1
|
Janes TA, Cardani S, Saini JK, Pagliardini S. Etonogestrel promotes respiratory recovery in an in vivo rat model of central chemoreflex impairment. Acta Physiol (Oxf) 2024; 240:e14093. [PMID: 38258900 DOI: 10.1111/apha.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
AIM The central CO2 chemoreflex is a vital component of respiratory control networks, providing excitatory drive during resting conditions and challenges to blood gas homeostasis. The retrotrapezoid nucleus is a crucial hub for CO2 chemosensitivity; its ablation or inhibition attenuates CO2 chemoreflexes and diminishes restful breathing. Similar phenotypes characterize certain hypoventilation syndromes, suggesting underlying retrotrapezoid nucleus impairment in these disorders. Progesterone stimulates restful breathing and CO2 chemoreflexes. However, its mechanisms and sites of actions remain unknown and the experimental use of synthetic progestins in patients and animal models have been met with mixed respiratory outcomes. METHODS We investigated whether acute or chronic administration of the progestinic drug, etonogestrel, could rescue respiratory chemoreflexes following selective lesion of the retrotrapezoid nucleus with saporin toxin. Adult female Sprague Dawley rats were grouped based on lesion size determined by the number of surviving chemosensitive neurons, and ventilatory responses were measured by whole body plethysmography. RESULTS Ventilatory responses to hypercapnia (but not hypoxia) were compromised in a lesion-dependent manner. Chronic etonogestrel treatment improved CO2 chemosensitivity selectively in rats with moderate lesion, suggesting that a residual number of chemosensitive neurons are required for etonogestrel-induced CO2 chemoreflex recovery. CONCLUSION This study provides new evidence for the use of progestins as respiratory stimulants under conditions of central hypoventilation and provides a new testable model for assessing the mechanism of action of progestins in the respiratory network.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Cardani
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jasmeen K Saini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Cleary CM, Browning JL, Armbruster M, Sobrinho CR, Strain ML, Jahanbani S, Soto-Perez J, Hawkins VE, Dulla CG, Olsen ML, Mulkey DK. Kir4.1 channels contribute to astrocyte CO 2/H +-sensitivity and the drive to breathe. Commun Biol 2024; 7:373. [PMID: 38548965 PMCID: PMC10978993 DOI: 10.1038/s42003-024-06065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Astrocytes in the retrotrapezoid nucleus (RTN) stimulate breathing in response to CO2/H+, however, it is not clear how these cells detect changes in CO2/H+. Considering Kir4.1/5.1 channels are CO2/H+-sensitive and important for several astrocyte-dependent processes, we consider Kir4.1/5.1 a leading candidate CO2/H+ sensor in RTN astrocytes. To address this, we show that RTN astrocytes express Kir4.1 and Kir5.1 transcripts. We also characterized respiratory function in astrocyte-specific inducible Kir4.1 knockout mice (Kir4.1 cKO); these mice breathe normally under room air conditions but show a blunted ventilatory response to high levels of CO2, which could be partly rescued by viral mediated re-expression of Kir4.1 in RTN astrocytes. At the cellular level, astrocytes in slices from astrocyte-specific inducible Kir4.1 knockout mice are less responsive to CO2/H+ and show a diminished capacity for paracrine modulation of respiratory neurons. These results suggest Kir4.1/5.1 channels in RTN astrocytes contribute to respiratory behavior.
Collapse
Affiliation(s)
- Colin M Cleary
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jack L Browning
- School of Neuroscience and Genetics, Genomics and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Cleyton R Sobrinho
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Monica L Strain
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Sarvin Jahanbani
- School of Neuroscience and Genetics, Genomics and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Virginia E Hawkins
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Michelle L Olsen
- School of Neuroscience and Genetics, Genomics and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
3
|
Zito A, Lee JT. Variable expression of MECP2, CDKL5, and FMR1 in the human brain: Implications for gene restorative therapies. Proc Natl Acad Sci U S A 2024; 121:e2312757121. [PMID: 38386709 PMCID: PMC10907246 DOI: 10.1073/pnas.2312757121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/28/2023] [Indexed: 02/24/2024] Open
Abstract
MECP2, CDKL5, and FMR1 are three X-linked neurodevelopmental genes associated with Rett, CDKL5-, and fragile-X syndrome, respectively. These syndromes are characterized by distinct constellations of severe cognitive and neurobehavioral anomalies, reflecting the broad but unique expression patterns of each of the genes in the brain. As these disorders are not thought to be neurodegenerative and may be reversible, a major goal has been to restore expression of the functional proteins in the patient's brain. Strategies have included gene therapy, gene editing, and selective Xi-reactivation methodologies. However, tissue penetration and overall delivery to various regions of the brain remain challenging for each strategy. Thus, gaining insights into how much restoration would be required and what regions/cell types in the brain must be targeted for meaningful physiological improvement would be valuable. As a step toward addressing these questions, here we perform a meta-analysis of single-cell transcriptomics data from the human brain across multiple developmental stages, in various brain regions, and in multiple donors. We observe a substantial degree of expression variability for MECP2, CDKL5, and FMR1 not only across cell types but also between donors. The wide range of expression may help define a therapeutic window, with the low end delineating a minimum level required to restore physiological function and the high end informing toxicology margin. Finally, the inter-cellular and inter-individual variability enable identification of co-varying genes and will facilitate future identification of biomarkers.
Collapse
Affiliation(s)
- Antonino Zito
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA02114
| | - Jeannie T. Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA02114
| |
Collapse
|
4
|
Nohesara S, Abdolmaleky HM, Thiagalingam S. Potential for New Therapeutic Approaches by Targeting Lactate and pH Mediated Epigenetic Dysregulation in Major Mental Diseases. Biomedicines 2024; 12:457. [PMID: 38398057 PMCID: PMC10887322 DOI: 10.3390/biomedicines12020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Multiple lines of evidence have shown that lactate-mediated pH alterations in the brains of patients with neuropsychiatric diseases such as schizophrenia (SCZ), Alzheimer's disease (AD) and autism may be attributed to mitochondrial dysfunction and changes in energy metabolism. While neuronal activity is associated with reduction in brain pH, astrocytes are responsible for rebalancing the pH to maintain the equilibrium. As lactate level is the main determinant of brain pH, neuronal activities are impacted by pH changes due to the binding of protons (H+) to various types of proteins, altering their structure and function in the neuronal and non-neuronal cells of the brain. Lactate and pH could affect diverse types of epigenetic modifications, including histone lactylation, which is linked to histone acetylation and DNA methylation. In this review, we discuss the importance of pH homeostasis in normal brain function, the role of lactate as an essential epigenetic regulatory molecule and its contributions to brain pH abnormalities in neuropsychiatric diseases, and shed light on lactate-based and pH-modulating therapies in neuropsychiatric diseases by targeting epigenetic modifications. In conclusion, we attempt to highlight the potentials and challenges of translating lactate-pH-modulating therapies to clinics for the treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
5
|
Varlamova EG, Borisova EV, Evstratova YA, Newman AG, Kuldaeva VP, Gavrish MS, Kondakova EV, Tarabykin VS, Babaev AA, Turovsky EA. Socrates: A Novel N-Ethyl-N-nitrosourea-Induced Mouse Mutant with Audiogenic Epilepsy. Int J Mol Sci 2023; 24:17104. [PMID: 38069426 PMCID: PMC10707124 DOI: 10.3390/ijms242317104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation-inhibition balance in the brain, and it can serve as a mouse model of epilepsy.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Ekaterina V. Borisova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Yuliya A. Evstratova
- Federal State Budgetary Educational Institution of Higher Education “MIREA—Russian Technological University”, 78, Vernadskogo Ave., 119454 Moscow, Russia;
| | - Andrew G. Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
| | - Vera P. Kuldaeva
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Victor S. Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (E.V.B.); (A.G.N.)
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Nab. Ushaiki, 634050 Tomsk, Russia
| | - Alexey A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (M.S.G.); (E.V.K.); (A.A.B.)
| |
Collapse
|
6
|
Turk AZ, Millwater M, SheikhBahaei S. Whole-brain analysis of CO 2 chemosensitive regions and identification of the retrotrapezoid and medullary raphé nuclei in the common marmoset ( Callithrix jacchus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.558361. [PMID: 37986845 PMCID: PMC10659419 DOI: 10.1101/2023.09.26.558361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Respiratory chemosensitivity is an important mechanism by which the brain senses changes in blood partial pressure of CO2 (PCO2). It is proposed that special neurons (and astrocytes) in various brainstem regions play key roles as CO2 central respiratory chemosensors in rodents. Although common marmosets (Callithrix jacchus), New-World non-human primates, show similar respiratory responses to elevated inspired CO2 as rodents, the chemosensitive regions in marmoset brain have not been defined yet. Here, we used c-fos immunostainings to identify brain-wide CO2-activated brain regions in common marmosets. In addition, we mapped the location of the retrotrapezoid nucleus (RTN) and raphé nuclei in the marmoset brainstem based on colocalization of CO2-induced c-fos immunoreactivity with Phox2b, and TPH immunostaining, respectively. Our data also indicated that, similar to rodents, marmoset RTN astrocytes express Phox2b and have complex processes that create a meshwork structure at the ventral surface of medulla. Our data highlight some cellular and structural regional similarities in brainstem of the common marmosets and rodents.
Collapse
Affiliation(s)
- Ariana Z. Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Marissa Millwater
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| |
Collapse
|
7
|
Gourine AV, Dale N. Brain H + /CO 2 sensing and control by glial cells. Glia 2022; 70:1520-1535. [PMID: 35102601 DOI: 10.1002/glia.24152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/04/2023]
Abstract
Maintenance of constant brain pH is critically important to support the activity of individual neurons, effective communication within the neuronal circuits, and, thus, efficient processing of information by the brain. This review article focuses on how glial cells detect and respond to changes in brain tissue pH and concentration of CO2 , and then trigger systemic and local adaptive mechanisms that ensure a stable milieu for the operation of brain circuits. We give a detailed account of the cellular and molecular mechanisms underlying sensitivity of glial cells to H+ and CO2 and discuss the role of glial chemosensitivity and signaling in operation of three key mechanisms that work in concert to keep the brain pH constant. We discuss evidence suggesting that astrocytes and marginal glial cells of the brainstem are critically important for central respiratory CO2 chemoreception-a fundamental physiological mechanism that regulates breathing in accord with changes in blood and brain pH and partial pressure of CO2 in order to maintain systemic pH homeostasis. We review evidence suggesting that astrocytes are also responsible for the maintenance of local brain tissue extracellular pH in conditions of variable acid loads associated with changes in the neuronal activity and metabolism, and discuss potential role of these glial cells in mediating the effects of CO2 on cerebral vasculature.
