1
|
Guo Y, Jones EJ, Smart TF, Altheyab A, Gamage N, Stashuk DW, Piasecki J, Phillips BE, Atherton PJ, Piasecki M. Sex disparities of human neuromuscular decline in older humans. J Physiol 2025; 603:151-165. [PMID: 38857412 DOI: 10.1113/jp285653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
Females typically live longer than males but, paradoxically, spend a greater number of later years in poorer health. The neuromuscular system is a critical component of the progression to frailty, and motor unit (MU) characteristics differ by sex in healthy young individuals and may adapt to ageing in a sex-specific manner due to divergent hormonal profiles. The purpose of this study was to investigate sex differences in vastus lateralis (VL) MU structure and function in early to late elderly humans. Intramuscular electromyography signals from 50 healthy older adults (M/F: 26/24) were collected from VL during standardized submaximal contractions and decomposed to quantify MU characteristics. Muscle size and neuromuscular performance were also measured. Females had higher MU firing rate (FR) than males (P = 0.025), with no difference in MU structure or neuromuscular junction transmission (NMJ) instability. All MU characteristics increased from low- to mid-level contractions (P < 0.05) without sex × level interactions. Females had smaller cross-sectional area of VL, lower strength and poorer force steadiness (P < 0.05). From early to late elderly, both sexes showed decreased neuromuscular function (P < 0.05) without sex-specific patterns. Higher VL MUFRs at normalized contraction levels previously observed in young are also apparent in old individuals, with no sex-based difference of estimates of MU structure or NMJ transmission instability. From early to late elderly, the deterioration of neuromuscular function and MU characteristics did not differ between sexes, yet function was consistently greater in males. These parallel trajectories underscore the lower initial level for older females and may offer insights into identifying critical intervention periods. KEY POINTS: Females generally exhibit an extended lifespan when compared to males, yet this is accompanied by a poorer healthspan and higher rates of frailty. In healthy young people, motor unit firing rate (MUFR) at normalized contraction intensities is widely reported to be higher in females than in age-matched males. Here we show in 50 people that older females have higher MUFR than older males with little difference in other MU parameters. The trajectory of decline from early to late elderly does not differ between sexes, yet function is consistently lower in females. These findings highlight distinguishable sex disparities in some MU characteristics and neuromuscular function, and suggest early interventions are needed for females to prevent functional deterioration to reduce the ageing health-sex paradox.
Collapse
Affiliation(s)
- Yuxiao Guo
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Eleanor J Jones
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Thomas F Smart
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Abdulmajeed Altheyab
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia
| | - Nishadi Gamage
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Neurophysiology of Human Movement Group, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Jessica Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Shiratsuchi D, Taniguchi Y, Kiuchi Y, Akaida S, Makizako H. Association of alpha-actinin-3 genotype with muscle mass and physical function in community-dwelling older adults. Eur Geriatr Med 2024:10.1007/s41999-024-01080-0. [PMID: 39424763 DOI: 10.1007/s41999-024-01080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Polymorphisms (rs1815739; R577X) in the gene encoding alpha-actinin-3 (ACTN3) are thought to be associated with body composition and physical function in older people and athletes. RR homozygotes are associated with greater expression of ACTN3 protein in muscle than the X-allele carriers. We aimed to investigate the association between ACTN3 R577X polymorphism and appendicular skeletal muscle mass, walking speed, and muscle strength in older adults. METHODS A cross-sectional analysis was performed on 265 community-dwelling older adults (mean age 74.0 ± 5.8 years, 63.4% female) who provided data on ACTN3 gene polymorphisms and completed surveys in the Tarumizu study conducted between 2018 and 2019. Genetic polymorphisms were categorized as RR homozygous and X allele. Muscle mass was assessed using the appendicular skeletal muscle mass index (ASMI), and physical function was assessed based on walking speed and relative muscle strength. Those in the bottom 25% for each sex were considered "low" and the association with ACTN3 genotype was examined. RESULTS Considering ACTN3 polymorphism, 72 participants were RR homozygotes (27.2%) and 193 were X-allele carriers (72.8%). After adjusting for potential confounders, RR homozygosity was associated with not having low muscle mass (odds ratio 0.39, 95% confidence interval 0.19-0.82, p = 0.013) but not with low walking speed and muscle strength. CONCLUSION The association between ACTN3 genotype and physical function in community-dwelling older adults is not clear; however, it is considered to be associated with muscle mass.
Collapse
Affiliation(s)
- Daijo Shiratsuchi
- Graduate School of Health Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yoshiaki Taniguchi
- Department of Rehabilitation, Faculty of Nursing and Welfare, Kyushu University of Nursing and Social Welfare, 888 Tominoo, Tamana, Kumamoto, 865-0062, Japan
| | - Yuto Kiuchi
- Graduate School of Health Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi, 474-8511, Japan
| | - Shoma Akaida
- Graduate School of Health Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hyuma Makizako
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
3
|
Zarzissi S, Zghal F, Bouchiba M, Rebai H, Fekih N, Bouzid MA. Delayed neuromuscular fatigue recovery unveils reduced fatigue tolerance in elderly following maximal intermittent exercise. Eur J Appl Physiol 2024; 124:2941-2949. [PMID: 38758411 DOI: 10.1007/s00421-024-05499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
The aim of the study was to assess the impact of aging on neuromuscular fatigue and recovery. Ten young (23.08 ± 1.43 years) and older (61.19 ± 1.80 years) males performed an intermittent maximal isometric exercise with the knee extensors followed by 27 min of recovery. Maximal voluntary contraction (MVC), total work (W'), voluntary activation (VA), potentiated resting twitch (Ptw), and electromyography (EMG) were recorded and then analyzed. Peripheral and central fatigue following exercise were lower in old compared to young (- 29.99% vs. - 42.68% and - 14.55 vs. - 20.02%; P < 0.05, respectively). Despite old performing 50% less work, RMS/Mmax reduction was similar between old and young (- 26.46% vs. - 29.93%; P > 0.05, respectively). During the recovery period, our results showed that recovery of the MVC was impaired for old (14.93% for old vs. 30.66% for young) and still incomplete until 27 min.VA increased significantly compared to post exercise after 1 min only for young (P = 0.001), potentially affecting the recovery pattern of MVC during the early phase due to their significant correlation (r2 = 0.58, P = 0.01). Peripheral fatigue recovery was also lower for old (11.18% vs. 18.72%; P < 0.001), and both groups failed to recover their baseline value (both P < 0.005). The lower peripheral and central fatigue observed in elderly following exercise appears for the first instance as a fatigue resistance. However, the delayed neuromuscular recovery reveals instead a reduced fatigue tolerance reflecting age-related alteration within contractile properties and/or within central nervous system.
Collapse
Affiliation(s)
- Slim Zarzissi
- High Institute of Sport and Physical Education, Education, Motor Skills, Sport and Health (EM2S) Laboratory, University of Sfax, LR19JS01, Sfax, Tunisia.
| | - Firas Zghal
- High Institute of Sport and Physical Education, Education, Motor Skills, Sport and Health (EM2S) Laboratory, University of Sfax, LR19JS01, Sfax, Tunisia
| | - Mustapha Bouchiba
- High Institute of Sport and Physical Education, Education, Motor Skills, Sport and Health (EM2S) Laboratory, University of Sfax, LR19JS01, Sfax, Tunisia
| | - Haithem Rebai
- Tunisian Research Laboratory 'Sports Performance Optimization', National Center of Medicine and Science in Sports (CNMSS), (CNMSS-LR09SEP01), Tunis, Tunisia
| | - Nadia Fekih
- High Institute of Sport and Physical Education, Education, Motor Skills, Sport and Health (EM2S) Laboratory, University of Sfax, LR19JS01, Sfax, Tunisia
| | - Mohamed Amine Bouzid
- High Institute of Sport and Physical Education, Education, Motor Skills, Sport and Health (EM2S) Laboratory, University of Sfax, LR19JS01, Sfax, Tunisia
| |
Collapse
|
4
|
Xu H, Piekarz KM, Brown JL, Bhaskaran S, Smith N, Towner RA, Van Remmen H. Neuroprotective treatment with the nitrone compound OKN-007 mitigates age-related muscle weakness in aging mice. GeroScience 2024; 46:4263-4273. [PMID: 38512579 PMCID: PMC11336152 DOI: 10.1007/s11357-024-01134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Despite the universal impact of sarcopenia on compromised health and quality of life in the elderly, promising pharmaceutical approaches that can effectively mitigate loss of muscle and function during aging have been limited. Our group and others have reported impairments in peripheral motor neurons and loss of muscle innervation as initiating factors in sarcopenia, contributing to mitochondrial dysfunction and elevated oxidative stress in muscle. We recently reported a reduction in α motor neuron loss in aging mice in response to the compound OKN-007, a proposed antioxidant and anti-inflammatory agent. In the current study, we asked whether OKN-007 treatment in wildtype male mice for 8-9 months beginning at 16 months of age can also protect muscle mass and function. At 25 months of age, we observed a reduction in the loss of whole-body lean mass, a reduced loss of innervation at the neuromuscular junction and well-preserved neuromuscular junction morphology in OKN-007 treated mice versus age matched wildtype untreated mice. The loss in muscle force generation in aging mice (~ 25%) is significantly improved with OKN-007 treatment. In contrast, OKN-007 treatment provided no protection in loss of muscle mass in aging mice. Mitochondrial function was improved by OKN-007 treatment, consistent with its potential antioxidative properties. Together, these exciting findings are the first to demonstrate that interventions through neuroprotection can be an effective therapy to counter aging-related muscle dysfunction.
Collapse
Affiliation(s)
- Hongyang Xu
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Katarzyna M Piekarz
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jacob L Brown
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Shylesh Bhaskaran
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
5
|
Pabla P, Jones E, Piasecki M, Phillips B. Skeletal muscle dysfunction with advancing age. Clin Sci (Lond) 2024; 138:863-882. [PMID: 38994723 PMCID: PMC11250095 DOI: 10.1042/cs20231197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
As a result of advances in medical treatments and associated policy over the last century, life expectancy has risen substantially and continues to increase globally. However, the disconnect between lifespan and 'health span' (the length of time spent in a healthy, disease-free state) has also increased, with skeletal muscle being a substantial contributor to this. Biological ageing is accompanied by declines in both skeletal muscle mass and function, termed sarcopenia. The mechanisms underpinning sarcopenia are multifactorial and are known to include marked alterations in muscle protein turnover and adaptations to the neural input to muscle. However, to date, the relative contribution of each factor remains largely unexplored. Specifically, muscle protein synthetic responses to key anabolic stimuli are blunted with advancing age, whilst alterations to neural components, spanning from the motor cortex and motoneuron excitability to the neuromuscular junction, may explain the greater magnitude of function losses when compared with mass. The consequences of these losses can be devastating for individuals, their support networks, and healthcare services; with clear detrimental impacts on both clinical (e.g., mortality, frailty, and post-treatment complications) and societal (e.g., independence maintenance) outcomes. Whether declines in muscle quantity and quality are an inevitable component of ageing remains to be completely understood. Nevertheless, strategies to mitigate these declines are of vital importance to improve the health span of older adults. This review aims to provide an overview of the declines in skeletal muscle mass and function with advancing age, describes the wide-ranging implications of these declines, and finally suggests strategies to mitigate them, including the merits of emerging pharmaceutical agents.
Collapse
Affiliation(s)
- Pardeep Pabla
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
| | - Eleanor J. Jones
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), U.K
- NIHR Nottingham Biomedical Research Centre (BRC), U.K
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), U.K
- NIHR Nottingham Biomedical Research Centre (BRC), U.K
| |
Collapse
|
6
|
Guo Y, Jones EJ, Škarabot J, Inns TB, Phillips BE, Atherton PJ, Piasecki M. Common synaptic inputs and persistent inward currents of vastus lateralis motor units are reduced in older male adults. GeroScience 2024; 46:3249-3261. [PMID: 38238546 PMCID: PMC11009172 DOI: 10.1007/s11357-024-01063-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/02/2024] [Indexed: 04/13/2024] Open
Abstract
Although muscle atrophy may partially account for age-related strength decline, it is further influenced by alterations of neural input to muscle. Persistent inward currents (PIC) and the level of common synaptic inputs to motoneurons influence neuromuscular function. However, these have not yet been described in the aged human quadriceps. High-density surface electromyography (HDsEMG) signals were collected from the vastus lateralis of 15 young (mean ± SD, 23 ± 5 y) and 15 older (67 ± 9 y) men during submaximal sustained and 20-s ramped contractions. HDsEMG signals were decomposed to identify individual motor unit discharges, from which PIC amplitude and intramuscular coherence were estimated. Older participants produced significantly lower knee extensor torque (p < 0.001) and poorer force tracking ability (p < 0.001) than young. Older participants also had lower PIC amplitude (p = 0.001) and coherence estimates in the alpha frequency band (p < 0.001) during ramp contractions when compared to young. Persistent inward currents and common synaptic inputs are lower in the vastus lateralis of older males when compared to young. These data highlight altered neural input to the clinically and functionally important quadriceps, further underpinning age-related loss of function which may occur independently of the loss of muscle mass.
