1
|
Hisadome Y, Eisenson DL, Santillan MR, Iwase H, Yamada K. Pretransplant Screening for Prevention of Hyperacute Graft Loss in Pig-to-primate Kidney Xenotransplantation. Transplantation 2024; 108:1749-1759. [PMID: 39042769 DOI: 10.1097/tp.0000000000004958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
BACKGROUND Xenotransplantation using pig organs is now a clinical reality. However, the process for xenograft recipient screening lacks clarity and scientific rigor: no established thresholds exist to determine which levels of preformed antipig natural antibodies (Nabs) will be safe for clinical xenograft transplantation, and hyperacute rejection (HAR) or acute humoral xenograft rejection (AHXR), which still impacts pig-to-primate kidney xenograft survivals, may impede broader application of pig-to-human clinical xenograft transplantation. METHODS We retrospectively examined 28 cases of pig-to-baboon kidney xenotransplantation using GalTKO±human complement regulatory protein (hCRP)-transgenic (Tg) pig donors, as well as 6 cases of triple-KO multi-Tg (10GE) pig donors, and developed screening algorithms to predict risk of HAR/AHXR based on recipient antipig Nab levels. Preformed Nabs were evaluated using both complement-dependent cytotoxicity and antibody (IgM and IgG) binding flow-cytometry assays. RESULTS High complement-dependent cytotoxicity was associated with HAR/AHXR as expected. However, we also found that high levels of IgG were independently associated with HAR/AHXR, and we developed 2 indices to interpret and predict the risk of IgG-mediated HAR/AHXR. CONCLUSIONS Based on the data in this study, we have established a new 2-step screening, which will be used for future clinical kidney xenotransplantation trials.
Collapse
Affiliation(s)
- Yu Hisadome
- Department of Surgery, Division of Transplantation, The Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | | | |
Collapse
|
2
|
Byrne GW, McGregor CGA. Anti-pig antibodies in swine veterinarian serum: Implications for clinical xenotransplantation. Xenotransplantation 2024; 31:e12865. [PMID: 38853364 DOI: 10.1111/xen.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
Recent clinical xenotransplantation and human decedent studies demonstrate that clinical hyperacute rejection of genetically engineered porcine organs can be reliably avoided but that antibody mediated rejection (AMR) continues to limit graft survival. We previously identified porcine glycans and proteins which are immunogenic after cardiac xenotransplantation in non-human primates, but the clinical immune response to antigens present in glycan depleted triple knockout (TKO) donor pigs is poorly understood. In this study we use fluorescence barcoded human embryonic kidney cells (HEK) and HEK cell lines expressing porcine glycans (Gal and SDa) or proteins (tetraspanin-29 [CD9], membrane cofactor protein [CD46], protectin, membrane attack complex inhibition factor [CD59], endothelial cell protein C receptor, and Annexin A2) to screen antibody reactivity in human serum from 160 swine veterinarians, a serum source with potential occupational immune challenge from porcine tissues and pathogens. High levels of anti-Gal IgM were present in all samples and lower levels of anti-SDa IgM were present in 41% of samples. IgM binding to porcine proteins, primarily CD9 and CD46, previously identified as immunogenic in pig to non-human primate cardiac xenograft recipients, was detected in 28 of the 160 swine veterinarian samples. These results suggest that barcoded HEK cell lines expressing porcine protein antigens can be useful for screening human patient serum. A comprehensive analysis of sera from clinical xenotransplant recipients to define a panel of commonly immunogenic porcine antigens will likely be necessary to establish an array of porcine non-Gal antigens for effective monitoring of patient immune responses and allow earlier therapies to reverse AMR.
Collapse
Affiliation(s)
- Guerard W Byrne
- Twin Cities, Department of Surgery, Experimental Surgical Services, University of Minnesota, Minneapolis, Minnesota, USA
- Institute of Cardiovascular Sciences, University College London, London, UK
| | - Christopher G A McGregor
- Twin Cities, Department of Surgery, Experimental Surgical Services, University of Minnesota, Minneapolis, Minnesota, USA
- Institute of Cardiovascular Sciences, University College London, London, UK
| |
Collapse
|
3
|
Raza SS, Hara H, Eyestone W, Ayares D, Cleveland DC, Cooper DKC. Pigs in Transplantation Research and Their Potential as Sources of Organs in Clinical Xenotransplantation. Comp Med 2024; 74:33-48. [PMID: 38359908 PMCID: PMC11078278 DOI: 10.30802/aalas-cm-23-000030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 10/29/2023] [Indexed: 02/17/2024]
Abstract
The pig has long been used as a research animal and has now gained importance as a potential source of organs for clinical xenotransplantation. When an organ from a wild-type (i. e., genetically unmodified) pig is transplanted into an immunosuppressed nonhuman primate, a vigorous host immune response causes hyperacute rejection (within minutes or hours). This response has been largely overcome by 1) extensive gene editing of the organ-source pig and 2) the administration to the recipient of novel immunosuppressive therapy based on blockade of the CD40/CD154 T cell costimulation pathway. Gene editing has consisted of 1) deletion of expression of the 3 known carbohydrate xenoantigens against which humans have natural (preformed) antibodies and 2) the introduction of human 'protective' genes. The combination of gene editing and novel immunosuppressive therapy has extended life-supporting pig kidney graft survival to greater than 1 y and of pig heart survival to up to 9 mo. This review briefly describes the techniques of gene editing, the potential risks of transfer of porcine endogenous retroviruses with the organ, and the need for breeding and housing of donor pigs under biosecure conditions.
Collapse
Key Words
- crp, complement-regulatory protein
- epcr, endothelial protein c receptor
- gal, galactose-α1,3-galactose
- gtko, α1,3-galactosyltransferase gene-knockout
- herv, human endogenous retrovirus
- neu5gc, n-glycolylneuraminic acid
- nhp, nonhuman primates
- perv, porcine endogenous retrovirus
- tko, triple knockout
- wt, wild-type
Collapse
Affiliation(s)
- S Sikandar Raza
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan
| | - Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | | | | | - David C Cleveland
- Department of Cardiothoracic Surgery, Children's Hospital of Los Angeles, Los Angeles, California
| | - David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts;,
| |
Collapse
|
4
|
Peng W, Gao M, Zhu X, Liu X, Yang G, Li S, Liu Y, Bai L, Yang J, Bao J. Visual screening of CRISPR/Cas9 editing efficiency based on micropattern arrays for editing porcine cells. Biotechnol J 2024; 19:e2300691. [PMID: 38622798 DOI: 10.1002/biot.202300691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
CRISPR/Cas9 technology, combined with somatic cell nuclear transplantation (SCNT), represents the primary approach to generating gene-edited pigs. The inefficiency in acquiring gene-edited nuclear donors is attributed to low editing and delivery efficiency, both closely linked to the selection of CRISPR/Cas9 forms. However, there is currently no direct method to evaluate the efficiency of CRISPR/Cas9 editing in porcine genomes. A platform based on fluorescence reporting signals and micropattern arrays was developed in this study, to visually assess the efficiency of gene editing. The optimal specifications for culturing porcine cells, determined by the quantity and state of cells grown on micropattern arrays, were a diameter of 200 µm and a spacing of 150 µm. By visualizing the area of fluorescence loss and measuring the gray value of the micropattern arrays, it was quickly determined that the mRNA form targeting porcine cells exhibited the highest editing efficiency compared to DNA and Ribonucleoprotein (RNP) forms of CRISPR/Cas9. Subsequently, four homozygotes of the β4GalNT2 gene knockout were successfully obtained through the mRNA form, laying the groundwork for the subsequent generation of gene-edited pigs. This platform facilitates a quick, simple, and effective evaluation of gene knockout efficiency. Additionally, it holds significant potential for swiftly testing novel gene editing tools, assessing delivery methods, and tailoring evaluation platforms for various cell types.
Collapse
Affiliation(s)
- Wanliu Peng
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengyu Gao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinglong Zhu
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinmei Liu
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yong Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayin Yang
- Transplant Center, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ji Bao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Xu H, He X. Developments in kidney xenotransplantation. Front Immunol 2024; 14:1242478. [PMID: 38274798 PMCID: PMC10808336 DOI: 10.3389/fimmu.2023.1242478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
The search for kidney xenografts that are appropriate for patients with end-stage renal disease has been ongoing since the beginning of the last century. The major cause of xenograft loss is hyperacute and acute rejection, and this has almost been overcome via scientific progress. The success of two pre-clinical trials of α1,3-galactosyltransferase gene-knockout porcine kidneys in brain-dead patients in 2021 triggered research enthusiasm for kidney xenotransplantation. This minireview summarizes key issues from an immunological perspective: the discovery of key xenoantigens, investigations into key co-stimulatory signal inhibition, gene-editing technology, and immune tolerance induction. Further developments in immunology, particularly immunometabolism, might help promote the long-term outcomes of kidney xenografts.
Collapse
Affiliation(s)
| | - Xiaozhou He
- Urology Department, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
6
|
Suh HN, Lee JY, Kang HJ, Park EM, Yun IJ, Kim WS, Choi K, Hwang JH. A Comparison Between GalT-/-; hCD39;hCD55 and GalT-/-; hCD39;hCD46;hCD55;TBM Pig Kidneys Transplanted in Nonhuman Primates. Cell Transplant 2024; 33:9636897231217382. [PMID: 38229498 PMCID: PMC10798062 DOI: 10.1177/09636897231217382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024] Open
Abstract
Because there is a shortage of donor kidneys, researchers are exploring the possibility of using genetically modified pig kidneys for transplantation. Approaches involving knockout of carbohydrate genes or knockin of protective proteins have been attempted to determine the best gene modifications. In this study, we utilized GalT-/-;hCD39;hCD55 and GalT-/-;hCD39;hCD46;hCD55;thrombomodulin (TBM) pigs for transplantation in nonhuman primates (NHPs). The NHPs survived for 4 weeks after kidney transplantation (4 WAT) from the GalT-/-;hCD39;hCD55 pig and for 6 WAT from the GalT-/-;hCD39;hCD46;hCD55;TBM pig. However, messenger RNA (mRNA) sequencing and immunohistochemistry analysis revealed that the 6 WAT kidney exhibited more severe apoptosis, inflammation, loss of renal function, and renal fibrosis than the 4 WAT kidney. These results indicate that additional knockin of complement regulator (hCD46) and coagulation regulator (TBM) is not enough to prevent renal damage, suggesting that improved immune suppression is needed for more prolonged survival.