Collapse
Affiliation(s)
- Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
8
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Huff A, Burgraff N. Breathing disturbances in Rett syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:139-151. [PMID: 36031301 PMCID: PMC10029146 DOI: 10.1016/b978-0-323-91532-8.00018-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rett Syndrome is an X-linked neurological disorder characterized by behavioral and neurological regression, seizures, motor deficits, and dysautonomia. A particularly prominent presentation includes breathing abnormalities characterized by breathing irregularities, hyperventilation, repetitive breathholding during wakefulness, obstructive and central apneas during sleep, and abnormal responses to hypoxia and hypercapnia. The condition and pathology of the respiratory system is further complicated by dysfunctions of breathing-motor coordination, which is reflected in dysphagia. The discovery of the X-linked mutations in the MECP2 gene has transformed our understanding of the cellular and molecular mechanisms that are at the root of various clinical phenotypes. However, the genotype-phenotype relationship is complicated by various factors which include not only X-inactivation but also consequences of the intermittent hypoxia and oxidative stress associated with the breathing abnormalities.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States.
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
9
|
Gourine AV, Spyer KM. Geoff Burnstock, purinergic signalling, and chemosensory control of breathing. Auton Neurosci 2021; 235:102839. [PMID: 34198056 DOI: 10.1016/j.autneu.2021.102839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
This article is the authors' contribution to the tribute issue in honour of Geoffrey Burnstock, the founder of this journal and the field of purinergic signalling. We give a brief account of the results of experimental studies which at the beginning received valuable input from Geoff, who both directly and indirectly influenced our research undertaken over the last two decades. Research into the mechanisms controlling breathing identified ATP as the common mediator of the central and peripheral chemosensory transduction. Studies of the sources and mechanisms of chemosensory ATP release in the CNS suggested that this signalling pathway is universally engaged in conditions of increased metabolic demand by brain glial cells - astrocytes. Astrocytes appear to function as versatile CNS metabolic sensors that detect changes in brain tissue pH, CO2, oxygen, and cerebral perfusion pressure. Experimental studies on various aspects of astrocyte biology generated data indicating that the function of these omnipresent glial cells and communication between astrocytes and neurons are governed by purinergic signalling, - first discovered by Geoff Burnstock in the 70's and researched through his entire scientific career.
Collapse
Affiliation(s)
- Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - K Michael Spyer
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
10
|
Disordered breathing in a Pitt-Hopkins syndrome model involves Phox2b-expressing parafacial neurons and aberrant Nav1.8 expression. Nat Commun 2021; 12:5962. [PMID: 34645823 PMCID: PMC8514575 DOI: 10.1038/s41467-021-26263-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Pitt-Hopkins syndrome (PTHS) is a rare autism spectrum-like disorder characterized by intellectual disability, developmental delays, and breathing problems involving episodes of hyperventilation followed by apnea. PTHS is caused by functional haploinsufficiency of the gene encoding transcription factor 4 (Tcf4). Despite the severity of this disease, mechanisms contributing to PTHS behavioral abnormalities are not well understood. Here, we show that a Tcf4 truncation (Tcf4tr/+) mouse model of PTHS exhibits breathing problems similar to PTHS patients. This behavioral deficit is associated with selective loss of putative expiratory parafacial neurons and compromised function of neurons in the retrotrapezoid nucleus that regulate breathing in response to tissue CO2/H+. We also show that central Nav1.8 channels can be targeted pharmacologically to improve respiratory function at the cellular and behavioral levels in Tcf4tr/+ mice, thus establishing Nav1.8 as a high priority target with therapeutic potential in PTHS. Disordered breathing is a hallmark of Pitt-Hopkins syndrome (PTHS), yet little is known regarding how loss of Tcf4 (gene associated with PTHS) affects development and function of respiratory neurons. Here, the authors show that parafacial respiratory neurons are selectively disrupted in a mouse model of PTHS, and central Nav1.8 channels can be targeted to improve PTHS-associated behavior abnormalities.
Collapse
|
11
|
Milla BM. Loss of MeCP2 increases GABA uptake by astrocytes to suppress tonic inhibition of CA1 pyramidal neurons. J Neurophysiol 2021; 126:1310-1313. [PMID: 34495776 DOI: 10.1152/jn.00222.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder characterized a spectrum of phenotypes affecting neuronal and glial populations. Recent work by Dong et al. (Dong Q, Kim J, Nguyen L, Bu Q, Chang Q. J Neurosci 40: 6250-6261, 2020) suggests that augmented GABA uptake by astrocytes diminishes tonic inhibition in the hippocampus and contributes to increased seizure propensity in RTT. Here, I will review evidence supporting this possibility and critically evaluate how increased expression of a GABA transporter might contribute to this mechanism.
Collapse
Affiliation(s)
- Brenda M Milla
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
12
|
Mao Y, Evans EE, Mishra V, Balch L, Eberhardt A, Zauderer M, Gold WA. Anti-Semaphorin 4D Rescues Motor, Cognitive, and Respiratory Phenotypes in a Rett Syndrome Mouse Model. Int J Mol Sci 2021; 22:ijms22179465. [PMID: 34502373 PMCID: PMC8431088 DOI: 10.3390/ijms22179465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/09/2023] Open
Abstract
Rett syndrome is a neurodevelopmental disorder caused by mutations of the methyl-CpG binding protein 2 gene. Abnormal physiological functions of glial cells contribute to pathogenesis of Rett syndrome. Semaphorin 4D (SEMA4D) regulates processes central to neuroinflammation and neurodegeneration including cytoskeletal structures required for process extension, communication, and migration of glial cells. Blocking SEMA4D-induced gliosis may preserve normal glial and neuronal function and rescue neurological dysfunction in Rett syndrome. We evaluated the pre-clinical therapeutic efficacy of an anti-SEMA4D monoclonal antibody in the Rett syndrome Mecp2T158A transgenic mouse model and investigated the contribution of glial cells as a proposed mechanism of action in treated mice and in primary glial cultures isolated from Mecp2T158A/y mutant mice. SEMA4D is upregulated in neurons while glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1-positive cells are upregulated in Mecp2T158A/y mice. Anti-SEMA4D treatment ameliorates Rett syndrome-specific symptoms and improves behavioural functions in both pre-symptomatic and symptomatic cohorts of hemizygous Mecp2T158A/y male mice. Anti-SEMA4D also reduces astrocyte and microglia activation in vivo. In vitro experiments demonstrate an abnormal cytoskeletal structure in mutant astrocytes in the presence of SEMA4D, while anti-SEMA4D antibody treatment blocks SEMA4D–Plexin B1 signaling and mitigates these abnormalities. These results suggest that anti-SEMA4D immunotherapy may be an effective treatment option to alleviate symptoms and improve cognitive and motor function in Rett syndrome.
Collapse
Affiliation(s)
- Yilin Mao
- Molecular Neurobiology Research Laboratory, Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia;
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Elizabeth E. Evans
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Vikas Mishra
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Leslie Balch
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Allison Eberhardt
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Maurice Zauderer
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Wendy A. Gold
- Molecular Neurobiology Research Laboratory, Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia;
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Molecular Neurobiology Research Laboratory, The Children’s Medical Research Institute, Westmead, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
13
|
Role of Satb1 and Satb2 Transcription Factors in the Glutamate Receptors Expression and Ca 2+ Signaling in the Cortical Neurons In Vitro. Int J Mol Sci 2021; 22:ijms22115968. [PMID: 34073140 PMCID: PMC8198236 DOI: 10.3390/ijms22115968] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 01/17/2023] Open
Abstract
Transcription factors Satb1 and Satb2 are involved in the processes of cortex development and maturation of neurons. Alterations in the expression of their target genes can lead to neurodegenerative processes. Molecular and cellular mechanisms of regulation of neurotransmission by these transcription factors remain poorly understood. In this study, we have shown that transcription factors Satb1 and Satb2 participate in the regulation of genes encoding the NMDA-, AMPA-, and KA- receptor subunits and the inhibitory GABA(A) receptor. Deletion of gene for either Satb1 or Satb2 homologous factors induces the expression of genes encoding the NMDA receptor subunits, thereby leading to higher amplitudes of Ca2+-signals in neurons derived from the Satb1-deficient (Satb1fl/+ * NexCre/+) and Satb1-null mice (Satb1fl/fl * NexCre/+) in response to the selective agonist reducing the EC50 for the NMDA receptor. Simultaneously, there is an increase in the expression of the Gria2 gene, encoding the AMPA receptor subunit, thus decreasing the Ca2+-signals of neurons in response to the treatment with a selective agonist (5-Fluorowillardiine (FW)). The Satb1 deletion increases the sensitivity of the KA receptor to the agonist (domoic acid), in the cortical neurons of the Satb1-deficient mice but decreases it in the Satb1-null mice. At the same time, the Satb2 deletion decreases Ca2+-signals and the sensitivity of the KA receptor to the agonist in neurons from the Satb1-null and the Satb1-deficient mice. The Satb1 deletion affects the development of the inhibitory system of neurotransmission resulting in the suppression of the neuron maturation process and switching the GABAergic responses from excitatory to inhibitory, while the Satb2 deletion has a similar effect only in the Satb1-null mice. We show that the Satb1 and Satb2 transcription factors are involved in the regulation of the transmission of excitatory signals and inhibition of the neuronal network in the cortical cell culture.
