydrogel containing tethered bFGF. Following 72 h of culture, alterations in VFF and macrophage phenotype were evaluated relative to mono-culture and co-culture controls. In our co-culture system, bFGF reduced the production of fibrotic markers collagen type I, α smooth muscle actin, and biglycan by activated VFF and promoted wound-healing/anti-inflammatory marker expression in activated MΦ. Cumulatively, these data indicate that bFGF-containing hydrogels warrant further investigation for the treatment of vocal fold lamina propria scar. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1258-1267, 2018.
Collapse
Affiliation(s)
- Josh D Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | | | - Jonathan Kulwatno
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Susan Thibeault
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
47
|
Lurier EB, Dalton D, Dampier W, Raman P, Nassiri S, Ferraro NM, Rajagopalan R, Sarmady M, Spiller KL. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing. Immunobiology 2017; 222:847-856. [PMID: 28318799 DOI: 10.1016/j.imbio.2017.02.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/15/2017] [Indexed: 01/23/2023]
Abstract
Alternatively activated "M2" macrophages are believed to function during late stages of wound healing, behaving in an anti-inflammatory manner to mediate the resolution of the pro-inflammatory response caused by "M1" macrophages. However, the differences between two main subtypes of M2 macrophages, namely interleukin-4 (IL-4)-stimulated "M2a" macrophages and IL-10-stimulated "M2c" macrophages, are not well understood. M2a macrophages are characterized by their ability to inhibit inflammation and contribute to the stabilization of angiogenesis. However, the role and temporal profile of M2c macrophages in wound healing are not known. Therefore, we performed next generation sequencing (RNA-seq) to identify biological functions and gene expression signatures of macrophages polarized in vitro with IL-10 to the M2c phenotype in comparison to M1 and M2a macrophages and an unactivated control (M0). We then explored the expression of these gene signatures in a publicly available data set of human wound healing. RNA-seq analysis showed that hundreds of genes were upregulated in M2c macrophages compared to the M0 control, with thousands of alternative splicing events. Following validation by Nanostring, 39 genes were found to be upregulated by M2c macrophages compared to the M0 control, and 17 genes were significantly upregulated relative to the M0, M1, and M2a phenotypes (using an adjusted p-value cutoff of 0.05 and fold change cutoff of 1.5). Many of the identified M2c-specific genes are associated with angiogenesis, matrix remodeling, and phagocytosis, including CD163, MMP8, TIMP1, VCAN, SERPINA1, MARCO, PLOD2, PCOCLE2 and F5. Analysis of the macrophage-conditioned media for secretion of matrix-remodeling proteins showed that M2c macrophages secreted higher levels of MMP7, MMP8, and TIMP1 compared to the other phenotypes. Interestingly, temporal gene expression analysis of a publicly available microarray data set of human wound healing showed that M2c-related genes were upregulated at early times after injury, similar to M1-related genes, while M2a-related genes appeared at later stages or were downregulated after injury. While further studies are required to confirm the timing and role of M2c macrophages in vivo, these results suggest that M2c macrophages may function at early stages of wound healing. Identification of markers of the M2c phenotype will allow more detailed investigations into the role of M2c macrophages in vivo.
Collapse
Affiliation(s)
- Emily B Lurier
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Donald Dalton
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N Broad St. Philadelphia, PA, 19107, USA
| | - Pichai Raman
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA; Deparment of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sina Nassiri
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Nicole M Ferraro
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Ramakrishan Rajagopalan
- Deparment of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
48
|
Yang Y, Wu BQ, Wang YH, Shi YF, Luo JM, Ba JH, Liu H, Zhang TT. Regulatory effects of miR-155 and miR-146a on repolarization and inflammatory cytokine secretion in human alveolar macrophages in vitro. Immunopharmacol Immunotoxicol 2016; 38:502-509. [DOI: 10.1080/08923973.2016.1248845] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yang Yang
- Department of Internal Medicine, Medical Intensive Care Unit and Division of Respiratory Diseases, Institute of Respiratory Disease and the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Ben-Quan Wu
- Department of Internal Medicine, Medical Intensive Care Unit and Division of Respiratory Diseases, Institute of Respiratory Disease and the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yan-Hong Wang
- Department of Internal Medicine, Medical Intensive Care Unit and Division of Respiratory Diseases, Institute of Respiratory Disease and the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yun-Feng Shi
- Department of Internal Medicine, Medical Intensive Care Unit and Division of Respiratory Diseases, Institute of Respiratory Disease and the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jin-Mei Luo
- Department of Internal Medicine, Medical Intensive Care Unit and Division of Respiratory Diseases, Institute of Respiratory Disease and the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jun-Hui Ba
- Department of Internal Medicine, Medical Intensive Care Unit and Division of Respiratory Diseases, Institute of Respiratory Disease and the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Hui Liu