Collapse
Affiliation(s)
- Yuxiao Guo
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Eleanor J Jones
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Thomas B Inns
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK.
| |
Collapse
|
7
|
Hirono T, Takeda R, Nishikawa T, Watanabe K. Prediction of 1-year change in knee extension strength by neuromuscular properties in older adults. GeroScience 2024; 46:2561-2569. [PMID: 38093024 PMCID: PMC10828468 DOI: 10.1007/s11357-023-01035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Improving muscle strength and preventing muscle weakness are important for older adults. The change in strength can be effectively explained by skeletal muscle mass and neural factors. Neural factors are important for older adults because the variation of neural components is greater in older than in young adults, and any decline in strength cannot solely be explained by a decrease in skeletal muscle mass. The purpose of the present study was to investigate whether skeletal muscle mass or motor unit firing properties could explain the change in muscle strength after 1 year. Thirty-eight older adults (75.0 ± 4.7 years, 156.6 ± 7.7 cm, 55.5 ± 9.4 kg, 26 women) performed maximum voluntary knee extension and their skeletal muscle mass was measured using a bioimpedance device. During a submaximal contraction task, high-density surface electromyography was recorded and the signals were decomposed into individual motor unit firing. As an index of motor unit firing properties, the slope and y-intercept (MU intercept) were calculated from the regression line between recruitment thresholds and firing rates in each participant. After 1 year, their maximum knee extension torque was evaluated again. A stepwise multiple regression linear model with sex and age as covariates indicated that MU intercept was a significant explanation with a negative association for the 1-year change in muscle strength (β = - 0.493, p = 0.004), but not skeletal muscle mass (p = 0.364). The results suggest that neural components might be predictors of increasing and decreasing muscle strength rather than skeletal muscle mass.
Collapse
Affiliation(s)
- Tetsuya Hirono
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, 101 Tokodachi, Kaizu-Cho, Toyota, Aichi, Japan.
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, Japan.
| | - Ryosuke Takeda
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, 101 Tokodachi, Kaizu-Cho, Toyota, Aichi, Japan
| | - Taichi Nishikawa
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, 101 Tokodachi, Kaizu-Cho, Toyota, Aichi, Japan
- Graduate School of Health and Sport Sciences, Chukyo University, 101 Tokodachi, Kaizu-Cho, Toyota, Aichi, Japan
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, 101 Tokodachi, Kaizu-Cho, Toyota, Aichi, Japan
| |
Collapse
|
8
|
Piasecki J, Škarabot J, Spillane P, Piasecki M, Ansdell P. Sex Differences in Neuromuscular Aging: The Role of Sex Hormones. Exerc Sport Sci Rev 2024; 52:54-62. [PMID: 38329342 DOI: 10.1249/jes.0000000000000335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Males and females experience different trajectories of neuromuscular function across the lifespan, with females demonstrating accelerated deconditioning in later life. We hypothesize that the menopause is a critical period in the female lifespan, during which the dramatic reduction in sex hormone concentrations negatively impacts synaptic input to the motoneuron pool, as well as motor unit discharge properties.
Collapse
Affiliation(s)
- Jessica Piasecki
- Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Padraig Spillane
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Messa GAM, Korhonen MT, Degens H. No ageing-related increase in fibre type grouping in sprint-trained masters runners: A 10-year follow-up study. J Cachexia Sarcopenia Muscle 2024; 15:552-561. [PMID: 38228574 PMCID: PMC10995270 DOI: 10.1002/jcsm.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Previous research suggests that an ageing-associated remodelling and loss of motor units due to motor neuron death contributes significantly to muscle weakness in old age. In histological sections, motor unit remodelling is reflected by increased fibre type grouping. While regular exercise may not attenuate the loss of motor units during ageing, it has been suggested to facilitate reinnervation resulting in larger motor units, and a higher number and larger fibre type groups in histological sections of muscles from aged individuals. METHODS In a 10-year follow-up study, we assessed changes in the prevalence and size of fibre type groups in the vastus lateralis muscle from 34 male masters sprinters (40-85 years at start). RESULTS Over the 10 years, there was an ageing-related reduction in performance in the 60-m sprint (P < 0.001) without significant changes in fibre type composition and fibre cross-sectional area. Neither the number of fibre type groups, defined as a fibre surrounded exclusively by fibres of the same type, nor the group size changed significantly in the 10-year period. CONCLUSIONS These histological data show that there is limited to no significant fibre type grouping over a 10-year period in masters athletes who continued sprint run training. This observation challenges the paradigm that ageing, at least in systematically trained sprinters, is associated with motor unit remodelling.
Collapse
Affiliation(s)
- Guy Anselme Mpaka Messa
- Higher Institute of Medical TechnologyISTM‐KinshasaKinshasaDemocratic Republic of Congo
- Faculty of MedicineUniversity Kasa‐Vubu (UKV)BomaDemocratic Republic of Congo
- Faculty of MedicineUniversity de Bandundu (UNIBAND)BandunduDemocratic Republic of Congo
| | - Marko T. Korhonen
- Gerontology Research Center, Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Hans Degens
- Department of Life Sciences, Institute of SportManchester Metropolitan UniversityManchesterUK
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| |
Collapse
|
10
|
Wages NP, Mousa MH, Clark LA, Tavoian D, Arnold WD, Elbasiouny SM, Clark BC. Reductions in Motor Unit Firing are Associated with Clinically Meaningful Leg Extensor Weakness in Older Adults. Calcif Tissue Int 2024; 114:9-23. [PMID: 37603077 PMCID: PMC10791983 DOI: 10.1007/s00223-023-01123-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Weakness, one of the key characteristics of sarcopenia, is a significant risk factor for functional limitations and disability in older adults. It has long been suspected that reductions in motor unit firing rates (MUFRs) are one of the mechanistic causes of age-related weakness. However, prior work has not investigated the extent to which MUFR is associated with clinically meaningful weakness in older adults. Forty-three community-dwelling older adults (mean: 75.4 ± 7.4 years; 46.5% female) and 24 young adults (mean: 22.0 ± 1.8 years; 58.3% female) performed torque matching tasks at varying submaximal intensities with their non-dominant leg extensors. Decomposed surface electromyographic recordings were used to quantify MUFRs from the vastus lateralis muscle. Computational modeling was subsequently used to independently predict how slowed MUFRs would negatively impact strength in older adults. Bivariate correlations between MUFRs and indices of lean mass, voluntary activation, and physical function/mobility were also assessed in older adults. Weak older adults (n = 14) exhibited an approximate 1.5 and 3 Hz reduction in MUFR relative to non-weak older adults (n = 29) at 50% and 80% MVC, respectively. Older adults also exhibited an approximate 3 Hz reduction in MUFR relative to young adults at 80% MVC only. Our model predicted that a 3 Hz reduction in MUFR results in a strength decrement of 11-26%. Additionally, significant correlations were found between slower MUFRs and poorer neuromuscular quality, voluntary activation, chair rise time performance, and stair climb power (r's = 0.31 to 0.43). These findings provide evidence that slowed MUFRs are mechanistically linked with clinically meaningful leg extensor weakness in older adults.
Collapse
Affiliation(s)
- Nathan P Wages
- Ohio Musculoskeletal and Neurological Institute, Ohio University, 250 Irvine Hall, 1 Ohio University, Athens, OH, 45701, USA.
- Department of Biomedical Sciences, Ohio University, 250 Irvine Hall, 1 Ohio University, Athens, OH, 45701, USA.
- Department of Neuroscience, Cell Biology & Physiology, Wright State University, 350 NEC Building, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| | - Mohamed H Mousa
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, OH, USA
| | - Leatha A Clark
- Ohio Musculoskeletal and Neurological Institute, Ohio University, 250 Irvine Hall, 1 Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Ohio University, 250 Irvine Hall, 1 Ohio University, Athens, OH, 45701, USA
- Department of Family Medicine, Ohio University, Athens, OH, USA
| | - Dallin Tavoian
- Ohio Musculoskeletal and Neurological Institute, Ohio University, 250 Irvine Hall, 1 Ohio University, Athens, OH, 45701, USA
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - W David Arnold
- NextGen Precision Health, The University of Missouri, Columbia, MO, USA
| | - Sherif M Elbasiouny
- Department of Neuroscience, Cell Biology & Physiology, Wright State University, 350 NEC Building, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, OH, USA.
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute, Ohio University, 250 Irvine Hall, 1 Ohio University, Athens, OH, 45701, USA.
- Department of Biomedical Sciences, Ohio University, 250 Irvine Hall, 1 Ohio University, Athens, OH, 45701, USA.
- Division of Geriatric Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
11
|
Tøien T, Nielsen JL, Berg OK, Brobakken MF, Nyberg SK, Espedal L, Malmo T, Frandsen U, Aagaard P, Wang E. The impact of life-long strength versus endurance training on muscle fiber morphology and phenotype composition in older men. J Appl Physiol (1985) 2023; 135:1360-1371. [PMID: 37881849 PMCID: PMC10979801 DOI: 10.1152/japplphysiol.00208.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023] Open
Abstract
Aging is typically associated with decreased muscle strength and rate of force development (RFD), partly explained by motor unit remodeling due to denervation, and subsequent loss of fast-twitch type II myofibers. Exercise is commonly advocated to counteract this detrimental loss. However, it is unclear how life-long strength versus endurance training may differentially affect markers of denervation and reinnervation of skeletal myofibers and, in turn, affect the proportion and morphology of fast-twitch type II musculature. Thus, we compared fiber type distribution, fiber type grouping, and the prevalence of atrophic myofibers (≤1,494 µm2) in strength-trained (OS) versus endurance-trained (OE) master athletes and compared the results to recreationally active older adults (all >70 yr, OC) and young habitually active references (<30 yr, YC). Immunofluorescent stainings were performed on biopsy samples from vastus lateralis, along with leg press maximal strength and RFD measurements. OS demonstrated similar type II fiber distribution (OS: 52.0 ± 16.4%; YC: 51.1 ± 14.4%), fiber type grouping, maximal strength (OS: 170.0 ± 18.9 kg, YC: 151.0 ± 24.4 kg), and RFD (OS: 3,993 ± 894 N·s-1, YC: 3,470 ± 1,394 N·s-1) as young, and absence of atrophic myofibers (OS: 0.2 ± 0.7%; YC: 0.1 ± 0.4%). In contrast, OE and OC exhibited more atrophic fibers (OE: 1.2 ± 1.0%; OC: 1.1 ± 1.4%), more grouped fibers, and smaller proportion of type II fibers (OE: 39.3 ± 11.9%; OC: 35.0 ± 12.4%) than OS and YC (all P < 0.05). In conclusion, strength-trained master athletes were characterized by similar muscle morphology as young, which was not the case for recreationally active or endurance-trained old. These results indicate that strength training may preserve type II fibers with advancing age in older men, likely as a result of chronic use of high contractile force generation.NEW & NOTEWORTHY Aging is associated with loss of fast-twitch type II myofibers, motor unit remodeling, and grouping of myofibers. This study reveals, for the first time, that strength training preserves neural innervation of type II fibers, resulting in similar myofiber type distribution and grouping in life-long strength-trained master athletes as young moderately active adults. In contrast, life-long endurance-trained master athletes and recreationally active old adults demonstrated higher proportion of type I fibers accompanied by more marked grouping of type I myofibers, and more atrophic fibers compared with strength-trained master athletes and young individuals. Thus, strength training should be utilized as a training modality for preservation of fast-twitch musculature, maximal muscle strength, and rapid force capacity (RFD) with advancing age.