Collapse
|
14
|
Analysis of Astroglial Secretomic Profile in the Mecp2-Deficient Male Mouse Model of Rett Syndrome. Int J Mol Sci 2021; 22:ijms22094316. [PMID: 33919253 PMCID: PMC8122273 DOI: 10.3390/ijms22094316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 02/08/2023] Open
Abstract
Mutations in the X-linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder. MECP2 is a transcriptional modulator that finely regulates the expression of many genes, specifically in the central nervous system. Several studies have functionally linked the loss of MECP2 in astrocytes to the appearance and progression of the RTT phenotype in a non-cell autonomous manner and mechanisms are still unknown. Here, we used primary astroglial cells from Mecp2-deficient (KO) pups to identify deregulated secreted proteins. Using a differential quantitative proteomic analysis, twenty-nine proteins have been identified and four were confirmed by Western blotting with new samples as significantly deregulated. To further verify the functional relevance of these proteins in RTT, we tested their effects on the dendritic morphology of primary cortical neurons from Mecp2 KO mice that are known to display shorter dendritic processes. Using Sholl analysis, we found that incubation with Lcn2 or Lgals3 for 48 h was able to significantly increase the dendritic arborization of Mecp2 KO neurons. To our knowledge, this study, through secretomic analysis, is the first to identify astroglial secreted proteins involved in the neuronal RTT phenotype in vitro, which could open new therapeutic avenues for the treatment of Rett syndrome.
Collapse
|
15
|
D'Mello SR. MECP2 and the Biology of MECP2 Duplication Syndrome. J Neurochem 2021; 159:29-60. [PMID: 33638179 DOI: 10.1111/jnc.15331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022]
Abstract
MECP2 duplication syndrome (MDS), a rare X-linked genomic disorder affecting predominantly males, is caused by duplication of the chromosomal region containing the methyl CpG binding protein-2 (MECP2) gene, which encodes methyl-CpG-binding protein 2 (MECP2), a multi-functional protein required for proper brain development and maintenance of brain function during adulthood. Disease symptoms include severe motor and cognitive impairment, delayed or absent speech development, autistic features, seizures, ataxia, recurrent respiratory infections and shortened lifespan. The cellular and molecular mechanisms by which a relatively modest increase in MECP2 protein causes such severe disease symptoms are poorly understood and consequently there are no treatments available for this fatal disorder. This review summarizes what is known to date about the structure and complex regulation of MECP2 and its many functions in the developing and adult brain. Additionally, recent experimental findings on the cellular and molecular underpinnings of MDS based on cell culture and mouse models of the disorder are reviewed. The emerging picture from these studies is that MDS is a neurodegenerative disorder in which neurons die in specific parts of the central nervous system, including the cortex, hippocampus, cerebellum and spinal cord. Neuronal death likely results from astrocytic dysfunction, including a breakdown of glutamate homeostatic mechanisms. The role of elevations in the expression of glial acidic fibrillary protein (GFAP) in astrocytes and the microtubule-associated protein, Tau, in neurons to the pathogenesis of MDS is discussed. Lastly, potential therapeutic strategies to potentially treat MDS are discussed.
Collapse
|
16
|
Patterson KC, Kahanovitch U, Gonçalves CM, Hablitz JJ, Staruschenko A, Mulkey DK, Olsen ML. K ir 5.1-dependent CO 2 /H + -sensitive currents contribute to astrocyte heterogeneity across brain regions. Glia 2021; 69:310-325. [PMID: 32865323 PMCID: PMC8665280 DOI: 10.1002/glia.23898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 09/19/2023]
Abstract
Astrocyte heterogeneity is an emerging concept in which astrocytes within or between brain regions show variable morphological and/or gene expression profiles that presumably reflect different functional roles. Recent evidence indicates that retrotrapezoid nucleus (RTN) astrocytes sense changes in tissue CO2/ H+ to regulate respiratory activity; however, mechanism(s) by which they do so remain unclear. Alterations in inward K+ currents represent a potential mechanism by which CO2 /H+ signals may be conveyed to neurons. Here, we use slice electrophysiology in rats of either sex to show that RTN astrocytes intrinsically respond to CO2 /H+ by inhibition of an inward rectifying potassium (Kir ) conductance and depolarization of the membrane, while cortical astrocytes do not exhibit such CO2 /H+ -sensitive properties. Application of Ba2+ mimics the effect of CO2 /H+ on RTN astrocytes as measured by reductions in astrocyte Kir -like currents and increased RTN neuronal firing. These CO2 /H+ -sensitive currents increase developmentally, in parallel to an increased expression in Kir 4.1 and Kir 5.1 in the brainstem. Finally, the involvement of Kir 5.1 in the CO2 /H+ -sensitive current was verified using a Kir5.1 KO rat. These data suggest that Kir inhibition by CO2 /H+ may govern the degree to which astrocytes mediate downstream chemoreceptive signaling events through cell-autonomous mechanisms. These results identify Kir channels as potentially important regional CO2 /H+ sensors early in development, thus expanding our understanding of how astrocyte heterogeneity may uniquely support specific neural circuits and behaviors.
Collapse
Affiliation(s)
- Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
17
|
Cristancho AG, Marsh ED. Epigenetics modifiers: potential hub for understanding and treating neurodevelopmental disorders from hypoxic injury. J Neurodev Disord 2020; 12:37. [PMID: 33327934 PMCID: PMC7745506 DOI: 10.1186/s11689-020-09344-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The fetal brain is adapted to the hypoxic conditions present during normal in utero development. Relatively more hypoxic states, either chronic or acute, are pathologic and can lead to significant long-term neurodevelopmental sequelae. In utero hypoxic injury is associated with neonatal mortality and millions of lives lived with varying degrees of disability. MAIN BODY Genetic studies of children with neurodevelopmental disease indicate that epigenetic modifiers regulating DNA methylation and histone remodeling are critical for normal brain development. Epigenetic modifiers are also regulated by environmental stimuli, such as hypoxia. Indeed, epigenetic modifiers that are mutated in children with genetic neurodevelopmental diseases are regulated by hypoxia in a number of preclinical models and may be part of the mechanism for the long-term neurodevelopmental sequelae seem in children with hypoxic brain injury. Thus, a comprehensive understanding the role of DNA methylation and histone modifications in hypoxic injury is critical for developing novel strategies to treat children with hypoxic injury. CONCLUSIONS This review focuses on our current understanding of the intersection between epigenetics, brain development, and hypoxia. Opportunities for the use of epigenetics as biomarkers of neurodevelopmental disease after hypoxic injury and potential clinical epigenetics targets to improve outcomes after injury are also discussed. While there have been many published studies on the epigenetics of hypoxia, more are needed in the developing brain in order to determine which epigenetic pathways may be most important for mitigating the long-term consequences of hypoxic brain injury.
Collapse
Affiliation(s)
- Ana G Cristancho
- Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Eric D Marsh
- Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
18
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Bush NE, Carroll MS, Weese-Mayer DE, Huff A. The Pathophysiology of Rett Syndrome With a Focus on Breathing Dysfunctions. Physiology (Bethesda) 2020; 35:375-390. [PMID: 33052774 PMCID: PMC7864239 DOI: 10.1152/physiol.00008.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT), an X-chromosome-linked neurological disorder, is characterized by serious pathophysiology, including breathing and feeding dysfunctions, and alteration of cardiorespiratory coupling, a consequence of multiple interrelated disturbances in the genetic and homeostatic regulation of central and peripheral neuronal networks, redox state, and control of inflammation. Characteristic breath-holds, obstructive sleep apnea, and aerophagia result in intermittent hypoxia, which, combined with mitochondrial dysfunction, causes oxidative stress-an important driver of the clinical presentation of RTT.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
19
|
Mastitskaya S, Turovsky E, Marina N, Theparambil SM, Hadjihambi A, Kasparov S, Teschemacher AG, Ramage AG, Gourine AV, Hosford PS. Astrocytes Modulate Baroreflex Sensitivity at the Level of the Nucleus of the Solitary Tract. J Neurosci 2020; 40:3052-3062. [PMID: 32132265 PMCID: PMC7141885 DOI: 10.1523/jneurosci.1438-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/16/2019] [Accepted: 01/12/2020] [Indexed: 11/21/2022] Open
Abstract
Maintenance of cardiorespiratory homeostasis depends on autonomic reflexes controlled by neuronal circuits of the brainstem. The neurophysiology and neuroanatomy of these reflex pathways are well understood, however, the mechanisms and functional significance of autonomic circuit modulation by glial cells remain largely unknown. In the experiments conducted in male laboratory rats we show that astrocytes of the nucleus of the solitary tract (NTS), the brain area that receives and integrates sensory information from the heart and blood vessels, respond to incoming afferent inputs with [Ca2+]i elevations. Astroglial [Ca2+]i responses are triggered by transmitters released by vagal afferents, glutamate acting at AMPA receptors and 5-HT acting at 5-HT2A receptors. In conscious freely behaving animals blockade of Ca2+-dependent vesicular release mechanisms in NTS astrocytes by virally driven expression of a dominant-negative SNARE protein (dnSNARE) increased baroreflex sensitivity by 70% (p < 0.001). This effect of compromised astroglial function was specific to the NTS as expression of dnSNARE in astrocytes of the ventrolateral brainstem had no effect. ATP is considered the principle gliotransmitter and is released by vesicular mechanisms blocked by dnSNARE expression. Consistent with this hypothesis, in anesthetized rats, pharmacological activation of P2Y1 purinoceptors in the NTS decreased baroreflex gain by 40% (p = 0.031), whereas blockade of P2Y1 receptors increased baroreflex gain by 57% (p = 0.018). These results suggest that glutamate and 5-HT, released by NTS afferent terminals, trigger Ca2+-dependent astroglial release of ATP to modulate baroreflex sensitivity via P2Y1 receptors. These data add to the growing body of evidence supporting an active role of astrocytes in brain information processing.SIGNIFICANCE STATEMENT Cardiorespiratory reflexes maintain autonomic balance and ensure cardiovascular health. Impaired baroreflex may contribute to the development of cardiovascular disease and serves as a robust predictor of cardiovascular and all-cause mortality. The data obtained in this study suggest that astrocytes are integral components of the brainstem mechanisms that process afferent information and modulate baroreflex sensitivity via the release of ATP. Any condition associated with higher levels of "ambient" ATP in the NTS would be expected to decrease baroreflex gain by the mechanism described here. As ATP is the primary signaling molecule of glial cells (astrocytes, microglia), responding to metabolic stress and inflammatory stimuli, our study suggests a plausible mechanism of how the central component of the baroreflex is affected in pathological conditions.
