1
|
Patterson AS, Dugdale J, Koleilat A, Krauss A, Hernandez-Herrera GA, Wallace JG, Petree C, Varshney GK, Schimmenti LA. Vital Dye Uptake of YO-PRO-1 and DASPEI Depends Upon Mechanoelectrical Transduction Function in Zebrafish Hair Cells. J Assoc Res Otolaryngol 2024; 25:531-543. [PMID: 39433714 DOI: 10.1007/s10162-024-00967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
PURPOSE Vital dyes allow the visualization of cells in vivo without causing tissue damage, making them a useful tool for studying lateral line and inner ear hair cells in living zebrafish and other vertebrates. FM1-43, YO-PRO-1, and DASPEI are three vital dyes commonly used for hair cell visualization. While it has been established that FM1-43 enters hair cells of zebrafish and other organisms through the mechanoelectrical transduction (MET) channel, the mechanism of entry into hair cells for YO-PRO-1 and DASPEI has not been established despite widespread use. We hypothesize that YO-PRO-1 and DASPEI entry into zebrafish hair cells is MET channel uptake dependent similar to FM1-43. METHODS To test this hypothesis, we used both genetic and pharmacologic means to block MET channel function. Genetic based MET channel assays were conducted with two different mechanotransduction defective zebrafish lines, specifically the myo7aa-/- loss of function mutant tc320b (p.Y846X) and cdh23-/- loss of function mutant (c.570-571del). Pharmacologic assays were performed with Gadolinium(III) Chloride (Gad(III)), a compound that can temporarily block mechanotransduction activity. RESULTS Five-day post fertilization (5dpf) myo7aa-/- and cdh23-/- larvae incubated with FM1-43, YO-PRO-1, and DASPEI all showed nearly absent uptake of each vital dye. Treatment of wildtype zebrafish larvae with Gad(III) significantly reduces uptake of FM1-43, YO-PRO-1, and DASPEI vital dyes. CONCLUSION These results indicate that YO-PRO-1 and DASPEI entry into zebrafish hair cells is MET channel dependent similar to FM1-43. This knowledge expands the repertoire of vital dyes that can be used to assess mechanotransduction and MET channel function in zebrafish and other vertebrate models of hair cell function.
Collapse
Affiliation(s)
- Ashley Scott Patterson
- Initiative for Maximizing Student Development Program, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- University of Wisconsin School of Medicine & Public Health, Medical Scientist Training Program, 2207 Health Sciences Learning Center, 750 Highland Avenue, Madison, WI, 53705, USA
| | - Joseph Dugdale
- Department of Otorhinolaryngology, Head and Neck Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Alaa Koleilat
- Mayo Clinic Graduate School of Biomedical Science, 200 First Street SW, Rochester, MN, 55905, USA
- Knight Molecular Diagnostic Laboratory, Oregon Health Sciences University, 2525 SW Third Avenue, Portland, Oregon, 97201, USA
| | - Anna Krauss
- Initiative for Maximizing Student Development Program, Mayo Clinic, Rochester, MN, USA
- The Learning Center for the Deaf, 848 Central St, Framingham, MA, 01701, USA
| | - Gabriel A Hernandez-Herrera
- Mayo Clinic Graduate School of Biomedical Sciences, 200 First Street SW, Rochester, MN, 55905, USA
- University of Puerto Rico School of Medicine, José Celso Barbosa, 9WWG+H5P, P.º Dr, San Juan, PR, 00921, USA
| | - Jasmine G Wallace
- Summer Research Fellowship Program, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Current Address: Oakwood University, 7000 Adventist Blvd NW, Huntsville, AL, 35896, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, 825 NE 13Th St, Oklahoma City, OK, 73104, USA
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, 825 NE 13Th St, Oklahoma City, OK, 73104, USA
| | - Lisa A Schimmenti
- Departments of Clinical Genomics, Otorhinolaryngology, Head and Neck Surgery, Ophthalmology, and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Magpali L, Ramos E, Picorelli A, Freitas L, Nery MF. Molecular evolution of toothed whale genes reveals adaptations to echolocating in different environments. BMC Genomics 2024; 25:1049. [PMID: 39506652 PMCID: PMC11542384 DOI: 10.1186/s12864-024-10910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Echolocation was a key development in toothed whale evolution, enabling their adaptation and diversification across various environments. Previous bioacoustic and morphological studies suggest that environmental pressures have influenced the evolution of echolocation in toothed whales. This hypothesis demands further investigation, especially regarding the molecular mechanisms involved in the adaptive radiation of toothed whales across multiple habitats. Here we show that the coding sequences of four hearing genes involved in echolocation (CDH23, prestin, TMC1, and CLDN14) have different signatures of molecular evolution among riverine, coastal, and oceanic dolphins, suggesting that the evolutionary constraints of these habitats shaped the underlying genetic diversity of the toothed whale sonar. RESULTS Our comparative analysis across 37 odontocete species revealed patterns of accelerated evolution within coastal and riverine lineages, supporting the hypothesis that shallow habitats pose specific selective pressures to sonar propagation, which are not found in the deep ocean. All toothed whales with genes evolving under positive selection are shallow coastal species, including three species that have recently diverged from freshwater lineages (Cephalorhynchus commersonii, Sotalia guianensis, and Orcaella heinsohni - CDH23), and three species that operate specialized Narrow Band High Frequency (NBHF) Sonars (Phocoena sinus - prestin, Neophocaena phocaenoides - TMC1 and Cephalorhynchus commersonii - CDH23). For river dolphins and deep-diving toothed whales, we found signatures of positive selection and molecular convergence affecting specific sites on CDH23, TMC1, and prestin. Positively selected sites (PSS) were different in number, identity, and substitution rates (dN/dS) across riverine, coastal, and oceanic toothed whales. CONCLUSION Here we shed light on potential molecular mechanisms underlying the diversification of toothed whale echolocation. Our results suggest that toothed whale hearing genes changed under different selective pressures in coastal, riverine, and oceanic environments.
Collapse
Affiliation(s)
- L Magpali
- Laboratório de Genômica Evolutiva, Departamento de Genética, Microbiologia e Imunologia, Universidade Estadual de Campinas (Unicamp), Evolução, Campinas, São Paulo, Brasil
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - E Ramos
- Laboratório de Genômica Evolutiva, Departamento de Genética, Microbiologia e Imunologia, Universidade Estadual de Campinas (Unicamp), Evolução, Campinas, São Paulo, Brasil
- Zoological Institute, Department of Environmental Science, University of Basel, Basel, Switzerland
- Natural History Museum Basel, Basel, Switzerland
| | - A Picorelli
- Laboratório de Genômica Evolutiva, Departamento de Genética, Microbiologia e Imunologia, Universidade Estadual de Campinas (Unicamp), Evolução, Campinas, São Paulo, Brasil
| | - L Freitas
- Laboratório de Genômica Evolutiva, Departamento de Genética, Microbiologia e Imunologia, Universidade Estadual de Campinas (Unicamp), Evolução, Campinas, São Paulo, Brasil
| | - M F Nery
- Laboratório de Genômica Evolutiva, Departamento de Genética, Microbiologia e Imunologia, Universidade Estadual de Campinas (Unicamp), Evolução, Campinas, São Paulo, Brasil.
| |
Collapse
|
3
|
Teraoka M, Hato N, Inufusa H, You F. Role of Oxidative Stress in Sensorineural Hearing Loss. Int J Mol Sci 2024; 25:4146. [PMID: 38673731 PMCID: PMC11050000 DOI: 10.3390/ijms25084146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Hearing is essential for communication, and its loss can cause a serious disruption to one's social life. Hearing loss is also recognized as a major risk factor for dementia; therefore, addressing hearing loss is a pressing global issue. Sensorineural hearing loss, the predominant type of hearing loss, is mainly due to damage to the inner ear along with a variety of pathologies including ischemia, noise, trauma, aging, and ototoxic drugs. In addition to genetic factors, oxidative stress has been identified as a common mechanism underlying several cochlear pathologies. The cochlea, which plays a major role in auditory function, requires high-energy metabolism and is, therefore, highly susceptible to oxidative stress, particularly in the mitochondria. Based on these pathological findings, the potential of antioxidants for the treatment of hearing loss has been demonstrated in several animal studies. However, results from human studies are insufficient, and future clinical trials are required. This review discusses the relationship between sensorineural hearing loss and reactive oxidative species (ROS), with particular emphasis on age-related hearing loss, noise-induced hearing loss, and ischemia-reperfusion injury. Based on these mechanisms, the current status and future perspectives of ROS-targeted therapy for sensorineural hearing loss are described.