Collapse
Affiliation(s)
- Tiril Tøien
- Department of Health and Social Sciences, Molde University College, Molde, Norway
| | - Jakob Lindberg Nielsen
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Ole Kristian Berg
- Department of Health and Social Sciences, Molde University College, Molde, Norway
| | - Mathias Forsberg Brobakken
- Department of Health and Social Sciences, Molde University College, Molde, Norway
- Department of Psychosis and Rehabilitation, Psychiatry Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Stian Kwak Nyberg
- Department of Anesthesiology and Intensive Care, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Lars Espedal
- Department of Health and Social Sciences, Molde University College, Molde, Norway
| | - Thomas Malmo
- Norwegian Defence University College, Norwegian Armed Forces, Oslo, Norway
| | - Ulrik Frandsen
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Eivind Wang
- Department of Health and Social Sciences, Molde University College, Molde, Norway
- Department of Psychosis and Rehabilitation, Psychiatry Clinic, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
12
|
Piasecki J, Guo Y, Jones EJ, Phillips BE, Stashuk DW, Atherton PJ, Piasecki M. Menstrual Cycle Associated Alteration of Vastus Lateralis Motor Unit Function. SPORTS MEDICINE - OPEN 2023; 9:97. [PMID: 37874413 PMCID: PMC10597975 DOI: 10.1186/s40798-023-00639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Estrogen and progesterone are the primary female sex hormones and have net excitatory and inhibitory effects, respectively, on neuronal function. Fluctuating concentrations across the menstrual cycle has led to several lines of research in relation to neuromuscular function and performance; however evidence from animal and cell culture models has yet to be demonstrated in human motor units coupled with quantification of circulating hormones. Intramuscular electromyography was used to record motor unit potentials and corresponding motor unit potential trains from the vastus lateralis of nine eumenorrheic females during the early follicular, ovulation and mid luteal phases of the menstrual cycle, alongside assessments of neuromuscular performance. Multi-level regression models were applied to explore effects of time and of contraction level. Statistical significance was accepted as p < 0.05. RESULTS Knee extensor maximum voluntary contraction, jump power, force steadiness, and balance did not differ across the menstrual phases (all p > 0.4). Firing rate of low threshold motor units (10% maximum voluntary contraction) was lower during the ovulation and mid luteal phases (β = - 0.82 Hz, p < 0.001), with no difference in motor unit potentials analysed from 25% maximum voluntary contraction contractions. Motor unit potentials were more complex during ovulation and mid luteal phase (p < 0.03), with no change in neuromuscular junction transmission instability (p > 0.3). CONCLUSIONS Assessments of neuromuscular performance did not differ across the menstrual cycle. The suppression of low threshold motor unit firing rate during periods of increased progesterone may suggest a potential inhibitory effect and an alteration of recruitment strategy; however this had no discernible effect on performance. These findings highlight contraction level-dependent modulation of vastus lateralis motor unit function over the eumenorrheic cycle, occurring independently of measures of performance.
Collapse
Affiliation(s)
- Jessica Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK.
| | - Yuxiao Guo
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Eleanor J Jones
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Philip J Atherton
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Arnold WD, Clark BC. Neuromuscular junction transmission failure in aging and sarcopenia: The nexus of the neurological and muscular systems. Ageing Res Rev 2023; 89:101966. [PMID: 37270145 PMCID: PMC10847753 DOI: 10.1016/j.arr.2023.101966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Sarcopenia, or age-related decline in muscle form and function, exerts high personal, societal, and economic burdens when untreated. Integrity and function of the neuromuscular junction (NMJ), as the nexus between the nervous and muscular systems, is critical for input and dependable neural control of muscle force generation. As such, the NMJ has long been a site of keen interest in the context of skeletal muscle function deficits during aging and in the context of sarcopenia. Historically, changes of NMJ morphology during aging have been investigated extensively but primarily in aged rodent models. Aged rodents have consistently shown features of NMJ endplate fragmentation and denervation. Yet, the presence of NMJ changes in older humans remains controversial, and conflicting findings have been reported. This review article describes the physiological processes involved in NMJ transmission, discusses the evidence that supports NMJ transmission failure as a possible contributor to sarcopenia, and speculates on the potential of targeting these defects for therapeutic development. The technical approaches that are available for assessment of NMJ transmission, whether each approach has been applied in the context of aging and sarcopenia, and the associated findings are summarized. Like morphological studies, age-related NMJ transmission deficits have primarily been studied in rodents. In preclinical studies, isolated synaptic electrophysiology recordings of endplate currents or potentials have been mostly used, and paradoxically, have shown enhancement, rather than failure, with aging. Yet, in vivo assessment of single muscle fiber action potential generation using single fiber electromyography and nerve-stimulated muscle force measurements show evidence of NMJ failure in aged mice and rats. Together these findings suggest that endplate response enhancement may be a compensatory response to post-synaptic mechanisms of NMJ transmission failure in aged rodents. Possible, but underexplored, mechanisms of this failure are discussed including the simplification of post-synaptic folding and altered voltage-gated sodium channel clustering or function. In humans, there is limited clinical data that has selectively investigated single synaptic function in the context of aging. If sarcopenic older adults turn out to exhibit notable impairments in NMJ transmission (this has yet to be examined but based on available evidence appears to be plausible) then these NMJ transmission defects present a well-defined biological mechanism and offer a well-defined pathway for clinical implementation. Investigation of small molecules that are currently available clinically or being testing clinically in other disorders may provide a rapid route for development of interventions for older adults impacted by sarcopenia.
Collapse
Affiliation(s)
- W David Arnold
- NextGen Precision Health, University of Missouri System, Columbia, MO, USA; Department of Physical Medicine and Rehabilitation University of Missouri, Columbia, MO, USA.
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI) Ohio University, Athens, OH, USA; Department of Biomedical Sciences, Ohio University, Athens, OH, USA.
| |
Collapse
|
14
|
Jones EJ, Guo Y, Martinez‐Valdes E, Negro F, Stashuk DW, Atherton PJ, Phillips BE, Piasecki M. Acute adaptation of central and peripheral motor unit features to exercise-induced fatigue differs with concentric and eccentric loading. Exp Physiol 2023; 108:827-837. [PMID: 37018481 PMCID: PMC10988466 DOI: 10.1113/ep091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
NEW FINDINGS What is the central question of this study? Conflicting evidence exists on motor unit (MU) firing rate in response to exercise-induced fatigue, possibly due to the contraction modality used: Do MU properties adapt similarly following concentric and eccentric loading? What is the main finding and its importance? MU firing rate increased following eccentric loading only despite a decline in absolute force. Force steadiness deteriorated following both loading methods. Central and peripheral MU features are altered in a contraction type-dependant manner, which is an important consideration for training interventions. ABSTRACT Force output of muscle is partly mediated by the adjustment of motor unit (MU) firing rate (FR). Disparities in MU features in response to fatigue may be influenced by contraction type, as concentric (CON) and eccentric (ECC) contractions demand variable amounts of neural input, which alters the response to fatigue. This study aimed to determine the effects of fatigue following CON and ECC loading on MU features of the vastus lateralis (VL). High-density surface (HD-sEMG) and intramuscular (iEMG) electromyography were used to record MU potentials (MUPs) from bilateral VLs of 12 young volunteers (six females) during sustained isometric contractions at 25% and 40% of the maximum voluntary contraction (MVC), before and after completing CON and ECC weighted stepping exercise. Multi-level mixed effects linear regression models were performed with significance assumed as P < 0.05. MVC decreased in both CON and ECC legs post-exercise (P < 0.0001), as did force steadiness at both 25% and 40% MVC (P < 0.004). MU FR increased in ECC at both contraction levels (P < 0.001) but did not change in CON. FR variability increased in both legs at 25% and 40% MVC following fatigue (P < 0.01). From iEMG measures at 25% MVC, MUP shape did not change (P > 0.1) but neuromuscular junction transmission instability increased in both legs (P < 0.04), and markers of fibre membrane excitability increased following CON only (P = 0.018). These data demonstrate that central and peripheral MU features are altered following exercise-induced fatigue and differ according to exercise modality. This is important when considering interventional strategies targeting MU function.
Collapse
Affiliation(s)
- Eleanor J. Jones
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research CentreUniversity of NottinghamNottinghamUK
| | - Yuxiao Guo
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research CentreUniversity of NottinghamNottinghamUK
| | - Eduardo Martinez‐Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Francesco Negro
- Department of Clinical and Experimental SciencesUniversità degli Studi di BresciaBresciaItaly
| | - Daniel W. Stashuk
- Department of Systems Design EngineeringUniversity of WaterlooWaterlooOntarioCanada
| | - Philip J. Atherton
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research CentreUniversity of NottinghamNottinghamUK
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research CentreUniversity of NottinghamNottinghamUK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
15
|
Castro RW, Lopes MC, Settlage RE, Valdez G. Aging alters mechanisms underlying voluntary movements in spinal motor neurons of mice, primates, and humans. JCI Insight 2023; 8:e168448. [PMID: 37154159 PMCID: PMC10243831 DOI: 10.1172/jci.insight.168448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Spinal motor neurons have been implicated in the loss of motor function that occurs with advancing age. However, the cellular and molecular mechanisms that impair the function of these neurons during aging remain unknown. Here, we show that motor neurons do not die in old female and male mice, rhesus monkeys, and humans. Instead, these neurons selectively and progressively shed excitatory synaptic inputs throughout the soma and dendritic arbor during aging. Thus, aged motor neurons contain a motor circuitry with a reduced ratio of excitatory to inhibitory synapses that may be responsible for the diminished ability to activate motor neurons to commence movements. An examination of the motor neuron translatome (ribosomal transcripts) in male and female mice reveals genes and molecular pathways with roles in glia-mediated synaptic pruning, inflammation, axonal regeneration, and oxidative stress that are upregulated in aged motor neurons. Some of these genes and pathways are also found altered in motor neurons affected with amyotrophic lateral sclerosis (ALS) and responding to axotomy, demonstrating that aged motor neurons are under significant stress. Our findings show mechanisms altered in aged motor neurons that could serve as therapeutic targets to preserve motor function during aging.
Collapse
Affiliation(s)
- Ryan W. Castro
- Neuroscience Graduate Program
- Department of Molecular Biology, Cellular Biology, and Biochemistry
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, and
| | - Mikayla C. Lopes
- Department of Molecular Biology, Cellular Biology, and Biochemistry
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, and
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Robert E. Settlage
- Department of Advanced Research Computing, Virginia Tech, Blacksburg, Virginia, USA
| | - Gregorio Valdez
- Department of Molecular Biology, Cellular Biology, and Biochemistry
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, and
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
16
|
Monti E, Sarto F, Sartori R, Zanchettin G, Löfler S, Kern H, Narici MV, Zampieri S. C-terminal agrin fragment as a biomarker of muscle wasting and weakness: a narrative review. J Cachexia Sarcopenia Muscle 2023; 14:730-744. [PMID: 36772862 PMCID: PMC10067498 DOI: 10.1002/jcsm.13189] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Ageing is accompanied by an inexorable loss of muscle mass and functionality and represents a major risk factor for numerous diseases such as cancer, diabetes and cardiovascular and pulmonary diseases. This progressive loss of muscle mass and function may also result in the insurgence of a clinical syndrome termed sarcopenia, exacerbated by inactivity and disease. Sarcopenia and muscle weakness yield the risk of falls and injuries, heavily impacting on health and social costs. Thus, screening, monitoring and prevention of conditions inducing muscle wasting and weakness are essential to improve life quality in the ageing modern society. To this aim, the reliability of easily accessible and non-invasive blood-derived biomarkers is being evaluated. C-terminal agrin fragment (CAF) has been widely investigated as a neuromuscular junction (NMJ)-related biomarker of muscle dysfunction. This narrative review summarizes and critically discusses, for the first time, the studies measuring CAF concentration in young and older, healthy and diseased individuals, cross-sectionally and in response to inactivity and physical exercise, providing possible explanations behind the discrepancies observed in the literature. To identify the studies investigating CAF in the above-mentioned conditions, all the publications found in PubMed, written in English and measuring this biomarker in blood from 2013 (when CAF was firstly measured in human serum) to 2022 were included in this review. CAF increases with age and in sarcopenic individuals when compared with age-matched, non-sarcopenic peers. In addition, CAF was found to be higher than controls in other muscle wasting conditions, such as diabetes, COPD, chronic heart failure and stroke, and in pancreatic and colorectal cancer cachectic patients. As agrin is also expressed in kidney glomeruli, chronic kidney disease and transplantation were shown to have a profound impact on CAF independently from muscle wasting. CAF concentration raises following inactivity and seems to be lowered or maintained by exercise training. Finally, CAF was reported to be cross-sectionally correlated to appendicular lean mass, handgrip and gait speed; whether longitudinal changes in CAF are associated with those in muscle mass or performance following physical exercise is still controversial. CAF seems a reliable marker to assess muscle wasting in ageing and disease, also correlating with measurements of appendicular lean mass and muscle function. Future research should aim at enlarging sample size and accurately reporting the medical history of each patient, to normalize for any condition, including chronic kidney disease, that may influence the circulating concentration of this biomarker.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and ImmunologyStanford School of MedicineStanfordCAUSA
| | - Fabio Sarto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Roberta Sartori
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePadovaItaly
| | - Gianpietro Zanchettin
- Department of Surgery, Oncology, and GastroenterologyUniversity of PadovaPadovaItaly
| | - Stefan Löfler
- Ludwig Boltzmann Institute for Rehabilitation ResearchWienAustria
- Centre of Active AgeingSankt PoeltenAustria
| | - Helmut Kern
- Ludwig Boltzmann Institute for Rehabilitation ResearchWienAustria
- Centre of Active AgeingSankt PoeltenAustria
| | - Marco Vincenzo Narici
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CIR‐MYO Myology CenterUniversity of PadovaPadovaItaly
| | - Sandra Zampieri
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Surgery, Oncology, and GastroenterologyUniversity of PadovaPadovaItaly
- Ludwig Boltzmann Institute for Rehabilitation ResearchWienAustria
- Centre of Active AgeingSankt PoeltenAustria
- CIR‐MYO Myology CenterUniversity of PadovaPadovaItaly
| |
Collapse
|
17
|
Naruse M, Trappe S, Trappe TA. Human skeletal muscle-specific atrophy with aging: a comprehensive review. J Appl Physiol (1985) 2023; 134:900-914. [PMID: 36825643 PMCID: PMC10069966 DOI: 10.1152/japplphysiol.00768.2022] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Age-related skeletal muscle atrophy appears to be a muscle group-specific process, yet only a few specific muscles have been investigated and our understanding in this area is limited. This review provides a comprehensive summary of the available information on age-related skeletal muscle atrophy in a muscle-specific manner, nearly half of which comes from the quadriceps. Decline in muscle-specific size over ∼50 yr of aging was determined from 47 cross-sectional studies of 982 young (∼25 yr) and 1,003 old (∼75 yr) individuals and nine muscle groups: elbow extensors (-20%, -0.39%/yr), elbow flexors (-19%, -0.38%/yr), paraspinals (-24%, -0.47%/yr), psoas (-29%, -0.58%/yr), hip adductors (-13%, -0.27%/yr), hamstrings (-19%, -0.39%/yr), quadriceps (-27%, -0.53%/yr), dorsiflexors (-9%, -0.19%/yr), and triceps surae (-14%, -0.28%/yr). Muscle-specific atrophy rate was also determined for each of the subcomponent muscles in the hamstrings, quadriceps, and triceps surae. Of all the muscles included in this review, there was more than a fivefold difference between the least (-6%, -0.13%/yr, soleus) to the most (-33%, -0.66%/yr, rectus femoris) atrophying muscles. Muscle activity level, muscle fiber type, sex, and timeline of the aging process all appeared to have some influence on muscle-specific atrophy. Given the large range of muscle-specific atrophy and the large number of muscles that have not been investigated, more muscle-specific information could expand our understanding of functional deficits that develop with aging and help guide muscle-specific interventions to improve the quality of life of aging women and men.