Collapse
Affiliation(s)
- Svetlana Mastitskaya
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Egor Turovsky
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russian Federation
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Anna Hadjihambi
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Sergey Kasparov
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
- Baltic Federal University, Kaliningrad 236041, Russian Federation, and
| | - Anja G Teschemacher
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Andrew G Ramage
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom,
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom,
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
20
|
Abstract
Our understanding of astrocytes and their role in neurological diseases has increased considerably over the past two decades as the diverse roles of these cells have become recognized. Our evolving understanding of these cells suggests that they are more than support cells for neurons and that they play important roles in CNS homeostasis under normal conditions, in neuroprotection and in disease exacerbation. These multiple functions make them excellent candidates for targeted therapies to treat neurological disorders. New technological advances, including in vivo imaging, optogenetics and chemogenetics, have allowed us to examine astrocytic functions in ways that have uncovered new insights into the dynamic roles of these cells. Furthermore, the use of induced pluripotent stem cell-derived astrocytes from patients with a host of neurological disorders can help to tease out the contributions of astrocytes to human disease. In this Review, we explore some of the technological advances developed over the past decade that have aided our understanding of astrocyte function. We also highlight neurological disorders in which astrocyte function or dysfunction is believed to have a role in disease pathogenesis or propagation and discuss how the technological advances have been and could be used to study each of these diseases.
Collapse
|
21
|
Kahanovitch U, Patterson KC, Hernandez R, Olsen ML. Glial Dysfunction in MeCP2 Deficiency Models: Implications for Rett Syndrome. Int J Mol Sci 2019; 20:ijms20153813. [PMID: 31387202 PMCID: PMC6696322 DOI: 10.3390/ijms20153813] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is a rare, X-linked neurodevelopmental disorder typically affecting females, resulting in a range of symptoms including autistic features, intellectual impairment, motor deterioration, and autonomic abnormalities. RTT is primarily caused by the genetic mutation of the Mecp2 gene. Initially considered a neuronal disease, recent research shows that glial dysfunction contributes to the RTT disease phenotype. In the following manuscript, we review the evidence regarding glial dysfunction and its effects on disease etiology.
Collapse
Affiliation(s)
- Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA
| | - Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA
| | - Raymundo Hernandez
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech, Roanoke, VL 24014, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA.
| |
Collapse
|
22
|
Astrocyte networks modulate respiration – sniffing glue. Respir Physiol Neurobiol 2019; 265:3-8. [DOI: 10.1016/j.resp.2018.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/17/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
|
23
|
Wittman S, Abdala AP, Rubin JE. Reduced computational modelling of Kölliker-Fuse contributions to breathing patterns in Rett syndrome. J Physiol 2019; 597:2651-2672. [PMID: 30908648 DOI: 10.1113/jp277592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Reduced computational models are used to test effects of loss of inhibition to the Kölliker-Fuse nucleus (KFn). Three reduced computational models that simulate eupnoeic and vagotomized respiratory rhythms are considered. All models exhibit the emergence of respiratory perturbations associated with Rett syndrome as inhibition to the KFn is diminished. Simulations suggest that application of 5-HT1A agonists can mitigate the respiratory pathology. The three models can be distinguished and tested based on their predictions about connections and dynamics within the respiratory circuit and about effects of perturbations on certain respiratory neuron populations. ABSTRACT Rett syndrome (RTT) is a developmental disorder that can lead to respiratory disturbances featuring prolonged apnoeas of variable durations. Determining the mechanisms underlying these effects at the level of respiratory neural circuits would have significant implications for treatment efforts and would also enhance our understanding of respiratory rhythm generation and control. While experimental studies have suggested possible factors contributing to the respiratory patterns of RTT, we take a novel computational approach to the investigation of RTT, which allows for direct manipulation of selected system parameters and testing of specific hypotheses. Specifically, we present three reduced computational models, developed using an established framework, all of which successfully simulate respiratory outputs across eupnoeic and vagotomized conditions. All three models show that loss of inhibition to the Kölliker-Fuse nucleus reproduces the key respiratory alterations associated with RTT and, as suggested experimentally, that effects of 5-HT1A agonists on the respiratory neural circuit suffice to alleviate this respiratory pathology. Each of the models makes distinct predictions regarding the neuronal populations and interactions underlying these effects, suggesting natural directions for future experimental testing.
Collapse
Affiliation(s)
- Samuel Wittman
- Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA, 15260, USA
| | - Ana Paula Abdala
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA, 15260, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
24
|
Czeisler CM, Silva TM, Fair SR, Liu J, Tupal S, Kaya B, Cowgill A, Mahajan S, Silva PE, Wang Y, Blissett AR, Göksel M, Borniger JC, Zhang N, Fernandes‐Junior SA, Catacutan F, Alves MJ, Nelson RJ, Sundaresean V, Rekling J, Takakura AC, Moreira TS, Otero JJ. The role of PHOX2B-derived astrocytes in chemosensory control of breathing and sleep homeostasis. J Physiol 2019; 597:2225-2251. [PMID: 30707772 PMCID: PMC6462490 DOI: 10.1113/jp277082] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/28/2019] [Indexed: 01/07/2023] Open
Abstract
KEY POINTS The embryonic PHOX2B-progenitor domain generates neuronal and glial cells which together are involved in chemosensory control of breathing and sleep homeostasis. Ablating PHOX2B-derived astrocytes significantly contributes to secondary hypoxic respiratory depression as well as abnormalities in sleep homeostasis. PHOX2B-derived astrocyte ablation results in axonal pathologies in the retrotrapezoid nucleus. ABSTRACT We identify in mice a population of ∼800 retrotrapezoid nucleus (RTN) astrocytes derived from PHOX2B-positive, OLIG3-negative progenitor cells, that interact with PHOX2B-expressing RTN chemosensory neurons. PHOX2B-derived astrocyte ablation during early life results in adult-onset O2 chemoreflex deficiency. These animals also display changes in sleep homeostasis, including fragmented sleep and disturbances in delta power after sleep deprivation, all without observable changes in anxiety or social behaviours. Ultrastructural evaluation of the RTN demonstrates that PHOX2B-derived astrocyte ablation results in features characteristic of degenerative neuro-axonal dystrophy, including abnormally dilated axon terminals and increased amounts of synapses containing autophagic vacuoles/phagosomes. We conclude that PHOX2B-derived astrocytes are necessary for maintaining a functional O2 chemosensory reflex in the adult, modulate sleep homeostasis, and are key regulators of synaptic integrity in the RTN region, which is necessary for the chemosensory control of breathing. These data also highlight how defects in embryonic development may manifest as neurodegenerative pathology in an adult.
Collapse
Affiliation(s)
| | - Talita M. Silva
- Department of Physiology and BiophysicsInstitute of Biomedical ScienceUniversity of Sao PauloSao PauloBrazil
| | - Summer R. Fair
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Jillian Liu
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Srinivasan Tupal
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Behiye Kaya
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Aaron Cowgill
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Salil Mahajan
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Phelipe E. Silva
- Department of Physiology and BiophysicsInstitute of Biomedical ScienceUniversity of Sao PauloSao PauloBrazil
| | - Yangyang Wang
- Department of NeuroscienceThe Ohio State University College of MedicineColumbusOHUSA
- The Ohio State University Mathematical Biosciences InstituteColumbusOHUSA
| | - Angela R. Blissett
- Department of Mechanical and Aerospace EngineeringThe Ohio State University College of EngineeringColumbusOHUSA
| | - Mustafa Göksel
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Jeremy C. Borniger
- Department of NeuroscienceThe Ohio State University College of MedicineColumbusOHUSA
| | - Ning Zhang
- Department of NeuroscienceWest Virginia UniversityWVUSA
| | - Silvio A. Fernandes‐Junior
- The Ohio State University Campus Microscopy and Imaging FacilityColumbusOHUSA
- Department of PharmacologyInstitute of Biomedical ScienceUniversity of São PauloSao PauloBrazil
| | - Fay Catacutan
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Michele J. Alves
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | | | - Vishnu Sundaresean
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| | - Jens Rekling
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
| | - Ana C. Takakura
- Department of PharmacologyInstitute of Biomedical ScienceUniversity of São PauloSao PauloBrazil
| | - Thiago S. Moreira
- Department of Physiology and BiophysicsInstitute of Biomedical ScienceUniversity of Sao PauloSao PauloBrazil
| | - José J. Otero
- Department of PathologyThe Ohio State University College of MedicineColumbusOHUSA
| |
Collapse
|
25
|
Cohen EM, Farnham MMJ, Kakall Z, Kim SJ, Nedoboy PE, Pilowsky PM. Glia and central cardiorespiratory pathology. Auton Neurosci 2018; 214:24-34. [PMID: 30172674 DOI: 10.1016/j.autneu.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023]
Abstract
Respiration and blood pressure are primarily controlled by somatic and autonomic motor neurones, respectively. Central cardiorespiratory control is critical in moment-to-moment survival, but it also has a role in the development and maintenance of chronic pathological conditions such as hypertension. The glial cells of the brain are non-neuronal cells with metabolic, immune, and developmental functions. Recent evidence shows that glia play an active role in supporting and regulating the neuronal circuitry which drives the cardiorespiratory system. Here we will review the activities of two key types of glial cell, microglia and astrocytes, in assisting normal central cardiorespiratory control and in pathology.
Collapse
Affiliation(s)
- E Myfanwy Cohen
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Melissa M J Farnham
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zohra Kakall
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Seung Jae Kim
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Polina E Nedoboy
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul M Pilowsky
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
26
|
SheikhBahaei S, Morris B, Collina J, Anjum S, Znati S, Gamarra J, Zhang R, Gourine AV, Smith JC. Morphometric analysis of astrocytes in brainstem respiratory regions. J Comp Neurol 2018; 526:2032-2047. [PMID: 29888789 PMCID: PMC6158060 DOI: 10.1002/cne.24472] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/07/2018] [Accepted: 05/13/2018] [Indexed: 12/30/2022]
Abstract
Astrocytes, the most abundant and structurally complex glial cells of the central nervous system, are proposed to play an important role in modulating the activities of neuronal networks, including respiratory rhythm‐generating circuits of the preBötzinger complex (preBötC) located in the ventrolateral medulla of the brainstem. However, structural properties of astrocytes residing within different brainstem regions are unknown. In this study astrocytes in the preBötC, an intermediate reticular formation (IRF) region with respiratory‐related function, and a region of the nucleus tractus solitarius (NTS) in adult rats were reconstructed and their morphological features were compared. Detailed morphological analysis revealed that preBötC astrocytes are structurally more complex than those residing within the functionally distinct neighboring IRF region, or the NTS, located at the dorsal aspect of the medulla oblongata. Structural analyses of the brainstem microvasculature indicated no significant regional differences in vascular properties. We hypothesize that high morphological complexity of preBötC astrocytes reflects their functional role in providing structural/metabolic support and modulation of the key neuronal circuits essential for breathing, as well as constraints imposed by arrangements of associated neurons and/or other local structural features of the brainstem parenchyma.