Collapse
Affiliation(s)
- Masato Teraoka
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan;
| | - Naohito Hato
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan;
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
| | - Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
| |
Collapse
|
4
|
Li Y, Guo Z, Zhao X, Liu S, Chen Z, Dong WF, Wang S, Sun YL, Wu X. An all-optical multidirectional mechano-sensor inspired by biologically mechano-sensitive hair sensilla. Nat Commun 2024; 15:2906. [PMID: 38575578 PMCID: PMC10994919 DOI: 10.1038/s41467-024-47299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
Mechano-sensitive hair-like sensilla (MSHS) have an ingenious and compact three-dimensional structure and have evolved widely in living organisms to perceive multidirectional mechanical signals. Nearly all MSHS are iontronic or electronic, including their biomimetic counterparts. Here, an all-optical mechano-sensor mimicking MSHS is prototyped and integrated based on a thin-walled glass microbubble as a flexible whispering-gallery-mode resonator. The minimalist integrated device has a good directionality of 32.31 dB in the radial plane of the micro-hair and can detect multidirectional displacements and forces as small as 70 nm and 0.9 μN, respectively. The device can also detect displacements and forces in the axial direction of the micro-hair as small as 2.29 nm and 3.65 μN, respectively, and perceive different vibrations. This mechano-sensor works well as a real-time, directional mechano-sensory whisker in a quadruped cat-type robot, showing its potential for innovative mechano-transduction, artificial perception, and robotics applications.
Collapse
Affiliation(s)
- Yuxiang Li
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Zhihe Guo
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Xuyang Zhao
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Sheng Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | | | - Wen-Fei Dong
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Shixiang Wang
- School of Information Science and Technology, Fudan University, Shanghai, China.
| | - Yun-Lu Sun
- School of Information Science and Technology, Fudan University, Shanghai, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Xiang Wu
- School of Information Science and Technology, Fudan University, Shanghai, China.
- State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Chen J, Gao D, Sun L, Yang J. Kölliker’s organ-supporting cells and cochlear auditory development. Front Mol Neurosci 2022; 15:1031989. [PMID: 36304996 PMCID: PMC9592740 DOI: 10.3389/fnmol.2022.1031989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The Kölliker’s organ is a transient cellular cluster structure in the development of the mammalian cochlea. It gradually degenerates from embryonic columnar cells to cuboidal cells in the internal sulcus at postnatal day 12 (P12)–P14, with the cochlea maturing when the degeneration of supporting cells in the Kölliker’s organ is complete, which is distinct from humans because it disappears at birth already. The supporting cells in the Kölliker’s organ play a key role during this critical period of auditory development. Spontaneous release of ATP induces an increase in intracellular Ca2+ levels in inner hair cells in a paracrine form via intercellular gap junction protein hemichannels. The Ca2+ further induces the release of the neurotransmitter glutamate from the synaptic vesicles of the inner hair cells, which subsequently excite afferent nerve fibers. In this way, the supporting cells in the Kölliker’s organ transmit temporal and spatial information relevant to cochlear development to the hair cells, promoting fine-tuned connections at the synapses in the auditory pathway, thus facilitating cochlear maturation and auditory acquisition. The Kölliker’s organ plays a crucial role in such a scenario. In this article, we review the morphological changes, biological functions, degeneration, possible trans-differentiation of cochlear hair cells, and potential molecular mechanisms of supporting cells in the Kölliker’s organ during the auditory development in mammals, as well as future research perspectives.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| |
Collapse
|
6
|
Levic S. SK Current, Expressed During the Development and Regeneration of Chick Hair Cells, Contributes to the Patterning of Spontaneous Action Potentials. Front Cell Neurosci 2022; 15:766264. [PMID: 35069114 PMCID: PMC8770932 DOI: 10.3389/fncel.2021.766264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Chick hair cells display calcium (Ca2+)-sensitive spontaneous action potentials during development and regeneration. The role of this activity is unclear but thought to be involved in establishing proper synaptic connections and tonotopic maps, both of which are instrumental to normal hearing. Using an electrophysiological approach, this work investigated the functional expression of Ca2+-sensitive potassium [IK(Ca)] currents and their role in spontaneous electrical activity in the developing and regenerating hair cells (HCs) in the chick basilar papilla. The main IK(Ca) in developing and regenerating chick HCs is an SK current, based on its sensitivity to apamin. Analysis of the functional expression of SK current showed that most dramatic changes occurred between E8 and E16. Specifically, there is a developmental downregulation of the SK current after E16. The SK current gating was very sensitive to the availability of intracellular Ca2+ but showed very little sensitivity to T-type voltage-gated Ca2+ channels, which are one of the hallmarks of developing and regenerating hair cells. Additionally, apamin reduced the frequency of spontaneous electrical activity in HCs, suggesting that SK current participates in patterning the spontaneous electrical activity of HCs.
Collapse
Affiliation(s)
- Snezana Levic
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
7
|
Moeinvaziri F, Shojaei A, Haghparast N, Yakhkeshi S, Nemati S, Hassani SN, Baharvand H. Towards maturation of human otic hair cell-like cells in pluripotent stem cell-derived organoid transplants. Cell Tissue Res 2021; 386:321-333. [PMID: 34319434 DOI: 10.1007/s00441-021-03510-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 07/14/2021] [Indexed: 12/21/2022]
Abstract
Human otic organoids generated from pluripotent stem cells (PSCs) provide a promising platform for modeling, drug testing, and cell-based therapies of inner ear diseases. However, providing the appropriate niche that resembles inner ear development and its vasculature to generate otic organoids is less conspicuous. Here, we devised a strategy to enhance maturation of otic progenitor cells toward human hair cell-like cells (HCLCs) by assembling three-dimensional (3D) otic organoids that contain human PSC-derived otic cells, endothelial cells, and mesenchymal stem cells (MSCs). Heterotopic implantation of otic organoids, designated as grafted otic organoids (GOs), in ex ovo chick embryo chorioallantoic membrane (CAM) stimulated maturation of the HCLCs. Functional analysis revealed the presence of voltage-gated potassium currents without detectable sodium currents in these cells in the GOs. Our results demonstrated that implantation of 3D heterotypic cell mixtures of otic organoids improved maturation of human HCLCs. This GO-derived HCLCs could be an attractive source for drug discovery and other biomedical applications.