Collapse
Affiliation(s)
- Masatoshi Naruse
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
18
|
Taylor JA, Greenhaff PL, Bartlett DB, Jackson TA, Duggal NA, Lord JM. Multisystem physiological perspective of human frailty and its modulation by physical activity. Physiol Rev 2023; 103:1137-1191. [PMID: 36239451 PMCID: PMC9886361 DOI: 10.1152/physrev.00037.2021] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
"Frailty" is a term used to refer to a state characterized by enhanced vulnerability to, and impaired recovery from, stressors compared with a nonfrail state, which is increasingly viewed as a loss of resilience. With increasing life expectancy and the associated rise in years spent with physical frailty, there is a need to understand the clinical and physiological features of frailty and the factors driving it. We describe the clinical definitions of age-related frailty and their limitations in allowing us to understand the pathogenesis of this prevalent condition. Given that age-related frailty manifests in the form of functional declines such as poor balance, falls, and immobility, as an alternative we view frailty from a physiological viewpoint and describe what is known of the organ-based components of frailty, including adiposity, the brain, and neuromuscular, skeletal muscle, immune, and cardiovascular systems, as individual systems and as components in multisystem dysregulation. By doing so we aim to highlight current understanding of the physiological phenotype of frailty and reveal key knowledge gaps and potential mechanistic drivers of the trajectory to frailty. We also review the studies in humans that have intervened with exercise to reduce frailty. We conclude that more longitudinal and interventional clinical studies are required in older adults. Such observational studies should interrogate the progression from a nonfrail to a frail state, assessing individual elements of frailty to produce a deep physiological phenotype of the syndrome. The findings will identify mechanistic drivers of frailty and allow targeted interventions to diminish frailty progression.
Collapse
Affiliation(s)
- Joseph A Taylor
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Paul L Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - David B Bartlett
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina.,Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Thomas A Jackson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
| | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
19
|
Dalton BE, Mazara N, Debenham MIB, Zwambag DP, Noonan AM, Weersink E, Brown SHM, Power GA. The relationship between single muscle fibre and voluntary rate of force development in young and old males. Eur J Appl Physiol 2023; 123:821-832. [PMID: 36484861 DOI: 10.1007/s00421-022-05111-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE It is suggested that the early phase (< 50 ms) of force development during a muscle contraction is associated with intrinsic contractile properties, while the late phase (> 50 ms) is associated with maximal force. There are no direct investigations of single muscle fibre rate of force development (RFD) as related to joint-level RFD METHODS: Sixteen healthy, young (n = 8; 26.4 ± 1.5 yrs) and old (n = 8; 70.1 ± 2.8 yrs) males performed maximal voluntary isometric contractions (MVC) and electrically evoked twitches of the knee extensors to assess RFD. Then, percutaneous muscle biopsies were taken from the vastus lateralis and chemically permeabilized, to assess single fibre function. RESULTS At the joint level, older males were ~ 30% weaker and had ~ 43% and ~ 40% lower voluntary RFD values at 0-100 and 0-200 ms, respectively, than the younger ones (p ≤ 0.05). MVC torque was related to every voluntary RFD epoch in the young (p ≤ 0.001), but only the 0-200 ms epoch in the old (p ≤ 0.005). Twitch RFD was ~ 32% lower in the old compared to young (p < 0.05). There was a strong positive relationship between twitch RFD and voluntary RFD during the earliest time epochs in the young (≤ 100 ms; p ≤ 0.01). While single fibre RFD was unrelated to joint-level RFD in the young, older adults trended (p = 0.052-0.055) towards significant relationships between joint-level RTD and Type I single fibre RFD at the 0-30 ms (r2 = 0.48) and 0-50 ms (r2 = 0.49) time epochs. CONCLUSION Electrically evoked twitches are good predictors of early voluntary RFD in young, but not older adults. Only the older adults showed a potential relationship between single fibre (Type I) and joint-level rate of force development.
Collapse
Affiliation(s)
- Benjamin E Dalton
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Nicole Mazara
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
- Faculty of Education, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Mathew I B Debenham
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Derek P Zwambag
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Alex M Noonan
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Erin Weersink
- Sports Medicine Clinic, Health and Performance Centre, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Stephen H M Brown
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Geoffrey A Power
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada.
| |
Collapse
|
20
|
Cameron J, McPhee JS, Jones DA, Degens H. Decrements of mobility and power in recreationally active septuagenarians is related to loss of force, but not slowing of the muscle: a 5-year longitudinal study. Eur J Appl Physiol 2023; 123:1369-1379. [PMID: 36849667 DOI: 10.1007/s00421-023-05160-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/11/2023] [Indexed: 03/01/2023]
Abstract
A lesser 6-min walk distance (6MWD) and timed up-and-go (TUG) in old compared with young adults was previously linked to slowing of muscle contractile properties. The purpose of the present study was to determine whether any further reductions in 6MWD and TUG over a 5-year period in septuagenarians are associated with further slowing of muscle contractile properties. We measured muscle function by a countermovement jump, isometric maximal knee extensor strength (MVC) on a dynamometer and quadriceps muscle size by magnetic resonance imaging (MRI) in 17 older women (71.1 ± 2.8 y) and 17 older men (71.3 ± 4.1y). Performance in TUG and 6MWD were reduced over the 5-year period, irrespective of sex (P < 0.001), and both were correlated with power at both baseline and follow-up (R ≥ 0.53; P ≤ 0.001). Jump take-off velocity (VCMJ) was slower at follow-up (P < 0.01) and correlated with 6MWD and TUG at both baseline and follow-up in both sexes (R ≥ 0.54; P ≤ 0.001). However, the relationship between 'body mass: maximal muscle force ratio' with VCMJ was not significantly changed, indicating that the lower VCMJ was attributable to muscles working at a higher relative load, hence a lower part of the force-velocity relationship, due to a reduction in MVC (body mass had not changed significantly), rather than slowing of the muscle. The lower VCMJ in women than men (P < 0.001) was likewise attributable to a lower MVC rather than slower contractile properties in women. In conclusion, the decrement in 6MWD and TUG in septuagenarians is due to a loss of muscle mass, rather than further loss of muscle quality.
Collapse
Affiliation(s)
- James Cameron
- Department of Health Professions, Manchester Metropolitan University, Manchester, UK
| | - Jamie S McPhee
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - David A Jones
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK. .,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
| |
Collapse
|
21
|
Inns TB, Bass JJ, Hardy EJ, Wilkinson DJ, Stashuk DW, Atherton PJ, Phillips BE, Piasecki M. Motor unit dysregulation following 15 days of unilateral lower limb immobilisation. J Physiol 2022; 600:4753-4769. [PMID: 36088611 PMCID: PMC9827843 DOI: 10.1113/jp283425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/19/2022] [Indexed: 01/12/2023] Open
Abstract
Disuse atrophy, caused by situations of unloading such as limb immobilisation, causes a rapid yet diverging reduction in skeletal muscle function when compared to muscle mass. While mechanistic insight into the loss of mass is well studied, deterioration of muscle function with a focus towards the neural input to muscle remains underexplored. This study aimed to determine the role of motor unit adaptation in disuse-induced neuromuscular deficits. Ten young, healthy male volunteers underwent 15 days of unilateral lower limb immobilisation with intramuscular electromyography (iEMG) bilaterally recorded from the vastus lateralis (VL) during knee extensor contractions normalised to maximal voluntary contraction (MVC), pre and post disuse. Muscle cross-sectional area was determined by ultrasound. Individual MUs were sampled and analysed for changes in motor unit (MU) discharge and MU potential (MUP) characteristics. VL CSA was reduced by approximately 15% which was exceeded by a two-fold decrease of 31% in muscle strength in the immobilised limb, with no change in either parameter in the non-immobilised limb. Parameters of MUP size were reduced by 11% to 24% with immobilisation, while neuromuscular junction (NMJ) transmission instability remained unchanged, and MU firing rate decreased by 8% to 11% at several contraction levels. All adaptations were observed in the immobilised limb only. These findings highlight impaired neural input following immobilisation reflected by suppressed MU firing rate which may underpin the disproportionate reductions of strength relative to muscle size. KEY POINTS: Muscle mass and function decline rapidly in situations of disuse such as bed rest and limb immobilisation. The reduction in muscle function commonly exceeds that of muscle mass, which may be associated with the dysregulation of neural input to muscle. We have used intramuscular electromyography to sample individual motor unit and near fibre potentials from the vastus lateralis following 15 days of unilateral limb immobilisation. Following disuse, the disproportionate loss of muscle strength when compared to size coincided with suppressed motor unit firing rate. These motor unit adaptations were observed at multiple contraction levels and in the immobilised limb only. Our findings demonstrate neural dysregulation as a key component of functional loss following muscle disuse in humans.
Collapse
Affiliation(s)
- Thomas B. Inns
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Joseph J. Bass
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Edward J.O. Hardy
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
- Department of Surgery and AnaestheticsRoyal Derby HospitalDerbyUK
| | - Daniel J. Wilkinson
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Daniel W. Stashuk
- Department of Systems Design EngineeringUniversity of WaterlooOntarioCanada
| | - Philip J. Atherton
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Bethan E. Phillips
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Mathew Piasecki
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| |
Collapse
|
22
|
Sarto F, Stashuk DW, Franchi MV, Monti E, Zampieri S, Valli G, Sirago G, Candia J, Hartnell LM, Paganini M, McPhee JS, De Vito G, Ferrucci L, Reggiani C, Narici MV. Effects of short-term unloading and active recovery on human motor unit properties, neuromuscular junction transmission and transcriptomic profile. J Physiol 2022; 600:4731-4751. [PMID: 36071599 PMCID: PMC9828768 DOI: 10.1113/jp283381] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/26/2022] [Indexed: 01/12/2023] Open
Abstract
Electrophysiological alterations of the neuromuscular junction (NMJ) and motor unit potential (MUP) with unloading are poorly studied. We aimed to investigate these aspects and the underlying molecular mechanisms with short-term unloading and active recovery (AR). Eleven healthy males underwent a 10-day unilateral lower limb suspension (ULLS) period, followed by 21-day AR based on resistance exercise. Quadriceps femoris (QF) cross-sectional area (CSA) and isometric maximum voluntary contraction (MVC) were evaluated. Intramuscular electromyographic recordings were obtained during 10% and 25% MVC isometric contractions from the vastus lateralis (VL). Biomarkers of NMJ molecular instability (serum c-terminal agrin fragment, CAF), axonal damage (neurofilament light chain) and denervation status were assessed from blood samples and VL biopsies. NMJ and ion channel transcriptomic profiles were investigated by RNA-sequencing. QF CSA and MVC decreased with ULLS. Increased CAF and altered NMJ transcriptome with unloading suggested the emergence of NMJ molecular instability, which was not associated with impaired NMJ transmission stability. Instead, increased MUP complexity and decreased motor unit firing rates were found after ULLS. Downregulation of ion channel gene expression was found together with increased neurofilament light chain concentration and partial denervation. The AR period restored most of these neuromuscular alterations. In conclusion, the human NMJ is destabilized at the molecular level but shows functional resilience to a 10-day unloading period at least at relatively low contraction intensities. However, MUP properties are altered by ULLS, possibly due to alterations in ion channel dynamics and initial axonal damage and denervation. These changes are fully reversed by 21 days of AR. KEY POINTS: We used integrative electrophysiological and molecular approaches to comprehensively investigate changes in neuromuscular integrity and function after a 10-day unilateral lower limb suspension (ULLS), followed by 21 days of active recovery in young healthy men, with a particular focus on neuromuscular junction (NMJ) and motor unit potential (MUP) properties alterations. After 10-day ULLS, we found significant NMJ molecular alterations in the absence of NMJ transmission stability impairment. These findings suggest that the human NMJ is functionally resilient against insults and stresses induced by short-term disuse at least at relatively low contraction intensities, at which low-threshold, slow-type motor units are recruited. Intramuscular electromyography analysis revealed that unloading caused increased MUP complexity and decreased motor unit firing rates, and these alterations could be related to the observed changes in skeletal muscle ion channel pool and initial and partial signs of fibre denervation and axonal damage. The active recovery period restored these neuromuscular changes.