Collapse
Affiliation(s)
- Shahriar SheikhBahaei
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland.,Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Brian Morris
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland
| | - Jared Collina
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland
| | - Sommer Anjum
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland
| | - Sami Znati
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland
| | - Julio Gamarra
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland
| | - Ruli Zhang
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
27
|
Marina N, Turovsky E, Christie IN, Hosford PS, Hadjihambi A, Korsak A, Ang R, Mastitskaya S, Sheikhbahaei S, Theparambil SM, Gourine AV. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia 2018; 66:1185-1199. [PMID: 29274121 PMCID: PMC5947829 DOI: 10.1002/glia.23283] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022]
Abstract
Astrocytes support neuronal function by providing essential structural and nutritional support, neurotransmitter trafficking and recycling and may also contribute to brain information processing. In this article we review published results and report new data suggesting that astrocytes function as versatile metabolic sensors of central nervous system (CNS) milieu and play an important role in the maintenance of brain metabolic homeostasis. We discuss anatomical and functional features of astrocytes that allow them to detect and respond to changes in the brain parenchymal levels of metabolic substrates (oxygen and glucose), and metabolic waste products (carbon dioxide). We report data suggesting that astrocytes are also sensitive to circulating endocrine signals-hormones like ghrelin, glucagon-like peptide-1 and leptin, that have a major impact on the CNS mechanisms controlling food intake and energy balance. We discuss signaling mechanisms that mediate communication between astrocytes and neurons and consider how these mechanisms are recruited by astrocytes activated in response to various metabolic challenges. We review experimental data suggesting that astrocytes modulate the activities of the respiratory and autonomic neuronal networks that ensure adaptive changes in breathing and sympathetic drive in order to support the physiological and behavioral demands of the organism in ever-changing environmental conditions. Finally, we discuss evidence suggesting that altered astroglial function may contribute to the pathogenesis of disparate neurological, respiratory and cardiovascular disorders such as Rett syndrome and systemic arterial hypertension.
Collapse
Affiliation(s)
- Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
- Research Department of Metabolism and Experimental Therapeutics, Division of MedicineUniversity College LondonLondonWC1E 6JJUnited Kingdom
| | - Egor Turovsky
- Laboratory of Intracellular SignallingInstitute of Cell Biophysics, Russian Academy of SciencesPushchinoRussia
| | - Isabel N Christie
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Anna Hadjihambi
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Richard Ang
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Svetlana Mastitskaya
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Shahriar Sheikhbahaei
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| |
Collapse
|
28
|
Abstract
Rett Syndrome is a severe neurological disorder mainly due to
de novo mutations in the methyl-CpG-binding protein 2 gene (
MECP2). Mecp2 is known to play a role in chromatin organization and transcriptional regulation. In this review, we report the latest advances on the molecular function of Mecp2 and the new animal and cellular models developed to better study Rett syndrome. Finally, we present the latest innovative therapeutic approaches, ranging from classical pharmacology to correct symptoms to more innovative approaches intended to cure the pathology.
Collapse
Affiliation(s)
- Yann Ehinger
- Aix Marseille Univ, INSERM, MMG, 13385 Marseille, France
| | | | | | | |
Collapse
|
29
|
Patil SS, Suresh KP, Saha S, Prajapati A, Hemadri D, Roy P. Meta-analysis of classical swine fever prevalence in pigs in India: A 5-year study. Vet World 2018; 11:297-303. [PMID: 29657420 PMCID: PMC5891843 DOI: 10.14202/vetworld.2018.297-303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/18/2018] [Indexed: 11/24/2022] Open
Abstract
Aim: The aim of the study was to determine the overall prevalence of classical swine fever (CSF) in pigs in India, through a systematic review and meta-analysis of published data. Materials and Methods: Consortium for e-Resources in Agriculture, India, Google Scholar, PubMed, annual reports of All India Coordinated Research Project on Animal Disease Monitoring and Surveillance, and All India Animal Disease database of NIVEDI (NADRES) were used for searching and retrieval of CSF prevalence data (seroprevalence, virus antigen, and virus nucleic acid detection) in India using a search strategy combining keywords and related database-specific subject terms from January 2011 to December 2015 in English only. Results: A total of 22 data reports containing 6,158 samples size from 18 states of India were used for the quantitative synthesis, and overall 37% (95% confidence interval [CI]=0.24, 0.51) CSF prevalence in India was estimated. The data were classified into 4 different geographical zones of the country: 20% (95% CI=0.05, 0.55), 31% (95% CI=0.18, 0.47), 55% (95% CI=0.32, 0.76), and 34% (95% CI=0.14, 0.62). CSF prevalence was estimated in northern, eastern, western, and southern regions, respectively. Conclusion: This study indicates that overall prevalence of CSF in India is much lower than individual published reports.
Collapse
Affiliation(s)
- S S Patil
- Indian Council of Agricultural Research - National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), PBNO-6450, Yelahanka, Bengaluru, Karnataka, India
| | - K P Suresh
- Indian Council of Agricultural Research - National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), PBNO-6450, Yelahanka, Bengaluru, Karnataka, India
| | - S Saha
- Indian Council of Agricultural Research - National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), PBNO-6450, Yelahanka, Bengaluru, Karnataka, India
| | - A Prajapati
- Indian Council of Agricultural Research - National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), PBNO-6450, Yelahanka, Bengaluru, Karnataka, India
| | - D Hemadri
- Indian Council of Agricultural Research - National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), PBNO-6450, Yelahanka, Bengaluru, Karnataka, India
| | - P Roy
- Indian Council of Agricultural Research - National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), PBNO-6450, Yelahanka, Bengaluru, Karnataka, India
| |
Collapse
|
30
|
Gourine AV, Deuchars SA. Autonomic rhythms in health and disease. Exp Physiol 2018; 103:324-325. [PMID: 29493055 DOI: 10.1113/ep086800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 11/08/2022]
|
31
|
Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity. Nat Commun 2018; 9:370. [PMID: 29371650 PMCID: PMC5785528 DOI: 10.1038/s41467-017-02723-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022] Open
Abstract
Astrocytes are implicated in modulation of neuronal excitability and synaptic function, but it remains unknown if these glial cells can directly control activities of motor circuits to influence complex behaviors in vivo. This study focused on the vital respiratory rhythm-generating circuits of the preBötzinger complex (preBötC) and determined how compromised function of local astrocytes affects breathing in conscious experimental animals (rats). Vesicular release mechanisms in astrocytes were disrupted by virally driven expression of either the dominant-negative SNARE protein or light chain of tetanus toxin. We show that blockade of vesicular release in preBötC astrocytes reduces the resting breathing rate and frequency of periodic sighs, decreases rhythm variability, impairs respiratory responses to hypoxia and hypercapnia, and dramatically reduces the exercise capacity. These findings indicate that astrocytes modulate the activity of CNS circuits generating the respiratory rhythm, critically contribute to adaptive respiratory responses in conditions of increased metabolic demand and determine the exercise capacity. Circuits of the preBötzinger complex generate rhythms needed for breathing. Here, the authors provide evidence, using a combination of chemogenetic approaches and approaches to inhibit vesicular release, that astrocytes play a role in regulating respiratory rate.
Collapse
|
32
|
Rakela B, Brehm P, Mandel G. Astrocytic modulation of excitatory synaptic signaling in a mouse model of Rett syndrome. eLife 2018; 7:31629. [PMID: 29313799 PMCID: PMC5771668 DOI: 10.7554/elife.31629] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
Studies linking mutations in Methyl CpG Binding Protein 2 (MeCP2) to physiological defects in the neurological disease, Rett syndrome, have focused largely upon neuronal dysfunction despite MeCP2 ubiquitous expression. Here we explore roles for astrocytes in neuronal network function using cortical slice recordings. We find that astrocyte stimulation in wild-type mice increases excitatory synaptic activity that is absent in male mice lacking MeCP2 globally. To determine the cellular basis of the defect, we exploit a female mouse model for Rett syndrome that expresses wild-type MeCP2-GFP in a mosaic distribution throughout the brain, allowing us to test all combinations of wild-type and mutant cells. We find that the defect is dependent upon MeCP2 expression status in the astrocytes and not in the neurons. Our findings highlight a new role for astrocytes in regulation of excitatory synaptic signaling and in the neurological defects associated with Rett syndrome.
Collapse
Affiliation(s)
- Benjamin Rakela
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Paul Brehm
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Gail Mandel
- Vollum Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
33
|
Sharma K, Singh J, Frost EE, Pillai PP. MeCP2 in central nervous system glial cells: current updates. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Turovsky EA, Babaev AA, Tarabykin VS, Turovskaya MV. Sip1 mutation suppresses the resistance of cerebral cortex neurons to hypoxia through the disturbance of mechanisms of hypoxic preconditioning. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817040109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Jiang C, Cui N, Zhong W, Johnson CM, Wu Y. Breathing abnormalities in animal models of Rett syndrome a female neurogenetic disorder. Respir Physiol Neurobiol 2017; 245:45-52. [PMID: 27884797 PMCID: PMC5438903 DOI: 10.1016/j.resp.2016.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 02/08/2023]
Abstract
A characteristic feature of Rett syndrome (RTT) is abnormal breathing accompanied by several other neurological and cognitive disorders. Since RTT rodent models became available, studies have begun shedding insight into the breathing abnormalities at behavioral, cellular and molecular levels. Defects are found in several groups of brainstem neurons involved in respiratory control, and potential neural mechanisms have been suggested. The findings in animal models are helpful in therapeutic strategies for people with RTT with respect to lowering sudden and unexpected death, preventing secondary developmental consequences, and improving the quality of lives.