Collapse
Affiliation(s)
- Farideh Moeinvaziri
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Newsha Haghparast
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shadman Nemati
- Department of Otolaryngology and Head & Neck Surgery, School of Medicine, Otorhinolaryngology Research Center, Amir Al Momenin Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran. .,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
8
|
Jeng JY, Carlton A, Johnson SL, Brown SDM, Holley MC, Bowl MR, Marcotti W. Biophysical and morphological changes in inner hair cells and their efferent innervation in the ageing mouse cochlea. J Physiol 2021; 599:269-287. [PMID: 33179774 PMCID: PMC7612127 DOI: 10.1113/jp280256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/01/2020] [Indexed: 09/18/2023] Open
Abstract
KEY POINTS Age-related hearing loss is a progressive hearing loss involving environmental and genetic factors, leading to a decrease in hearing sensitivity, threshold and speech discrimination. We compared age-related changes in inner hair cells (IHCs) between four mouse strains with different levels of progressive hearing loss. The surface area of apical coil IHCs (9-12 kHz cochlear region) decreases by about 30-40% with age. The number of BK channels progressively decreases with age in the IHCs from most mouse strains, but the basolateral membrane current profile remains unchanged. The mechanoelectrical transducer current is smaller in mice harbouring the hypomorphic Cdh23 allele Cdh23ahl (C57BL/6J; C57BL/6NTac), but not in Cdh23-repaired mice (C57BL/6NTacCdh23+ ), indicating that it could contribute to the different progression of hearing loss among mouse strains. The degree of efferent rewiring onto aged IHCs, most likely coming from the lateral olivocochlea fibres, was correlated with hearing loss in the different mouse strains. ABSTRACT Inner hair cells (IHCs) are the primary sensory receptors of the mammalian cochlea, transducing acoustic information into electrical signals that are relayed to the afferent neurons. Functional changes in IHCs are a potential cause of age-related hearing loss. Here, we have investigated the functional characteristics of IHCs from early-onset hearing loss mice harbouring the allele Cdh23ahl (C57BL/6J and C57BL/6NTac), from late-onset hearing loss mice (C3H/HeJ), and from mice corrected for the Cdh23ahl mutation (C57BL/6NTacCdh23+ ) with an intermediate hearing phenotype. There was no significant loss of IHCs in the 9-12 kHz cochlear region up to at least 15 months of age, but their surface area decreased progressively by 30-40% starting from ∼6 months of age. Although the size of the BK current decreased with age, IHCs retained a normal KCNQ4 current and resting membrane potential. These basolateral membrane changes were most severe for C57BL/6J and C57BL/6NTac, less so for C57BL/6NTacCdh23+ and minimal or absent in C3H/HeJ mice. We also found that lateral olivocochlear (LOC) efferent fibres re-form functional axon-somatic connections with aged IHCs, but this was seen only sporadically in C3H/HeJ mice. The efferent post-synaptic SK2 channels appear prior to the establishment of the efferent contacts, suggesting that IHCs may play a direct role in re-establishing the LOC-IHC synapses. Finally, we showed that the size of the mechanoelectrical transducer (MET) current from IHCs decreased significantly with age in mice harbouring the Cdh23ahl allele but not in C57BL/6NTacCdh23+ mice, indicating that the MET apparatus directly contributes to the progression of age-related hearing loss.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Adam Carlton
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Steve D. M. Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
9
|
Purinergic Signaling Controls Spontaneous Activity in the Auditory System throughout Early Development. J Neurosci 2020; 41:594-612. [PMID: 33303678 DOI: 10.1523/jneurosci.2178-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Spontaneous bursts of electrical activity in the developing auditory system arise within the cochlea before hearing onset and propagate through future sound-processing circuits of the brain to promote maturation of auditory neurons. Studies in isolated cochleae revealed that this intrinsically generated activity is initiated by ATP release from inner supporting cells (ISCs), resulting in activation of purinergic autoreceptors, K+ efflux, and subsequent depolarization of inner hair cells. However, it is unknown when this activity emerges or whether different mechanisms induce activity during distinct stages of development. Here we show that spontaneous electrical activity in mouse cochlea from both sexes emerges within ISCs during the late embryonic period, preceding the onset of spontaneous correlated activity in inner hair cells and spiral ganglion neurons, which begins at birth and follows a base to apex developmental gradient. At all developmental ages, pharmacological inhibition of P2Y1 purinergic receptors dramatically reduced spontaneous activity in these three cell types. Moreover, in vivo imaging within the inferior colliculus revealed that auditory neurons within future isofrequency zones exhibit coordinated neural activity at birth. The frequency of these discrete bursts increased progressively during the postnatal prehearing period yet remained dependent on P2RY1. Analysis of mice with disrupted cholinergic signaling in the cochlea indicate that this efferent input modulates, rather than initiates, spontaneous activity before hearing onset. Thus, the auditory system uses a consistent mechanism involving ATP release from ISCs and activation of P2RY1 autoreceptors to elicit coordinated excitation of neurons that will process similar frequencies of sound.SIGNIFICANCE STATEMENT In developing sensory systems, groups of neurons that will process information from similar sensory space exhibit highly correlated electrical activity that is critical for proper maturation and circuit refinement. Defining the period when this activity is present, the mechanisms responsible and the features of this activity are crucial for understanding how spontaneous activity influences circuit development. We show that, from birth to hearing onset, the auditory system relies on a consistent mechanism to elicit correlate firing of neurons that will process similar frequencies of sound. Targeted disruption of this activity will increase our understanding of how these early circuits mature and may provide insight into processes responsible for developmental disorders of the auditory system.
Collapse
|
10
|
Koleilat A, Dugdale JA, Christenson TA, Bellah JL, Lambert AM, Masino MA, Ekker SC, Schimmenti LA. L-type voltage-gated calcium channel agonists mitigate hearing loss and modify ribbon synapse morphology in the zebrafish model of Usher syndrome type 1. Dis Model Mech 2020; 13:dmm043885. [PMID: 33361086 PMCID: PMC7710014 DOI: 10.1242/dmm.043885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/15/2020] [Indexed: 01/19/2023] Open
Abstract
The mariner (myo7aa-/- ) mutant is a zebrafish model for Usher syndrome type 1 (USH1). To further characterize hair cell synaptic elements in myo7aa-/- mutants, we focused on the ribbon synapse and evaluated ultrastructure, number and distribution of immunolabeled ribbons, and postsynaptic densities. By transmission electron microscopy, we determined that myo7aa-/- zebrafish have fewer glutamatergic vesicles tethered to ribbon synapses, yet maintain a comparable ribbon area. In myo7aa-/- hair cells, immunolocalization of Ctbp2 showed fewer ribbon-containing cells in total and an altered distribution of Ctbp2 puncta compared to wild-type hair cells. myo7aa-/- mutants have fewer postsynaptic densities - as assessed by MAGUK immunolabeling - compared to wild-type zebrafish. We quantified the circular swimming behavior of myo7aa-/- mutant fish and measured a greater turning angle (absolute smooth orientation). It has previously been shown that L-type voltage-gated calcium channels are necessary for ribbon localization and occurrence of postsynaptic density; thus, we hypothesized and observed that L-type voltage-gated calcium channel agonists change behavioral and synaptic phenotypes in myo7aa-/- mutants in a drug-specific manner. Our results indicate that treatment with L-type voltage-gated calcium channel agonists alter hair cell synaptic elements and improve behavioral phenotypes of myo7aa-/- mutants. Our data support that L-type voltage-gated calcium channel agonists induce morphological changes at the ribbon synapse - in both the number of tethered vesicles and regarding the distribution of Ctbp2 puncta - shift swimming behavior and improve acoustic startle response.