Collapse
Affiliation(s)
- Fabio Sarto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Daniel W. Stashuk
- Department of Systems Design EngineeringUniversity of WaterlooOntarioCanada
| | - Martino V. Franchi
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly,CIR‐MYO Myology CenterUniversity of PadovaPadovaItaly
| | - Elena Monti
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Sandra Zampieri
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly,CIR‐MYO Myology CenterUniversity of PadovaPadovaItaly,Department of SurgeryOncology, and GastroenterologyUniversity of PadovaPadovaItaly
| | - Giacomo Valli
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Giuseppe Sirago
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Julián Candia
- Longitudinal Studies SectionTranslational Gerontology BranchNational Institute of AgingNational Institutes of HealthBaltimoreMDUSA
| | - Lisa M. Hartnell
- Longitudinal Studies SectionTranslational Gerontology BranchNational Institute of AgingNational Institutes of HealthBaltimoreMDUSA
| | - Matteo Paganini
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Jamie S. McPhee
- Department of Sport and Exercise SciencesManchester Metropolitan University Institute of SportManchesterUK
| | - Giuseppe De Vito
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly,CIR‐MYO Myology CenterUniversity of PadovaPadovaItaly
| | - Luigi Ferrucci
- Longitudinal Studies SectionTranslational Gerontology BranchNational Institute of AgingNational Institutes of HealthBaltimoreMDUSA
| | - Carlo Reggiani
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly,Science and Research Center KoperInstitute for Kinesiology ResearchKoperSlovenia
| | - Marco V. Narici
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly,CIR‐MYO Myology CenterUniversity of PadovaPadovaItaly,Science and Research Center KoperInstitute for Kinesiology ResearchKoperSlovenia
| |
Collapse
|
23
|
Parvatiyar MS, Qaisar R. Editorial: Skeletal muscle in age-related diseases: From molecular pathogenesis to potential interventions. Front Physiol 2022; 13:1056479. [PMID: 36324312 PMCID: PMC9619087 DOI: 10.3389/fphys.2022.1056479] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 09/05/2023] Open
Affiliation(s)
- Michelle S. Parvatiyar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, United States
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
24
|
Cahalan SD, Boehm I, Jones RA, Piercy RJ. Recognising the potential of large animals for modelling neuromuscular junction physiology and disease. J Anat 2022; 241:1120-1132. [PMID: 36056593 PMCID: PMC9558152 DOI: 10.1111/joa.13749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/28/2022] Open
Abstract
The aetiology and pathophysiology of many diseases of the motor unit remain poorly understood and the role of the neuromuscular junction (NMJ) in this group of disorders is particularly overlooked, especially in humans, when these diseases are comparatively rare. However, elucidating the development, function and degeneration of the NMJ is essential to uncover its contribution to neuromuscular disorders, and to explore potential therapeutic avenues to treat these devastating diseases. Until now, an understanding of the role of the NMJ in disease pathogenesis has been hindered by inherent differences between rodent and human NMJs: stark contrasts in body size and corresponding differences in associated axon length underpin some of the translational issues in animal models of neuromuscular disease. Comparative studies in large mammalian models, including examination of naturally occurring, highly prevalent animal diseases and evaluation of their treatment, might provide more relevant insights into the pathogenesis and therapy of equivalent human diseases. This review argues that large animal models offer great potential to enhance our understanding of the neuromuscular system in health and disease, and in particular, when dealing with diseases for which nerve length dependency might underly the pathogenesis.
Collapse
Affiliation(s)
- Stephen D Cahalan
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - Ines Boehm
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Biozentrum University of Basel, Basel, Switzerland
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Richard J Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
25
|
Ely IA, Jones EJ, Inns TB, Dooley S, Miller SBJ, Stashuk DW, Atherton PJ, Phillips BE, Piasecki M. Training induced improvements in knee extensor force accuracy are associated with reduced vastus lateralis motor unit firing variability. Exp Physiol 2022; 107:1061-1070. [PMID: 35923141 PMCID: PMC9542263 DOI: 10.1113/ep090367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? We aimed to determine levels of bilateral knee extensor force accuracy and any subsequent alterations to central and/or peripheral motor unit features, following 4 weeks of unilateral force accuracy training. What is the main finding and its importance? In the trained limb only, knee extensor force tracking accuracy improved with reduced motor unit firing rate variability in the vastus lateralis, and no change to neuromuscular junction transmission instability. Interventional strategies to improve force accuracy may be directed to older/clinical populations where such improvements may aid performance of daily living activities. ABSTRACT Background Muscle force output during sustained submaximal isometric contractions fluctuates around an average value and is partly influenced by variation in motor unit (MU) firing rates. MU firing rate (FR) variability seemingly reduces following exercise training interventions, however, much less is known with respect to peripheral MU properties. We therefore investigated whether targeted force accuracy training could lead to improved muscle functional capacity and control, in addition to determining any alterations of individual MU features. Methods Ten healthy participants (7 females, 3 males, 27±6 years, 170±8 cm, 69±16kg) underwent a 4-week supervised, unilateral knee extensor force accuracy training intervention. The coefficient of variation for force (FORCECoV ) and sinusoidal wave force tracking accuracy (FORCESinu ) were determined at 25% maximal voluntary contraction (MVC) pre- and post-training. Intramuscular electromyography was utilised to record individual MU potentials from the vastus lateralis (VL) muscles at 25% MVC during sustained contractions, pre- and post-training. Results Knee extensor muscle strength remained unchanged following training, with no improvements in unilateral leg-balance. FORCECoV and FORCESinu significantly improved in only the trained knee extensors by ∼13% (p = 0.01) and ∼30% (p<0.0001) respectively. MU FR variability significantly reduced in the trained VL by ∼16% (n = 8; p = 0.001), with no further alterations to MU FR or neuromuscular junction transmission instability. Conclusion Our results suggest muscle force control and tracking accuracy is a trainable characteristic in the knee extensors, which is likely explained by the reduction in MU FR variability which was apparent in the trained limb only. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Isabel A Ely
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Eleanor J Jones
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Thomas B Inns
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Síobhra Dooley
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Sarah B J Miller
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Canada
| | - Philip J Atherton
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Bethan E Phillips
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
26
|
Prado CM, Landi F, Chew STH, Atherton PJ, Molinger J, Ruck T, Gonzalez MC. Advances in Muscle Health and Nutrition: A Toolkit for Healthcare Professionals. Clin Nutr 2022; 41:2244-2263. [DOI: 10.1016/j.clnu.2022.07.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/03/2022] [Accepted: 07/31/2022] [Indexed: 11/03/2022]
|
27
|
Guo Y, Piasecki J, Swiecicka A, Ireland A, Phillips BE, Atherton PJ, Stashuk D, Rutter MK, McPhee JS, Piasecki M. Circulating testosterone and dehydroepiandrosterone are associated with individual motor unit features in untrained and highly active older men. GeroScience 2022; 44:1215-1228. [PMID: 34862585 PMCID: PMC9213614 DOI: 10.1007/s11357-021-00482-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/28/2021] [Indexed: 10/31/2022] Open
Abstract
Long-term exercise training has been considered as an effective strategy to counteract age-related hormonal declines and minimise muscle atrophy. However, human data relating circulating hormone levels with motor nerve function are scant. The aims of the study were to explore associations between circulating sex hormone levels and motor unit (MU) characteristics in older men, including masters athletes competing in endurance and power events. Forty-three older men (mean ± SD age: 69.9 ± 4.6 years) were studied based on competitive status. The serum concentrations of dehydroepiandrosterone (DHEA), total testosterone (T) and estradiol were quantified using liquid chromatography mass spectrometry. Intramuscular electromyographic signals were recorded from vastus lateralis (VL) during 25% of maximum voluntary isometric contractions and processed to extract MU firing rate (FR), and motor unit potential (MUP) features. After adjusting for athletic status, MU FR was positively associated with DHEA levels (p = 0.019). Higher testosterone and estradiol were associated with lower MUP complexity; these relationships remained significant after adjusting for athletic status (p = 0.006 and p = 0.019, respectively). Circulating DHEA was positively associated with MU firing rate in these older men. Higher testosterone levels were associated with reduced MUP complexity, indicating reduced electrophysiological temporal dispersion, which is related to decreased differences in conduction times along axonal branches and/or MU fibres. Although evident in males only, this work highlights the potential of hormone administration as a therapeutic interventional strategy specifically targeting human motor units in older age.
Collapse
Affiliation(s)
- Yuxiao Guo
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jessica Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK
| | - Agnieszka Swiecicka
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Alex Ireland
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| | - Daniel Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON Canada
| | - Martin K. Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jamie S. McPhee
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Mathew Piasecki
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
28
|
Guo Y, Jones EJ, Inns TB, Ely IA, Stashuk DW, Wilkinson DJ, Smith K, Piasecki J, Phillips BE, Atherton PJ, Piasecki M. Neuromuscular recruitment strategies of the vastus lateralis according to sex. Acta Physiol (Oxf) 2022; 235:e13803. [PMID: 35184382 PMCID: PMC9286427 DOI: 10.1111/apha.13803] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
Abstract
AIM Despite males typically exhibiting greater muscle strength and fatigability than females, it remains unclear if there are sex-based differences in neuromuscular recruitment strategies e.g. recruitment and modulation of motor unit firing rate (MU FR) at normalized forces and during progressive increases in force. METHODS The study includes 29 healthy male and 31 healthy female participants (18-35 years). Intramuscular electromyography (iEMG) was used to record individual motor unit potentials (MUPs) and near-fibre MUPs from the vastus lateralis (VL) during 10% and 25% maximum isometric voluntary contractions (MVC), and spike-triggered averaging was used to obtain motor unit number estimates (MUNE) of the VL. RESULTS Males exhibited greater muscle strength (P < .001) and size (P < .001) than females, with no difference in force steadiness at 10% or 25% MVC. Females had 8.4% and 6.5% higher FR at 10% and 25% MVC, respectively (both P < .03), while the MUP area was 33% smaller in females at 10% MVC (P < .02) and 26% smaller at 25% MVC (P = .062). However, both sexes showed similar increases in MU size and FR when moving from low- to mid-level contractions. There were no sex differences in any near-fibre MUP parameters or in MUNE. CONCLUSION In the vastus lateralis, females produce muscle force via different neuromuscular recruitment strategies to males which is characterized by smaller MUs discharging at higher rates. However, similar strategies are employed to increase force production from low- to mid-level contractions. These findings of similar proportional increases between sexes support the use of mixed sex cohorts in studies of this nature.
