1
|
Manole CG, Voiculescu VM, Soare C, Ceafalan LC, Gherghiceanu M, Hinescu ME. Skin Telocytes Could Fundament the Cellular Mechanisms of Wound Healing in Platelet-Rich Plasma Administration. Cells 2024; 13:1321. [PMID: 39195210 DOI: 10.3390/cells13161321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
For more than 40 years, autologous platelet concentrates have been used in clinical medicine. Since the first formula used, namely platelet-rich plasma (PRP), other platelet concentrates have been experimented with, including platelet-rich fibrin and concentrated growth factor. Platelet concentrates have three standard characteristics: they act as scaffolds, they serve as a source of growth factors and cytokines, and they contain live cells. PRP has become extensively used in regenerative medicine for the successful treatment of a variety of clinical (non-)dermatological conditions like alopecies, acne scars, skin burns, skin ulcers, muscle, cartilage, and bone repair, and as an adjuvant in post-surgery wound healing, with obvious benefits in terms of functionality and aesthetic recovery of affected tissues/organs. These indications were well documented, and a large amount of evidence has already been published supporting the efficacy of this method. The primordial principle behind minimally invasive PRP treatments is the usage of the patient's own platelets. The benefits of the autologous transplantation of thrombocytes are significant, representing a fast and economic method that requires only basic equipment and training, and it is biocompatible, thus being a low risk for the patient (infection and immunological reactions can be virtually disregarded). Usually, the structural benefits of applying PRP are attributed to fibroblasts only, as they are considered the most numerous cell population within the interstitium. However, this apparent simplistic explanation is still eluding those different types of interstitial cells (distinct from fibroblasts) that are residing within stromal tissue, e.g., telocytes (TCs). Moreover, dermal TCs have an already documented potential in angiogenesis (extra-cutaneous, but also within skin), and their implication in skin recovery in a few dermatological conditions was attested and described ultrastructurally and immunophenotypically. Interestingly, PRP biochemically consists of a series of growth factors, cytokines, and other molecules, to which TCs have also proven to have a positive expression. Thus, it is attractive to hypothesize and to document any tissular collaboration between cutaneous administered PRP and local dermal TCs in skin recovery/repair/regeneration. Therefore, TCs could be perceived as the missing link necessary to provide a solid explanation of the good results achieved by administering PRP in skin-repairing processes.
Collapse
Affiliation(s)
- Catalin G Manole
- Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, "Victor Babeș" National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M Voiculescu
- Department of Oncological Dermatology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, "Victor Babeș" National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, "Victor Babeș" National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihail E Hinescu
- Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Victor Babeș" National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
2
|
Zheremyan EA, Ustiugova AS, Karamushka NM, Uvarova AN, Stasevich EM, Bogolyubova AV, Kuprash DV, Korneev KV. Breg-Mediated Immunoregulation in the Skin. Int J Mol Sci 2024; 25:583. [PMID: 38203754 PMCID: PMC10778726 DOI: 10.3390/ijms25010583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Wound healing is a complex process involving a coordinated series of events aimed at restoring tissue integrity and function. Regulatory B cells (Bregs) are a subset of B lymphocytes that play an essential role in fine-tuning immune responses and maintaining immune homeostasis. Recent studies have suggested that Bregs are important players in cutaneous immunity. This review summarizes the current understanding of the role of Bregs in skin immunity in health and pathology, such as diabetes, psoriasis, systemic sclerosis, cutaneous lupus erythematosus, cutaneous hypersensitivity, pemphigus, and dermatomyositis. We discuss the mechanisms by which Bregs maintain tissue homeostasis in the wound microenvironment through the promotion of angiogenesis, suppression of effector cells, and induction of regulatory immune cells. We also mention the potential clinical applications of Bregs in promoting wound healing, such as the use of adoptive Breg transfer.
Collapse
Affiliation(s)
- Elina A. Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alina S. Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nina M. Karamushka
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Aksinya N. Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina M. Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Dmitry V. Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Kirill V. Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- National Research Center for Hematology, 125167 Moscow, Russia
| |
Collapse
|
3
|
Abstract
Wound healing occurs as a response to disruption of the epidermis and dermis. It is an intricate and well-orchestrated response with the goal to restore skin integrity and function. However, in hundreds of millions of patients, skin wound healing results in abnormal scarring, including keloid lesions or hypertrophic scarring. Although the underlying mechanisms of hypertrophic scars and keloid lesions are not well defined, evidence suggests that the changes in the extracellular matrix are perpetuated by ongoing inflammation in susceptible individuals, resulting in a fibrotic phenotype. The lesions then become established, with ongoing deposition of excess disordered collagen. Not only can abnormal scarring be debilitating and painful, it can also cause functional impairment and profound changes in appearance, thereby substantially affecting patients' lives. Despite the vast demand on patient health and the medical society, very little progress has been made in the care of patients with abnormal scarring. To improve the outcome of pathological scarring, standardized and innovative approaches are required.
Collapse
Affiliation(s)
- Marc G Jeschke
- Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - Fiona M Wood
- Burns Service of Western Australia, Fiona Stanley Hospital, Perth Children's Hospital, Perth, Western Australia, Australia
- Burn Injury Research Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Esther Middelkoop
- Burn Center, Red Cross Hospital, Beverwijk, Netherlands
- Association of Dutch Burn Centers (ADBC), Beverwijk, Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Amsterdam, Netherlands
| | - Ardeshir Bayat
- Medical Research Council Wound Healing Unit, Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, University of Cape Town & Groote Schuur Hospital, Cape Town, South Africa
| | - Luc Teot
- Department of Plastic Surgery, Burns, Wound Healing, Montpellier University Hospital, Montpellier, France
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Gerd G Gauglitz
- Department of Dermatology and Allergy, Ludwig-Maximilian University Munich, Munich, Germany
- Haut- und Laserzentrum Glockenbach, Munich, Germany
| |
Collapse
|
4
|
Vermeersch AS, Ali M, Gansemans Y, Van Nieuwerburgh F, Geldhof P, Ducatelle R, Deforce D, Callens J, Opsomer G. Severe udder cleft dermatitis lesion transcriptomics points to an impaired skin barrier, defective wound repair and a dysregulated inflammatory response as key elements in the pathogenesis. PLoS One 2023; 18:e0288347. [PMID: 37486897 PMCID: PMC10365316 DOI: 10.1371/journal.pone.0288347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
This study is the first to investigate the transcriptomic changes occurring in severe udder cleft dermatitis lesions (UCD) in Holstein-Friesian cows. An examination of the gene expression levels in natural UCD lesions and healthy udder skin through RNA Seq-Technology provided a deeper insight into the inflammatory pathways associated with this disease. A clear distinction between the gene expression patterns of UCD lesions and healthy skin was shown in the principal component analysis. Genes coding for inflammatory molecules were upregulated such as the chemokines C-X-C motif ligand 2 (CXCL2), 5 (CXCL5) and 8 (CXCL8), and C-C motif ligand 11 (CCL11). Moreover, the genes coding for the multifunctional molecules ADAM12 and SLPI were amongst the highest upregulated ones, whereas the most downregulated genes included the ones coding for keratins and keratin-associated molecules. Predominantly inflammatory pathways such as the chemokine signaling, cytokine receptor interaction and IL-17 signaling pathway were significantly upregulated in the pathway analysis. These results point towards a fulminant, dysregulated inflammatory response concomitant with a disruption of the skin barrier integrity and a hampered wound repair mechanism in severe UCD lesions.