Collapse
Affiliation(s)
- Alaa Koleilat
- College of Continuing and Professional Studies, University of Minnesota, Minneapolis, MN 55108, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Clinical and Translational Science Track, Rochester, MN 55905, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph A Dugdale
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jeffrey L Bellah
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
- Department of Genetics and Development, Columbia University, New York City, NY 10032, USA
| | - Aaron M Lambert
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mark A Masino
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen C Ekker
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Lisa A Schimmenti
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Ophthalmology and Visual Neuroscience, University of Minnesota, Minneapolis, MN 55454, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Disruption of Atg7-dependent autophagy causes electromotility disturbances, outer hair cell loss, and deafness in mice. Cell Death Dis 2020; 11:913. [PMID: 33099575 PMCID: PMC7585579 DOI: 10.1038/s41419-020-03110-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Atg7 is an indispensable factor that plays a role in canonical nonselective autophagy. Here we show that genetic ablation of Atg7 in outer hair cells (OHCs) in mice caused stereocilium damage, somatic electromotility disturbances, and presynaptic ribbon degeneration over time, which led to the gradual wholesale loss of OHCs and subsequent early-onset profound hearing loss. Impaired autophagy disrupted OHC mitochondrial function and triggered the accumulation of dysfunctional mitochondria that would otherwise be eliminated in a timely manner. Atg7-independent autophagy/mitophagy processes could not compensate for Atg7 deficiency and failed to rescue the terminally differentiated, non-proliferating OHCs. Our results show that OHCs orchestrate intricate nonselective and selective autophagic/mitophagy pathways working in concert to maintain cellular homeostasis. Overall, our results demonstrate that Atg7-dependent autophagy plays a pivotal cytoprotective role in preserving OHCs and maintaining hearing function.
Collapse
|
12
|
Jovanovic S, Milenkovic I. Purinergic Modulation of Activity in the Developing Auditory Pathway. Neurosci Bull 2020; 36:1285-1298. [PMID: 33040238 DOI: 10.1007/s12264-020-00586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.
Collapse
Affiliation(s)
- Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
13
|
Johnson SL, Safieddine S, Mustapha M, Marcotti W. Hair Cell Afferent Synapses: Function and Dysfunction. Cold Spring Harb Perspect Med 2019; 9:a033175. [PMID: 30617058 PMCID: PMC6886459 DOI: 10.1101/cshperspect.a033175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To provide a meaningful representation of the auditory landscape, mammalian cochlear hair cells are optimized to detect sounds over an incredibly broad range of frequencies and intensities with unparalleled accuracy. This ability is largely conferred by specialized ribbon synapses that continuously transmit acoustic information with high fidelity and sub-millisecond precision to the afferent dendrites of the spiral ganglion neurons. To achieve this extraordinary task, ribbon synapses employ a unique combination of molecules and mechanisms that are tailored to sounds of different frequencies. Here we review the current understanding of how the hair cell's presynaptic machinery and its postsynaptic afferent connections are formed, how they mature, and how their function is adapted for an accurate perception of sound.
Collapse
Affiliation(s)
- Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Saaid Safieddine
- UMRS 1120, Institut Pasteur, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, Complexité du Vivant, Paris, France
| | - Mirna Mustapha
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California 94035
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
14
|
Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res 2019; 397:107859. [PMID: 31810596 DOI: 10.1016/j.heares.2019.107859] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is the most common sensory deficit in humans. Despite the global scale of the problem, only limited treatment options are available today. The mammalian inner ear is a highly specialized postmitotic organ, which lacks proliferative or regenerative capacity. Since the discovery of hair cell regeneration in non-mammalian species however, much attention has been placed on identifying possible strategies to reactivate similar responses in humans. The development of successful regenerative approaches for hearing loss strongly depends on a detailed understanding of the mechanisms that control human inner ear cellular specification, differentiation and function, as well as on the development of robust in vitro cellular assays, based on human inner ear cells, to study these processes and optimize therapeutic interventions. We summarize here some aspects of inner ear development and strategies to induce regeneration that have been investigated in rodents. Moreover, we discuss recent findings in human inner ear development and compare the results with findings from animal models. Finally, we provide an overview of strategies for in vitro generation of human sensory cells from pluripotent and somatic progenitors that may provide a platform for drug development and validation of therapeutic strategies in vitro.
Collapse
|
15
|
Dunbar LA, Patni P, Aguilar C, Mburu P, Corns L, Wells HRR, Delmaghani S, Parker A, Johnson S, Williams D, Esapa CT, Simon MM, Chessum L, Newton S, Dorning J, Jeyarajan P, Morse S, Lelli A, Codner GF, Peineau T, Gopal SR, Alagramam KN, Hertzano R, Dulon D, Wells S, Williams FM, Petit C, Dawson SJ, Brown SDM, Marcotti W, El‐Amraoui A, Bowl MR. Clarin-2 is essential for hearing by maintaining stereocilia integrity and function. EMBO Mol Med 2019; 11:e10288. [PMID: 31448880 PMCID: PMC6728604 DOI: 10.15252/emmm.201910288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022] Open
Abstract
Hearing relies on mechanically gated ion channels present in the actin-rich stereocilia bundles at the apical surface of cochlear hair cells. Our knowledge of the mechanisms underlying the formation and maintenance of the sound-receptive structure is limited. Utilizing a large-scale forward genetic screen in mice, genome mapping and gene complementation tests, we identified Clrn2 as a new deafness gene. The Clrn2clarinet/clarinet mice (p.Trp4* mutation) exhibit a progressive, early-onset hearing loss, with no overt retinal deficits. Utilizing data from the UK Biobank study, we could show that CLRN2 is involved in human non-syndromic progressive hearing loss. Our in-depth morphological, molecular and functional investigations establish that while it is not required for initial formation of cochlear sensory hair cell stereocilia bundles, clarin-2 is critical for maintaining normal bundle integrity and functioning. In the differentiating hair bundles, lack of clarin-2 leads to loss of mechano-electrical transduction, followed by selective progressive loss of the transducing stereocilia. Together, our findings demonstrate a key role for clarin-2 in mammalian hearing, providing insights into the interplay between mechano-electrical transduction and stereocilia maintenance.
Collapse
Affiliation(s)
- Lucy A Dunbar
- Mammalian Genetics UnitMRC Harwell InstituteHarwellUK
| | - Pranav Patni
- Déficits Sensoriels ProgressifsInstitut PasteurINSERM UMR‐S 1120Sorbonne UniversitésParisFrance
| | | | | | - Laura Corns
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Helena RR Wells
- Department of Twin Research & Genetic EpidemiologyKing's College LondonLondonUK
| | - Sedigheh Delmaghani
- Déficits Sensoriels ProgressifsInstitut PasteurINSERM UMR‐S 1120Sorbonne UniversitésParisFrance
| | - Andrew Parker
- Mammalian Genetics UnitMRC Harwell InstituteHarwellUK
| | - Stuart Johnson
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | | | | | | | | | | | | | | | - Susan Morse
- Mammalian Genetics UnitMRC Harwell InstituteHarwellUK
| | - Andrea Lelli
- Génétique et Physiologie de l'AuditionInstitut PasteurINSERM UMR‐S 1120Collège de FranceSorbonne UniversitésParisFrance
| | | | - Thibault Peineau
- Laboratoire de Neurophysiologie de la Synapse AuditiveUniversité de BordeauxBordeauxFrance
| | - Suhasini R Gopal
- Department of Otolaryngology – Head and Neck SurgeryUniversity Hospitals Cleveland Medical CenterCase Western Reserve UniversityClevelandOHUSA
| | - Kumar N Alagramam
- Department of Otolaryngology – Head and Neck SurgeryUniversity Hospitals Cleveland Medical CenterCase Western Reserve UniversityClevelandOHUSA
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, Anatomy and Neurobiology and Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Didier Dulon
- Laboratoire de Neurophysiologie de la Synapse AuditiveUniversité de BordeauxBordeauxFrance
| | - Sara Wells
- Mary Lyon CentreMRC Harwell InstituteHarwellUK
| | - Frances M Williams
- Department of Twin Research & Genetic EpidemiologyKing's College LondonLondonUK
| | - Christine Petit
- Génétique et Physiologie de l'AuditionInstitut PasteurINSERM UMR‐S 1120Collège de FranceSorbonne UniversitésParisFrance
| | | | | | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Aziz El‐Amraoui
- Déficits Sensoriels ProgressifsInstitut PasteurINSERM UMR‐S 1120Sorbonne UniversitésParisFrance
| | | |
Collapse
|
16
|
Harrus AG, Ceccato JC, Sendin G, Bourien J, Puel JL, Nouvian R. Spiking Pattern of the Mouse Developing Inner Hair Cells Is Mostly Invariant Along the Tonotopic Axis. Front Cell Neurosci 2018; 12:407. [PMID: 30524238 PMCID: PMC6262317 DOI: 10.3389/fncel.2018.00407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/22/2018] [Indexed: 01/03/2023] Open
Abstract
During development, the sensory cells of the cochlea, the inner hair cells (IHCs), fire spontaneous calcium action potentials. This activity at the pre-hearing stage allows the IHCs to autonomously excite the auditory nerve fibers and hence, represents an efficient mechanism to shape the tonotopic organization along the ascending auditory pathway. Using calcium imaging, we show that the activity in the developing cochlea consists of calcium waves that propagate across the supporting and sensory cells. Both basal and apical IHCs were characterized by similar spontaneous calcium transients interspaced with silent periods, consistent with bursts of action potentials recorded in patch-clamp. In addition, adjacent auditory hair cells tend to have a synchronized [Ca2+]i activity, irrespective of their location along the base-to-apex gradient of the cochlea. Finally, we show that the mechanical ablation of the inner phalangeal cells (IPCs), a class of supporting cells, reduces the synchronized [Ca2+]i activity between neighboring sensory cells. These findings support the hypothesis that the tonotopic map refinement in higher auditory centers would depend on the synchronization of a discrete number of auditory sensory cells.