Collapse
Affiliation(s)
- Yuxiao Guo
- Centre of Metabolism Ageing & Physiology (COMAP) MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre School of Medicine University of Nottingham Derby UK
| | - Eleanor J. Jones
- Centre of Metabolism Ageing & Physiology (COMAP) MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre School of Medicine University of Nottingham Derby UK
| | - Thomas B. Inns
- Centre of Metabolism Ageing & Physiology (COMAP) MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre School of Medicine University of Nottingham Derby UK
| | - Isabel A. Ely
- Centre of Metabolism Ageing & Physiology (COMAP) MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre School of Medicine University of Nottingham Derby UK
| | - Daniel W. Stashuk
- Department of Systems Design Engineering University of Waterloo Waterloo Ontario Canada
| | - Daniel J. Wilkinson
- Centre of Metabolism Ageing & Physiology (COMAP) MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre School of Medicine University of Nottingham Derby UK
| | - Kenneth Smith
- Centre of Metabolism Ageing & Physiology (COMAP) MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre School of Medicine University of Nottingham Derby UK
| | - Jessica Piasecki
- Musculoskeletal Physiology Research Group Sport, Health and Performance Enhancement Research Centre Nottingham Trent University Nottingham UK
| | - Bethan E. Phillips
- Centre of Metabolism Ageing & Physiology (COMAP) MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre School of Medicine University of Nottingham Derby UK
| | - Philip J. Atherton
- Centre of Metabolism Ageing & Physiology (COMAP) MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre School of Medicine University of Nottingham Derby UK
| | - Mathew Piasecki
- Centre of Metabolism Ageing & Physiology (COMAP) MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre School of Medicine University of Nottingham Derby UK
| |
Collapse
|
29
|
Esen O, Faisal A, Zambolin F, Bailey SJ, Callaghan MJ. Effect of nitrate supplementation on skeletal muscle motor unit activity during isometric blood flow restriction exercise. Eur J Appl Physiol 2022; 122:1683-1693. [PMID: 35460359 PMCID: PMC9197866 DOI: 10.1007/s00421-022-04946-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/17/2022] [Indexed: 12/26/2022]
Abstract
Background Nitrate (NO3−) supplementation has been reported to lower motor unit (MU) firing rate (MUFR) during dynamic resistance exercise; however, its impact on MU activity during isometric and ischemic exercise is unknown. Purpose To assess the effect of NO3− supplementation on knee extensor MU activities during brief isometric contractions and a 3 min sustained contraction with blood flow restriction (BFR). Methods Sixteen healthy active young adults (six females) completed two trials in a randomized, double-blind, crossover design. Trials were preceded by 5 days of either NO3− (NIT) or placebo (PLA) supplementation. Intramuscular electromyography was used to determine the M. vastus lateralis MU potential (MUP) size, MUFR and near fibre (NF) jiggle (a measure of neuromuscular stability) during brief (20 s) isometric contractions at 25% maximal strength and throughout a 3 min sustained BFR isometric contraction. Results Plasma nitrite (NO2−) concentration was elevated after NIT compared to PLA (475 ± 93 vs. 198 ± 46 nmol L−1, p < 0.001). While changes in MUP area, NF jiggle and MUFR were similar between NIT and PLA trials (all p > 0.05), MUP duration was shorter with NIT compared to PLA during brief isometric contractions and the sustained ischemic contraction (p < 0.01). In addition, mean MUP duration, MUP area and NF jiggle increased, and MUFR decreased over the 3 min sustained BFR isometric contraction for both conditions (all p < 0.05). Conclusions These findings provide insight into the effect of NO3− supplementation on MUP properties and reveal faster MUP duration after short-term NO3− supplementation which may have positive implications for skeletal muscle contractile performance.
Collapse
Affiliation(s)
- Ozcan Esen
- Department of Health Professions, Manchester Metropolitan University, Manchester, M15 6GX, UK.
- Manchester Metropolitan University Institute of Sport, Manchester, UK.
| | - Azmy Faisal
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
- Manchester Metropolitan University Institute of Sport, Manchester, UK
- Faculty of Physical Education for Men, Alexandria University, Alexandria, Egypt
| | - Fabio Zambolin
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
- Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Michael J Callaghan
- Department of Health Professions, Manchester Metropolitan University, Manchester, M15 6GX, UK
- Manchester University Hospital Foundation Trust, Manchester, UK
- Arthritis Research UK Centre for Epidemiology, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
30
|
Jones EJ, Chiou S, Atherton PJ, Phillips BE, Piasecki M. Ageing and exercise-induced motor unit remodelling. J Physiol 2022; 600:1839-1849. [PMID: 35278221 PMCID: PMC9314090 DOI: 10.1113/jp281726] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
A motor unit (MU) comprises the neuron cell body, its corresponding axon and each of the muscle fibres it innervates. Many studies highlight age-related reductions in the number of MUs, yet the ability of a MU to undergo remodelling and to expand to rescue denervated muscle fibres is also a defining feature of MU plasticity. Remodelling of MUs involves two coordinated processes: (i) axonal sprouting and new branching growth from adjacent surviving neurons, and (ii) the formation of key structures around the neuromuscular junction to resume muscle-nerve communication. These processes rely on neurotrophins and coordinated signalling in muscle-nerve interactions. To date, several neurotrophins have attracted focus in animal models, including brain-derived neurotrophic factor and insulin-like growth factors I and II. Exercise in older age has demonstrated benefits in multiple physiological systems including skeletal muscle, yet evidence suggests this may also extend to peripheral MU remodelling. There is, however, a lack of research in humans due to methodological limitations which are easily surmountable in animal models. To improve mechanistic insight of the effects of exercise on MU remodelling with advancing age, future research should focus on combining methodological approaches to explore the in vivo physiological function of the MU alongside alterations of the localised molecular environment.
Collapse
Affiliation(s)
- Eleanor J. Jones
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Shin‐Yi Chiou
- School of SportExercise, and Rehabilitation Sciences, MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
| | - Philip J. Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
31
|
Cesanelli L, Eimantas N, Iovane A, Messina G, Satkunskiene D. The role of age on neuromuscular performance decay induced by a maximal intensity sprint session in a group of competitive endurance athletes. Eur J Transl Myol 2022; 32. [PMID: 35330561 PMCID: PMC8992664 DOI: 10.4081/ejtm.2022.10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Age-related changes in the neuromuscular system functions may affect profoundly high-level athletes' performance across their careers. The present study aimed to analyse the fatiguing effect of a maximal intensity sprint session (MISS) on competitive athletes of different ages. Thirty-one competitive endurance athletes completed a knee extensors and flexors' maximal-voluntary-isometric-contraction (MVC) test before and after a maximal-intensity-sprint-session (MISS) consisting of 4x15s Wingate-tests. The data have been stratified considering three age categories (18-28, n=11, 29-38; n=10; 39-43, n=10). Overall, both quadricep and hamstring muscles early and late rate of torque development (RTD) dropped significantly more than the maximal voluntary torque (MVT) (p<.05). Age had a significant effect on early RTD, with older athletes exhibiting greater RTD (p<.05). A significant effect of age also emerged for the changes in surface sEMG variables, in which the frequency spectrum variables dropped significantly more than the sEMG amplitude (RMS) (p<.05). The dynamics of changes in neuromuscular performance markers after a MISS suggested that getting older competitive athletes may potentially experience a greater loss in early explosive strength compared to maximal or late explosive strength.
Collapse
|
32
|
Single skeletal muscle fiber mechanical properties: a muscle quality biomarker of human aging. Eur J Appl Physiol 2022; 122:1383-1395. [DOI: 10.1007/s00421-022-04924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/23/2022] [Indexed: 12/25/2022]
|
33
|
Orssatto LBR, Borg DN, Pendrith L, Blazevich AJ, Shield AJ, Trajano GS. DO MOTONEURON DISCHARGE RATES SLOW WITH AGING? A SYSTEMATIC REVIEW AND META-ANALYSIS. Mech Ageing Dev 2022; 203:111647. [PMID: 35218849 DOI: 10.1016/j.mad.2022.111647] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Nervous system maladaptation is linked to the loss of maximal strength and motor control with aging. Motor unit discharge rates are a critical determinant of force production; thus, lower discharge rates could be a mechanism underpinning maximal strength and motor control losses during aging. This meta-analysis summarized the findings of studies comparing motor unit discharge rates between young and older adults, and examined the effects of the selected muscle and contraction intensity on the magnitude of discharge rates difference between these two groups. Estimates from 29 studies, across a range of muscles and contraction intensities, were combined in a multilevel meta-analysis, to investigate whether discharge rates differed between young and older adults. Motor unit discharge rates were higher in younger than older adults, with a pooled standardized mean difference (SMD) of 0.66 (95%CI= 0.29-1.04). Contraction intensity had a significant effect on the pooled SMD, with a 1% increase in intensity associated with a 0.009 (95%CI= 0.003-0.015) change in the pooled SMD. These findings suggest that reductions in motor unit discharge rates, especially at higher contraction intensities, may be an important mechanism underpinning age-related losses in maximal force production.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia.
| | - David N Borg
- Griffith University, Menzies Health Institute Queensland, The Hopkins Centre, Brisbane, Australia
| | - Linda Pendrith
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Anthony J Shield
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
34
|
Piekarz KM, Georgescu C, Wren JD, Towner RA, Van Remmen H. Pharmacologic treatment with OKN-007 reduces alpha-motor neuron loss in spinal cord of aging mice. GeroScience 2022; 44:67-81. [PMID: 34984634 PMCID: PMC8811061 DOI: 10.1007/s11357-021-00506-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/21/2021] [Indexed: 01/14/2023] Open
Abstract
Aging is associated with molecular and functional declines in multiple physiologic systems. We have previously reported age-related changes in spinal cord that included a decline in α-motor neuron numbers, axonal loss, and demyelination associated with increased inflammation and blood-spinal cord barrier (BSCB) permeability. These changes may influence other pathologies associated with aging, in particular loss of muscle mass and function (sarcopenia), which we and others have shown is accompanied by neuromuscular junction disruption and loss of innervation. Interventions to protect and maintain motor neuron viability and function in aging are currently lacking and could have a significant impact on improving healthspan. Here we tested a promising compound, OKN-007, that has known antioxidant, anti-inflammatory and neuroprotective properties, as a potential intervention in age-related changes in the spinal cord. OKN-007 is a low molecular weight disulfonyl derivative of (N-tert Butyl-α-phenylnitrone) (PBN) that can easily cross the blood-brain barrier. We treated middle age (16 month) wild-type male mice with OKN-007 in drinking water at a dose of 150 mg/kg/day until 25 months of age. OKN-007 treatment exerted a number of beneficial effects in the aging spinal cord, including a 35% increase in the number of lumbar α-motor neurons in OKN-treated old mice compared to age-matched controls. Brain spinal cord barrier permeability, which is increased in aging spinal cord, was also blunted by OKN-007 treatment. Age-related changes in microglia proliferation and activation are blunted by OKN-007, while we found no effect on astrocyte proliferation. Transcriptome analysis identified expression changes in a number of genes that are involved in neuronal structure and function and revealed a subset of genes whose changes in response to aging are reversed by OKN-007 treatment. Overall, our findings suggest that OKN-007 exerts neuroprotective and anti-inflammatory effects on the aging spinal cord and support OKN-007 as a potential therapeutic to improve α-motor neuron health.
Collapse
Affiliation(s)
- Katarzyna M. Piekarz
- grid.266902.90000 0001 2179 3618OU Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117 USA ,grid.274264.10000 0000 8527 6890Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Constantin Georgescu
- grid.274264.10000 0000 8527 6890Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Jonathan D. Wren
- grid.266902.90000 0001 2179 3618OU Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117 USA ,grid.274264.10000 0000 8527 6890Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Rheal A. Towner
- grid.266902.90000 0001 2179 3618OU Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117 USA ,grid.274264.10000 0000 8527 6890Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Holly Van Remmen
- grid.266902.90000 0001 2179 3618OU Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117 USA ,grid.274264.10000 0000 8527 6890Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.413864.c0000 0004 0420 2582Oklahoma City VA Medical Center, Oklahoma City, OK 73104 USA ,grid.274264.10000 0000 8527 6890Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| |
Collapse
|
35
|
Teixeira J, Brauer Júnior A, Lima-Silva A, Bento P. Association between age and muscle function, architecture, and composition in long-distance master runners: a cross-sectional study. Braz J Med Biol Res 2022; 55:e12383. [DOI: 10.1590/1414-431x2022e12383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - A.G. Brauer Júnior
- Universidade Federal do Paraná, Brasil; Unibrasil Centro Universitário, Brasil
| | | | - P.C.B. Bento
- Universidade Federal do Paraná, Brasil; Universidade Federal do Paraná, Brasil
| |
Collapse
|
36
|
Abstract
The purpose of our review was to compare the distribution of motor unit properties across human muscles of different sizes and recruitment ranges. Although motor units can be distinguished based on several different attributes, we focused on four key parameters that have a significant influence on the force produced by muscle during voluntary contractions: the number of motor units, average innervation number, the distributions of contractile characteristics, and discharge rates within motor unit pools. Despite relatively few publications on this topic, current data indicate that the most influential factor in the distribution of these motor unit properties between muscles is innervation number. Nonetheless, despite a fivefold difference in innervation number between a hand muscle (first dorsal interosseus) and a lower leg muscle (tibialis anterior), the general organization of their motor unit pools, and the range of discharge rates appear to be relatively similar. These observations provide foundational knowledge for studies on the control of movement and the changes that occur with aging and neurological disorders.