Collapse
Affiliation(s)
- A S Vermeersch
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Ali
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Y Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - F Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - P Geldhof
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - R Ducatelle
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - D Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - J Callens
- Dierengezondheidszorg Vlaanderen, Torhout, Belgium
| | - G Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
5
|
Zhao W, Zhang H, Liu R, Cui R. Advances in Immunomodulatory Mechanisms of Mesenchymal Stem Cells-Derived Exosome on Immune Cells in Scar Formation. Int J Nanomedicine 2023; 18:3643-3662. [PMID: 37427367 PMCID: PMC10327916 DOI: 10.2147/ijn.s412717] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
Pathological scars are the result of over-repair and excessive tissue proliferation of the skin injury. It may cause serious dysfunction, resulting in psychological and physiological burdens on the patients. Currently, mesenchymal stem cells-derived exosomes (MSC-Exo) displayed a promising therapeutic effect on wound repair and scar attenuation. But the regulatory mechanisms are opinions vary. In view of inflammation has long been proven as the initial factor of wound healing and scarring, and the unique immunomodulation mechanism of MSC-Exo, the utilization of MSC-Exo may be promising therapeutic for pathological scars. However, different immune cells function differently during wound repair and scar formation. The immunoregulatory mechanism of MSC-Exo would differ among different immune cells and molecules. Herein, this review gave a comprehensive summary of MSC-Exo immunomodulating different immune cells in wound healing and scar formation to provide basic theoretical references and therapeutic exploration of inflammatory wound healing and pathological scars.
Collapse
Affiliation(s)
- Wen Zhao
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Huimin Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Rui Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Rongtao Cui
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
6
|
Cavalcante-Silva J, Koh TJ. Role of NK Cells in Skin Wound Healing of Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:981-990. [PMID: 36883869 PMCID: PMC10181875 DOI: 10.4049/jimmunol.2200637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023]
Abstract
NK cells are best known for their killing of virus-infected cells and tumor cells via release of cytotoxic factors. However, NK cells can also produce growth factors and cytokines, and thus have the potential to influence physiological processes such as wound healing. In this study, we test the hypothesis that NK cells play a physiological role in skin wound healing of C57BL/6J mice. Immunohistochemical and flow cytometry assays showed that NK cells accumulate in excisional skin wounds, peaking on day 5 postinjury. We also found that NK cells proliferate locally in wounds, and blocking IL-15 activity locally reduces NK cell proliferation and accumulation in wounds. Wound NK cells exhibit primarily a mature CD11b+CD27- and NKG2A+NKG2D- phenotype and express LY49I and proinflammatory cytokines such as IFN-γ, Tnf-a, and Il-1β. Systemic depletion of NK cells resulted in enhanced re-epithelization and collagen deposition, suggesting a negative role for these cells in skin wound healing. Depletion of NK cells did not influence accumulation of neutrophils or monocytes/macrophages in wounds but did reduce expression of IFN-γ, Tnf-a, and Il-1β, indicating that NK cells contribute to proinflammatory cytokine expression in wounds. In short, NK cells may impede physiological wound healing via production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Jacqueline Cavalcante-Silva
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL; and Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| | - Timothy J Koh
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL; and Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
7
|
Saberianpour S, Melotto G, Forss R, Redhead L, Elsom J, Terrazzini N, Sandeman S, Sarker D, Bucca G, Hesketh A, Crua C, Santin M. Development of theranostic wound dressings: harnessing the knowledge of biospecific interactions at the biomaterial interface to promote healing and identify biomarkers. Expert Rev Med Devices 2023; 20:163-165. [PMID: 36803232 DOI: 10.1080/17434440.2023.2181694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Shirin Saberianpour
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK.,School of Applied Sciences, University of Brighton, Brighton, UK
| | - Gianluca Melotto
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK.,School of Sport and Health Sciences, University of Brighton, Brighton, UK
| | - Rachel Forss
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK.,School of Sport and Health Sciences, University of Brighton, Brighton, UK
| | - Lucy Redhead
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK.,School of Sport and Health Sciences, University of Brighton, Brighton, UK
| | - Jacqueline Elsom
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK.,School of Applied Sciences, University of Brighton, Brighton, UK
| | - Nadia Terrazzini
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK.,School of Applied Sciences, University of Brighton, Brighton, UK
| | - Susan Sandeman
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK.,School of Applied Sciences, University of Brighton, Brighton, UK
| | - Dipak Sarker
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK.,School of Applied Sciences, University of Brighton, Brighton, UK.,Advanced Engineering Centre, University of Brighton, Cockcroft Building, Brighton, UK
| | - Giselda Bucca
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK.,School of Applied Sciences, University of Brighton, Brighton, UK
| | - Andrew Hesketh
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK.,School of Applied Sciences, University of Brighton, Brighton, UK
| | - Cyril Crua
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK.,Advanced Engineering Centre, University of Brighton, Cockcroft Building, Brighton, UK
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK.,School of Applied Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
8
|
Hackstein CP, Costigan D, Drexhage L, Pearson C, Bullers S, Ilott N, Akther HD, Gu Y, FitzPatrick MEB, Harrison OJ, Garner LC, Mann EH, Pandey S, Friedrich M, Provine NM, Uhlig HH, Marchi E, Powrie F, Klenerman P, Thornton EE. A conserved population of MHC II-restricted, innate-like, commensal-reactive T cells in the gut of humans and mice. Nat Commun 2022; 13:7472. [PMID: 36463279 PMCID: PMC9719512 DOI: 10.1038/s41467-022-35126-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Interactions with commensal microbes shape host immunity on multiple levels and play a pivotal role in human health and disease. Tissue-dwelling, antigen-specific T cells are poised to respond to local insults, making their phenotype important in the relationship between host and microbes. Here we show that MHC-II restricted, commensal-reactive T cells in the colon of both humans and mice acquire transcriptional and functional characteristics associated with innate-like T cells. This cell population is abundant and conserved in the human and murine colon and endowed with polyfunctional effector properties spanning classic Th1- and Th17-cytokines, cytotoxic molecules, and regulators of epithelial homeostasis. T cells with this phenotype are increased in ulcerative colitis patients, and their presence aggravates pathology in dextran sodium sulphate-treated mice, pointing towards a pathogenic role in colitis. Our findings add to the expanding spectrum of innate-like immune cells positioned at the frontline of intestinal immune surveillance, capable of acting as sentinels of microbes and the local cytokine milieu.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dana Costigan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Linnea Drexhage