Collapse
Affiliation(s)
- Chun Jiang
- Department of Biology, Georgia State University, Atlanta, USA.
| | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, USA
| | - Weiwei Zhong
- Department of Biology, Georgia State University, Atlanta, USA
| | | | - Yang Wu
- Department of Biology, Georgia State University, Atlanta, USA
| |
Collapse
|
36
|
Forsberg D, Ringstedt T, Herlenius E. Astrocytes release prostaglandin E2 to modify respiratory network activity. eLife 2017; 6:29566. [PMID: 28976306 PMCID: PMC5648524 DOI: 10.7554/elife.29566] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/03/2017] [Indexed: 12/31/2022] Open
Abstract
Previously (Forsberg et al., 2016), we revealed that prostaglandin E2 (PGE2), released during hypercapnic challenge, increases calcium oscillations in the chemosensitive parafacial respiratory group (pFRG/RTN). Here, we demonstrate that pFRG/RTN astrocytes are the PGE2 source. Two distinct astrocyte subtypes were found using transgenic mice expressing GFP and MrgA1 receptors in astrocytes. Although most astrocytes appeared dormant during time-lapse calcium imaging, a subgroup displayed persistent, rhythmic oscillating calcium activity. These active astrocytes formed a subnetwork within the respiratory network distinct from the neuronal network. Activation of exogenous MrgA1Rs expressed in astrocytes tripled astrocytic calcium oscillation frequency in both the preBötzinger complex and pFRG/RTN. However, neurons in the preBötC were unaffected, whereas neuronal calcium oscillatory frequency in pFRG/RTN doubled. Notably, astrocyte activation in pFRG/RTN triggered local PGE2 release and blunted the hypercapnic response. Thus, astrocytes play an active role in respiratory rhythm modulation, modifying respiratory-related behavior through PGE2 release in the pFRG/RTN.
Collapse
Affiliation(s)
- David Forsberg
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Ringstedt
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Herlenius
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Jin XR, Chen XS, Xiao L. MeCP2 Deficiency in Neuroglia: New Progress in the Pathogenesis of Rett Syndrome. Front Mol Neurosci 2017; 10:316. [PMID: 29046627 PMCID: PMC5632713 DOI: 10.3389/fnmol.2017.00316] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/19/2017] [Indexed: 01/24/2023] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disease predominantly caused by mutations of the methyl-CpG-binding protein 2 (MeCP2) gene. Generally, RTT has been attributed to neuron-centric dysfunction. However, increasing evidence has shown that glial abnormalities are also involved in the pathogenesis of RTT. Mice that are MeCP2-null specifically in glial cells showed similar behavioral and/or neuronal abnormalities as those found in MeCP2-null mice, a mouse model of RTT. MeCP2 deficiency in astrocytes impacts the expression of glial intermediate filament proteins such as fibrillary acidic protein (GFAP) and S100 and induces neuron toxicity by disturbing glutamate metabolism or enhancing microtubule instability. MeCP2 deficiency in oligodendrocytes (OLs) results in down-regulation of myelin gene expression and impacts myelination. While MeCP2-deficient microglia cells fail in response to environmental stimuli, release excessive glutamate, and aggravate impairment of the neuronal circuit. In this review, we mainly focus on the progress in determining the role of MeCP2 in glial cells involved in RTT, which may provide further insight into a therapeutic intervention for RTT.
Collapse
Affiliation(s)
- Xu-Rui Jin
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China.,The Cadet Brigade of Clinic Medicine, Third Military Medical University, Chongqing, China
| | - Xing-Shu Chen
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China
| |
Collapse
|
38
|
Mechanisms of CO2/H+ Sensitivity of Astrocytes. J Neurosci 2017; 36:10750-10758. [PMID: 27798130 DOI: 10.1523/jneurosci.1281-16.2016] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/18/2016] [Indexed: 11/21/2022] Open
Abstract
Ventral regions of the medulla oblongata of the brainstem are populated by astrocytes sensitive to physiological changes in PCO2/[H+]. These astrocytes respond to decreases in pH with elevations in intracellular Ca2+ and facilitated exocytosis of ATP-containing vesicles. Released ATP propagates Ca2+ excitation among neighboring astrocytes and activates neurons of the brainstem respiratory network triggering adaptive increases in breathing. The mechanisms linking increases in extracellular and/or intracellular PCO2/[H+] with Ca2+ responses in chemosensitive astrocytes remain unknown. Fluorescent imaging of changes in [Na+]i and/or [Ca2+]i in individual astrocytes was performed in organotypic brainstem slice cultures and acute brainstem slices of adult rats. It was found that astroglial [Ca2+]i responses triggered by decreases in pH are preceded by Na+ entry, markedly reduced by inhibition of Na+/HCO3- cotransport (NBC) or Na+/Ca2+ exchange (NCX), and abolished in Na+-free medium or by combined NBC/NCX blockade. Acidification-induced [Ca2+]i responses were also dramatically reduced in brainstem astrocytes of mice deficient in the electrogenic Na+/HCO3- cotransporter NBCe1. Sensitivity of astrocytes to changes in pH was not affected by inhibition of Na+/H+ exchange or blockade of phospholipase C. These results suggest that in pH-sensitive astrocytes, acidification activates NBCe1, which brings Na+ inside the cell. Raising [Na+]i activates NCX to operate in a reverse mode, leading to Ca2+ entry followed by activation of downstream signaling pathways. Coupled NBC and NCX activities are, therefore, suggested to be responsible for functional CO2/H+ sensitivity of astrocytes that contribute to homeostatic regulation of brain parenchymal pH and control of breathing. SIGNIFICANCE STATEMENT Brainstem astrocytes detect physiological changes in pH, activate neurons of the neighboring respiratory network, and contribute to the development of adaptive respiratory responses to the increases in the level of blood and brain PCO2/[H+]. The mechanisms underlying astroglial pH sensitivity remained unknown and here we show that in brainstem astrocytes acidification activates Na+/HCO3- cotransport, which brings Na+ inside the cell. Raising [Na+]i activates the Na+/Ca2+ exchanger to operate in a reverse mode leading to Ca2+ entry. This identifies a plausible mechanism of functional CO2/H+ sensitivity of brainstem astrocytes, which play an important role in homeostatic regulation of brain pH and control of breathing.
Collapse
|
39
|
Gourine AV, Funk GD. On the existence of a central respiratory oxygen sensor. J Appl Physiol (1985) 2017; 123:1344-1349. [PMID: 28522760 DOI: 10.1152/japplphysiol.00194.2017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/04/2017] [Accepted: 05/16/2017] [Indexed: 11/22/2022] Open
Abstract
A commonly held view that dominates both the scientific and educational literature is that in terrestrial mammals the central nervous system lacks a physiological hypoxia sensor capable of triggering increases in lung ventilation in response to decreases in Po2 of the brain parenchyma. Indeed, a normocapnic hypoxic ventilatory response has never been observed in humans following bilateral resection of the carotid bodies. In contrast, almost complete or partial recovery of the hypoxic ventilatory response after denervation/removal of the peripheral respiratory oxygen chemoreceptors has been demonstrated in many experimental animals when assessed in an awake state. In this essay we review the experimental evidence obtained using in vitro and in vivo animal models, results of human studies, and discuss potential mechanisms underlying the effects of CNS hypoxia on breathing. We consider experimental limitations and discuss potential reasons why the recovery of the hypoxic ventilatory response has not been observed in humans. We review recent experimental evidence suggesting that the lower brain stem contains functional oxygen sensitive elements capable of stimulating respiratory activity independently of peripheral chemoreceptor input.
Collapse
Affiliation(s)
- Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom; and
| | - Gregory D Funk
- Department of Physiology, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
40
|
Turovskaya MV, Babaev AA, Zinchenko VP, Epifanova EA, Borisova EV, Tarabykin VS, Turovsky EA. Sip-1 mutations cause disturbances in the activity of NMDA- and AMPA-, but not kainate receptors of neurons in the cerebral cortex. Neurosci Lett 2017; 650:180-186. [PMID: 28455101 DOI: 10.1016/j.neulet.2017.04.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 11/30/2022]
Abstract
Smad-interacting protein-1 (Sip1) [Zinc finger homeobox (Zfhx1b), Zeb2] is a transcription factor implicated in the genesis of Mowat-Wilson syndrome (MWS) in humans. MWS is a rare genetic autosomal dominant disease caused by a mutation in the Sip1 gene (aka Zeb2 or Zfhx1b) mapped to 2q22.3 locus. MWS affects 1 in every 50-100 newborns worldwide. It is characterized by mental retardation, small stature, typical facial abnormalities as well as disturbances in the development of the cardio-vascular and renal systems as well as some other organs. Sip1 mutations cause abnormal neurogenesis in the brain during development as well as susceptibility to epileptic seizures. In the current study we investigated the role of the Sip1 gene in the activity of NMDA-, AMPA- and KA- receptors. We showed that a particular Sip1 mutation in the mouse causes changes in the activity of both NMDA- and AMPA- receptors in the neocortical neurons in vitro. We demonstrate that neocortical neurons that have only one copy of Sip1 (heterozygous, Sip1fI/wt), are more sensitive to both NMDA- and AMPA- receptors agonists as compared to wild type neurons (Sip1wt/wt). This is reflected in higher amplitudes of agonist induced Ca2+ signals as well as a lower half maximal effective concentration (ЕC50). In contrast, neurons from homozygous Sip1 mice (Sip1fI/fI), demonstrate higher resistance to these respective receptor agonists. This is reflected in lower amplitudes of Ca2+-responses and so a higher concentration of receptor activators is required for activation.