Collapse
Affiliation(s)
- Han Na Suh
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, Republic of Korea
- Center for Companion Animal New Drug Development, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Ju Young Lee
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Chuncheon-si, Republic of Korea
| | - Eun Mi Park
- Department of Laboratory Medicine, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Chuncheon-si, Republic of Korea
| | - Ik Jin Yun
- Department of Surgery, School of Medicine, Konkuk University, Seoul, Korea
| | - Wan Seop Kim
- Department of Pathology, School of Medicine, Konkuk University, Seoul, Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm Inc, Cheongju-si, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, Republic of Korea
- Center for Companion Animal New Drug Development, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| |
Collapse
|
7
|
Hara H, Foote JB, Hansen-Estruch C, Bikhet MH, Nguyen HQ, Javed M, Oscherwitz M, Collins DE, Ayares D, Yamamoto T, King TW, Cooper DK. In vitro and in vivo immune assessments of genetically-engineered pig skin grafts in New World (squirrel) monkeys. Xenotransplantation 2023; 30:e12832. [PMID: 37870485 PMCID: PMC10843142 DOI: 10.1111/xen.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Half a million patients in the USA alone require treatment for burns annually. Following an extensive burn, it may not be possible to provide sufficient autografts in a single setting. Genetic manipulations (GM) of pigs offer the possibility of reducing primate humoral and cellular rejection of pig skin xenografts and thus extending graft survival. We compared the survival of skin grafts from pigs with 9-GM with that of autografts and allografts in squirrel monkeys. Monitoring for rejection was by (1) macroscopic examination, (2) histopathological examination of skin biopsies, and (3) measurement of anti-monkey and anti-pig IgM and IgG antibodies. Autografts (n = 5) survived throughout the 28 days of follow-up without histopathological features of rejection. Median survival of allografts (n = 6) was 14 days and of pig xenografts (n = 12) 21 days. Allotransplantation was associated with an increase in anti-monkey IgM, but the anticipated subsequent rise in IgG had not yet occurred at the time of euthanasia. Pig grafts were associated with increases in anti-pig IgM and IgG. In all cases, histopathologic features of rejection were similar. 9-GM pig skin xenografts survive at least as long as monkey skin allografts (and trended to survive longer), suggesting that they are a realistic clinical option for the temporary treatment of burns. Although monkeys with pig skin grafts developed anti-pig IgM and IgG antibodies, these did not cross-react with monkey antigens, indicating that a primary 9-GM pig skin graft would not be detrimental to a subsequent monkey skin allograft.
Collapse
Affiliation(s)
- Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy B. Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christophe Hansen-Estruch
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed H. Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huy Q. Nguyen
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mariyam Javed
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Max Oscherwitz
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dalis E. Collins
- Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy W. King
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Cooper DKC, Raza SS, Chaban R, Pierson RN. Shooting for the moon: Genome editing for pig heart xenotransplantation. J Thorac Cardiovasc Surg 2023; 166:973-980. [PMID: 35659123 PMCID: PMC10124774 DOI: 10.1016/j.jtcvs.2022.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
Abstract
Gene-edited pigs could eventually provide organs that are safely and effectively protected from the human immune response without exogenous immunosuppression. Genome editing technology has revolutionized heart xenotransplantation and made transplantation of bioengineered pig hearts into humans a possibility. This first clinical application resulted from a tremendous amount of research. Dramatic early attempts of clinical cardiac xenotransplantation during the last century paved the way to modern xenotransplantation using bioengineered pig hearts. It appears that such genome-edited hearts will be most suitable for neonates and infants because of their immature immune system. The bioengineered pig heart may also be used as a bridge to human heart transplantation, avoiding the risk of thromboembolic events of durable ventricular assist devises in these young children. It is also intriguing to think that bioengineered hearts using pigs as a host may result in a new source of donor hearts that would not evoke the human immune response and minimize, if not eliminate, the need for immunosuppression. It this issue of the Journal, a group of experts led by Dr Cooper, whose personal work spans over 50 years of heart transplantation research, outline the current state of the genome editing of bioengineered hearts and discuss the prospects of clinical application.
Collapse
Affiliation(s)
- David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | | | - Ryan Chaban
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Department of Cardiovascular Surgery, University Hospital of Johannes Gutenberg University, Mainz, Germany.
| | - Richard N Pierson
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| |
Collapse
|
9
|
Chornenkyy Y, Yamamoto T, Hara H, Stowell SR, Ghiran I, Robson SC, Cooper DKC. Future prospects for the clinical transfusion of pig red blood cells. Blood Rev 2023; 61:101113. [PMID: 37474379 PMCID: PMC10968389 DOI: 10.1016/j.blre.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Transfusion of allogeneic human red blood cell (hRBCs) is limited by supply and compatibility between individual donors and recipients. In situations where the blood supply is constrained or when no compatible RBCs are available, patients suffer. As a result, alternatives to hRBCs that complement existing RBC transfusion strategies are needed. Pig RBCs (pRBCs) could provide an alternative because of their abundant supply, and functional similarities to hRBCs. The ability to genetically modify pigs to limit pRBC immunogenicity and augment expression of human 'protective' proteins has provided major boosts to this research and opens up new therapeutic avenues. Although deletion of expression of xenoantigens has been achieved in genetically-engineered pigs, novel genetic methods are needed to introduce human 'protective' transgenes into pRBCs at the high levels required to prevent hemolysis and extend RBC survival in vivo. This review addresses recent progress and examines future prospects for clinical xenogeneic pRBC transfusion.
Collapse
Affiliation(s)
- Yevgen Chornenkyy
- Department of Pathology, McGaw Medical Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Takayuki Yamamoto
- Center for Transplantation Science, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA; Division of Transplantation, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ionita Ghiran
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - David K C Cooper
- Center for Transplantation Science, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Habibabady Z, McGrath G, Kinoshita K, Maenaka A, Ikechukwu I, Elias GF, Zaletel T, Rosales I, Hara H, Pierson RN, Cooper DKC. Antibody-mediated rejection in xenotransplantation: Can it be prevented or reversed? Xenotransplantation 2023; 30:e12816. [PMID: 37548030 PMCID: PMC11101061 DOI: 10.1111/xen.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Antibody-mediated rejection (AMR) is the commonest cause of failure of a pig graft after transplantation into an immunosuppressed nonhuman primate (NHP). The incidence of AMR compared to acute cellular rejection is much higher in xenotransplantation (46% vs. 7%) than in allotransplantation (3% vs. 63%) in NHPs. Although AMR in an allograft can often be reversed, to our knowledge there is no report of its successful reversal in a pig xenograft. As there is less experience in preventing or reversing AMR in models of xenotransplantation, the results of studies in patients with allografts provide more information. These include (i) depletion or neutralization of serum anti-donor antibodies, (ii) inhibition of complement activation, (iii) therapies targeting B or plasma cells, and (iv) anti-inflammatory therapy. Depletion or neutralization of anti-pig antibody, for example, by plasmapheresis, is effective in depleting antibodies, but they recover within days. IgG-degrading enzymes do not deplete IgM. Despite the expression of human complement-regulatory proteins on the pig graft, inhibition of systemic complement activation may be necessary, particularly if AMR is to be reversed. Potential therapies include (i) inhibition of complement activation (e.g., by IVIg, C1 INH, or an anti-C5 antibody), but some complement inhibitors are not effective in NHPs, for example, eculizumab. Possible B cell-targeted therapies include (i) B cell depletion, (ii) plasma cell depletion, (iii) modulation of B cell activation, and (iv) enhancing the generation of regulatory B and/or T cells. Among anti-inflammatory agents, anti-IL6R mAb and TNF blockers are increasingly being tested in xenotransplantation models, but with no definitive evidence that they reverse AMR. Increasing attention should be directed toward testing combinations of the above therapies. We suggest that treatment with a systemic complement inhibitor is likely to be most effective, possibly combined with anti-inflammatory agents (if these are not already being administered). Ultimately, it may require further genetic engineering of the organ-source pig to resolve the problem entirely, for example, knockout or knockdown of SLA, and/or expression of PD-L1, HLA E, and/or HLA-G.
Collapse
Affiliation(s)
- Zahra Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Gannon McGrath
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Kohei Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Akihiro Maenaka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ileka Ikechukwu
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriela F. Elias
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Tjasa Zaletel
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy Rosales
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Hara
- Yunnan Xenotransplantation Engineering Research Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - David K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Hara H, Yamamoto T, Wei HJ, Cooper DK. What Have We Learned From In Vitro Studies About Pig-to-primate Organ Transplantation? Transplantation 2023; 107:1265-1277. [PMID: 36536507 PMCID: PMC10205677 DOI: 10.1097/tp.0000000000004458] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural preformed and de novo antibodies against pig antigens are a major cause of pig xenograft rejection in nonhuman primates (NHPs). In vivo studies in pig-to-NHP models are time consuming. In vitro assays, for example, antibody binding to pig cells, complement-dependent cytotoxicity assays, provide valuable information quickly and inexpensively. Using in vitro assays for several years, it has been documented that (1) during the first year of life, humans and NHPs develop anti-wild-type pig antibodies, but humans develop no or minimal antibody to triple-knockout (TKO) pig cells. (2) Some adult humans have no or minimal antibodies to TKO pig cells and are therefore unlikely to rapidly reject a TKO organ, particularly if the organ also expresses human "protective" proteins. (3) There is good correlation between immunoglobulin (Ig)M (but no t IgG) binding and complement injury. (4) All Old World NHPs develop antibodies to TKO pig cells and are not optimal recipients of TKO organs. (5) galactosyltransferase gene-knockout/β4GalNT2KO pigs are preferred for Old World NHPs. (6) Humans develop anti-pig IgE and IgA antibodies against pig cells, but their role remains uncertain. (7) In a small percentage of allosensitized humans, antibodies that cross-react with swine leukocyte antigens may be detrimental to a pig organ xenograft. (8) Prior sensitization to pig antigens is unlikely to be detrimental to a subsequent allograft. (9) Deletion of expression of Gal and Neu5Gc is associated with a reduction in the T-cell response to pig cells. All of these valuable observations have largely predicted the results of in vivo studies.