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Claire Pearson
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Samuel Bullers
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Nicholas Ilott
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Hossain Delowar Akther
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yisu Gu
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Michael E B FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Oliver J Harrison
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, 750 Republican St, Seattle, WA, 98108, USA
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth H Mann
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthias Friedrich
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Nicholas M Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, and Biomedical Research Centre, and Department of Paediatrics, University of Oxford, Oxford, OX39DU, UK
| | - Emanuele Marchi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Emily E Thornton
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Lee SW, Park HJ, Van Kaer L, Hong S. Roles and therapeutic potential of CD1d-Restricted NKT cells in inflammatory skin diseases. Front Immunol 2022; 13:979370. [PMID: 36119077 PMCID: PMC9478174 DOI: 10.3389/fimmu.2022.979370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens rather than peptides. Due to their immunoregulatory properties, extensive work has been done to elucidate the immune functions of NKT cells in various immune contexts such as autoimmunity for more than two decades. In addition, as research on barrier immunity such as the mucosa-associated lymphoid tissue has flourished in recent years, the role of NKT cells to immunity in the skin has attracted substantial attention. Here, we review the contributions of NKT cells to regulating skin inflammation and discuss the factors that can modulate the functions of NKT cells in inflammatory skin diseases such as atopic dermatitis. This mini-review article will mainly focus on CD1d-dependent NKT cells and their therapeutic potential in skin-related immune diseases.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
- *Correspondence: Seokmann Hong,
| |
Collapse
|
10
|
Cutaneous Wound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediators Inflamm 2022; 2022:5344085. [PMID: 35509434 PMCID: PMC9061066 DOI: 10.1155/2022/5344085] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/22/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
Skin wounds and compromised wound healing are major concerns for the public. Although skin wound healing has been studied for decades, the molecular and cellular mechanisms behind the process are still not completely clear. The systemic responses to trauma involve the body’s inflammatory and immunomodulatory cellular and humoral networks. Studies over the years provided essential insights into a complex and dynamic immunity during the cutaneous wound healing process. This review will focus on innate cell populations involved in the initial phase of this orchestrated process, including innate cells from both the skin and the immune system.
Collapse
|
11
|
Immune Cells in Cutaneous Wound Healing: A Review of Functional Data from Animal Models. Int J Mol Sci 2022; 23:ijms23052444. [PMID: 35269586 PMCID: PMC8910456 DOI: 10.3390/ijms23052444] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
The healing of skin wounds involves the activation and recruitment of various immune cell types, many of which are believed to contribute significantly to different aspects of the repair process. Roles for immune cells have been described in practically all stages of wound healing, including hemostasis, inflammation, proliferation and scar formation/remodeling. Over the last decade, tools to deplete immune cell populations in animal models have become more advanced, leading to a surge in the number of studies examining the function of specific immune cell types in skin repair. In this review, we will summarize what is known about distinct immune cell types in cutaneous wound healing, with an emphasis on data from animal studies in which specific cell types have been targeted.
Collapse
|
12
|
Therapeutic strategies for chronic wound infection. Chin J Traumatol 2022; 25:11-16. [PMID: 34315658 PMCID: PMC8787234 DOI: 10.1016/j.cjtee.2021.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/31/2021] [Accepted: 06/29/2021] [Indexed: 02/04/2023] Open
Abstract
Chronic wounds have always been a tough fight in clinical practice, which can not only make patients suffer from pain physically and mentally but also impose a heavy burden on the society. More than one factor is relevant to each step of the development of chronic wounds. Along with the in-depth research, we have realized that figuring out the pathophysiological mechanism of chronic wounds is the foundation of treatment, while wound infection is the key point concerned. The cause of infection should be identified and prevented promptly once diagnosed. This paper mainly describes the mechanism, diagnosis and therapeutic strategies of chronic wound infection, and will put an emphasis on the principle of debridement.
Collapse
|
13
|
Far-Infrared Therapy Accelerates Diabetic Wound Healing via Recruitment of Tissue Angiogenesis in a Full-Thickness Wound Healing Model in Rats. Biomedicines 2021; 9:biomedicines9121922. [PMID: 34944737 PMCID: PMC8698593 DOI: 10.3390/biomedicines9121922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Far-infrared ray (FIR) therapy has been applied in the tissue regeneration field. Studies have revealed that FIR could enhance wound healing. However, the biological effects of FIR on diabetic wounds remain unclear. Our study aims to investigate whether FIR could accelerate diabetic wound healing and analyze the biomechanisms. A dorsal skin defect (area, 6 × 5 cm2) in a streptozotocin (STZ)-induced diabetes rodent model was designed. Thirty-two male Wistar rats were divided into 4 groups (n = 8 each subgroup). Group 1 consisted of sham, non-diabetic control; group 2, diabetic control without treatment; group 3, diabetic rats received 20 min FIR (FIR-20, 20 min per session, triplicate/weekly for 4 weeks) and group 4, diabetic rats received 40 min FIR (FIR-40, 40 min per session, triplicate in one week for 4 weeks). The wound healing was assessed clinically. Skin blood flow was measured by laser Doppler. The vascular endothelial growth factor (VEGF), 8-hydroxy-2-deoxyguanosine (8-OHdG), eNOS, and Ki-67, were analyzed with immunohistochemical (IHC) staining. Laser Doppler flowmetry analysis of the blood flow of wounding area revealed the blood flow was higher in diabetic rats who received 40 min FIR (FIR-40) as compared to that in FIR-20 group. The wounding area was significantly reduced in the FIR-40 group than in the diabetic control groups. Histological findings of peri-wounding tissue revealed a significant increase in the neo-vessels in the FIR-treated groups as compared to the controls. IHC staining of periwounding biopsy tissue showed significant increases in angiogenesis expressions (VEGF, eNOS, and EGF), cell proliferation (Ki-67), and suppressed inflammatory response and oxygen radicles (CD45, 8-OHdG) expressions in the FIR-treated groups as compared to that in controls. Treatment with the optimal dosage of FIR significantly facilitated diabetic wound healing and associated with suppressed pro-inflammatory response and increased neovascularization and tissue regeneration.