- Department of Internal Medicine, Medical Intensive Care Unit and Division of Respiratory Diseases, Institute of Respiratory Disease and the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Tian-Tuo Zhang
- Department of Internal Medicine, Medical Intensive Care Unit and Division of Respiratory Diseases, Institute of Respiratory Disease and the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
49
|
Klopfleisch R. Macrophage reaction against biomaterials in the mouse model - Phenotypes, functions and markers. Acta Biomater 2016; 43:3-13. [PMID: 27395828 DOI: 10.1016/j.actbio.2016.07.003] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/08/2016] [Accepted: 07/05/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED The foreign body reaction (FBR) is a response of the host tissue against more or less degradation-resistant foreign macromolecular material. The reaction is divided into five different phases which involve most aspects of the innate and the adaptive immune system: protein adsorption, acute and chronic inflammation, foreign body giant cell formation and fibrosis. It is long known, that macrophages play a central role in all of these phases except for protein adsorption. Initially it was believed that the macrophage driven FBR has a complete negative effect on biocompatibility. Recent progress in biomaterial and macrophage research however describe macrophages as more than pure antigen phagocytosing and presenting cells and thus pro-inflammatory cells involved in biomaterial encapsulation and failure. Quite contrary, both, pro-inflammatory M1 macrophages, the diverse regulatory M2 macrophage subtypes and even foreign body giant cells (FBGC) are after necessary for integration of non-degradable biomaterials and degradation and replacement of degradable biomaterials. This review gives a comprehensive overview on the taxonomy of the currently known macrophage subtypes. Their diverging functions, metabolism and markers are summarized and the relevance of this more diverse macrophage picture for the design of biomaterials is shortly discussed. STATEMENT OF SIGNIFICANCE The view on role of macrophages in the foreign body reaction against biomaterials is rapidly changing. Despite the initial idea that macrophage are mainly involved in undesired degradation and biomaterial rejection it becomes now clear that they are nevertheless necessary for proper integration of non-degradable biomaterials and degradation of placeholder, degradable biomaterials. As a pathologist I experienced a lack on a good summary on the current taxonomy, functions and phenotypes of macrophages in my recent projects on the biocompatibility of biomaterials in the mouse model. The submitted review therefore intends to gives a comprehensive overview on the taxonomy of the currently known macrophage subtypes. Their diverging functions, metabolism and markers are summarized and the relevance of this more diverse macrophage picture for the design of biomaterials is shortly discussed.
Collapse
Affiliation(s)
- R Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, Berlin 14163, Germany.
| |
Collapse
|
50
|
Yu T, Wang W, Nassiri S, Kwan T, Dang C, Liu W, Spiller KL. Temporal and spatial distribution of macrophage phenotype markers in the foreign body response to glutaraldehyde-crosslinked gelatin hydrogels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:721-42. [PMID: 26902292 DOI: 10.1080/09205063.2016.1155881] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently, it is not well understood how changes in biomaterial properties affect the foreign body response (FBR) or macrophage behavior. Because failed attempts at biomaterial degradation by macrophages have been linked to frustrated phagocytosis, a defining feature of the FBR, we hypothesized that increased hydrogel crosslinking density (and decreased degradability) would exacerbate the FBR. Gelatin hydrogels were crosslinked with glutaraldehyde (0.05, 0.1, and 0.3%) and implanted subcutaneously in C57BL/6 mice over the course of 3 weeks. Interestingly, changes in hydrogel crosslinking did not affect the thickness of the fibrous capsule surrounding the hydrogels, expression of the pan-macrophage marker F480, expression of three macrophage phenotype markers (iNOS, Arg1, CD163), or expression of the myofibroblast marker aSMA, determined using semi-quantitative immunohistochemical analysis. With respect to temporal changes, the level of expression of the M1 marker (iNOS) remained relatively constant throughout the study, while the M2 markers Arg1 and CD163 increased over time. Expression of these M2 markers was highly correlated with fibrous capsule thickness. Differences in spatial distribution of staining also were noted, with the strongest staining for iNOS at the hydrogel surface and increasing expression of the myofibroblast marker aSMA toward the outer edge of the fibrous capsule. These results confirm previous reports that macrophages in the FBR exhibit characteristics of both M1 and M2 phenotypes. Understanding the effects (or lack of effects) of biomaterial properties on the FBR and macrophage phenotype may aid in the rational design of biomaterials to integrate with surrounding tissue.
Collapse
Affiliation(s)
- Tony Yu
- a School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , PA , USA
| | - Wenbo Wang
- b Shanghai Key Tissue Engineering Laboratory , Shanghai Jiao Tong University , Shanghai , China
| | - Sina Nassiri
- a School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , PA , USA
| | - Thomas Kwan
- c Institute of Science and Technology in Medicine , Keele University , Stoke-on-Trent , UK
| | - Chau Dang
- a School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , PA , USA
| | - Wei Liu
- b Shanghai Key Tissue Engineering Laboratory , Shanghai Jiao Tong University , Shanghai , China
| | - Kara L Spiller
- a School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , PA , USA
| |
Collapse
|