Collapse
Affiliation(s)
- Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Takayuki Yamamoto
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Hong-Jiang Wei
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - David K.C. Cooper
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8:110. [PMID: 36906586 PMCID: PMC10008588 DOI: 10.1038/s41392-023-01377-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The activation of host's innate and adaptive immune systems can lead to acute and chronic graft rejection, which seriously impacts graft survival. Thus, it is particularly significant to clarify the immune signals, which are critical to the initiation and maintenance of rejection generated after transplantation. The initiation of response to graft is dependent on sensing of danger and stranger molecules. The ischemia and reperfusion of grafts lead to cell stress or death, followed by releasing a variety of damage-associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors (PRRs) of host immune cells to activate intracellular immune signals and induce sterile inflammation. In addition to DAMPs, the graft exposed to 'non-self' antigens (stranger molecules) are recognized by the host immune system, stimulating a more intense immune response and further aggravating the graft damage. The polymorphism of MHC genes between different individuals is the key for host or donor immune cells to identify heterologous 'non-self' components in allogeneic and xenogeneic organ transplantation. The recognition of 'non-self' antigen by immune cells mediates the activation of immune signals between donor and host, resulting in adaptive memory immunity and innate trained immunity to the graft, which poses a challenge to the long-term survival of the graft. This review focuses on innate and adaptive immune cells receptor recognition of damage-associated molecular patterns, alloantigens and xenoantigens, which is described as danger model and stranger model. In this review, we also discuss the innate trained immunity in organ transplantation.
Collapse
Affiliation(s)
- Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
13
|
Cooper DKC, Pierson RN. Milestones on the path to clinical pig organ xenotransplantation. Am J Transplant 2023; 23:326-335. [PMID: 36775767 PMCID: PMC10127379 DOI: 10.1016/j.ajt.2022.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
Progress in pig organ xenotransplantation has been made largely through (1) genetic engineering of the organ-source pig to protect its tissues from the human innate immune response, and (2) development of an immunosuppressive regimen based on blockade of the CD40/CD154 costimulation pathway to prevent the adaptive immune response. In the 1980s, after transplantation into nonhuman primates (NHPs), wild-type (genetically unmodified) pig organs were rejected within minutes or hours. In the 1990s, organs from pigs expressing a human complement-regulatory protein (CD55) transplanted into NHPs receiving intensive conventional immunosuppressive therapy functioned for days or weeks. When costimulation blockade was introduced in 2000, the adaptive immune response was suppressed more readily. The identification of galactose-α1,3-galactose as the major antigen target for human and NHP anti-pig antibodies in 1991 allowed for deletion of expression of galactose-α1,3-galactose in 2003, extending pig graft survival for up to 6 months. Subsequent gene editing to overcome molecular incompatibilities between the pig and primate coagulation systems proved additionally beneficial. The identification of 2 further pig carbohydrate xenoantigens allowed the production of 'triple-knockout' pigs that are preferred for clinical organ transplantation. These combined advances enabled the first clinical pig heart transplant to be performed and opened the door to formal clinical trials.
Collapse
Affiliation(s)
- David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA.
| | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Chan JCY, Chaban R, Chang SH, Angel LF, Montgomery RA, Pierson RN. Future of Lung Transplantation: Xenotransplantation and Bioengineering Lungs. Clin Chest Med 2023; 44:201-214. [PMID: 36774165 PMCID: PMC11078107 DOI: 10.1016/j.ccm.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Xenotransplantation promises to alleviate the issue of donor organ shortages and to decrease waiting times for transplantation. Recent advances in genetic engineering have allowed for the creation of pigs with up to 16 genetic modifications. Several combinations of genetic modifications have been associated with extended graft survival and life-supporting function in experimental heart and kidney xenotransplants. Lung xenotransplantation carries specific challenges related to the large surface area of the lung vascular bed, its innate immune system's intrinsic hyperreactivity to perceived 'danger', and its anatomic vulnerability to airway flooding after even localized loss of alveolocapillary barrier function. This article discusses the current status of lung xenotransplantation, and challenges related to immunology, physiology, anatomy, and infection. Tissue engineering as a feasible alternative to develop a viable lung replacement solution is discussed.
Collapse
Affiliation(s)
- Justin C Y Chan
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA.
| | - Ryan Chaban
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA; Department of Cardiovascular Surgery, University Hospital of Johannes Gutenberg University, Langenbeckstr. 1, Bau 505, 5. OG55131 Mainz, Germany
| | - Stephanie H Chang
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Luis F Angel
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Robert A Montgomery
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Richard N Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
15
|
Duca M, Malagolini N, Dall'Olio F. The story of the Sd a antigen and of its cognate enzyme B4GALNT2: What is new? Glycoconj J 2023; 40:123-133. [PMID: 36287346 DOI: 10.1007/s10719-022-10089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
Abstract
The structure Siaα2,3(GalNAcβ1,4)Gal- is the epitope of the Sda antigen, which is expressed on the erythrocytes and secretions of the vast majority of Caucasians, carried by N- and O-linked chains of glycoproteins, as well as by glycolipids. Sda is very similar, but not identical, to ganglioside GM2 [Siaα2,3(GalNAcβ1,4)Galβ1,4Glc-Cer]. The Sda synthase β1,4 N-acetylgalactosaminyl transferase 2 (B4GALNT2) exists in a short and a long form, diverging in the aminoterminal domain. The latter has a very long cytoplasmic tail and displays a Golgi- as well as a post-Golgi localization. The biosynthesis of Sda is mutually exclusive with that of the cancer-associated sialyl Lewis antigens, whose structure is Siaα2,3Galβ1,3/4(Fucα1,4/3)GlcNAc-. B4GALNT2 is down-regulated in colon cancer but patients with higher expression survive longer. In experimental systems, B4GALNT2 inhibits colon cancer progression,not only through inhibition of sialyl Lewis antigen biosynthesis. By contrast, in breast cancer B4GALNT2 is associated with malignancy. In colon cancer, the B4GALNT2 gene is regulated by multiple mechanisms, which include miRNA and transcription factor expression, as well as CpG methylation. In addition, Sda/B4GALNT2 regulates the susceptibility to infectious agents, the protection from muscle dystrophy, the activity of immune system in pregnancy and the immune rejection in xenotransplantation.
Collapse
Affiliation(s)
- Martina Duca
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, Via San Giacomo 14, 40126, Bologna, Italy.
| |
Collapse
|
16
|
Naqvi RA, Naqvi AR, Singh A, Priyadarshini M, Balamurugan AN, Layden BT. The future treatment for type 1 diabetes: Pig islet- or stem cell-derived β cells? Front Endocrinol (Lausanne) 2023; 13:1001041. [PMID: 36686451 PMCID: PMC9849241 DOI: 10.3389/fendo.2022.1001041] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Replacement of β cells is only a curative approach for type 1 diabetes (T1D) patients to avoid the threat of iatrogenic hypoglycemia. In this pursuit, islet allotransplantation under Edmonton's protocol emerged as a medical miracle to attain hypoglycemia-free insulin independence in T1D. Shortage of allo-islet donors and post-transplantation (post-tx) islet loss are still unmet hurdles for the widespread application of this therapeutic regimen. The long-term survival and effective insulin independence in preclinical studies have strongly suggested pig islets to cure overt hyperglycemia. Importantly, CRISPR-Cas9 technology is pursuing to develop "humanized" pig islets that could overcome the lifelong immunosuppression drug regimen. Lately, induced pluripotent stem cell (iPSC)-derived β cell approaches are also gaining momentum and may hold promise to yield a significant supply of insulin-producing cells. Theoretically, personalized β cells derived from a patient's iPSCs is one exciting approach, but β cell-specific immunity in T1D recipients would still be a challenge. In this context, encapsulation studies on both pig islet as well as iPSC-β cells were found promising and rendered long-term survival in mice. Oxygen tension and blood vessel growth within the capsules are a few of the hurdles that need to be addressed. In conclusion, challenges associated with both procedures, xenotransplantation (of pig-derived islets) and stem cell transplantation, are required to be cautiously resolved before their clinical application.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Afsar Raza Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Amar Singh
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Medha Priyadarshini
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Appakalai N. Balamurugan
- Center for Clinical and Translational Research, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Brian T. Layden
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Cooper DKC, Habibabady Z, Kinoshita K, Hara H, Pierson RN. The respective relevance of sensitization to alloantigens and xenoantigens in pig organ xenotransplantation. Hum Immunol 2023; 84:18-26. [PMID: 35817653 PMCID: PMC10154072 DOI: 10.1016/j.humimm.2022.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Antibody-mediated rejection is a major cause of graft injury and contributes to failure of pig xenografts in nonhuman primates (NHPs). Most 'natural' or elicited antibodies found in humans and NHPs are directed against pig glycan antigens, but antibodies binding to swine leukocyte antigens (SLA) have also been detected. Of clinical importance is (i) whether the presence of high levels of antibodies directed towards human leukocyte antigens (HLA) (i.e., high panel-reactive antibodies) would be detrimental to the outcome of a pig organ xenograft; and (ii) whether, in the event of sensitization to pig antigens, a subsequent allotransplant would be at increased risk of graft failure due to elicited anti-pig antibodies that cross-react with human HLA or other antigens. SUMMARY A literature review of pig-to-primate studies indicates that relatively few highly-HLA-sensitized humans have antibodies that cross-react with pigs, predicting that most would not be at increased risk of rejecting an organ xenograft. Furthermore, the existing evidence indicates that sensitization to pig antigens will probably not elicit increased alloantibody titers; if so, 'bridging' with a pig organ could be carried out without increased risk of subsequent antibody-mediated allograft failure. KEY MESSAGE These issues have important implications for the design and conduct of clinical xenotransplantation trials.