Collapse
|
14
|
Constantinides MG, Belkaid Y. Early-life imprinting of unconventional T cells and tissue homeostasis. Science 2021; 374:eabf0095. [PMID: 34882451 DOI: 10.1126/science.abf0095] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael G Constantinides
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.,NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Domingo S, Solé C, Moliné T, Ferrer B, Cortés-Hernández J. Thalidomide Exerts Anti-Inflammatory Effects in Cutaneous Lupus by Inhibiting the IRF4/NF-ҡB and AMPK1/mTOR Pathways. Biomedicines 2021; 9:biomedicines9121857. [PMID: 34944673 PMCID: PMC8698478 DOI: 10.3390/biomedicines9121857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Thalidomide is effective in patients with refractory cutaneous lupus erythematosus (CLE). However, the mechanism of action is not completely understood, and its use is limited by its potential, severe side-effects. Immune cell subset analysis in thalidomide’s CLE responder patients showed a reduction of circulating and tissue cytotoxic T-cells with an increase of iNKT cells and a shift towards a Th2 response. We conducted an RNA-sequencing study using CLE skin biopsies performing a Therapeutic Performance Mapping System (TMPS) analysis in order to generate a predictive model of its mechanism of action and to identify new potential therapeutic targets. Integrating RNA-seq data, public databases, and literature, TMPS analysis generated mathematical models which predicted that thalidomide acts via two CRBN-CRL4A- (CRL4CRBN) dependent pathways: IRF4/NF-ҡB and AMPK1/mTOR. Skin biopsies showed a significant reduction of IRF4 and mTOR in post-treatment samples by immunofluorescence. In vitro experiments confirmed the effect of thalidomide downregulating IRF4 in PBMCs and mTOR in keratinocytes, which converged in an NF-ҡB reduction that led to a resolution of the inflammatory lesion. These results emphasize the anti-inflammatory role of thalidomide in CLE treatment, providing novel molecular targets for the development of new therapies that could avoid thalidomide’s side effects while maintaining its efficacy.
Collapse
Affiliation(s)
- Sandra Domingo
- Lupus Unit, Rheumatology Departament, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (S.D.); (J.C.-H.)
| | - Cristina Solé
- Lupus Unit, Rheumatology Departament, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (S.D.); (J.C.-H.)
- Correspondence: ; Tel.: +34-93-489-4045
| | - Teresa Moliné
- Department of Pathology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (B.F.)
| | - Berta Ferrer
- Department of Pathology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (B.F.)
| | - Josefina Cortés-Hernández
- Lupus Unit, Rheumatology Departament, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (S.D.); (J.C.-H.)
| |
Collapse
|
16
|
Zhong Y, Wei Y, Min N, Guan Q, Zhao J, Zhu J, Hu H, Geng R, Hong C, Ji Y, Li J, Zheng Y, Zhang Y, Li X. Comparative healing of swine skin following incisions with different surgical devices. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1514. [PMID: 34790720 PMCID: PMC8576679 DOI: 10.21037/atm-21-3090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/05/2021] [Indexed: 11/06/2022]
Abstract
Background Electrosurgical technology is widely used in surgical dissection and hemostasis, but the generated heat creates thermal injury to adjacent tissues and delays wound healing. The plasma blade (PB) applies pulsed radiofrequency (RF) to generate electrical plasma along the edge of a thin, flat, insulated electrode, minimizing collateral tissue damage. This study aimed to evaluate wound healing in swine skin following incision with a new surgical system that applies low-temperature plasma (NTS-100), a foreign PB, conventional electrosurgery (ES), and a scalpel blade. Methods In vitro porcine skin and an in vivo porcine skin model were used in this study. Full-thickness skin incisions 3 cm in length were made on the dorsum of each animal for each of the 5 surgical procedures at 0, 21, 28, 35, and 42 days. The timing of the surgical procedures allowed for wound-healing data points at 1, 2, 3, and 6 weeks accordingly. Local operating temperature and blood loss were quantified. Wounds were harvested at designated time points, tested for wound tensile strength, and examined histologically for scar formation and tissue damage. Results Local operating temperature was reduced significantly with NTS-100 (cut mode 83.12±23.55 °C; coagulation mode 90.07±10.6 °C) compared with PB (cut mode 94.46±11.48 °C; coagulation mode 100.23±6.58 °C, P<0.05) and ES (cut mode 208.99±34.33 °C, P<0.01; coagulation mode 233.37±28.69 °C, P<0.01) in vitro. Acute thermal damage from NTS-100 was significantly less than ES incisions (cut mode: 247.345±42.274 versus 495.295±103.525 µm, P<0.01; coagulation mode: 351.419±127.948 versus 584.516±31.708 µm, P<0.05). Bleeding, histological scoring of injury, and wound strength were equivalent for the NTS-100 and PB incisions. Conclusions The local operating temperature of NTS-100 was lower than PB, and NTS-100 had similarly reliable safety and efficacy.
Collapse
Affiliation(s)
- Yuting Zhong
- Medical School of Chinese PLA, Beijing, China.,Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yufan Wei
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ningning Min
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Qingyu Guan
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Jin Zhao
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Junyong Zhu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Huayu Hu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Rui Geng
- Medical School of Chinese PLA, Beijing, China.,Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chenyan Hong
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yashuang Ji
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Jie Li
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yiqiong Zheng
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yanjun Zhang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiru Li
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
17
|
Chu C, Zhao X, Rung S, Xiao W, Liu L, Qu Y, Man Y. Application of biomaterials in periodontal tissue repair and reconstruction in the presence of inflammation under periodontitis through the foreign body response: Recent progress and perspectives. J Biomed Mater Res B Appl Biomater 2021; 110:7-17. [PMID: 34142745 DOI: 10.1002/jbm.b.34891] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Periodontitis would cause dental tissue damage locally. Biomaterials substantially affect the surrounding immune microenvironment through treatment-oriented local inflammatory remodeling in dental periodontitis. This remodeling process is conducive to wound healing and periodontal tissue regeneration. Recent progress in understanding the foreign body response (FBR) and immune regulation, including cell heterogeneity, and cell-cell and cell-material interactions, has provided new insights into the design criteria for biomaterials applied in treatment of periodontitis. This review discusses recent progress and perspectives in the immune regulation effects of biomaterials to augment or reconstruct soft and hard tissue in an inflammatory microenvironment of periodontitis.
Collapse
Affiliation(s)
- Chenyu Chu
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiwen Zhao
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shengan Rung
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenlan Xiao
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yili Qu
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Man
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Tartaglia G, Cao Q, Padron ZM, South AP. Impaired Wound Healing, Fibrosis, and Cancer: The Paradigm of Recessive Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2021; 22:5104. [PMID: 34065916 PMCID: PMC8151646 DOI: 10.3390/ijms22105104] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a devastating skin blistering disease caused by mutations in the gene encoding type VII collagen (C7), leading to epidermal fragility, trauma-induced blistering, and long term, hard-to-heal wounds. Fibrosis develops rapidly in RDEB skin and contributes to both chronic wounds, which emerge after cycles of repetitive wound and scar formation, and squamous cell carcinoma-the single biggest cause of death in this patient group. The molecular pathways disrupted in a broad spectrum of fibrotic disease are also disrupted in RDEB, and squamous cell carcinomas arising in RDEB are thus far molecularly indistinct from other sub-types of aggressive squamous cell carcinoma (SCC). Collectively these data demonstrate RDEB is a model for understanding the molecular basis of both fibrosis and rapidly developing aggressive cancer. A number of studies have shown that RDEB pathogenesis is driven by a radical change in extracellular matrix (ECM) composition and increased transforming growth factor-beta (TGFβ) signaling that is a direct result of C7 loss-of-function in dermal fibroblasts. However, the exact mechanism of how C7 loss results in extensive fibrosis is unclear, particularly how TGFβ signaling is activated and then sustained through complex networks of cell-cell interaction not limited to the traditional fibrotic protagonist, the dermal fibroblast. Continued study of this rare disease will likely yield paradigms relevant to more common pathologies.