Collapse
Affiliation(s)
- Anne-Gabrielle Harrus
- Institut des Neurosciences de Montpellier (INM), Inserm, University of Montpellier, Montpellier, France
| | - Jean-Charles Ceccato
- Institut des Neurosciences de Montpellier (INM), Inserm, University of Montpellier, Montpellier, France
| | - Gaston Sendin
- Institut des Neurosciences de Montpellier (INM), Inserm, University of Montpellier, Montpellier, France
| | - Jérôme Bourien
- Institut des Neurosciences de Montpellier (INM), Inserm, University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- Institut des Neurosciences de Montpellier (INM), Inserm, University of Montpellier, Montpellier, France
| | - Régis Nouvian
- Institut des Neurosciences de Montpellier (INM), Inserm, University of Montpellier, Montpellier, France
| |
Collapse
|
17
|
Wolter S, Möhrle D, Schmidt H, Pfeiffer S, Zelle D, Eckert P, Krämer M, Feil R, Pilz PKD, Knipper M, Rüttiger L. GC-B Deficient Mice With Axon Bifurcation Loss Exhibit Compromised Auditory Processing. Front Neural Circuits 2018; 12:65. [PMID: 30275816 PMCID: PMC6152484 DOI: 10.3389/fncir.2018.00065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory axon T-like branching (bifurcation) in neurons from dorsal root ganglia and cranial sensory ganglia depends on the molecular signaling cascade involving the secreted factor C-type natriuretic peptide, the natriuretic peptide receptor guanylyl cyclase B (GC-B; also known as Npr2) and cGMP-dependent protein kinase I (cGKI, also known as PKGI). The bifurcation of cranial nerves is suggested to be important for information processing by second-order neurons in the hindbrain or spinal cord. Indeed, mice with a spontaneous GC-B loss of function mutation (Npr2cn/cn ) display an impaired bifurcation of auditory nerve (AN) fibers. However, these mice did not show any obvious sign of impaired basal hearing. Here, we demonstrate that mice with a targeted inactivation of the GC-B gene (Npr2 lacZ/lacZ , GC-B KO mice) show an elevation of audiometric thresholds. In the inner ear, the cochlear hair cells in GC-B KO mice were nevertheless similar to those from wild type mice, justified by the typical expression of functionally relevant marker proteins. However, efferent cholinergic feedback to inner and outer hair cells was reduced in GC-B KO mice, linked to very likely reduced rapid efferent feedback. Sound-evoked AN responses of GC-B KO mice were elevated, a feature that is known to occur when the efferent axo-dendritic feedback on AN is compromised. Furthermore, late sound-evoked brainstem responses were significantly delayed in GC-B KO mice. This delay in sound response was accompanied by a weaker sensitivity of the auditory steady state response to amplitude-modulated sound stimuli. Finally, the acoustic startle response (ASR) - one of the fastest auditory responses - and the prepulse inhibition of the ASR indicated significant changes in temporal precision of auditory processing. These findings suggest that GC-B-controlled axon bifurcation of spiral ganglion neurons is important for proper activation of second-order neurons in the hindbrain and is a prerequisite for proper temporal auditory processing likely by establishing accurate efferent top-down control circuits. These data hypothesize that the bifurcation pattern of cranial nerves is important to shape spatial and temporal information processing for sensory feedback control.
Collapse
Affiliation(s)
- Steffen Wolter
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Dorit Möhrle
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Sylvia Pfeiffer
- Department of Animal Physiology, University of Tübingen, Tübingen, Germany
| | - Dennis Zelle
- Department of Otolaryngology, Head and Neck Surgery, Physiological Acoustics and Communication, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Philipp Eckert
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Michael Krämer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Peter K D Pilz
- Department of Animal Physiology, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Powles-Glover N, Maconochie M. Prenatal and postnatal development of the mammalian ear. Birth Defects Res 2017; 110:228-245. [DOI: 10.1002/bdr2.1167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/16/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Nicola Powles-Glover
- AstraZeneca, Innovative Medicines and Early Development; Drug Safety and Metabolism; Hertfordshire SG8 6HB United Kingdom
| | - Mark Maconochie
- Queen Mary University of London; London E1 4NS United Kingdom
| |
Collapse
|
19
|
Corns LF, Jeng JY, Richardson GP, Kros CJ, Marcotti W. TMC2 Modifies Permeation Properties of the Mechanoelectrical Transducer Channel in Early Postnatal Mouse Cochlear Outer Hair Cells. Front Mol Neurosci 2017; 10:326. [PMID: 29093662 PMCID: PMC5651230 DOI: 10.3389/fnmol.2017.00326] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/27/2017] [Indexed: 01/11/2023] Open
Abstract
The ability of cochlear hair cells to convert sound into receptor potentials relies on the mechanoelectrical transducer (MET) channels present in their stereociliary bundles. There is strong evidence implying that transmembrane channel-like protein (TMC) 1 contributes to the pore-forming subunit of the mature MET channel, yet its expression is delayed (~>P5 in apical outer hair cells, OHCs) compared to the onset of mechanotransduction (~P1). Instead, the temporal expression of TMC2 coincides with this onset, indicating that it could be part of the immature MET channel. We investigated MET channel properties from OHCs of homo- and heterozygous Tmc2 knockout mice. In the presence of TMC2, the MET channel blocker dihydrostreptomycin (DHS) had a lower affinity for the channel, when the aminoglycoside was applied extracellularly or intracellularly, with the latter effect being more pronounced. In Tmc2 knockout mice OHCs were protected from aminoglycoside ototoxicity during the first postnatal week, most likely due to their small MET current and the lower saturation level for aminoglycoside entry into the individual MET channels. DHS entry through the MET channels of Tmc2 knockout OHCs was lower during the first than in the second postnatal week, suggestive of a developmental change in the channel pore properties independent of TMC2. However, the ability of TMC2 to modify the MET channel properties strongly suggests it contributes to the pore-forming subunit of the neonatal channel. Nevertheless, we found that TMC2, different from TMC1, is not necessary for OHC development. While TMC2 is required for mechanotransduction in mature vestibular hair cells, its expression in the immature cochlea may be an evolutionary remnant.