Collapse
Affiliation(s)
- Maria V Turovskaya
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia; Institute of Cell Biophysics, Russian Academy of Sciences, Russia
| | - Alexei A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | | | - Ekaterina A Epifanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Ekaterina V Borisova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Victor S Tarabykin
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Egor A Turovsky
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia; Institute of Cell Biophysics, Russian Academy of Sciences, Russia.
| |
Collapse
|
41
|
Hadjihambi A, De Chiara F, Hosford PS, Habtetion A, Karagiannis A, Davies N, Gourine AV, Jalan R. Ammonia mediates cortical hemichannel dysfunction in rodent models of chronic liver disease. Hepatology 2017; 65:1306-1318. [PMID: 28066916 PMCID: PMC5396295 DOI: 10.1002/hep.29031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/22/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED The pathogenesis of hepatic encephalopathy (HE) in cirrhosis is multifactorial and ammonia is thought to play a key role. Astroglial dysfunction is known to be present in HE. Astrocytes are extensively connected by gap junctions formed of connexins, which also exist as functional hemichannels allowing exchange of molecules between the cytoplasm and the extracellular milieu. The astrocyte-neuron lactate shuttle hypothesis suggests that neuronal activity is fueled (at least in part) by lactate provided by neighboring astrocytes. We hypothesized that in HE, astroglial dysfunction could impair metabolic communication between astrocytes and neurons. In this study, we determined whether hyperammonemia leads to hemichannel dysfunction and impairs lactate transport in the cerebral cortex using rat models of HE (bile duct ligation [BDL] and induced hyperammonemia) and also evaluated the effect of ammonia-lowering treatment (ornithine phenylacetate [OP]). Plasma ammonia concentration in BDL rats was significantly reduced by OP treatment. Biosensor recordings demonstrated that HE is associated with a significant reduction in both tonic and hypoxia-induced lactate release in the cerebral cortex, which was normalized by OP treatment. Cortical dye loading experiments revealed hemichannel dysfunction in HE with improvement following OP treatment, while the expression of key connexins was unaffected. CONCLUSION The results of the present study demonstrate that HE is associated with central nervous system hemichannel dysfunction, with ammonia playing a key role. The data provide evidence of a potential neuronal energy deficit due to impaired hemichannel-mediated lactate transport between astrocytes and neurons as a possible mechanism underlying pathogenesis of HE. (Hepatology 2017;65:1306-1318).
Collapse
Affiliation(s)
- Anna Hadjihambi
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom,Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Francesco De Chiara
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom
| | - Patrick S. Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Abeba Habtetion
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom
| | | | - Nathan Davies
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom
| |
Collapse
|
42
|
Blanco‐Suárez E, Caldwell ALM, Allen NJ. Role of astrocyte-synapse interactions in CNS disorders. J Physiol 2017; 595:1903-1916. [PMID: 27381164 PMCID: PMC5350444 DOI: 10.1113/jp270988] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022] Open
Abstract
Astrocytes comprise half of the cells in the brain. Although astrocytes have traditionally been described as playing a supportive role for neurons, they have recently been recognized as active participants in the development and plasticity of dendritic spines and synapses. Astrocytes can eliminate dendritic spines, induce synapse formation, and regulate neurotransmission and plasticity. Dendritic spine and synapse impairments are features of many neurological disorders, including autism spectrum disorder, schizophrenia, and Alzheimer's disease. In this review we will present evidence from multiple neurological disorders demonstrating that changes in astrocyte-synapse interaction contribute to the pathologies. Genomic analysis has connected altered astrocytic gene expression with synaptic deficits in a number of neurological disorders. Alterations in astrocyte-secreted factors have been implicated in the neuronal morphology and synaptic changes seen in neurodevelopmental disorders, while alteration in astrocytic glutamate uptake is a core feature of multiple neurodegenerative disorders. This evidence clearly demonstrates that maintaining astrocyte-synapse interaction is crucial for normal central nervous system functioning. Obtaining a better understanding of the role of astrocytes at synapses in health and disease will provide a new avenue for future therapeutic targeting.
Collapse
Affiliation(s)
- Elena Blanco‐Suárez
- Salk Institute for Biological StudiesMolecular Neuroscience Laboratory10010 North Torrey Pines RdLa JollaCA92037USA
| | - Alison L. M. Caldwell
- Salk Institute for Biological StudiesMolecular Neuroscience Laboratory10010 North Torrey Pines RdLa JollaCA92037USA
| | - Nicola J. Allen
- Salk Institute for Biological StudiesMolecular Neuroscience Laboratory10010 North Torrey Pines RdLa JollaCA92037USA
| |
Collapse
|
43
|
Astrocytic modulation of neuronal excitability through K + spatial buffering. Neurosci Biobehav Rev 2017; 77:87-97. [PMID: 28279812 DOI: 10.1016/j.neubiorev.2017.03.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 11/22/2022]
Abstract
The human brain contains two major cell populations, neurons and glia. While neurons are electrically excitable and capable of discharging short voltage pulses known as action potentials, glial cells are not. However, astrocytes, the prevailing subtype of glia in the cortex, are highly connected and can modulate the excitability of neurons by changing the concentration of potassium ions in the extracellular environment, a process called K+ clearance. During the past decade, astrocytes have been the focus of much research, mainly due to their close association with synapses and their modulatory impact on neuronal activity. It has been shown that astrocytes play an essential role in normal brain function including: nitrosative regulation of synaptic release in the neocortex, synaptogenesis, synaptic transmission and plasticity. Here, we discuss the role of astrocytes in network modulation through their K+ clearance capabilities, a theory that was first raised 50 years ago by Orkand and Kuffler. We will discuss the functional alterations in astrocytic activity that leads to aberrant modulation of network oscillations and synchronous activity.
Collapse
|
44
|
Cortelazzo A, Pietri T, De Felice C, Leoncini S, Guerranti R, Signorini C, Timperio AM, Zolla L, Ciccoli L, Hayek J. Proteomic analysis of the Rett syndrome experimental model mecp2 Q63X mutant zebrafish. J Proteomics 2017; 154:128-133. [PMID: 28062374 DOI: 10.1016/j.jprot.2016.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 11/29/2022]
Abstract
Rett syndrome (RTT) is a severe genetic disorder resulting from mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene. Recently, a zebrafish carrying a mecp2-null mutation has been developed with the resulting phenotypes exhibiting defective sensory and thigmotactic responses, and abnormal motor behavior reminiscent of the human disease. Here, we performed a proteomic analysis to examine protein expression changes in mecp2-null vs. wild-type larvae and adult zebrafish. We found a total of 20 proteins differentially expressed between wild-type and mutant zebrafish, suggesting skeletal and cardiac muscle functional defects, a stunted glycolysis and depleted energy availability. This molecular evidence is directly linked to the mecp2-null zebrafish observed phenotype. In addition, we identified changes in expression of proteins critical for a proper redox balance, suggesting an enhanced oxidative stress, a phenomenon also documented in human patients and RTT murine models. The molecular alterations observed in the mecp2-null zebrafish expand our knowledge on the molecular cascade of events that lead to the RTT phenotype. BIOLOGICAL SIGNIFICANCE We performed a proteomic study of a non-mammalian vertebrate model (zebrafish, Danio rerio) for Rett syndrome (RTT) at larval and adult stages of development. Our results reveal major protein expression changes pointing out to defects in energy metabolism, redox status imbalance, and muscle function, both skeletal and cardiac. Our molecular analysis grants the mecp2-null zebrafish as a valuable RTT model, triggering new research approaches for a better understanding of the RTT pathogenesis and phenotype expression. This non-mammalian vertebrate model of RTT strongly suggests a broad impact of Mecp2 dysfunction.
Collapse
Affiliation(s)
- Alessio Cortelazzo
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy; Department of Medical Biotechnologies, University of Siena, Siena, Italy; Clinical Pathology Laboratory Unit, University Hospital, AOUS, Siena, Italy.
| | - Thomas Pietri
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, Paris, France
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital, AOUS, Siena, Italy
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy; Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Roberto Guerranti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy; Clinical Pathology Laboratory Unit, University Hospital, AOUS, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| |
Collapse
|
45
|
Huckstepp RTR, Llaudet E, Gourine AV. CO2-Induced ATP-Dependent Release of Acetylcholine on the Ventral Surface of the Medulla Oblongata. PLoS One 2016; 11:e0167861. [PMID: 27936179 PMCID: PMC5148032 DOI: 10.1371/journal.pone.0167861] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/21/2016] [Indexed: 12/04/2022] Open
Abstract
Complex mechanisms that detect changes in brainstem parenchymal PCO2/[H+] and trigger adaptive changes in lung ventilation are responsible for central respiratory CO2 chemosensitivity. Previous studies of chemosensory signalling pathways suggest that at the level of the ventral surface of the medulla oblongata (VMS), CO2-induced changes in ventilation are (at least in part) mediated by the release and actions of ATP and/or acetylcholine (ACh). Here we performed simultaneous real-time biosensor recordings of CO2-induced ATP and ACh release from the VMS in vivo and in vitro, to test the hypothesis that central respiratory CO2 chemosensory transduction involves simultaneous recruitment of purinergic and cholinergic signalling pathways. In anaesthetised and artificially ventilated rats, an increase in inspired CO2 triggered ACh release on the VMS with a peak amplitude of ~5 μM. Release of ACh was only detected after the onset of CO2-induced activation of the respiratory activity and was markedly reduced (by ~70%) by ATP receptor blockade. In horizontal slices of the VMS, CO2-induced release of ATP was reliably detected, whereas CO2 or bath application of ATP (100 μM) failed to trigger release of ACh. These results suggest that during hypercapnia locally produced ATP induces or potentiates the release of ACh (likely from the medullary projections of distal groups of cholinergic neurones), which may also contribute to the development and/or maintenance of the ventilatory response to CO2.