Collapse
Affiliation(s)
- Grace Tartaglia
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
| | - Qingqing Cao
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
| | - Zachary M. Padron
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew P. South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
19
|
Tanno H, Kanno E, Sato S, Asao Y, Shimono M, Kurosaka S, Oikawa Y, Ishi S, Shoji M, Sato K, Kasamatsu J, Miyasaka T, Yamamoto H, Ishii K, Imai Y, Tachi M, Kawakami K. Contribution of Invariant Natural Killer T Cells to the Clearance of Pseudomonas aeruginosa from Skin Wounds. Int J Mol Sci 2021; 22:3931. [PMID: 33920301 PMCID: PMC8070359 DOI: 10.3390/ijms22083931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic infections are considered one of the most severe problems in skin wounds, and bacteria are present in over 90% of chronic wounds. Pseudomonas aeruginosa is frequently isolated from chronic wounds and is thought to be a cause of delayed wound healing. Invariant natural killer T (iNKT) cells, unique lymphocytes with a potent regulatory ability in various inflammatory responses, accelerate the wound healing process. In the present study, we investigated the contribution of iNKT cells in the host defense against P. aeruginosa inoculation at the wound sites. We analyzed the re-epithelialization, bacterial load, accumulation of leukocytes, and production of cytokines and antimicrobial peptides. In iNKT cell-deficient (Jα18KO) mice, re-epithelialization was significantly decreased, and the number of live colonies was significantly increased, when compared with those in wild-type (WT) mice on day 7. IL-17A, and IL-22 production was significantly lower in Jα18KO mice than in WT mice on day 5. Furthermore, the administration of α-galactosylceramide (α-GalCer), a specific activator of iNKT cells, led to enhanced host protection, as shown by reduced bacterial load, and to increased production of IL-22, IL-23, and S100A9 compared that of with WT mice. These results suggest that iNKT cells promote P. aeruginosa clearance during skin wound healing.
Collapse
Grants
- a Grant-in-Aid for Scientific Research (B) (19H03918), The Ministry of Education, Culture, Sports, Science and Technology of Japan
- a Grant-in-Aid for Challenging Exploratory Research (17K19710) The Ministry of Education, Culture, Sports, Science and Technology of Japan
- a Grant-in-Aid for Young Scientists (17K17393) the Ministry of Education, Culture, Sports, Science and Technology of Japan
- a Grant-in-Aid for Young Scientists (19K19494) The Ministry of Education, Culture, Sports, Science and Technology of Japan
Collapse
Affiliation(s)
- Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Suzuna Sato
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Yu Asao
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Mizuki Shimono
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (E.K.); (S.S.); (Y.A.); (M.S.)
| | - Shiho Kurosaka
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Yukari Oikawa
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.I.); (K.K.)
| | - Shinyo Ishi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Miki Shoji
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (K.S.); (J.K.)
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (K.S.); (J.K.)
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan;
| | - Hideki Yamamoto
- Graduate School of Health Sciences, Niigata University, 2-746 Asahimachi-dori, Chuo-ku, Niigata 951-8518, Japan;
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.I.); (K.K.)
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (S.K.); (S.I.); (M.S.); (Y.I.); (M.T.)
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (Y.O.); (K.I.); (K.K.)
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; (K.S.); (J.K.)
| |
Collapse
|
20
|
Gálvez NMS, Bohmwald K, Pacheco GA, Andrade CA, Carreño LJ, Kalergis AM. Type I Natural Killer T Cells as Key Regulators of the Immune Response to Infectious Diseases. Clin Microbiol Rev 2021; 34:e00232-20. [PMID: 33361143 PMCID: PMC7950362 DOI: 10.1128/cmr.00232-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune system must work in an orchestrated way to achieve an optimal response upon detection of antigens. The cells comprising the immune response are traditionally divided into two major subsets, innate and adaptive, with particular characteristics for each type. Type I natural killer T (iNKT) cells are defined as innate-like T cells sharing features with both traditional adaptive and innate cells, such as the expression of an invariant T cell receptor (TCR) and several NK receptors. The invariant TCR in iNKT cells interacts with CD1d, a major histocompatibility complex class I (MHC-I)-like molecule. CD1d can bind and present antigens of lipid nature and induce the activation of iNKT cells, leading to the secretion of various cytokines, such as gamma interferon (IFN-γ) and interleukin 4 (IL-4). These cytokines will aid in the activation of other immune cells following stimulation of iNKT cells. Several molecules with the capacity to bind to CD1d have been discovered, including α-galactosylceramide. Likewise, several molecules have been synthesized that are capable of polarizing iNKT cells into different profiles, either pro- or anti-inflammatory. This versatility allows NKT cells to either aid or impair the clearance of pathogens or to even control or increase the symptoms associated with pathogenic infections. Such diverse contributions of NKT cells to infectious diseases are supported by several publications showing either a beneficial or detrimental role of these cells during diseases. In this article, we discuss current data relative to iNKT cells and their features, with an emphasis on their driving role in diseases produced by pathogenic agents in an organ-oriented fashion.
Collapse
Affiliation(s)
- Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
21
|
Petkovic M, Sørensen AE, Leal EC, Carvalho E, Dalgaard LT. Mechanistic Actions of microRNAs in Diabetic Wound Healing. Cells 2020; 9:E2228. [PMID: 33023156 PMCID: PMC7601058 DOI: 10.3390/cells9102228] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a complex biological process that is impaired under diabetes conditions. Chronic non-healing wounds in diabetes are some of the most expensive healthcare expenditures worldwide. Early diagnosis and efficacious treatment strategies are needed. microRNAs (miRNAs), a class of 18-25 nucleotide long RNAs, are important regulatory molecules involved in gene expression regulation and in the repression of translation, controlling protein expression in health and disease. Recently, miRNAs have emerged as critical players in impaired wound healing and could be targets for potential therapies for non-healing wounds. Here, we review and discuss the mechanistic background of miRNA actions in chronic wounds that can shed the light on their utilization as specific wound healing biomarkers.