Collapse
Affiliation(s)
- D K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Z Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - K Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - H Hara
- Yunnan Xenotransplantation Engineering Research Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - R N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Lei T, Chen L, Wang K, Du S, Gonelle-Gispert C, Wang Y, Buhler LH. Genetic engineering of pigs for xenotransplantation to overcome immune rejection and physiological incompatibilities: The first clinical steps. Front Immunol 2022; 13:1031185. [PMID: 36561750 PMCID: PMC9766364 DOI: 10.3389/fimmu.2022.1031185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Xenotransplantation has the potential to solve the shortfall of human organ donors. Genetically modified pigs have been considered as potential animal donors for human xenotransplantation and have been widely used in preclinical research. The genetic modifications aim to prevent the major species-specific barriers, which include humoral and cellular immune responses, and physiological incompatibilities such as complement and coagulation dysfunctions. Genetically modified pigs can be created by deleting several pig genes related to the synthesis of various pig specific antigens or by inserting human complement- and coagulation-regulatory transgenes. Finally, in order to reduce the risk of infection, genes related to porcine endogenous retroviruses can be knocked down. In this review, we focus on genetically modified pigs and comprehensively summarize the immunological mechanism of xenograft rejection and recent progress in preclinical and clinical studies. Overall, both genetically engineered pig-based xenografts and technological breakthroughs in the biomedical field provide a promising foundation for pig-to-human xenotransplantation in the future.
Collapse
Affiliation(s)
- Tiantian Lei
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Lin Chen
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Kejing Wang
- Department of Pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | | | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Leo H. Buhler
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
19
|
Abstract
Recent advances raise hope for a promising solution to the transplant organ shortage.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Department of Microbiology and Immunology and Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY, USA
| |
Collapse
|
20
|
Anwar IJ, DeLaura I, Ladowski J, Gao Q, Knechtle SJ, Kwun J. Complement-targeted therapies in kidney transplantation-insights from preclinical studies. Front Immunol 2022; 13:984090. [PMID: 36311730 PMCID: PMC9606228 DOI: 10.3389/fimmu.2022.984090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023] Open
Abstract
Aberrant activation of the complement system contributes to solid-organ graft dysfunction and failure. In kidney transplantation, the complement system is implicated in the pathogenesis of antibody- and cell-mediated rejection, ischemia-reperfusion injury, and vascular injury. This has led to the evaluation of select complement inhibitors (e.g., C1 and C5 inhibitors) in clinical trials with mixed results. However, the complement system is highly complex: it is composed of more than 50 fluid-phase and surface-bound elements, including several complement-activated receptors-all potential therapeutic targets in kidney transplantation. Generation of targeted pharmaceuticals and use of gene editing tools have led to an improved understanding of the intricacies of the complement system in allo- and xeno-transplantation. This review summarizes our current knowledge of the role of the complement system as it relates to rejection in kidney transplantation, specifically reviewing evidence gained from pre-clinical models (rodent and nonhuman primate) that may potentially be translated to clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Stuart J. Knechtle
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
21
|
Le QA, Wittayarat M, Namula Z, Lin Q, Takebayashi K, Hirata M, Tanihara F, Do LTK, Otoi T. Multiple gene editing in porcine embryos using a combination of microinjection, electroporation, and transfection methods. Vet World 2022; 15:2210-2216. [PMID: 36341066 PMCID: PMC9631378 DOI: 10.14202/vetworld.2022.2210-2216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Aim: Mosaicism – the presence of both wild-type and mutant alleles – is a serious problem for zygotic gene modification through gene editing using the Clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR/Cas9) system. Different delivery methods, such as microinjection (MI), electroporation (EP), and transfection (TF), can be used to transfer CRISPR/Cas9 components into porcine zygotes. This study aimed to develop a method that combines MI, EP, and TF to improve mutation efficiency mediated through the CRISPR/Cas9 system for a triple-gene knockout in pigs. Materials and Methods: The study consisted of three groups: The MI group with three simultaneously microinjected guide RNAs (gRNAs) targeting α-1,3-galactosyltransferase (GGTA1), cytidine 32 monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), and β-1,4-N-acetyl-galactosaminyltransferase 2 (B4GALNT2); the MI + EP group with two gRNAs targeting GGTA1 and B4GALNT2 genes delivered into zygotes through MI, followed by EP of gRNA targeting the CMAH 1 h later; and the MI + EP + TF group with MI of gRNA targeting GGTA1 gene into zygotes, followed by EP of gRNA targeting CMAH 1 h later, and then TF of gRNA targeting the B4GALNT2 gene into zona-free zygotes after another hour. Results: The rate of blastocysts carrying mutations in one or two gene(s) was significantly higher in the MI + EP + TF group than in the MI group. However, the blastocyst formation rate of zygotes in the MI + EP + TF group was lower than that of the zygotes in the other treatment groups. Conclusion: The combination of CRISPR/Cas9 delivery methods may improve the mutation efficiency of triple-gene edited porcine blastocysts.
Collapse
Affiliation(s)
- Quynh Anh Le
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, 90110 Songkhla, Thailand
| | - Zhao Namula
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Guangdong, China
| | - Qingyi Lin
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan
| | - Koki Takebayashi
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan
| | - Maki Hirata
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan
| | - Fuminori Tanihara
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan
| | - Lanh Thi Kim Do
- Department of Animal Theriogenology and Surgery, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, 100000 Hanoi, Vietnam
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan
| |
Collapse
|
22
|
Stand der Technik und Durchbruch bei der kardialen Xenotransplantation. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2022. [DOI: 10.1007/s00398-022-00534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Lopez KJ, Cross-Najafi AA, Farag K, Obando B, Thadasina D, Isidan A, Park Y, Zhang W, Ekser B, Li P. Strategies to induce natural killer cell tolerance in xenotransplantation. Front Immunol 2022; 13:941880. [PMID: 36072599 PMCID: PMC9441937 DOI: 10.3389/fimmu.2022.941880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Eliminating major xenoantigens in pig cells has drastically reduced human antibody-mediated hyperacute xenograft rejection (HXR). Despite these advancements, acute xenograft rejection (AXR) remains one of the major obstacles to clinical xenotransplantation, mediated by innate immune cells, including macrophages, neutrophils, and natural killer (NK) cells. NK cells play an ‘effector’ role by releasing cytotoxicity granules against xenogeneic cells and an ‘affecter’ role on other immune cells through cytokine secretion. We highlight the key receptor-ligand interactions that determine the NK cell response to target cells, focusing on the regulation of NK cell activating receptor (NKG2D, DNAM1) and inhibitory receptor (KIR2DL1-4, NKG2A, and LIR-1) signaling pathways. Inhibition of NK cell activity may protect xenografts from cytotoxicity. Recent successful approaches to reducing NK cell-mediated HXR and AXR are reviewed, including genetic modifications of porcine xenografts aimed at improving pig-to-human compatibility. Future directions to promote xenograft acceptance are discussed, including NK cell tolerance in pregnancy and NK cell evasion in viral infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ping Li
- *Correspondence: Ping Li, ; Burcin Ekser,
| |
Collapse
|
24
|
Kavarana S, Kwon JH, Zilinskas K, Kang L, Turek JW, Mohiuddin MM, Rajab TK. Recent advances in porcine cardiac xenotransplantation: from aortic valve replacement to heart transplantation. Expert Rev Cardiovasc Ther 2022; 20:597-608. [PMID: 35818712 DOI: 10.1080/14779072.2022.2100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Cardiac xenotransplantation presents significant potential to the field of heart failure by addressing the high demand for donor organs. The availability of xenograft hearts would substantially augment the number of life-saving organs available to patients and may ultimately liberalize eligibility criteria for transplantation. AREAS COVERED In this review, we will discuss the need for cardiac xenotransplantation and the history of research and clinical practice in this field. Specifically, we address immunologic concepts and clinical lessons learned from heart valve replacement using xenogeneic tissues, the advancement of xenotransplantation using organs from genetically modified animals, and the progression of this research to the first-in-man pig-to-human heart transplantation. EXPERT OPINION Cardiac xenotransplantation holds tremendous promise, but the indications for this new treatment will need to be clearly defined because mechanical support with ventricular assist devices and total artificial hearts are increasingly successful alternatives for adults in heart failure. Cardiac xenotransplantation will also serve as temporary bridge to allotransplantation in babies with complex congenital heart disease who are too small for the currently available mechanical assist devices. Moreover, xenotransplantation of the part of the heart containing a heart valve could deliver growing heart valve implants for babies with severe heart valve dysfunction.