Collapse
Affiliation(s)
- Jacques Duchateau
- Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
37
|
Delgadillo JD, Sundberg CW, Kwon M, Hunter SK. Fatigability of the knee extensor muscles during high-load fast and low-load slow resistance exercise in young and older adults. Exp Gerontol 2021; 154:111546. [PMID: 34492255 DOI: 10.1016/j.exger.2021.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Resistance exercise training is a cornerstone in preventing age-related declines in muscle mass and strength, and fatigability of limb muscle is important to this adaptive response. It is unknown, however, whether fatigability and the underlying mechanisms differ between different resistance exercise protocols in young and older adults. The purpose of this study was to quantify the fatigability of the knee extensors and identify the mechanisms in 20 young (22.2 ± 1.3 yr, 10 women) and 20 older adults (73.8 ± 5.4 yr, 10 women) elicited by a single session of high- and low-load resistance exercise. One leg completed a high-load protocol with contractions performed as fast as possible (HL-fast, ~80% 1 Repetition Max, 1RM), and the contralateral leg a low-load protocol performed with slow contractions (LL-slow, ~30% 1RM, 6 s concentric, 6 s eccentric). Each exercise involved four sets of eight repetitions. Before and immediately following each set, maximal voluntary isometric contractions (MVC) were performed, and voluntary activation and contractile properties quantified using electrical stimulation. The reduction in MVC was greater following the LL-slow (20%) than the HL-fast (12%, P = 0.004), with no age or sex differences. Similarly, the reduction in the amplitude of the involuntary electrically-evoked twitch was greater in the LL-slow (14%) than the HL-fast (7%, P = 0.014) and correlated with the reduction in MVC (r = 0.546, P < 0.001), whereas voluntary activation decreased only for the LL-slow protocol (5%, P < 0.001). Thus, low-load resistance exercise with slow contractions induced greater fatigability within the muscle than a more traditional high-load resistance protocol for both young and older men and women.
Collapse
Affiliation(s)
- Jose D Delgadillo
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Christopher W Sundberg
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI, USA; Athletic and Human Performance Research Center, Marquette University, Milwaukee, WI, USA
| | - Minhyuk Kwon
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI, USA; Department of Kinesiology & Health Promotion, California State Polytechnic University, Pomona, CA, USA
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI, USA; Athletic and Human Performance Research Center, Marquette University, Milwaukee, WI, USA.
| |
Collapse
|
38
|
Kirk EA, Gilmore KJ, Rice CL. Anconeus motor unit firing rates during isometric and muscle-shortening contractions comparing young and very old adults. J Neurophysiol 2021; 126:1122-1136. [PMID: 34495770 DOI: 10.1152/jn.00219.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With effects of aging, voluntary neural drive to the muscle, measured as motor unit (MU) firing rate, is lower in older adults during sustained isometric contractions compared with young adults, but differences remain unknown during limb movements. Therefore, our purpose was to compare MU firing rates during both isometric and shortening contractions between two adult age groups. We analyzed intramuscular electromyography of single-MU recordings in the anconeus muscle of young (n = 8, 19-33 yr) and very old (n = 13, 78-93 yr) male adults during maximal voluntary contractions (MVCs). In sustained isometric and muscle-shortening contractions during limb movement, MU trains were linked with elbow joint kinematic parameters throughout the contraction time course. The older group was 33% weaker and 10% slower during movements than the young group (P < 0.01). In isometric contractions, median firing rates were 42% lower (P < 0.01) in the older group (18 Hz) compared with the young group (31 Hz), but during shortening contractions firing rates were higher for both age groups and not statistically different between groups. As a function of contraction time, firing rates at MU recruitment threshold were 39% lower in the older group, but the firing rate decrease was attenuated threefold throughout shortening contraction compared with the young group. At the single-MU level, age-related differences during isometric contractions (i.e., pre-movement initiation) do not remain constant throughout movement that comprises greater effects of muscle shortening. Results indicate that neural drive is task dependent and during movement in older adults it is decreased minimally.NEW & NOTEWORTHY Changes of neural drive to the muscle with adult aging, measured as motor unit firing rates during limb movements, are unknown. Throughout maximal voluntary efforts we found that, in comparison with young adults, firing rates were lower during isometric contraction in older adults but not different during elbow extension movements. Despite the older group being ∼33% weaker across contractions, their muscles can receive neural drive during movements that are similar to that of younger adults.
Collapse
Affiliation(s)
- Eric A Kirk
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Kevin J Gilmore
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
39
|
Combinational spectral band activation complexity: Uncovering hidden neuromuscular firing dynamics in EMG. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Jones EJ, Piasecki J, Ireland A, Stashuk DW, Atherton PJ, Phillips BE, McPhee JS, Piasecki M. Lifelong exercise is associated with more homogeneous motor unit potential features across deep and superficial areas of vastus lateralis. GeroScience 2021; 43:1555-1565. [PMID: 33763775 PMCID: PMC8492837 DOI: 10.1007/s11357-021-00356-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Motor unit (MU) expansion enables rescue of denervated muscle fibres helping to ameliorate age-related muscle atrophy, with evidence to suggest master athletes are more successful at this remodelling. Electrophysiological data has suggested MUs located superficially are larger than those located deeper within young muscle. However, the effects of ageing and exercise on MU heterogeneity across deep and superficial aspects of vastus lateralis (VL) remain unclear. Intramuscular electromyography was used to record individual MU potentials (MUPs) and near fibre MUPs (NFMs) from deep and superficial regions of the VL during 25% maximum voluntary contractions, in 83 males (15 young (Y), 17 young athletes (YA), 22 old (O) and 29 master athletes (MA)). MUP size and complexity were assessed using area and number of turns, respectively. Multilevel mixed effects linear regression models were performed to investigate the effects of depth in each group. MUP area was greater in deep compared with superficial MUs in Y (p<0.001) and O (p=0.012) but not in YA (p=0.071) or MA (p=0.653). MUP amplitude and NF MUP area were greater, and MUPs were more complex in deep MUPs from Y, YA and O (all p<0.05) but did not differ across depth in MA (all p>0.07). These data suggest MU characteristics differ according to depth within the VL which may be influenced by both ageing and exercise. A more homogenous distribution of MUP size and complexity across muscle depths in older athletes may be a result of a greater degree of age-related MU adaptations.
Collapse
Affiliation(s)
- Eleanor J Jones
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Jessica Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Alex Ireland
- Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Philip J Atherton
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Bethan E Phillips
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Jamie S McPhee
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Mathew Piasecki
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
41
|
Deschenes MR, Trebelhorn AM, High MC, Tufts HL, Oh J. Sensitivity of subcellular components of neuromuscular junctions to decreased neuromuscular activity. Synapse 2021; 75:e22220. [PMID: 34318955 DOI: 10.1002/syn.22220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022]
Abstract
Muscle unloading imparts subtotal disuse on the neuromuscular system resulting in reduced performance capacity. This loss of function, at least in part, can be attributed to disruptions at the neuromuscular junction (NMJ). However, research has failed to document morphological remodeling of the NMJ with short term muscle unloading. Here, rather than quantifying cellular components of the NMJ, we examined subcellular active zone responses to 2 weeks of unloading in male Wistar rats. It was revealed that in the plantaris, but not the soleus muscles, unloading elicited significant (P ≤ 0.05) decrements in active zone staining as measured by Bassoon, and calcium channel expression. It was also discovered that unloading decreased the area of calcium channels staining relative to active zone areas of staining suggesting potential interference in the ability of calcium influx to trigger the release of vesicles docked at the active zone. Post-synaptic adaptations of the motor endplate were not evident. This presynaptic subcellular size reduction was not associated with atrophy of the underlying plantaris muscle fibers, although atrophy of the weight-bearing soleus fibers, where no subcellular remodeling was evident, was noted. These results suggest that the active zone is highly sensitive to alterations in neuromuscular activity, and that morphological adaptation of excitatory and contractile components of the NMJ can occur independently of each other.
Collapse
Affiliation(s)
- Michael R Deschenes
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, Virginia, USA.,Program in Neuroscience, College of William & Mary, Williamsburg, Virginia, USA
| | - Audrey M Trebelhorn
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, Virginia, USA
| | - Madeline C High
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, Virginia, USA
| | - Hannah L Tufts
- Program in Neuroscience, College of William & Mary, Williamsburg, Virginia, USA
| | - Jeongeun Oh
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, Virginia, USA
| |
Collapse
|
42
|
Agarwal V, Joshi I. Need for Nutritious Convenience Foods for the Elderly Population: A Review. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999201009144719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Worldwide, the population of elderly persons is rising at a very fast rate. Elderly people
have difficulties in performing day to day activities as the aging process deteriorates the normal
functioning of their body. There is risk of inadequate nutrition because of difficulties in shopping
for food, cooking a meal, chewing and putting food in mouth. Vision loss makes cooking, and even
eating, more difficult. Some elderly people live alone or with their spouses. Cooking for one or two
persons/s is not very stimulating. These changes have a great role to play in changing the eating
habits of the elderly which may affect their nutrient intake. All these factors may cause nutritional
deficiencies, malnutrition and other health problems among them. There are major opportunities to
develop convenience food products in order to meet the changing needs of aging population. In order
to get maximum product acceptance, it is important to combine the elements of convenience
and affordability. While designing products for elderly, it is desirable to modify the food consistency
to assist in swallowing, make it nutrient-dense and design it in a way that it can be easily handled
and eaten. The packaging can be easy to open, information written in large fonts and contrasting
colours to help in easy reading. The availability of nutritious ‘ready-meals’ can serve as an opportunity
for elderly people who do not want to cook or have low interest in cooking. This can provide
a variety of healthier food choices to them and help to reduce malnutrition. Access to nutritious
convenience food products can facilitate a positive intervention to the aging consumers.
Collapse
Affiliation(s)
- Vyoma Agarwal
- Department of Home Science, IIS (Deemed to be University), Jaipur 302020, India
| | - Ila Joshi
- Department of Home Science, IIS (Deemed to be University), Jaipur 302020, India
| |
Collapse
|
43
|
Fuertes-Alvarez S, Izeta A. Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction. Aging Dis 2021; 12:494-514. [PMID: 33815879 PMCID: PMC7990373 DOI: 10.14336/ad.2020.0708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Action potential is transmitted to muscle fibers through specialized synaptic interfaces called neuromuscular junctions (NMJs). These structures are capped by terminal Schwann cells (tSCs), which play essential roles during formation and maintenance of the NMJ. tSCs are implicated in the correct communication between nerves and muscles, and in reinnervation upon injury. During aging, loss of muscle mass and strength (sarcopenia and dynapenia) are due, at least in part, to the progressive loss of contacts between muscle fibers and nerves. Despite the important role of tSCs in NMJ function, very little is known on their implication in the NMJ-aging process and in age-associated denervation. This review summarizes the current knowledge about the implication of tSCs in the age-associated degeneration of NMJs. We also speculate on the possible mechanisms underlying the observed phenotypes.
Collapse
Affiliation(s)
- Sandra Fuertes-Alvarez
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain
| | - Ander Izeta
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain.,2Tecnun-University of Navarra, School of Engineering, Department of Biomedical Engineering and Science, Paseo Mikeletegi, 48, San Sebastian 20009, Spain
| |
Collapse
|
44
|
Martignon C, Ruzzante F, Giuriato G, Laginestra FG, Pedrinolla A, Di Vico IA, Saggin P, Stefanelli D, Tinazzi M, Schena F, Venturelli M. The key role of physical activity against the neuromuscular deterioration in patients with Parkinson's disease. Acta Physiol (Oxf) 2021; 231:e13630. [PMID: 33595917 DOI: 10.1111/apha.13630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022]
Abstract
AIM Decreased muscle strength has been frequently observed in individuals with Parkinson's disease (PD). However, this condition is still poorly examined in physically active patients. This study compared quadriceps (Q) maximal force and the contribution of central and peripheral components of force production during a maximal isometric task between physically active PD and healthy individuals. In addition, the correlation between force determinants and energy expenditure indices were investigated. METHODS Maximal voluntary contraction (MVC), resting twitch (RT) force, pennation angle (θp), physiological cross-sectional area (PCSA) and Q volume were assessed in 10 physically active PD and 10 healthy control (CTRL) individuals matched for age, sex and daily energy expenditure (DEE) profile. RESULTS No significant differences were observed between PD and CTRL in MVC (142 ± 85; 142 ± 47 N m), Q volume (1469 ± 379; 1466 ± 522 cm3 ), PCSA (206 ± 54; 205 ± 71 cm2 ), θp (14 ± 7; 13 ± 3 rad) and voluntary muscle-specific torque (MVC/PCSA [67 ± 35; 66 ± 19 N m cm-2 ]). Daily calories and MVC correlated (r = 0.56, P = .0099). However, PD displayed lower maximal voluntary activation (MVA) (85 ± 7; 95 ± 5%), rate of torque development (RTD) in the 0-0.05 (110 ± 70; 447 ± 461 N m s-1 ) and the 0.05-0.1 s (156 ± 135; 437 ± 371 N m s-1 ) epochs of MVCs, whereas RT normalized for PCSA was higher (35 ± 14; 20 ± 6 N m cm-2 ). CONCLUSION Physically active PDs show a preserved strength of the lower limb. This resulted by increasing skeletal muscle contractility, which counterbalances neuromuscular deterioration, likely due to their moderate level of physical activity.