Collapse
Affiliation(s)
- Marija Petkovic
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
| | - Ermelindo Carreira Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Department of Geriatrics, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
| |
Collapse
|
22
|
Fuentes I, Guttmann-Gruber C, Tockner B, Diem A, Klausegger A, Cofré-Araneda G, Figuera O, Hidalgo Y, Morandé P, Palisson F, Rebolledo-Jaramillo B, Yubero MJ, Cho RJ, Rishel HI, Marinkovich MP, Teng JMC, Webster TG, Prisco M, Eraso LH, Piñon Hofbauer J, South AP. Cells from discarded dressings differentiate chronic from acute wounds in patients with Epidermolysis Bullosa. Sci Rep 2020; 10:15064. [PMID: 32934247 PMCID: PMC7492213 DOI: 10.1038/s41598-020-71794-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Impaired wound healing complicates a wide range of diseases and represents a major cost to healthcare systems. Here we describe the use of discarded wound dressings as a novel, cost effective, accessible, and non-invasive method of isolating viable human cells present at the site of skin wounds. By analyzing 133 discarded wound dressings from 51 patients with the inherited skin-blistering disease epidermolysis bullosa (EB), we show that large numbers of cells, often in excess of 100 million per day, continually infiltrate wound dressings. We show, that the method is able to differentiate chronic from acute wounds, identifying significant increases in granulocytes in chronic wounds, and we show that patients with the junctional form of EB have significantly more cells infiltrating their wounds compared with patients with recessive dystrophic EB. Finally, we identify subsets of granulocytes and T lymphocytes present in all wounds paving the way for single cell profiling of innate and adaptive immune cells with relevance to wound pathologies. In summary, our study delineates findings in EB that have potential relevance for all chronic wounds, and presents a method of cellular isolation that has wide reaching clinical application.
Collapse
Affiliation(s)
- Ignacia Fuentes
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile. .,Centro de Genética Y Genómica, Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago, Chile.
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Birgit Tockner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Anja Diem
- EB House Austria, Outpatient Unit, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Alfred Klausegger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | | | - Olga Figuera
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Yessia Hidalgo
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, 7620157, Santiago, Chile.,Cells for Cells, 7620157, Santiago, Chile.,Faculty of Medicine, Universidad de Los Andes, 7620001, Santiago, Las Condes, Chile
| | - Pilar Morandé
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Francis Palisson
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile.,Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago, Chile
| | - Boris Rebolledo-Jaramillo
- Centro de Genética Y Genómica, Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago, Chile
| | - María Joao Yubero
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile.,Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago, Chile
| | | | - Heather I Rishel
- Dermatology Department, Stanford University School of Medicine, Stanford, CA, USA
| | - M Peter Marinkovich
- Dermatology Department, Stanford University School of Medicine, Stanford, CA, USA.,Dermatology Service, VA Medical Center, Palo Alto, CA, USA
| | - Joyce M C Teng
- Dermatology Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Timothy G Webster
- Dermatology and Cutaneous Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Room 406, 233 South Tenth Street, Philadelphia, PA, 19107, USA
| | - Marco Prisco
- Dermatology and Cutaneous Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Room 406, 233 South Tenth Street, Philadelphia, PA, 19107, USA
| | - Luis H Eraso
- Vascular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Josefina Piñon Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Andrew P South
- Dermatology and Cutaneous Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Room 406, 233 South Tenth Street, Philadelphia, PA, 19107, USA. .,Joel and Joan Center for Fibrotic Diseases Research, Thomas Jefferson University, Philadelphia, PA, USA. .,Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Zadka Ł, Grybowski DJ, Dzięgiel P. Modeling of the immune response in the pathogenesis of solid tumors and its prognostic significance. Cell Oncol (Dordr) 2020; 43:539-575. [PMID: 32488850 PMCID: PMC7363737 DOI: 10.1007/s13402-020-00519-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor initiation and subsequent progression are usually long-term processes, spread over time and conditioned by diverse aspects. Many cancers develop on the basis of chronic inflammation; however, despite dozens of years of research, little is known about the factors triggering neoplastic transformation under these conditions. Molecular characterization of both pathogenetic states, i.e., similarities and differences between chronic inflammation and cancer, is also poorly defined. The secretory activity of tumor cells may change the immunophenotype of immune cells and modify the extracellular microenvironment, which allows the bypass of host defense mechanisms and seems to have diagnostic and prognostic value. The phenomenon of immunosuppression is also present during chronic inflammation, and the development of cancer, due to its duration, predisposes patients to the promotion of chronic inflammation. The aim of our work was to discuss the above issues based on the latest scientific insights. A theoretical mechanism of cancer immunosuppression is also proposed. CONCLUSIONS Development of solid tumors may occur both during acute and chronic phases of inflammation. Differences in the regulation of immune responses between precancerous states and the cancers resulting from them emphasize the importance of immunosuppressive factors in oncogenesis. Cancer cells may, through their secretory activity and extracellular transport mechanisms, enhance deterioration of the immune system which, in turn, may have prognostic implications.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland.
| | - Damian J Grybowski
- Orthopedic Surgery, University of Illinois, 900 S. Ashland Avenue (MC944) Room 3356, Molecular Biology Research Building Chicago, Chicago, IL, 60607, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| |
Collapse
|
24
|
Yamaguchi K, Kanno E, Tanno H, Sasaki A, Kitai Y, Miura T, Takagi N, Shoji M, Kasamatsu J, Sato K, Sato Y, Niiyama M, Goto Y, Ishii K, Imai Y, Saijo S, Iwakura Y, Tachi M, Kawakami K. Distinct Roles for Dectin-1 and Dectin-2 in Skin Wound Healing and Neutrophilic Inflammatory Responses. J Invest Dermatol 2020; 141:164-176.e8. [PMID: 32511980 DOI: 10.1016/j.jid.2020.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
C-type lectin receptors recognize microbial polysaccharides. The C-type lectin receptors such as dendritic cell-associated C-type lectin (Dectin)-1 and Dectin-2, which are triggered by β-glucan and α-mannan, respectively, contribute to upregulation of the inflammatory response. Recently, we demonstrated that activation of the Dectin-2 signal delayed wound healing; in previous studies, triggering the Dectin-1 signal promoted this response. However, the precise roles of these C-type lectin receptors in skin wound healing remain unclear. This study was conducted to determine the roles of Dectin-1 and Dectin-2 in skin wound healing, with a particular focus on the kinetics of neutrophilic inflammatory response. Full-thickness wounds were created on the backs of C57BL/6 mice, and the effects of Dectin-1 or Dectin-2 deficiency and those of β-glucan or α-mannan administration were examined. We also analyzed wound closure, histological findings, and neutrophilic inflammatory response, including neutrophil extracellular trap formation at the wound sites. We found that Dectin-1 contributed to the acceleration of wound healing by inducing early-phase neutrophil accumulation, whereas Dectin-2 was involved in prolonged neutrophilic responses and neutrophil extracellular trap formation, leading to delayed wound healing. Dectin-2 deficiency also improved collagen deposition and TGF-β1 expression. These results suggest that Dectin-1 and Dectin-2 have different roles in wound healing through their different effects on the neutrophilic response.