Collapse
|
25
|
Ogun OJ, Thaller G, Becker D. An Overview of the Importance and Value of Porcine Species in Sialic Acid Research. BIOLOGY 2022; 11:biology11060903. [PMID: 35741423 PMCID: PMC9219854 DOI: 10.3390/biology11060903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Humans frequently interact with pigs and porcine meat is the most consumed red meat in the world. In addition, due to the many physiological and anatomical similarities shared between pigs and humans, in contrast to most mammalian species, pigs are a suitable model organism and pig organs can be used for xenotransplantation. However, one major challenge of porcine meat consumption and xenotransplantation is the xenoreactivity between red meat Neu5Gc sialic acid and human anti-Neu5Gc antibodies, which are associated with certain diseases and disorders. Furthermore, pigs express both α2-3 and α2-6 Sia linkages that could serve as viable receptors for viral infections, reassortments, and cross-species transmission of viruses. Therefore, pigs play a significant role in sialic acid research and, in general, in human health. Abstract Humans frequently interact with pigs, whose meat is also one of the primary sources of animal protein. They are one of the main species at the center of sialic acid (Sia) research. Sias are sugars at terminals of glycoconjugates, are expressed at the cell surfaces of mammals, and are important in cellular interactions. N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac) are notable Sias in mammals. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) encodes the CMAH enzyme that biosynthesizes Neu5Gc. Although humans cannot endogenously synthesize Neu5Gc due to the inactivation of this gene by a mutation, Neu5Gc can be metabolically incorporated into human tissues from red meat consumption. Interactions between Neu5Gc and human anti-Neu5Gc antibodies have been associated with certain diseases and disorders. In this review, we summarized the sialic acid metabolic pathway, its regulation and link to viral infections, as well as the importance of the pig as a model organism in Sia research, making it a possible source of Neu5Gc antigens affecting human health. Future research in solving the structures of crucial enzymes involved in Sia metabolism, as well as their regulation and interactions with other enzymes, especially CMAH, could help to understand their function and reduce the amount of Neu5Gc.
Collapse
Affiliation(s)
- Oluwamayowa Joshua Ogun
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
- Correspondence: (O.J.O.); (D.B.)
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Correspondence: (O.J.O.); (D.B.)
| |
Collapse
|
26
|
Eisenson DL, Hisadome Y, Yamada K. Progress in Xenotransplantation: Immunologic Barriers, Advances in Gene Editing, and Successful Tolerance Induction Strategies in Pig-To-Primate Transplantation. Front Immunol 2022; 13:899657. [PMID: 35663933 PMCID: PMC9157571 DOI: 10.3389/fimmu.2022.899657] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Organ transplantation is the most effective treatment for end stage organ failure, but there are not enough organs to meet burgeoning demand. One potential solution to this organ shortage is xenotransplantation using pig tissues. Decades of progress in xenotransplantation, accelerated by the development of rapid genome editing tools, particularly the advent of CRISPR-Cas9 gene editing technologies, have enabled remarkable advances in kidney and heart xenotransplantation in pig-to-nonhuman primates. These breakthroughs in large animal preclinical models laid the foundation for three recent pig-to-human transplants by three different groups: two kidney xenografts in brain dead recipients deemed ineligible for transplant, and one heart xenograft in the first clinical grade study of pig-to-human transplantation. However, despite tremendous progress, recent data including the first clinical case suggest that gene-modification alone will not overcome all xenogeneic immunologic barriers, and thus an active and innovative immunologic strategy is required for successful xenotransplantation. This review highlights xenogeneic immunologic barriers, advances in gene editing, and tolerance-inducing strategies in pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Daniel L Eisenson
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States.,Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - Yu Hisadome
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States.,Department of Surgery, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
27
|
Jiang Z, Fu M, Zhu D, Wang X, Li N, Ren L, He J, Yang G. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine Growth Factor Rev 2022; 66:53-73. [PMID: 35690567 DOI: 10.1016/j.cytogfr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
To date, the wide application of cell-based biomaterials in tissue engineering and regeneration is remarkably hampered by immune rejection. Reducing the immunogenicity of cell-based biomaterials has become the latest direction in biomaterial research. Recently, genetically modified cell-based biomaterials with immunomodulatory genes have become a feasible solution to the immunogenicity problem. In this review, recent advances and future challenges of genetically modified immunomodulatory cell-based biomaterials are elaborated, including fabrication approaches, mechanisms of common immunomodulatory genes, application and, more importantly, current preclinical and clinical advances. The fabrication approaches can be categorized into commonly used (e.g., virus transfection) and newly developed approaches. The immunomodulatory mechanisms of representative genes involve complicated cell signaling pathways and metabolic activities. Wide application in curing multiple end-term diseases and replacing lifelong immunosuppressive therapy in multiple cell and organ transplantation models is demonstrated. Most significantly, practices of genetically modified organ transplantation have been conducted on brain-dead human decedent and even on living patients after a series of experiments on nonhuman primates. Nevertheless, uncertain biosecurity, nonspecific effects and overlooked personalization of current genetically modified immunomodulatory cell-based biomaterials are shortcomings that remain to be overcome.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
28
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
29
|
Feng H, Li T, Du J, Xia Q, Wang L, Chen S, Zhu L, Pan D, Wang Y, Chen G. Both Natural and Induced Anti-Sda Antibodies Play Important Roles in GTKO Pig-to-Rhesus Monkey Xenotransplantation. Front Immunol 2022; 13:849711. [PMID: 35422817 PMCID: PMC9004458 DOI: 10.3389/fimmu.2022.849711] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/07/2022] [Indexed: 01/30/2023] Open
Abstract
Sda, produced by the B4GALNT2 enzyme, has been recognized as an important xenoantigen for pig-to-nonhuman primate xenotransplantation. However, little is known about Sda expression in pigs and its immunogenicity in xenotransplantation. In this study, peripheral blood mononuclear cells (PBMCs) were isolated from wildtype, GTKO (with high, moderate, and low Sda expression), GTKO/β4GalNT2KO, GTKO/CMAHKO, or GTKO/CMAHKO/β4GalNT2KO pigs. Anti-pig IgM/IgG binding and complement-dependent cytotoxicity (CDC) to pig PBMCs was measured by flow cytometry using pooled rhesus monkey sera (n=20) or human sera (n=20). As compared to wild-type pigs (n=12), GTKO pigs (n=17) had a significantly higher mean level of Sda expression on PBMCs and showed a greater individual difference in expression. Both the overall binding of monkey serum IgM/IgG antibody to GTKO pig PBMCs and CDC against these PBMCs decreased significantly with a progressive reduction in Sda expression, showing a clear dose-effect relationship. Both the monkey serum antibody binding and CDC decreased significantly after the additional deletion of Sda, whereas the binding of human serum antibody and CDC against the GTKO pig PBMCs were markedly reduced after the deletion of Neu5Gc in the pigs. In addition, anti-Sda antibody accounted for > 50% of the induced anti-non-Gal antibody at the time of rejection in two rhesus monkeys that received GTKO/hCD55 pig kidney xenotransplantation, and the anti-Sda antibody showed significant cytotoxic activity against GTKO pig cells. We conclude that both natural and induced anti-Sda antibodies play important roles in GTKO pig-to-rhesus monkey xenotransplantation, thus providing further evidence for GTKO/β4GalNT2KO pigs as the preferred organ source for rhesus monkeys as a preclinical model of xenotransplantation.
Collapse
Affiliation(s)
- Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Tao Li
- Department of Organ Transplantation, The Transplantation Institute of Hainan Medical University, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Jiaxiang Du
- Genetic Engineering Department, Chengdu Clonorgan Biotechnology Co., Ltd, Chengdu, China
| | - Qiangbing Xia
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Lan Zhu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Dengke Pan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yi Wang
- Department of Organ Transplantation, The Transplantation Institute of Hainan Medical University, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
30
|
Feng H, Li T, Du J, Xia Q, Wang L, Chen S, Zhu L, Pan D, Wang Y, Chen G. Both Natural and Induced Anti-Sda Antibodies Play Important Roles in GTKO Pig-to-Rhesus Monkey Xenotransplantation. Front Immunol 2022. [DOI: 10.3389/fimmu.2022.849711
expr 981672748 + 872648996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Sda, produced by the B4GALNT2 enzyme, has been recognized as an important xenoantigen for pig-to-nonhuman primate xenotransplantation. However, little is known about Sda expression in pigs and its immunogenicity in xenotransplantation. In this study, peripheral blood mononuclear cells (PBMCs) were isolated from wildtype, GTKO (with high, moderate, and low Sda expression), GTKO/β4GalNT2KO, GTKO/CMAHKO, or GTKO/CMAHKO/β4GalNT2KO pigs. Anti-pig IgM/IgG binding and complement-dependent cytotoxicity (CDC) to pig PBMCs was measured by flow cytometry using pooled rhesus monkey sera (n=20) or human sera (n=20). As compared to wild-type pigs (n=12), GTKO pigs (n=17) had a significantly higher mean level of Sda expression on PBMCs and showed a greater individual difference in expression. Both the overall binding of monkey serum IgM/IgG antibody to GTKO pig PBMCs and CDC against these PBMCs decreased significantly with a progressive reduction in Sda expression, showing a clear dose-effect relationship. Both the monkey serum antibody binding and CDC decreased significantly after the additional deletion of Sda, whereas the binding of human serum antibody and CDC against the GTKO pig PBMCs were markedly reduced after the deletion of Neu5Gc in the pigs. In addition, anti-Sda antibody accounted for > 50% of the induced anti-non-Gal antibody at the time of rejection in two rhesus monkeys that received GTKO/hCD55 pig kidney xenotransplantation, and the anti-Sda antibody showed significant cytotoxic activity against GTKO pig cells. We conclude that both natural and induced anti-Sda antibodies play important roles in GTKO pig-to-rhesus monkey xenotransplantation, thus providing further evidence for GTKO/β4GalNT2KO pigs as the preferred organ source for rhesus monkeys as a preclinical model of xenotransplantation.