Collapse
Affiliation(s)
- Laura F. Corns
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Guy P. Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Corné J. Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
20
|
Halm ST, Bottomley MA, Almutairi MM, Di Fulvio M, Halm DR. Survival and growth of C57BL/6J mice lacking the BK channel, Kcnma1: lower adult body weight occurs together with higher body fat. Physiol Rep 2017; 5:5/4/e13137. [PMID: 28242822 PMCID: PMC5328773 DOI: 10.14814/phy2.13137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 11/29/2022] Open
Abstract
Big conductance potassium (BK) channels contribute to K+ flow and electrical behavior in many cell types. Mice made null for the gene (Kcnma1) producing the BK channel (BKKO) exhibit numerous deficits in physiological functions. Breeding mice lacking a single allele of Kcnma1 (C57BL/6J background) had litter sizes of approximately eight pups. For the period of maternal care (P0–P21), pup deaths peaked at P1 with a second less severe interval of death peaking near P13. Early deaths were twice as likely during a 20‐month period of building construction compared with the quiescent period after cessation of construction. Births during construction were not consistent with Mendelian predictions indicating the likelihood of a specific disadvantage induced by this environmental stressor. Later BKKO pup deaths (~P13) also were more numerous than Mendelian expectations. After weaning, weight gain was slower for BKKO mice compared with wild‐type littermates: 5 g less for male BKKO mice and 4 g less for female BKKO mice. Body composition determined by quantitative magnetic resonance indicated a higher fat proportion for wild‐type female mice compared with males, as well as a higher hydration ratio. Both male and female BKKO mice showed higher fat proportions than wild‐type, with female BKKO mice exhibiting greater variation. Together, these results indicate that BKKO mice suffered disadvantages that lead to prenatal and perinatal death. A metabolic difference likely related to glucose handling led to the smaller body size and distinct composition for BKKO mice, suggesting a diversion of energy supplies from growth to fat storage.
Collapse
Affiliation(s)
- Susan T Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Michael A Bottomley
- Department of Mathematics and Statistics, Statistical Consulting Center, Wright State University, Dayton, Ohio
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Maurico Di Fulvio
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Dan R Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
21
|
Absence of Neuroplastin-65 Affects Synaptogenesis in Mouse Inner Hair Cells and Causes Profound Hearing Loss. J Neurosci 2016; 36:222-34. [PMID: 26740663 DOI: 10.1523/jneurosci.1808-15.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED The Neuroplastin gene encodes two synapse-enriched protein isoforms, Np55 and Np65, which are transmembrane glycoproteins that regulate several cellular processes, including the genesis, maintenance, and plasticity of synapses. We found that an absence of Np65 causes early-onset sensorineural hearing loss and prevented the normal synaptogenesis in inner hair cells (IHCs) in the newly identified mouse mutant pitch. In wild-type mice, Np65 is strongly upregulated in the cochlea from around postnatal day 12 (P12), which corresponds to the onset of hearing. Np65 was specifically localized at the presynaptic region of IHCs. We found that the colocalization of presynaptic IHC ribbons and postsynaptic afferent terminals is greatly reduced in pitch mutants. Moreover, IHC exocytosis is also reduced with mutant mice showing lower rates of vesicle release. Np65 appears to have a nonessential role in vision. We propose that Np65, by regulating IHC synaptogenesis, is critical for auditory function in mammals. SIGNIFICANCE STATEMENT In the mammalian cochlea, the sensory inner hair cells (IHCs) encode auditory information. They do this by converting sound wave-induced mechanical motion of their hair bundles into an electrical current. This current generates a receptor potential that controls release of glutamate neurotransmitter from their ribbon synapses onto the auditory afferent fiber. We show that the synapse-enriched protein Np65, encoded by the Neuroplastin gene, is localized at the IHC presynaptic region. In mutant mice, absence of Np65 causes early-onset sensorineural hearing loss and prevents normal neurotransmitter release in IHCs and colocalization of presynaptic ribbons with postsynaptic afferents. We identified Neuroplastin as a novel deafness gene required for ribbon synapse formation and function, which is critical for sound perception in mammals.
Collapse
|
22
|
Olt J, Ordoobadi AJ, Marcotti W, Trapani JG. Physiological recordings from the zebrafish lateral line. Methods Cell Biol 2016; 133:253-79. [PMID: 27263416 DOI: 10.1016/bs.mcb.2016.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During sensory transduction, external physical stimuli are translated into an internal biological signal. In vertebrates, hair cells are specialized mechanosensory receptors that transduce sound, gravitational forces, and head movements into electrical signals that are transmitted with remarkable precision and efficiency to afferent neurons. Hair cells have a conserved structure between species and are also found in the lateral line system of fish, including zebrafish, which serve as an ideal animal model to study sensory transmission in vivo. In this chapter, we describe the methods required to investigate the biophysical properties underlying mechanosensation in the lateral line of the zebrafish in vivo from microphonic potentials and single hair cell patch-clamp recordings to single afferent neuron recordings. These techniques provide real-time measurements of hair-cell transduction and transmission following delivery of controlled and defined stimuli and their combined use on the intact zebrafish provides a powerful platform to investigate sensory encoding in vivo.
Collapse
Affiliation(s)
- J Olt
- University of Sheffield, Sheffield, United Kingdom
| | | | - W Marcotti
- University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
23
|
Ceriani F, Ciubotaru CD, Bortolozzi M, Mammano F. Design and Construction of a Cost-Effective Spinning Disk System for Live Imaging of Inner Ear Tissue. Methods Mol Biol 2016; 1427:223-241. [PMID: 27259930 DOI: 10.1007/978-1-4939-3615-1_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Confocal imaging of fluorescent probes offers a powerful, non-invasive tool which enables data collection from vast population of cells at high spatial and temporal resolution. Spinning disk confocal microscopy parallelizes the imaging process permitting the study of dynamic events in populations of living cells on the millisecond time scale. Several spinning disk microscopy solutions are commercially available, however these are often poorly configurable and relatively expensive. This chapter describes a procedure to assemble a cost-effective homemade spinning disk system for fluorescence microscopy, which is highly flexible and easily configurable. We finally illustrate a reliable protocol to obtain high-quality Ca(2+) and voltage imaging data from cochlear preparations.
Collapse
Affiliation(s)
- Federico Ceriani
- Department of Physics and Astronomy, University of Padua, via Marzolo 8, Padua, 35131, Italy
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine (VIMM), via G. Orus 2, Padua, 35129, Italy
- CNR, Institute of Cell Biology and Neurobiology, via E. Ramarini 32, Monterotondo, RM, 00015, Italy
| | | | - Mario Bortolozzi
- Department of Physics and Astronomy, University of Padua, via Marzolo 8, Padua, 35131, Italy.
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine (VIMM), via G. Orus 2, Padua, 35129, Italy.
- CNR, Institute of Cell Biology and Neurobiology, via E. Ramarini 32, Monterotondo, RM, 00015, Italy.
| | - Fabio Mammano
- Department of Physics and Astronomy, University of Padua, via Marzolo 8, Padua, 35131, Italy
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine (VIMM), via G. Orus 2, Padua, 35129, Italy
- CNR, Institute of Cell Biology and Neurobiology, via E. Ramarini 32, Monterotondo, RM, 00015, Italy
| |
Collapse
|
24
|
Lee JH, Sihn C, Wang W, Flores CMP, Yamoah EN. In Vitro Functional Assessment of Adult Spiral Ganglion Neurons (SGNs). Methods Mol Biol 2016; 1427:513-523. [PMID: 27259946 DOI: 10.1007/978-1-4939-3615-1_29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Spiral ganglion neurons (SGNs) faithfully encode acoustic waves from hair cells to the cochlear nucleus (CN) using voltage-dependent ion channels. A sizable portion of our knowledge on SGN functions have been derived from pre-hearing neurons. In post-hearing SGNs, the mechanisms of how they encode the massive sound information without delay and precisely are largely unknown. Mature SGNs are housed in the central bony labyrinth of the cochlea, protected by a well-insulated myelin sheath, making it a technical feat to isolate viable neurons for rigorous functional electrophysiology. Recently, we have overcome the previous intractable hindrance in SGN functional analyses. We provide a step-by-step user-friendly protocol with practical applications, including patch-clamp recordings and imaging by using cultured SGNs.