Collapse
Affiliation(s)
- Kenji Yamaguchi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ayako Sasaki
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takayuki Miura
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Naoyuki Takagi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Miki Shoji
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuka Sato
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Momoko Niiyama
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuka Goto
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shinobu Saijo
- Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| | - Yoichiro Iwakura
- Division of Laboratory Animals, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
25
|
Seraphim PM, Leal EC, Moura J, Gonçalves P, Gonçalves JP, Carvalho E. Lack of lymphocytes impairs macrophage polarization and angiogenesis in diabetic wound healing. Life Sci 2020; 254:117813. [PMID: 32428597 DOI: 10.1016/j.lfs.2020.117813] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/09/2023]
Abstract
AIMS This study aimed to investigate the effect of lymphocytes in wound healing and the underlying mechanisms, in diabetic and non-diabetic mice, using Balb/c recombination activating gene (Rag)-2 and interleukin 2 receptor gamma (IL-2Rγ) double knockout (KO) (RAG2-/- IL-2Rγ-/-) mice. MAIN METHODS Wound healing in vivo was performed in control and STZ-induced diabetic mice, in both KO and WT mice. Inflammation and ROS production were evaluated by immunofluorescence microscopy analysis, antioxidant enzymes and angiogenesis were evaluated by quantitative PCR and immunofluorescence microscopy analysis, and wound closure kinetics evolution was evaluated by measurement of acetate tracing of the wound area. KEY FINDINGS Wound closure was significantly delayed in KO mice, where the M1/M2 macrophage ratio and basal ROS levels were significantly increased, while antioxidant defenses and angiogenesis were significantly decreased. Moreover, the expected increase in matrix metallopeptidase (MMP)-9 protein levels in diabetic conditions was not observed in KO mice, suggesting that the mechanisms leading to the increase in MMP-9 observed in diabetic wounds may in part be lymphocyte-dependent. SIGNIFICANCE Our results indicate that lack of lymphocytes compromises wound healing independent of diabetes. The lack of these cells, even in non-diabetic mice, mimics the phenotype observed in wounds under diabetic conditions. Moreover, the combination of diabetes and the lack of lymphocytes, further impair the wound healing conditions, indicating that when the innate regulatory function is lost in these KO mice, excessive M1 polarization, poor angiogenesis and impaired wound healing are worsen.
Collapse
Affiliation(s)
- Patricia M Seraphim
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Department of Physiotherapy, School of Sciences and Technology, Sao Paulo State University - UNESP, Campus Presidente Prudente, Brazil
| | - Ermelindo C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, University of Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Pedro Gonçalves
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Innate Immunity Unit, Institut Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| | - Jenifer P Gonçalves
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Cell Biology Department, Federal University of Paraná, Curitiba, PR, Brazil
| | - Eugénia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, 3030-789 Coimbra, Portugal; The Portuguese Diabetes Association (APDP), Lisbon, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; Arkansas Children's Research Institute, Little Rock, AR 72202, USA.
| |
Collapse
|
26
|
El Ayadi A, Jay JW, Prasai A. Current Approaches Targeting the Wound Healing Phases to Attenuate Fibrosis and Scarring. Int J Mol Sci 2020; 21:ijms21031105. [PMID: 32046094 PMCID: PMC7037118 DOI: 10.3390/ijms21031105] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cutaneous fibrosis results from suboptimal wound healing following significant tissue injury such as severe burns, trauma, and major surgeries. Pathologic skin fibrosis results in scars that are disfiguring, limit normal movement, and prevent patient recovery and reintegration into society. While various therapeutic strategies have been used to accelerate wound healing and decrease the incidence of scarring, recent studies have targeted the molecular regulators of each phase of wound healing, including the inflammatory, proliferative, and remodeling phases. Here, we reviewed the most recent literature elucidating molecular pathways that can be targeted to reduce fibrosis with a particular focus on post-burn scarring. Current research targeting inflammatory mediators, the epithelial to mesenchymal transition, and regulators of myofibroblast differentiation shows promising results. However, a multimodal approach addressing all three phases of wound healing may provide the best therapeutic outcome.
Collapse
|
27
|
Altered microbial community structure in PI3Kγ knockout mice with colitis impeding relief of inflammation: Establishment of new indices for intestinal microbial disorder. Int Immunopharmacol 2019; 79:105901. [PMID: 31896510 DOI: 10.1016/j.intimp.2019.105901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/22/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022]
Abstract
Lipopolysaccharide stimulates the intestinal microbiome to activate phosphoinositide 3 kinase (PI3K) signaling via several pathways; however, the direct effect that PI3K has on the intestinal bacterial community remains unclear. Herein, we investigate changes in the colonic microbiome of colitis PI3Kγ-knockout (PI3Kγ-/-) mice. Additionally, the effect of anal administration of colonic irrigation fluid from control mice to those with colitis was examined. Microbial 16S rRNA genes from the colonic mucosa of PI3Kγ-/- and WT mice were sequenced using Illumina MiSeq platform, and colonic IgA, IL-2, IL-10, and IL-17A production was quantified by western blot analysis. Myeloperoxidase (MPO) activity was detected by absorbance via colorimetric analysis. From the results, two new indices were derived by dividing the bacterial community into invading taxa, common taxa, and vanishing taxa. These indices were used to estimate the degree of microbiome disorder in chronic experimental colitis models. PI3Kγ-/- mice showed slower remission of inflammation as assessed by the disease activity index,pathological score, IL-2, IL-17, IL-10, IgA expression and MPO activity. The unique and common taxa of wild-type and PI3Kγ-/- mice increased as colitis symptoms regressed. Continuous loss of commensal bacteria happened with the continuous invasion of exogenous bacteria in the intestinal mucosa of PI3Kγ--/- mice after colitis begin to aggravate. However, transplantation of normal intestinal microbiota to PI3Kγ-/- mice promoted remission of inflammation; while the microbial dysbiosis observed during PI3Kγ dysfunction aggravated the intestinal microbiome disorder and impeded colitis recovery. Thus, the PI3Kγ signaling pathway may regulate microbial community composition in the colon.
Collapse
|
28
|
Interleukin-17: Potential Target for Chronic Wounds. Mediators Inflamm 2019; 2019:1297675. [PMID: 31827374 PMCID: PMC6885835 DOI: 10.1155/2019/1297675] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic wounds exhibit persistent inflammation with markedly delayed healing. The significant burden of chronic wounds, which are often resistant to standard therapy, prompts further research on novel therapies. Since the interleukin-17 family has been implicated as a group of proinflammatory cytokines in immune-mediated diseases in the gut and connective tissue, as well as inflammatory skin conditions, we consider here if it may contribute to the pathogenesis of chronic wounds. In this review, we discuss the interleukin-17 family's signaling pathways and role in tissue repair. A PubMed review of the English literature on interleukin-17, wound healing, chronic wounds, and inflammatory skin conditions was conducted. Interleukin-17 family signaling is reviewed in the context of tissue repair, and preclinical and clinical studies examining its role in the skin and other organ systems are critically reviewed. The published work supports a pathologic role for interleukin-17 family members in chronic wounds, though this needs to be more conclusively proven. Clinical studies using monoclonal interleukin-17 antibodies to improve healing of chronic skin wounds have not yet been performed, and only a few studies have examined interleukin-17 family expression in chronic skin wounds. Furthermore, different interleukin-17 family members could be playing selective roles in the repair process. These studies suggest a therapeutic role for targeting interleukin-17A to promote wound healing; therefore, interleukin-17A may be a target worthy of pursuing in the near future.