Collapse
|
31
|
Namula Z, Le QA, Wittayarat M, Lin Q, Takebayashi K, Hirata M, Do LTK, Tanihara F, Otoi T. Triple gene editing in porcine embryos using electroporation alone or in combination with microinjection. Vet World 2022; 15:496-501. [PMID: 35400948 PMCID: PMC8980404 DOI: 10.14202/vetworld.2022.496-501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/27/2022] [Indexed: 01/15/2023] Open
Abstract
Background and Aim: We previously developed the gene-editing by electroporation (EP) of Cas9 protein method, in which the CRISPR/Cas9 system was introduced into porcine in vitro fertilized (IVF) zygotes through EP to disrupt a target gene. This method should be further developed, and a combination of EP and MI methods should be evaluated in pigs. This study aimed to determine that a combination of microinjection (MI) and EP of CRISPR/Cas9 system could increase the rates of biallelic mutation for triple-gene knockout in porcine blastocysts. We targeted the pancreatic and duodenal homeobox1 (PDX1) gene using cytoplasmic MI 1 h before or after EP, which was used to edit alpha-1,3-galactosyltransferase (GGTA1) and cytidine 32 monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes in porcine zygotes.
Materials and Methods: We introduced guide RNAs targeting PDX1, GGTA1, and CMAH with the Cas9 protein into IVF zygotes (one-cell stage) through EP 10 h after the start of IVF (IVF; EP group) or in combination with MI (1 h before, MI-EP group, or after EP treatment EP-MI group) and evaluated the blastocyst formation rate and efficiency of target mutations in the resulting blastocysts.
Results: Our results revealed a significant reduction in the rate of blastocyst formation in the two groups that underwent MI before and after EP (MI-EP and EP-MI group), compared with that in the groups treated with EP alone (EP group) (p=0.0224 and p<0.0001, respectively) and control (p=0.0029 and p<0.0001, respectively). There was no significant difference in the total mutation rates among the treatment groups in the resulting blastocysts. As an only positive effect of additional MI treatment, the rate of blastocysts carrying biallelic mutations in at least one target gene was higher in the MI-EP group than in the EP group. However, there was no difference in the rates of embryos carrying biallelic mutations in more than 2 target genes.
Conclusion: These results indicate that although a combination of MI and EP does not improve the mutation efficiency or biallelic mutation for triple-gene knockout, MI treatment before EP is better to reduce mortality in porcine zygotic gene editing through a combination of MI and EP.
Collapse
Affiliation(s)
- Zhao Namula
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Guangdong, China
| | - Quynh Anh Le
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan
| | - Manita Wittayarat
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan
| | - Qingyi Lin
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan
| | - Koki Takebayashi
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan
| | - Maki Hirata
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan
| | - Lanh Thi Kim Do
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan; Department of Animal Theriogenology and Surgery, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, 100000 Hanoi, Vietnam
| | - Fuminori Tanihara
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 7793233 Tokushima, Japan; Center for Development of Advanced Medical Technology, Jichi Medical University, 3290498 Tochigi, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, 7793233 Tokushima, Japan; Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, 524088 Guangdong, China
| |
Collapse
|
32
|
Feng H, Li T, Du J, Xia Q, Wang L, Chen S, Zhu L, Pan D, Wang Y, Chen G. Both Natural and Induced Anti-Sda Antibodies Play Important Roles in GTKO Pig-to-Rhesus Monkey Xenotransplantation. Front Immunol 2022. [PMID: 35422817 PMCID: PMC9004458 DOI: 10.3389/fimmu.2022.849711&set/a 866800723+810249609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Sda, produced by the B4GALNT2 enzyme, has been recognized as an important xenoantigen for pig-to-nonhuman primate xenotransplantation. However, little is known about Sda expression in pigs and its immunogenicity in xenotransplantation. In this study, peripheral blood mononuclear cells (PBMCs) were isolated from wildtype, GTKO (with high, moderate, and low Sda expression), GTKO/β4GalNT2KO, GTKO/CMAHKO, or GTKO/CMAHKO/β4GalNT2KO pigs. Anti-pig IgM/IgG binding and complement-dependent cytotoxicity (CDC) to pig PBMCs was measured by flow cytometry using pooled rhesus monkey sera (n=20) or human sera (n=20). As compared to wild-type pigs (n=12), GTKO pigs (n=17) had a significantly higher mean level of Sda expression on PBMCs and showed a greater individual difference in expression. Both the overall binding of monkey serum IgM/IgG antibody to GTKO pig PBMCs and CDC against these PBMCs decreased significantly with a progressive reduction in Sda expression, showing a clear dose-effect relationship. Both the monkey serum antibody binding and CDC decreased significantly after the additional deletion of Sda, whereas the binding of human serum antibody and CDC against the GTKO pig PBMCs were markedly reduced after the deletion of Neu5Gc in the pigs. In addition, anti-Sda antibody accounted for > 50% of the induced anti-non-Gal antibody at the time of rejection in two rhesus monkeys that received GTKO/hCD55 pig kidney xenotransplantation, and the anti-Sda antibody showed significant cytotoxic activity against GTKO pig cells. We conclude that both natural and induced anti-Sda antibodies play important roles in GTKO pig-to-rhesus monkey xenotransplantation, thus providing further evidence for GTKO/β4GalNT2KO pigs as the preferred organ source for rhesus monkeys as a preclinical model of xenotransplantation.
Collapse
Affiliation(s)
- Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Tao Li
- Department of Organ Transplantation, The Transplantation Institute of Hainan Medical University, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Jiaxiang Du
- Genetic Engineering Department, Chengdu Clonorgan Biotechnology Co., Ltd, Chengdu, China
| | - Qiangbing Xia
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Lan Zhu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Dengke Pan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yi Wang
- Department of Organ Transplantation, The Transplantation Institute of Hainan Medical University, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
33
|
Cooper DKC, Hara H. "You cannot stay in the laboratory forever"*: Taking pig kidney xenotransplantation from the laboratory to the clinic. EBioMedicine 2021; 71:103562. [PMID: 34517284 PMCID: PMC8441149 DOI: 10.1016/j.ebiom.2021.103562] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Progress in life-supporting kidney transplantation in the genetically-engineered pig-to-nonhuman primate model has been encouraging, with pig kidneys sometimes supporting life for > 1 year. What steps need to be taken by (i) the laboratory team, and (ii) the clinical team to prepare for the first clinical trial? The major topics include (i) what currently-available genetic modifications are optimal to reduce the possibility of graft rejection, (ii) what immunosuppressive therapeutic regimen is optimal, and (iii) what steps need to be taken to minimize the risk of transfer of an infectious microorganism with the graft. We suggest that patients who are unlikely to live long enough to receive a kidney from a deceased human donor would benefit from the opportunity of a period of dialysis-free support by a pig kidney, and the experience gained would enable xenotransplantation to progress much more rapidly than if we remain in the laboratory.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, 752 Lyons-Harrison Research Building, 701 19th Street South, Birmingham, AL 35294, USA.
| | - Hidetaka Hara
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, 752 Lyons-Harrison Research Building, 701 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
34
|
Ladowski JM, Houp J, Hauptfeld-Dolejsek V, Javed M, Hara H, Cooper DKC. Aspects of histocompatibility testing in xenotransplantation. Transpl Immunol 2021; 67:101409. [PMID: 34015463 PMCID: PMC8197754 DOI: 10.1016/j.trim.2021.101409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022]
Abstract
Xenotransplantation, using genetically-modified pigs for clinical organ transplantation, is a solution to the organ shortage. The biggest barrier to clinical implementation is the antigenicity of pig cells. Humans possess preformed antibody to pig cells that initiate antibody-mediated rejection of pig organs in primates. Advances in genetic engineering have led to the development of a pig lacking the three known glycan xenoantigens (triple-knockout [TKO] pigs). A significant number of human sera demonstrate no antibody binding to TKO pig cells. As a result of the TKO pig's low antigen expression, survival of life-supporting pig organs in immunosuppressed nonhuman primates has significantly increased, and hope has been renewed for clinical trials of xenotransplantation. It is important to understand the context in which xenotransplantation's predecessor, allotransplantation, has been successful, and the steps needed for the success of xenotransplantation. Successful allotransplantation has been based on two main immunological approaches - (i) adequate immunosuppressive therapy, and (ii) careful histocompatibility matching. In vivo studies suggest that the available immunosuppressive regimens are adequate to suppress the human anti-pig cellular response. Methods to evaluate and screen patients for the first clinical xenotransplantation trial are the next challenge. The goal of this review is to summarize the history of histocompatibility testing, and the available tools that can be utilized to determine xenograft histocompatibility.
Collapse
Affiliation(s)
- Joseph M Ladowski
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julie Houp
- Histocompatibility Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mariyam Javed
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
35
|
CRISPR/Cas Technology in Pig-to-Human Xenotransplantation Research. Int J Mol Sci 2021; 22:ijms22063196. [PMID: 33801123 PMCID: PMC8004187 DOI: 10.3390/ijms22063196] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
CRISPR/Cas (clustered regularly interspaced short palindromic repeats linked to Cas nuclease) technology has revolutionized many aspects of genetic engineering research. Thanks to it, it became possible to study the functions and mechanisms of biology with greater precision, as well as to obtain genetically modified organisms, both prokaryotic and eukaryotic. The changes introduced by the CRISPR/Cas system are based on the repair paths of the single or double strand DNA breaks that cause insertions, deletions, or precise integrations of donor DNA. These changes are crucial for many fields of science, one of which is the use of animals (pigs) as a reservoir of tissues and organs for xenotransplantation into humans. Non-genetically modified animals cannot be used to save human life and health due to acute immunological reactions resulting from the phylogenetic distance of these two species. This review is intended to collect and summarize the advantages as well as achievements of the CRISPR/Cas system in pig-to-human xenotransplantation research. In addition, it demonstrates barriers and limitations that require careful evaluation before attempting to experiment with this technology.