Collapse
Affiliation(s)
- Robert T. R. Huckstepp
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Enrique Llaudet
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
46
|
Millar-Büchner P, Philp AR, Gutierrez N, Villanueva S, Kerr B, Flores CA. Severe changes in colon epithelium in the Mecp2-null mouse model of Rett syndrome. Mol Cell Pediatr 2016; 3:37. [PMID: 27868160 PMCID: PMC5116442 DOI: 10.1186/s40348-016-0065-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
Background Rett syndrome is best known due to its severe and devastating symptoms in the central nervous system. It is produced by mutations affecting the Mecp2 gene that codes for a transcription factor. Nevertheless, evidence for MECP2 activity has been reported for tissues other than those of the central nervous system. Patients affected by Rett presented with intestinal affections whose origin is still not known. We have observed that the Mecp2-null mice presented with episodes of diarrhea, and decided to study the intestinal phenotype in these mice. Methods Mecp2-null mice or bearing the conditional intestinal deletion of MECP2 were used. Morphometirc and histologic analysis of intestine, and RT-PCR, western blot and immunodetection were perfomed on intestinal samples of the animals. Electrical parameters of the intestine were determined by Ussing chamber experiments in freshly isolated colon samples. Results First we determined that MECP2 protein is mainly expressed in cells of the lower part of the colonic crypts and not in the small intestine. The colon of the Mecp2-null mice was shorter than that of the wild-type. Histological analysis showed that epithelial cells of the surface have abnormal localization of key membrane proteins like ClC-2 and NHE-3 that participate in the electroneutral NaCl absorption; nevertheless, electrogenic secretion and absorption remain unaltered. We also detected an increase in a proliferation marker in the crypts of the colon samples of the Mecp2-null mice, but the specific silencing of Mecp2 from intestinal epithelium was not able to recapitulate the intestinal phenotype of the Mecp2-null mice. Conclusions In summary, we showed that the colon is severely affected by Mecp2 silencing in mice. Changes in colon length and epithelial histology are similar to those observed in colitis. Changes in the localization of proteins that participate in fluid absorption can explain watery stools, but the exclusive deletion of Mecp2 from the intestine did not reproduce colon changes observed in the Mecp2-null mice, indicating the participation of other cells in this phenotype and the complex interaction between different cell types in this disease. Electronic supplementary material The online version of this article (doi:10.1186/s40348-016-0065-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pamela Millar-Büchner
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, 511046, Valdivia, Chile.,Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Amber R Philp
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, 511046, Valdivia, Chile
| | - Noemí Gutierrez
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, 511046, Valdivia, Chile
| | - Sandra Villanueva
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, 511046, Valdivia, Chile.,Universidad Austral de Chile, Valdivia, Chile
| | - Bredford Kerr
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, 511046, Valdivia, Chile
| | - Carlos A Flores
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, 511046, Valdivia, Chile.
| |
Collapse
|
47
|
Forsberg D, Horn Z, Tserga E, Smedler E, Silberberg G, Shvarev Y, Kaila K, Uhlén P, Herlenius E. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. eLife 2016; 5. [PMID: 27377173 PMCID: PMC4974055 DOI: 10.7554/elife.14170] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 06/21/2016] [Indexed: 12/20/2022] Open
Abstract
Inflammation-induced release of prostaglandin E2 (PGE2) changes breathing patterns and the response to CO2 levels. This may have fatal consequences in newborn babies and result in sudden infant death. To elucidate the underlying mechanisms, we present a novel breathing brainstem organotypic culture that generates rhythmic neural network and motor activity for 3 weeks. We show that increased CO2 elicits a gap junction-dependent release of PGE2. This alters neural network activity in the preBötzinger rhythm-generating complex and in the chemosensitive brainstem respiratory regions, thereby increasing sigh frequency and the depth of inspiration. We used mice lacking eicosanoid prostanoid 3 receptors (EP3R), breathing brainstem organotypic slices and optogenetic inhibition of EP3R+/+ cells to demonstrate that the EP3R is important for the ventilatory response to hypercapnia. Our study identifies a novel pathway linking the inflammatory and respiratory systems, with implications for inspiration and sighs throughout life, and the ability to autoresuscitate when breathing fails. DOI:http://dx.doi.org/10.7554/eLife.14170.001 Humans and other mammals breathe air to absorb oxygen into the body and to remove carbon dioxide. We know that in a part of the brain called the brainstem, several regions work together to create breaths, but it is not clear precisely how this works. These regions adjust our breathing to the demands placed on the body by different activities, such as sleeping or exercising. Sometimes, especially in newborn babies, the brainstem’s monitoring of oxygen and carbon dioxide does not work properly, which can lead to abnormal breathing and possibly death. In the brain, cells called neurons form networks that can rapidly transfer information via electrical signals. Here, Forsberg et al. investigated the neural networks in the brainstem that generate and control breathing in mice. They used slices of mouse brainstem that had been kept alive in a dish in the laboratory. The slice contained an arrangement of neurons and supporting cells that allowed it to continue to produce patterns of electrical activity that are associated with breathing. Over a three-week period, Forsberg et al. monitored the activity of the cells and calculated how they were connected to each other. The experiments show that the neurons responsible for breathing were organized in a “small-world” network, in which the neurons are connected to each other directly or via small numbers of other neurons. Further experiments tested how various factors affect the behavior of the network. For example, carbon dioxide triggered the release of a small molecule called prostaglandin E2 from cells. This molecule is known to play a role in inflammation and fever. However, in the carbon dioxide sensing region of the brainstem it acted as a signaling molecule that increased activity. Therefore, inflammation could interfere with the body’s normal response to carbon dioxide and lead to potentially life-threatening breathing problems. Furthermore, prostaglandin E2 induced deeper breaths known as sighs, which may be vital for newborn babies to be able to take their first deep breaths of life. Future challenges include understanding how the brainstem neural networks generate breathing and translate this knowledge to improve the treatment of breathing difficulties in babies. DOI:http://dx.doi.org/10.7554/eLife.14170.002
Collapse
Affiliation(s)
- David Forsberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - Zachi Horn
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - Evangelia Tserga
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - Erik Smedler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yuri Shvarev
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Eric Herlenius
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
48
|
Karagiannis A, Sylantyev S, Hadjihambi A, Hosford PS, Kasparov S, Gourine AV. Hemichannel-mediated release of lactate. J Cereb Blood Flow Metab 2016; 36:1202-11. [PMID: 26661210 PMCID: PMC4900446 DOI: 10.1177/0271678x15611912] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/21/2015] [Indexed: 11/16/2022]
Abstract
In the central nervous system lactate contributes to the extracellular pool of readily available energy substrates and may also function as a signaling molecule which mediates communication between glial cells and neurons. Monocarboxylate transporters are believed to provide the main pathway for lactate transport across the membranes. Here we tested the hypothesis that lactate could also be released via opening of pannexin and/or functional connexin hemichannels. In acute slices prepared from the brainstem, hippocampus, hypothalamus and cortex of adult rats, enzymatic amperometric biosensors detected significant tonic lactate release inhibited by compounds, which block pannexin/connexin hemichannels and facilitated by lowering extracellular [Ca(2+)] or increased PCO2 Enhanced lactate release triggered by hypoxia was reduced by ∼50% by either connexin or monocarboxylate transporter blockers. Stimulation of Schaffer collateral fibers triggered lactate release in CA1 area of the hippocampus, which was facilitated in conditions of low extracellular [Ca(2+)], markedly reduced by blockade of connexin hemichannels and abolished by lactate dehydrogenase inhibitor oxamate. These results indicate that lactate transport across the membranes may occur via mechanisms other than monocarboxylate transporters. In the central nervous system, hemichannels may function as a conduit of lactate release, and this mechanism is recruited during hypoxia and periods of enhanced neuronal activity.
Collapse
Affiliation(s)
- Anastassios Karagiannis
- Department of Neuroscience, Physiology and Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London, UK
| | - Sergiy Sylantyev
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Anna Hadjihambi
- Department of Neuroscience, Physiology and Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London, UK
| | - Patrick S Hosford
- Department of Neuroscience, Physiology and Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London, UK
| | - Sergey Kasparov
- Department of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Alexander V Gourine
- Department of Neuroscience, Physiology and Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London, UK
| |
Collapse
|
49
|
Guyenet PG, Bayliss DA, Stornetta RL, Ludwig MG, Kumar NN, Shi Y, Burke PGR, Kanbar R, Basting TM, Holloway BB, Wenker IC. Proton detection and breathing regulation by the retrotrapezoid nucleus. J Physiol 2016; 594:1529-51. [PMID: 26748771 PMCID: PMC4799966 DOI: 10.1113/jp271480] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/04/2016] [Indexed: 01/26/2023] Open
Abstract
We discuss recent evidence which suggests that the principal central respiratory chemoreceptors are located within the retrotrapezoid nucleus (RTN) and that RTN neurons are directly sensitive to [H(+) ]. RTN neurons are glutamatergic. In vitro, their activation by [H(+) ] requires expression of a proton-activated G protein-coupled receptor (GPR4) and a proton-modulated potassium channel (TASK-2) whose transcripts are undetectable in astrocytes and the rest of the lower brainstem respiratory network. The pH response of RTN neurons is modulated by surrounding astrocytes but genetic deletion of RTN neurons or deletion of both GPR4 and TASK-2 virtually eliminates the central respiratory chemoreflex. Thus, although this reflex is regulated by innumerable brain pathways, it seems to operate predominantly by modulating the discharge rate of RTN neurons, and the activation of RTN neurons by hypercapnia may ultimately derive from their intrinsic pH sensitivity. RTN neurons increase lung ventilation by stimulating multiple aspects of breathing simultaneously. They stimulate breathing about equally during quiet wake and non-rapid eye movement (REM) sleep, and to a lesser degree during REM sleep. The activity of RTN neurons is regulated by inhibitory feedback and by excitatory inputs, notably from the carotid bodies. The latter input operates during normo- or hypercapnia but fails to activate RTN neurons under hypocapnic conditions. RTN inhibition probably limits the degree of hyperventilation produced by hypocapnic hypoxia. RTN neurons are also activated by inputs from serotonergic neurons and hypothalamic neurons. The absence of RTN neurons probably underlies the sleep apnoea and lack of chemoreflex that characterize congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Natasha N Kumar
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Peter G R Burke
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Roy Kanbar
- Department of Pharmaceutical Sciences, Lebanese American University, Beyrouth, Lebanon
| | - Tyler M Basting
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Benjamin B Holloway
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ian C Wenker
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
50
|
Role of Astrocytes in Central Respiratory Chemoreception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:109-145. [PMID: 27714687 DOI: 10.1007/978-3-319-40764-7_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Astrocytes perform various homeostatic functions in the nervous system beyond that of a supportive or metabolic role for neurons. A growing body of evidence indicates that astrocytes are crucial for central respiratory chemoreception. This review presents a classical overview of respiratory central chemoreception and the new evidence for astrocytes as brainstem sensors in the respiratory response to hypercapnia. We review properties of astrocytes for chemosensory function and for modulation of the respiratory network. We propose that astrocytes not only mediate between CO2/H+ levels and motor responses, but they also allow for two emergent functions: (1) Amplifying the responses of intrinsic chemosensitive neurons through feedforward signaling via gliotransmitters and; (2) Recruiting non-intrinsically chemosensitive cells thanks to volume spreading of signals (calcium waves and gliotransmitters) to regions distant from the CO2/H+ sensitive domains. Thus, astrocytes may both increase the intensity of the neuron responses at the chemosensitive sites and recruit of a greater number of respiratory neurons to participate in the response to hypercapnia.
Collapse
|