Collapse
Affiliation(s)
- Jeong Han Lee
- Department of Physiology and Cell Biology, Program in Communication and Sensory Sciences, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Choongryoul Sihn
- Department of Physiology and Cell Biology, Program in Communication and Sensory Sciences, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Wanging Wang
- Department of Physiology and Cell Biology, Program in Communication and Sensory Sciences, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Cristina Maria Perez Flores
- Department of Physiology and Cell Biology, Program in Communication and Sensory Sciences, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, Program in Communication and Sensory Sciences, School of Medicine, University of Nevada, Reno, NV, 89557, USA.
- University of Nevada Reno, 6795 South Edmond Street, Third Floor, Las Vegas, NV, 89118, USA.
| |
Collapse
|
25
|
Michel CB, Azevedo Coste C, Desmadryl G, Puel JL, Bourien J, Graham BP. Identification and modelling of fast and slow Ih current components in vestibular ganglion neurons. Eur J Neurosci 2015; 42:2867-77. [PMID: 26174408 PMCID: PMC4986932 DOI: 10.1111/ejn.13021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 01/09/2023]
Abstract
Previous experimental data indicates the hyperpolarization‐activated cation (Ih) current, in the inner ear, consists of two components [different hyperpolarization‐activated cyclic nucleotide‐gated (HCN) subunits] which are impossible to pharmacologically isolate. To confirm the presence of these two components in vestibular ganglion neurons we have applied a parameter identification algorithm which is able to discriminate the parameters of the two components from experimental data. Using simulated data we have shown that this algorithm is able to identify the parameters of two populations of non‐inactivated ionic channels more accurately than a classical method. Moreover, the algorithm was demonstrated to be insensitive to the key parameter variations. We then applied this algorithm to Ih current recordings from mouse vestibular ganglion neurons. The algorithm revealed the presence of a high‐voltage‐activated slow component and a low‐voltage‐activated fast component. Finally, the electrophysiological significance of these two Ih components was tested individually in computational vestibular ganglion neuron models (sustained and transient), in the control case and in the presence of cAMP, an intracellular cyclic nucleotide that modulates HCN channel activity. The results suggest that, first, the fast and slow components modulate differently the action potential excitability and the excitatory postsynaptic potentials in both sustained and transient vestibular neurons and, second, the fast and slow components, in the control case, provide different information about characteristics of the stimulation and this information is significantly modified after modulation by cAMP.
Collapse
Affiliation(s)
- Christophe B Michel
- Computing Science & Mathematics, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | | | - Gilles Desmadryl
- Institut National de la Sante et de la Recherche Medicale, Unite Mixte de Recherche 1051, Institut des Neurosciences de Montpellier, Montpellier, France.,Universite Montpellier 1 & 2, Montpellier, France
| | - Jean-Luc Puel
- Institut National de la Sante et de la Recherche Medicale, Unite Mixte de Recherche 1051, Institut des Neurosciences de Montpellier, Montpellier, France.,Universite Montpellier 1 & 2, Montpellier, France
| | - Jerome Bourien
- Institut National de la Sante et de la Recherche Medicale, Unite Mixte de Recherche 1051, Institut des Neurosciences de Montpellier, Montpellier, France.,Universite Montpellier 1 & 2, Montpellier, France
| | - Bruce P Graham
- Computing Science & Mathematics, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
26
|
Knipper M, Panford-Walsh R, Singer W, Rüttiger L, Zimmermann U. Specific synaptopathies diversify brain responses and hearing disorders: you lose the gain from early life. Cell Tissue Res 2015; 361:77-93. [PMID: 25843689 PMCID: PMC4487345 DOI: 10.1007/s00441-015-2168-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/05/2015] [Indexed: 01/08/2023]
Abstract
Before hearing onset, inner hair cell (IHC) maturation proceeds under the influence of spontaneous Ca(2+) action potentials (APs). The temporal signature of the IHC Ca(2+) AP is modified through an efferent cholinergic feedback from the medial olivocochlear bundle (MOC) and drives the IHC pre- and post-synapse phenotype towards low spontaneous (spike) rate (SR), high-threshold characteristics. With sensory experience, the IHC pre- and post-synapse phenotype matures towards the instruction of low-SR, high-threshold and of high-SR, low-threshold auditory fiber characteristics. Corticosteroid feedback together with local brain-derived nerve growth factor (BDNF) and catecholaminergic neurotransmitters (dopamine) might be essential for this developmental step. In this review, we address the question of whether the control of low-SR and high-SR fiber characteristics is linked to various degrees of vulnerability of auditory fibers in the mature system. In particular, we examine several IHC synaptopathies in the context of various hearing disorders and exemplified shortfalls before and after hearing onset.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | | | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
27
|
Nishio SY, Hattori M, Moteki H, Tsukada K, Miyagawa M, Naito T, Yoshimura H, Iwasa YI, Mori K, Shima Y, Sakuma N, Usami SI. Gene expression profiles of the cochlea and vestibular endorgans: localization and function of genes causing deafness. Ann Otol Rhinol Laryngol 2015; 124 Suppl 1:6S-48S. [PMID: 25814645 DOI: 10.1177/0003489415575549] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES We sought to elucidate the gene expression profiles of the causative genes as well as the localization of the encoded proteins involved in hereditary hearing loss. METHODS Relevant articles (as of September 2014) were searched in PubMed databases, and the gene symbols of the genes reported to be associated with deafness were located on the Hereditary Hearing Loss Homepage using localization, expression, and distribution as keywords. RESULTS Our review of the literature allowed us to systematize the gene expression profiles for genetic deafness in the inner ear, clarifying the unique functions and specific expression patterns of these genes in the cochlea and vestibular endorgans. CONCLUSIONS The coordinated actions of various encoded molecules are essential for the normal development and maintenance of auditory and vestibular function.
Collapse
Affiliation(s)
- Shin-Ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mitsuru Hattori
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideaki Moteki
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Keita Tsukada
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Maiko Miyagawa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takehiko Naito
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hidekane Yoshimura
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoh-Ichiro Iwasa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kentaro Mori
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yutaka Shima
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoko Sakuma
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Otorhinolaryngology and Head and Neck Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
28
|
Clause A, Kim G, Sonntag M, Weisz CJC, Vetter DE, Rűbsamen R, Kandler K. The precise temporal pattern of prehearing spontaneous activity is necessary for tonotopic map refinement. Neuron 2014; 82:822-35. [PMID: 24853941 DOI: 10.1016/j.neuron.2014.04.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Patterned spontaneous activity is a hallmark of developing sensory systems. In the auditory system, rhythmic bursts of spontaneous activity are generated in cochlear hair cells and propagated along central auditory pathways. The role of these activity patterns in the development of central auditory circuits has remained speculative. Here we demonstrate that blocking efferent cholinergic neurotransmission to developing hair cells in mice that lack the α9 subunit of nicotinic acetylcholine receptors (α9 KO mice) altered the temporal fine structure of spontaneous activity without changing activity levels. KO mice showed a severe impairment in the functional and structural sharpening of an inhibitory tonotopic map, as evidenced by deficits in synaptic strengthening and silencing of connections and an absence in axonal pruning. These results provide evidence that the precise temporal pattern of spontaneous activity before hearing onset is crucial for the establishment of precise tonotopy, the major organizing principle of central auditory pathways.