Collapse
|
36
|
Bozso SJ, El-Andari R, Al-Adra D, Moon MC, Freed DH, Nagendran J, Nagendran J. A review of the immune response stimulated by xenogenic tissue heart valves. Scand J Immunol 2021; 93:e13018. [PMID: 33372305 DOI: 10.1111/sji.13018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/30/2020] [Accepted: 12/26/2020] [Indexed: 12/23/2022]
Abstract
Valvular heart disease continues to afflict millions of people around the world. In many cases, the only corrective treatment for valvular heart disease is valve replacement. Valve replacement options are currently limited, and the most common construct utilized are xenogenic tissue heart valves. The main limitation with the use of this valve type is the development of valvular deterioration. Valve deterioration results in intrinsic permanent changes in the valve structure, often leading to hemodynamic compromise and clinical symptoms of valve re-stenosis. A significant amount of research has been performed regarding the incidence of valve deterioration and determination of significant risk factors for its development. As a result, many believe that the underlying driver of valve deterioration is a chronic immune-mediated rejection process of the foreign xenogenic-derived tissue. The underlying mechanisms of how this occurs are an area of ongoing research and active debate. In this review, we provide an overview of the important components of the immune system and how they respond to xenografts. A review of the proposed mechanisms of xenogenic heart valve deterioration is provided including the immune response to xenografts. Finally, we discuss the role of strategies to combat valve degeneration such as preservation protocols, epitope modification and decellularization.
Collapse
Affiliation(s)
- Sabin J Bozso
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| | - Ryaan El-Andari
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - David Al-Adra
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Michael C Moon
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| | - Darren H Freed
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| | - Jayan Nagendran
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| | - Jeevan Nagendran
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
37
|
Niu D, Ma X, Yuan T, Niu Y, Xu Y, Sun Z, Ping Y, Li W, Zhang J, Wang T, Church GM. Porcine genome engineering for xenotransplantation. Adv Drug Deliv Rev 2021; 168:229-245. [PMID: 32275950 DOI: 10.1016/j.addr.2020.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The extreme shortage of human donor organs for treatment of patients with end-stage organ failures is well known. Xenotransplantation, which might provide unlimited organ supply, is a most promising strategy to solve this problem. Domestic pigs are regarded as ideal organ-source animals owing to similarity in anatomy, physiology and organ size to humans as well as high reproductive capacity and low maintenance cost. However, several barriers, which include immune rejection, inflammation and coagulative dysfunctions, as well as the cross-species transmission risk of porcine endogenous retrovirus, blocked the pig-to-human xenotransplantation. With the rapid development of genome engineering technologies and the potent immunosuppressive medications in recent years, these barriers could be eliminated through genetic modification of pig genome together with the administration of effective immunosuppressants. A number of candidate genes involved in the regulation of immune response, inflammation and coagulation have been explored to optimize porcine xenograft survival in non-human primate recipients. PERV inactivation in pigs has also been accomplished to firmly address the safety issue in pig-to-human xenotransplantation. Many encouraging preclinical milestones have been achieved with some organs surviving for years. Therefore, the clinical trials of some promising organs, such as islet, kidney and heart, are aimed to be launched in the near future.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Taoyan Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yifan Niu
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Yibin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhongxin Sun
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jufang Zhang
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
38
|
Yu XH, Deng WY, Jiang HT, Li T, Wang Y. Kidney xenotransplantation: Recent progress in preclinical research. Clin Chim Acta 2020; 514:15-23. [PMID: 33301767 DOI: 10.1016/j.cca.2020.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/23/2023]
Abstract
Kidney transplantation is the most effective treatment for end-stage renal disease, but is limited by the increasing shortage of deceased and living human donor kidneys. Xenotransplantation using pig organs provides the possibility to resolve the issue of organ supply shortage and is regarded as the next great medical revolution. In the past five years, there have been sequential advances toward the prolongation of life-supporting pig kidney xenograft survival in non-human primates, with the longest survival being 499 days. This progress is due to the growing availability of pigs with multi-layered genetic modifications to overcome the pathobiological barriers and the application of a costimulation blockade-based immunosuppressive regimen. These encouraging results bring the hope to initiate the clinical trials of pig kidney transplantation in the near future. In this review, we summarized the latest advances regarding pig kidney xenotransplantation in preclinical models to provide a basis for future investigation and potential clinical translation.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China
| | - Wen-Yi Deng
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China
| | - Hong-Tao Jiang
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China
| | - Tao Li
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China
| | - Yi Wang
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China.
| |
Collapse
|
39
|
Pierson RN, Fishman JA, Lewis GD, D'Alessandro DA, Connolly MR, Burdorf L, Madsen JC, Azimzadeh AM. Progress Toward Cardiac Xenotransplantation. Circulation 2020; 142:1389-1398. [PMID: 33017208 DOI: 10.1161/circulationaha.120.048186] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Consistent survival of life-supporting pig heart xenograft recipients beyond 90 days was recently reported using genetically modified pigs and a clinically applicable drug treatment regimen. If this remarkable achievement proves reproducible, published benchmarks for clinical translation of cardiac xenografts appear to be within reach. Key mechanistic insights are summarized here that informed recent pig design and therapeutic choices, which together appear likely to enable early clinical translation.
Collapse
Affiliation(s)
- Richard N Pierson
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Jay A Fishman
- Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Gregory D Lewis
- Division of Cardiology, Department of Medicine (G.D.L.), Massachusetts General Hospital and Harvard University, Boston
| | - David A D'Alessandro
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Margaret R Connolly
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Lars Burdorf
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Joren C Madsen
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Agnes M Azimzadeh
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| |
Collapse
|
40
|
Evaluation of the CRISPR/Cas9 Genetic Constructs in Efficient Disruption of Porcine Genes for Xenotransplantation Purposes Along with an Assessment of the Off-Target Mutation Formation. Genes (Basel) 2020; 11:genes11060713. [PMID: 32604937 PMCID: PMC7349392 DOI: 10.3390/genes11060713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing life expectancy of humans has led to an increase in the number of patients with chronic diseases and organ failure. However, the imbalance between the supply and the demand for human organs is a serious problem in modern transplantology. One of many solutions to overcome this problem is the use of xenotransplantation. The domestic pig (Sus scrofa domestica) is currently considered as the most suitable for human organ procurement. However, there are discrepancies between pigs and humans that lead to the creation of immunological barriers preventing the direct xenograft. The introduction of appropriate modifications to the pig genome to prevent xenograft rejection is crucial in xenotransplantation studies. In this study, porcine GGTA1, CMAH, β4GalNT2, vWF, ASGR1 genes were selected to introduce genetic modifications. The evaluation of three selected gRNAs within each gene was obtained, which enabled the selection of the best site for efficient introduction of changes. Modifications were examined after nucleofection of porcine primary kidney fibroblasts with CRISPR/Cas9 system genetic constructs, followed by the tracking of indels by decomposition (TIDE) analysis. In addition, off-target analysis was carried out for selected best gRNAs using the TIDE tool, which is new in the research conducted so far and shows the utility of this tool in these studies.
Collapse
|
41
|
Shu S, Ren J, Song J. Cardiac xenotransplantation: a promising way to treat advanced heart failure. Heart Fail Rev 2020; 27:71-91. [DOI: 10.1007/s10741-020-09989-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Jin C, Cherian RM, Liu J, Playà-Albinyana H, Galli C, Karlsson NG, Breimer ME, Holgersson J. Identification by mass spectrometry and immunoblotting of xenogeneic antigens in the N- and O-glycomes of porcine, bovine and equine heart tissues. Glycoconj J 2020; 37:485-498. [PMID: 32542517 PMCID: PMC7329767 DOI: 10.1007/s10719-020-09931-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/06/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Animal bioprosthetic heart valves (BHV) are used to replace defective valves in patients with valvular heart disease. Especially young BHV recipients may experience a structural valve deterioration caused by an immune reaction in which α-Gal and Neu5Gc are potential target antigens. The expression of these and other carbohydrate antigens in animal tissues used for production of BHV was explored. Protein lysates of porcine aortic and pulmonary valves, and porcine, bovine and equine pericardia were analyzed by Western blotting using anti-carbohydrate antibodies and lectins. N-glycans were released by PNGase F digestion and O-glycans by β-elimination. Released oligosaccharides were analyzed by liquid chromatography – tandem mass spectrometry. In total, 102 N-glycans and 40 O-glycans were identified in animal heart tissue lysates. The N- and O-glycan patterns were different between species. α-Gal and Neu5Gc were identified on both N- and O-linked glycans, N,N´-diacetyllactosamine (LacdiNAc) on N-glycans only and sulfated O-glycans. The relative amounts of α-Gal-containing N-glycans were higher in bovine compared to equine and porcine pericardia. In contrast to the restricted number of proteins carrying α-Gal and LacdiNAc, the distribution of proteins carrying Neu5Gc-determinants varied between species and between different tissues of the same species. Porcine pericardium carried the highest level of Neu5Gc-sialylated O-glycans, and bovine pericardium the highest level of Neu5Gc-sialylated N-glycans. The identified N- and O-linked glycans, some of which may be immunogenic and remain in BHVs manufactured for clinical use, could direct future genetic engineering to prevent glycan expression rendering the donor tissues less immunogenic in humans.