Collapse
|
29
|
Cañedo-Dorantes L, Cañedo-Ayala M. Skin Acute Wound Healing: A Comprehensive Review. Int J Inflam 2019; 2019:3706315. [PMID: 31275545 PMCID: PMC6582859 DOI: 10.1155/2019/3706315] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
Abstract
Experimental work of the last two decades has revealed the general steps of the wound healing process. This complex network has been organized in three sequential and overlapping steps. The first step of the inflammatory phase is an immediate response to injury; primary sensory neurons sense injury and send danger signals to the brain, to stop bleeding and start inflammation. The following target of the inflammatory phase, led by the peripheral blood mononuclear cells, is to eliminate the pathogens and clean the wound. Once this is completed, the inflammatory phase is resolved and homeostasis is restored. The aim of the proliferative phase, the second phase, is to repair wound damage and begin tissue remodeling. Fibroplasia, reepithelialization, angiogenesis, and peripheral nerve repair are the central actions of this phase. Lastly, the objective of the final phase is to complete tissue remodeling and restore skin integrity. This review provides present day information regarding the status of the participant cells, extracellular matrix, cytokines, chemokines, and growth factors, as well as their interactions with the microenvironment during the wound healing process.
Collapse
Affiliation(s)
- Luis Cañedo-Dorantes
- Research Division, Faculty of Medicine, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
30
|
The Dynamics of the Skin's Immune System. Int J Mol Sci 2019; 20:ijms20081811. [PMID: 31013709 PMCID: PMC6515324 DOI: 10.3390/ijms20081811] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The skin is a complex organ that has devised numerous strategies, such as physical, chemical, and microbiological barriers, to protect the host from external insults. In addition, the skin contains an intricate network of immune cells resident to the tissue, crucial for host defense as well as tissue homeostasis. In the event of an insult, the skin-resident immune cells are crucial not only for prevention of infection but also for tissue reconstruction. Deregulation of immune responses often leads to impaired healing and poor tissue restoration and function. In this review, we will discuss the defensive components of the skin and focus on the function of skin-resident immune cells in homeostasis and their role in wound healing.
Collapse
|
31
|
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev 2019; 99:665-706. [PMID: 30475656 PMCID: PMC6442927 DOI: 10.1152/physrev.00067.2017] [Citation(s) in RCA: 1301] [Impact Index Per Article: 260.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023] Open
Abstract
Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Nina Kosaric
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Clark A Bonham
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
32
|
Lee J, Shin D, Roh JL. Use of a pre-vascularised oral mucosal cell sheet for promoting cutaneous burn wound healing. Am J Cancer Res 2018; 8:5703-5712. [PMID: 30555575 PMCID: PMC6276302 DOI: 10.7150/thno.28754] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/04/2018] [Indexed: 11/21/2022] Open
Abstract
Pre-vascularised cell sheets have been used to promote early angiogenesis and graft survival. However, the use of pre-vascularised mucosal cell sheets for burn wounds has been rarely evaluated. Therefore, we examined the applicability of an oral pre-vascularised mucosal cell sheet that we had previously developed for the treatment of cutaneous burn wounds. Methods: Mucosal keratinocytes, fibroblasts, and endothelial progenitor cells were isolated from the oral mucosa and peripheral blood and were expanded in vitro. Mucosal cell sheets were generated by seeding cultured keratinocytes onto a mixture of fibroblasts, endothelial cells, and fibrin. Third-degree burn wounds were created on the backs of rats and were covered with the cell sheets, skin grafts, or silastic sheets as a control. Gross and microscopic findings and gene expression profiles of wounds were compared among the groups. Results: CD31-positive microvessels were observed in the fibrin-matrix layer of the cell sheet. In the cutaneous burn wound model, the cell sheets promoted wound healing, with accelerated wound closure and less scarring than with silastic sheets and skin grafts. The cell sheets had more microvessels and proliferating cells and less neutrophil infiltration and fibrotic features than the controls or skin grafts. The cell sheet induced higher mRNA expression of KRT14, VEGFA, IL10, and AQP3 and lower mRNA expression of TGFB1, IL6, ICAM1, ACTA2, and FN1 than did the controls or skin grafts. Conclusions: The pre-vascularised mucosal cell sheet promotes cutaneous burn wound healing.
Collapse
|
33
|
Miura T, Kawakami K, Kanno E, Tanno H, Tada H, Sato N, Masaki A, Yokoyama R, Kawamura K, Kitai Y, Takagi N, Yamaguchi K, Yamaguchi N, Kyo Y, Ishii K, Imai Y, Saijo S, Iwakura Y, Tachi M. Dectin-2-Mediated Signaling Leads to Delayed Skin Wound Healing through Enhanced Neutrophilic Inflammatory Response and Neutrophil Extracellular Trap Formation. J Invest Dermatol 2018; 139:702-711. [PMID: 30393083 DOI: 10.1016/j.jid.2018.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 01/13/2023]
Abstract
Dendritic cell-associated C-type lectin-2 (i.e., dectin-2) recognizes fungal polysaccharides, including α-mannan. Dectin-2-mediated recognition of fungi, such as Candida albicans, leads to NF-κB activation, which induces production of inflammatory cytokines. However, the role of dectin-2 in skin wound healing remains unclear. In this study, we sought to determine how dectin-2 deficiency and the administration of α-mannan affected the wound healing process. Full-thickness wounds were created on the backs of wild type C57BL/6 and dectin-2-deficient mice. We analyzed wound closure, histological findings, and re-epithelialization. We also examined the neutrophilic inflammatory responses and neutrophil extracellular trap (NET)-osis at the wound sites after administration of α-mannan. The percent wound closure and re-epithelialization was significantly accelerated in dectin-2-knockout mice compared with wild-type mice on days 3 and 5 after wounding. In contrast, administration of α-mannan delayed wound closure in wild-type mice, and these responses were canceled in dectin-2-knockout mice. Furthermore, mice administered α-mannan, neutrophil infiltration was prolonged, and the expression of citrullinated histone, an indicator of NETosis, at the wound sites was accelerated. Administration of a neutrophil elastase inhibitor significantly improved the delayed wound healing caused by α-mannan. These results suggest that dectin-2 may have a deep impact on the skin wound healing process through regulation of neutrophilic responses.
Collapse
Affiliation(s)
- Takayuki Miura
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Tada
- Division of Oral Microbiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Noriko Sato
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Airi Masaki
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rin Yokoyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kotone Kawamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoyuki Takagi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Yamaguchi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Natsuki Yamaguchi
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshika Kyo
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinobu Saijo
- Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoichiro Iwakura
- Division of Laboratory Animals, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|