Collapse
Affiliation(s)
- Amanda Clause
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gunsoo Kim
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Mandy Sonntag
- Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
| | - Catherine J C Weisz
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Douglas E Vetter
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Rudolf Rűbsamen
- Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
| | - Karl Kandler
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
29
|
Johnson SL, Wedemeyer C, Vetter DE, Adachi R, Holley MC, Elgoyhen AB, Marcotti W. Cholinergic efferent synaptic transmission regulates the maturation of auditory hair cell ribbon synapses. Open Biol 2014; 3:130163. [PMID: 24350389 PMCID: PMC3843824 DOI: 10.1098/rsob.130163] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Spontaneous electrical activity generated by developing sensory cells and neurons is crucial for the maturation of neural circuits. The full maturation of mammalian auditory inner hair cells (IHCs) depends on patterns of spontaneous action potentials during a ‘critical period’ of development. The intrinsic spiking activity of IHCs can be modulated by inhibitory input from cholinergic efferent fibres descending from the brainstem, which transiently innervate immature IHCs. However, it remains unknown whether this transient efferent input to developing IHCs is required for their functional maturation. We used a mouse model that lacks the α9-nicotinic acetylcholine receptor subunit (α9nAChR) in IHCs and another lacking synaptotagmin-2 in the efferent terminals to remove or reduce efferent input to IHCs, respectively. We found that the efferent system is required for the developmental linearization of the Ca2+-sensitivity of vesicle fusion at IHC ribbon synapses, without affecting their general cell development. This provides the first direct evidence that the efferent system, by modulating IHC electrical activity, is required for the maturation of the IHC synaptic machinery. The central control of sensory cell development is unique among sensory systems.
Collapse
Affiliation(s)
- Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
- e-mail:
| | - Carolina Wedemeyer
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
| | - Douglas E. Vetter
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Roberto Adachi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
- e-mail:
| |
Collapse
|
30
|
Korrapati S, Roux I, Glowatzki E, Doetzlhofer A. Notch signaling limits supporting cell plasticity in the hair cell-damaged early postnatal murine cochlea. PLoS One 2013; 8:e73276. [PMID: 24023676 PMCID: PMC3758270 DOI: 10.1371/journal.pone.0073276] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/18/2013] [Indexed: 12/02/2022] Open
Abstract
In mammals, auditory hair cells are generated only during embryonic development and loss or damage to hair cells is permanent. However, in non-mammalian vertebrate species, such as birds, neighboring glia-like supporting cells regenerate auditory hair cells by both mitotic and non-mitotic mechanisms. Based on work in intact cochlear tissue, it is thought that Notch signaling might restrict supporting cell plasticity in the mammalian cochlea. However, it is unresolved how Notch signaling functions in the hair cell-damaged cochlea and the molecular and cellular changes induced in supporting cells in response to hair cell trauma are poorly understood. Here we show that gentamicin-induced hair cell loss in early postnatal mouse cochlear tissue induces rapid morphological changes in supporting cells, which facilitate the sealing of gaps left by dying hair cells. Moreover, we provide evidence that Notch signaling is active in the hair cell damaged cochlea and identify Hes1, Hey1, Hey2, HeyL, and Sox2 as targets and potential Notch effectors of this hair cell-independent mechanism of Notch signaling. Using Cre/loxP based labeling system we demonstrate that inhibition of Notch signaling with a γ- secretase inhibitor (GSI) results in the trans-differentiation of supporting cells into hair cell-like cells. Moreover, we show that these hair cell-like cells, generated by supporting cells have molecular, cellular, and basic electrophysiological properties similar to immature hair cells rather than supporting cells. Lastly, we show that the vast majority of these newly generated hair cell-like cells express the outer hair cell specific motor protein prestin.
Collapse
Affiliation(s)
- Soumya Korrapati
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Hearing and Balance, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Isabelle Roux
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Hearing and Balance, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Elisabeth Glowatzki
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Hearing and Balance, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Angelika Doetzlhofer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Center for Hearing and Balance, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
Presynaptic maturation in auditory hair cells requires a critical period of sensory-independent spiking activity. Proc Natl Acad Sci U S A 2013; 110:8720-5. [PMID: 23650376 DOI: 10.1073/pnas.1219578110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of neural circuits relies on spontaneous electrical activity that occurs during immature stages of development. In the developing mammalian auditory system, spontaneous calcium action potentials are generated by inner hair cells (IHCs), which form the primary sensory synapse. It remains unknown whether this electrical activity is required for the functional maturation of the auditory system. We found that sensory-independent electrical activity controls synaptic maturation in IHCs. We used a mouse model in which the potassium channel SK2 is normally overexpressed, but can be modulated in vivo using doxycycline. SK2 overexpression affected the frequency and duration of spontaneous action potentials, which prevented the development of the Ca(2+)-sensitivity of vesicle fusion at IHC ribbon synapses, without affecting their morphology or general cell development. By manipulating the in vivo expression of SK2 channels, we identified the "critical period" during which spiking activity influences IHC synaptic maturation. Here we provide direct evidence that IHC development depends upon a specific temporal pattern of calcium spikes before sound-driven neuronal activity.
Collapse
|
32
|
The resting transducer current drives spontaneous activity in prehearing mammalian cochlear inner hair cells. J Neurosci 2012; 32:10479-83. [PMID: 22855797 DOI: 10.1523/jneurosci.0803-12.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Spontaneous Ca(2+)-dependent electrical activity in the immature mammalian cochlea is thought to instruct the formation of the tonotopic map during the differentiation of sensory hair cells and the auditory pathway. This activity occurs in inner hair cells (IHCs) during the first postnatal week, and the pattern differs along the cochlea. During the second postnatal week, which is before the onset of hearing in most rodents, the resting membrane potential for IHCs is apparently more hyperpolarized (approximately -75 mV), and it remains unclear whether spontaneous action potentials continue to occur. We found that when mouse IHC hair bundles were exposed to the estimated in vivo endolymphatic Ca(2+) concentration (0.3 mm) present in the immature cochlea, the increased open probability of the mechanotransducer channels caused the cells to depolarize to around the action potential threshold (approximately -55 mV). We propose that, in vivo, spontaneous Ca(2+) action potentials are intrinsically generated by IHCs up to the onset of hearing and that they are likely to influence the final sensory-independent refinement of the developing cochlea.
Collapse
|
33
|
Mammano F. ATP-dependent intercellular Ca2+ signaling in the developing cochlea: facts, fantasies and perspectives. Semin Cell Dev Biol 2012; 24:31-9. [PMID: 23022499 DOI: 10.1016/j.semcdb.2012.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
Abstract
Hearing relies on a sensitive mechanoelectrical transduction process in the cochlea of the inner ear. The cochlea contains sensory, secretory, neural, supporting and epithelial cells which are all essential to the sound transduction process. It is well known that a complex extracellular purinergic signaling system contributes to cochlear homeostasis, altering cochlear sensitivity and neural output via ATP-gated ion channels (P2X receptors) and G protein-coupled P2Y receptors. This review focuses on the emerging roles of ATP that are currently under investigation in the developing sensory epithelium, with particular emphasis on the link between ATP release, Ca(2+) signaling, the expression and function of gap junction proteins connexin26 and connexin30, and the acquisition of hearing.
Collapse
Affiliation(s)
- Fabio Mammano
- Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, 35131 Padova, Italy.
| |
Collapse
|
34
|
Ceriani F, Mammano F. Calcium signaling in the cochlea - Molecular mechanisms and physiopathological implications. Cell Commun Signal 2012; 10:20. [PMID: 22788415 PMCID: PMC3408374 DOI: 10.1186/1478-811x-10-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/12/2012] [Indexed: 12/20/2022] Open
Abstract
Calcium ions (Ca2+) regulate numerous and diverse aspects of cochlear and vestibular physiology. This review focuses on the Ca2+ control of mechanotransduction and synaptic transmission in sensory hair cells, as well as on Ca2+ signalling in non-sensory cells of the developing cochlea.
Collapse
Affiliation(s)
- Federico Ceriani
- Dipartimento di Fisica e Astronomia "G, Galilei", Università di Padova, 35131, Padova, Italy.
| | | |
Collapse
|