Collapse
Affiliation(s)
- Chunsheng Jin
- Department of Medical Biochemistry, Institute of Biomedicine Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Reeja Maria Cherian
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Jining Liu
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heribert Playà-Albinyana
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biochemistry and Biotechnology, Faculty of Chemistry, Rovira i Virgili University, Tarragona, Spain
| | - Cesare Galli
- Avantea Laboratory of Reproductive Technologies, Cremona, Italy.,Avantea Foundation, Cremona, Italy
| | - Niclas G Karlsson
- Department of Medical Biochemistry, Institute of Biomedicine Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael E Breimer
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Jan Holgersson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
43
|
Lo PC, Eguchi H, Sakai R, Maeda A, Kogata S, Toyama C, Yoneyama T, Ueno T, Tazuke Y, Watababe M, Nagashima H, Ikawa M, Okuyama H, Miyagawa S. Reactions to Porcine Cells With or Without β4GalNT2. Transplant Proc 2020; 52:1916-1918. [PMID: 32482451 DOI: 10.1016/j.transproceed.2020.01.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/22/2020] [Indexed: 10/24/2022]
Abstract
β-1,4-acetyl-galactosaminyltransferase 2 (β4GalNT2)-knockout (KO) pigs have been produced and reveal less antigenicity to both humans and nonhuman primates (NHP). In this study, we checked the antibody response of human and NHP sera to pig cells with or without this gene. The β4GalNT2-KO porcine endothelial cell (PEC), clone #11, was first established using the plasmid pX330 expressing hCas9 and sgRNA for β4GalNT2. The glycoantigen feature on the PEC was then studied. The Sda antigen, synthesized by β4GalNT2, was slightly ascertained on wild-type (WT)-PEC, and it became null in clone #11. The PEC response to lectins was also assessed, such as Dolichos biflorus agglutinin, soybean agglutinin, and Wisteria floribunda agglutinin. All of these lectins reduced the binding reaction to clone #11 as compared with WT-PEC. Next, several human and cynomolgus sera were checked for their natural antibody reaction to both WT-PEC and clone #11. In addition, human monocyte-mediated PEC phagocytosis was assessed. However, the reduction in phagocytosis to clone #11 was not significant. Human sera showed less reactivity to the changes in antigenicity of PEC by knocking out the β4GalNT2 than cynomolgus sera.
Collapse
Affiliation(s)
- Pei-Chi Lo
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Rieko Sakai
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohisa Yoneyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takehisa Ueno
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuko Tazuke
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masahito Watababe
- International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| | - Masahiko Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan; Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Considerable advancements have been made in the field of cardiac xenotransplantation in the recent years, achieving prolonged survival of the life-supporting cardiac xenograft and paving the way toward first clinical implications. RECENT FINDINGS The combination of genetic modifications and novel immunosuppression with costimulation blockade, as well as supporting therapy with antiinflammatory treatment, growth prevention, and adaptation of the heart procurement system to reduce myocardial ischemia and reperfusion injury improves the overall cardiac xenograft function and overall survival in nonhuman primates. Through the newly identified xenoantigens and novel gene-editing techniques, further genetic modification of the porcine xenografts should be explored, to ensure clinical safety. SUMMARY With continuous progress in all fields of cardiac xenotransplantation, first clinical use in humans seems accomplishable. To ensure the clinical safety and to conform to the ethical regulations, further investigation of the infectious and immunological implications on humans should be explored prior to first clinical use. The first clinical use of cardiac xenotransplantation will be limited to only highly selected patients.
Collapse
|
45
|
Tector AJ, Mosser M, Tector M, Bach JM. The Possible Role of Anti-Neu5Gc as an Obstacle in Xenotransplantation. Front Immunol 2020; 11:622. [PMID: 32351506 PMCID: PMC7174778 DOI: 10.3389/fimmu.2020.00622] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Seventy to ninety percentage of preformed xenoreactive antibodies in human serum bind to the galactose-α(1,3)-galactose Gal epitope, and the creation of Gal knockout (KO) pigs has eliminated hyperacute rejection as a barrier to xenotransplantation. Now other glycan antigens are barriers to move ahead with xenotransplantation, and the N-glycolyl neuraminic acid, Neu5Gc (or Hanganutziu-Deicher antigen), is also a major pig xenoantigen. Humans have anti-Neu5Gc antibodies. Several data indicate a strong immunogenicity of Neu5Gc in humans that may contribute to an important part in antibody-dependent injury to pig xenografts. Pig islets express Neu5Gc, which reacted with diet-derived human antibodies and mice deleted for Neu5Gc reject pancreatic islets from wild-type counterpart. However, Neu5Gc positive heart were not rejected in Neu5Gc KO mice indicating that the role of Neu5Gc-specific antibodies has to be nuanced and depend of the graft situation parameters (organ/tissue, recipient, implication of other glycan antigens). Recently generated Gal/Neu5Gc KO pigs eliminate the expression of Gal and Neu5Gc, and improve the crossmatch of humans with the pig. This review summarizes the current and recent experimental and (pre)clinical data on the Neu5Gc immunogenicity and emphasize of the potential impact of anti-Neu5Gc antibodies in limiting xenotransplantation in humans.
Collapse
Affiliation(s)
- Alfred Joseph Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Mathilde Mosser
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| | - Matthew Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Jean-Marie Bach
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| |
Collapse
|
46
|
Abstract
There is a well-known worldwide shortage of deceased human donor organs for clinical transplantation. The transplantation of organs from genetically engineered pigs may prove an alternative solution. In the past 5 years, there have been sequential advances that have significantly increased pig graft survival in nonhuman primates. This progress has been associated with (1) the availability of increasingly sophisticated genetically engineered pigs; (2) the introduction of novel immunosuppressive agents, particularly those that block the second T-cell signal (costimulation blockade); (3) a better understanding of the inflammatory response to pig xenografts; and (4) increasing experience in the management of nonhuman primates with pig organ or cell grafts. The range of investigations required in experimental studies has increased. The standard immunologic assays are still carried out, but increasingly investigations aimed toward other pathobiologic barriers (e.g., coagulation dysregulation and inflammation) have become more important in determining injury to the graft.Now that prolonged graft survival, extending to months or even years, is increasingly being obtained, the function of the grafts can be more reliably assessed. If the source pigs are bred and housed under biosecure isolation conditions, and weaned early from the sow, most microorganisms can be eradicated from the herd. The potential risk of porcine endogenous retrovirus (PERV) infection remains unknown, but is probably small. Attention is being directed toward the selection of patients for the first clinical trials of xenotransplantation.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
47
|
Cooper DKC, Hara H, Iwase H, Yamamoto T, Jagdale A, Kumar V, Mannon RB, Hanaway MJ, Anderson DJ, Eckhoff DE. Clinical Pig Kidney Xenotransplantation: How Close Are We? J Am Soc Nephrol 2019; 31:12-21. [PMID: 31792154 DOI: 10.1681/asn.2019070651] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patients with ESKD who would benefit from a kidney transplant face a critical and continuing shortage of kidneys from deceased human donors. As a result, such patients wait a median of 3.9 years to receive a donor kidney, by which time approximately 35% of transplant candidates have died while waiting or have been removed from the waiting list. Those of blood group B or O may experience a significantly longer waiting period. This problem could be resolved if kidneys from genetically engineered pigs offered an alternative with an acceptable clinical outcome. Attempts to accomplish this have followed two major paths: deletion of pig xenoantigens, as well as insertion of "protective" human transgenes to counter the human immune response. Pigs with up to nine genetic manipulations are now available. In nonhuman primates, administering novel agents that block the CD40/CD154 costimulation pathway, such as an anti-CD40 mAb, suppresses the adaptive immune response, leading to pig kidney graft survival of many months without features of rejection (experiments were terminated for infectious complications). In the absence of innate and adaptive immune responses, the transplanted pig kidneys have generally displayed excellent function. A clinical trial is anticipated within 2 years. We suggest that it would be ethical to offer a pig kidney transplant to selected patients who have a life expectancy shorter than the time it would take for them to obtain a kidney from a deceased human donor. In the future, the pigs will also be genetically engineered to control the adaptive immune response, thus enabling exogenous immunosuppressive therapy to be significantly reduced or eliminated.
Collapse
Affiliation(s)
| | - Hidetaka Hara
- Division of Transplantation, Department of Surgery and
| | - Hayato Iwase
- Division of Transplantation, Department of Surgery and
| | | | | | - Vineeta Kumar
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Roslyn Bernstein Mannon
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | |
Collapse
|
48
|
Porcine antiviral activity is increased by CRISPRa-SAM system. Biosci Rep 2019; 39:BSR20191496. [PMID: 31371630 PMCID: PMC6702355 DOI: 10.1042/bsr20191496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 12/02/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat activation-synergistic activation mediator system (CRISPRa-SAM) has been efficiently used to up-regulate the targeted genes in human and mouse. But it is not known whether the CRISPRa-SAM system can be used against porcine disease because its two important transcriptional activation domains (P65 and heat shock transcription factor 1 (HSF1)) are from mouse and human, respectively. Pig is one of the most important meat sources, porcine viral infectious diseases cause massive economic losses to the swine industry and threaten the public health. We aimed to investigate whether the CRISPRa-SAM system could increase porcine antiviral activity by mediating two pig-specific target genes (Mx2 and β1,4 N-acetylgalactosaminyltransferase (B4galnt2)). First, we constructed PK-15 and IPEC-J2 cell lines expressing nuclease-deficient Cas9 (dCas9)-vp64 and MS2-P65-HSF1 stably. Next, in these two cell models, we activated Mx2 and B4galnt2 expression through CRISPRa-SAM system. Antiviral activity to PRV or H9N2 was improved in PK-15 cells where Mx2 or B4galnt2 was activated. Altogether, our results demonstrated the potential of CRISPRa-SAM system as a powerful tool for activating pig genes and improving porcine antiviral activity.
Collapse
|
49
|
Forneris N, Burlak C. Xenotransplantation literature update, May/June 2019. Xenotransplantation 2019; 26:e12547. [PMID: 31392783 DOI: 10.1111/xen.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Nicole Forneris
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Christopher Burlak
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
50
|
Hawkins RB, Ghanta RK. Mammalian meat allergy and advances in bioprosthetic valve technology. J Thorac Cardiovasc Surg 2019; 154:1327-1328. [PMID: 28918923 DOI: 10.1016/j.jtcvs.2017.05.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/23/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Robert B Hawkins
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Va
| | - Ravi K Ghanta
- Division of Cardiothoracic Surgery, Department of Surgery, Baylor College of Medicine, Houston, Tex
| |
Collapse
|