Collapse
Affiliation(s)
- Camilla Martignon
- Department of Neurosciences, Biomedicine, and Movement University of Verona Verona Italy
| | - Federico Ruzzante
- Department of Neurosciences, Biomedicine, and Movement University of Verona Verona Italy
| | - Gaia Giuriato
- Department of Neurosciences, Biomedicine, and Movement University of Verona Verona Italy
| | - Fabio G. Laginestra
- Department of Neurosciences, Biomedicine, and Movement University of Verona Verona Italy
| | - Anna Pedrinolla
- Department of Neurosciences, Biomedicine, and Movement University of Verona Verona Italy
| | - Ilaria A. Di Vico
- Department of Neurosciences, Biomedicine, and Movement University of Verona Verona Italy
| | - Paolo Saggin
- Division of Radiology and Imaging San Francesco Clinical Diagnostic Center Verona Italy
| | - Donato Stefanelli
- Division of Radiology and Imaging San Francesco Clinical Diagnostic Center Verona Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine, and Movement University of Verona Verona Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine, and Movement University of Verona Verona Italy
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine, and Movement University of Verona Verona Italy
- Department of Internal Medicine University of Utah Salt Lake City UT USA
| |
Collapse
|
45
|
Near-fiber electromyography. Clin Neurophysiol 2021; 132:1089-1104. [PMID: 33774377 DOI: 10.1016/j.clinph.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Describe and evaluate the concepts of near fiber electromyography (NFEMG), the features used, including near fiber motor unit potential (NFMUP) duration and dispersion, which relate to motor unit distal axonal branch and muscle fiber conduction time dispersion, and NFMUP segment jitter, a new measure of the temporal variability of neuromuscular junction transmission (NMJ), and axonal branch and muscle fibre conduction for the near fibres (i.e. NF jitter), and the methods for obtaining their values. METHODS Trains of high-pass filtered motor unit potentials (MUPs) (i.e. NFMUP trains) were extracted from needle-detected EMG signals to assess changes in motor unit (MU) morphology and electrophysiology caused by neuromuscular disorders or ageing. Evaluations using simulated needle-detected EMG data were completed and example human data are presented. RESULTS NFEMG feature values can be used to detect axonal sprouting, conduction slowing and NMJ transmission delay as well as changes in MU fiber diameter variability, and NF jitter. These changes can be detected prior to alterations of MU size or numbers. CONCLUSIONS The evaluations clearly demonstrate and the example data support that NFMUP duration and dispersion reflect MU distal axonal branching, conduction slowing and NMJ transmission delay and/or MU fiber diameter variability and that NFMUP jiggle and segment jitter reflect NF jitter. SIGNIFICANCE NFEMG can detect early changes in MU morphology and/or electrophysiology and has the potential to augment clinical diagnosis and tracking of neuromuscular disorders.
Collapse
|
46
|
Inns TB, McCormick D, Greig CA, Atherton PJ, Phillips BE, Piasecki M. Factors associated with electrical stimulation-induced performance fatigability are dependent upon stimulation location. Exp Physiol 2021; 106:828-836. [PMID: 33638246 DOI: 10.1113/ep089204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does peripheral nerve stimulation (PNS) compare with neuromuscular electrical stimulation (NMES) used clinically to reduce muscle atrophy? What is the main finding and its importance? NMES resulted in progressive increases in M-wave duration and delay of muscle relaxation throughout a single stimulation protocol, findings not observed with PNS. This suggests PNS recruits from a wider pool of muscle fibres/motor units, providing a more favourable alternative to NMES for rehabilitation intervention. ABSTRACT Neuromuscular electrical stimulation (NMES) is increasingly viewed as a central tenet to minimise muscle loss during periods of disuse/illness - typically applied directly over a muscle belly. Peripheral nerve stimulation (PNS) is afforded less attention, despite providing a more global contractile stimulus to muscles. We investigated NMES versus PNS in relation to performance fatigability and peripheral contributions to voluntary force capacity. Two fatigue protocols were assessed separately: (1) over-quadriceps NMES and (2) peripheral (femoral) nerve stimulation (PNS). Before and after each session, a maximal voluntary contraction (MVC) was performed to assess force loss. Knee-extensor force was measured throughout to assess contractile function in response to submaximal electrical stimulation, and M-wave features quantified myoelectrical activity. NMES and PNS induced similar voluntary (MVC, NMES: -12 ± 9%, PNS: -10 ± 8%, both P < 0.001) and stimulated (NMES: -45 ± 12%, PNS -27 ± 27%, both P < 0.001) force reductions. Although distinct between protocols, myoelectrical indicators of muscle recruitment (M-wave area and amplitude) and nerve conduction time did not change throughout either protocol. Myoelectrical propagation speed, represented as M-wave duration, and the delay before muscle relaxation began both progressively increased during NMES only (P < 0.05 and P < 0.001, respectively). NMES myoelectrical changes suggested performance fatigability, indicating activation of superficial fibres only, which was not observed with PNS. This suggests PNS recruits a wider pool of muscle fibres and motor units and is a favourable alternative for rehabilitation. Future work should focus on implementing PNS interventions in clinically relevant scenarios such as immobilisation, care homes and critical illness.
Collapse
Affiliation(s)
- Thomas B Inns
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Daniel McCormick
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Carolyn A Greig
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,MRC-Versus Arthritis Research UK Centre for Musculoskeletal Ageing Research, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Philip J Atherton
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Bethan E Phillips
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Mathew Piasecki
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
47
|
Maitland S, Baker SN. Ipsilateral Motor Evoked Potentials as a Measure of the Reticulospinal Tract in Age-Related Strength Changes. Front Aging Neurosci 2021; 13:612352. [PMID: 33746734 PMCID: PMC7966512 DOI: 10.3389/fnagi.2021.612352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Background: The reticulospinal tract (RST) is essential for balance, posture, and strength, all functions which falter with age. We hypothesized that age-related strength reductions might relate to differential changes in corticospinal and reticulospinal connectivity. Methods: We divided 83 participants (age 20-84) into age groups <50 (n = 29) and ≥50 (n = 54) years; five of which had probable sarcopenia. Transcranial Magnetic Stimulation (TMS) was applied to the left cortex, inducing motor evoked potentials (MEPs) in the biceps muscles bilaterally. Contralateral (right, cMEPs) and ipsilateral (left, iMEPs) MEPs are carried by mainly corticospinal and reticulospinal pathways respectively; the iMEP/cMEP amplitude ratio (ICAR) therefore measured the relative importance of the two descending tracts. Grip strength was measured with a dynamometer and normalized for age and sex. Results: We found valid iMEPs in 74 individuals (n = 44 aged ≥50, n = 29 < 50). Younger adults had a significant negative correlation between normalized grip strength and ICAR (r = -0.37, p = 0.045); surprisingly, in older adults, the correlation was also significant, but positive (r = 0.43, p = 0.0037). Discussion: Older individuals who maintain or strengthen their RST are stronger than their peers. We speculate that reduced RST connectivity could predict those at risk of age-related muscle weakness; interventions that reinforce the RST could be a candidate for treatment or prevention of sarcopenia.
Collapse
Affiliation(s)
- Stuart Maitland
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N Baker
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
48
|
Birkbeck MG, Blamire AM, Whittaker RG, Sayer AA, Dodds RM. The role of novel motor unit magnetic resonance imaging to investigate motor unit activity in ageing skeletal muscle. J Cachexia Sarcopenia Muscle 2021; 12:17-29. [PMID: 33354940 PMCID: PMC7890268 DOI: 10.1002/jcsm.12655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is a progressive and generalized disease, more common in older adults, which manifests as a loss of muscle strength and mass. The pathophysiology of sarcopenia is still poorly understood with many mechanisms suggested. Age associated changes to the neuromuscular architecture, including motor units and their constituent muscle fibres, represent one such mechanism. Electromyography can be used to distinguish between different myopathies and produce counts of motor units. Evidence from electromyography studies suggests that with age, there is a loss of motor units, increases to the sizes of remaining units, and changes to their activity patterns. However, electromyography is invasive, can be uncomfortable, does not reveal the exact spatial position of motor units within muscle and is difficult to perform in deep muscles. We present a novel diffusion-weighted magnetic resonance imaging technique called 'motor unit magnetic resonance imaging (MUMRI)'. MUMRI aims to improve our understanding of the changes to the neuromuscular system associated with ageing, sarcopenia and other neuromuscular diseases. To date, we have demonstrated that MUMRI can be used to detect statistically significant differences in fasciculation rate of motor units between (n = 4) patients with amyotrophic lateral sclerosis (mean age ± SD: 53 ± 15) and a group of (n = 4) healthy controls (38 ± 7). Patients had significantly higher rates of fasciculation compared with healthy controls (mean = 99.1/min, range = 25.7-161.0 in patients vs. 7.7/min, range = 4.3-9.7 in controls; P < 0.05. MUMRI has detected differences in size, shape, and distribution of single human motor units between (n = 5) young healthy volunteers (29 ± 2.2) and (n = 5) healthy older volunteers (65.6 ± 14.8). The maximum size of motor unit territories in the older group was 12.4 ± 3.3 mm and 9.7 ± 2.7 mm in the young group; P < 0.05. MUMRI is an entirely non-invasive tool, which can be used to detect physiological and pathological changes to motor units in neuromuscular diseases. MUMRI also has the potential to be used as an intermediate outcome measure in sarcopenia trials.
Collapse
Affiliation(s)
- Matthew G Birkbeck
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Northern Medical Physics and Clinical Engineering, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrew M Blamire
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Roger G Whittaker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Avan Aihie Sayer
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Richard M Dodds
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
49
|
Piasecki J, Inns TB, Bass JJ, Scott R, Stashuk DW, Phillips BE, Atherton PJ, Piasecki M. Influence of sex on the age-related adaptations of neuromuscular function and motor unit properties in elite masters athletes. J Physiol 2021; 599:193-205. [PMID: 33006148 DOI: 10.1113/jp280679] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Masters athletes maintain high levels of activity into older age and allow an examination of the effects of aging dissociated from the effects of increased sedentary behaviour. Evidence suggests masters athletes are more successful at motor unit remodelling, the reinnervation of denervated fibres acting to preserve muscle fibre number, but little data are available in females. Here we used intramuscular electromyography to demonstrate that motor units sampled from the tibialis anterior show indications of remodelling from middle into older age and which does not differ between males and females. The age-related trajectory of motor unit discharge characteristic differs according to sex, with female athletes progressing to a slower firing pattern that was not observed in males. Our findings indicate motor unit remodelling from middle to older age occurs to a similar extent in male and female athletes, with discharge rates progressively slowing in females only. ABSTRACT Motor unit (MU) remodelling acts to minimise loss of muscle fibres following denervation in older age, which may be more successful in masters athletes. Evidence suggests performance and neuromuscular function decline with age in this population, although the majority of studies have focused on males, with little available data on female athletes. Functional assessments of strength, balance and motor control were performed in 30 masters athletes (16 male) aged 44-83 years. Intramuscular needle electrodes were used to sample individual motor unit potentials (MUPs) and near-fibre MUPs in the tibialis anterior (TA) during isometric contractions at 25% maximum voluntary contraction, and used to determine discharge characteristics (firing rate, variability) and biomarkers of peripheral MU remodelling (MUP size, complexity, stability). Multilevel mixed-effects linear regression models examined effects of age and sex. All aspects of neuromuscular function deteriorated with age (P < 0.05) with no age × sex interactions, although males were stronger (P < 0.001). Indicators of MU remodelling also progressively increased with age to a similar extent in both sexes (P < 0.05), whilst MU firing rate progressively decreased with age in females (p = 0.029), with a non-significant increase in males (p = 0.092). Masters athletes exhibit age-related declines in neuromuscular function that are largely equal across males and females. Notably, they also display features of MU remodelling with advancing age, probably acting to reduce muscle fibre loss. The age trajectory of MU firing rate assessed at a single contraction level differed between sexes, which may reflect a greater tendency for females to develop a slower muscle phenotype.
Collapse
Affiliation(s)
- Jessica Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Thomas B Inns
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Joseph J Bass
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Reece Scott
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Ontario, Canada
| | - Bethan E Phillips
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Philip J Atherton
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Mathew Piasecki
- Clinical, Metabolic and Molecular Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
50
|
The efficacy of essential amino acid supplementation for augmenting dietary protein intake in older adults: implications for skeletal muscle mass, strength and function. Proc Nutr Soc 2020; 80:230-242. [PMID: 33315000 DOI: 10.1017/s0029665120008010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The primary aim of this review is to evaluate the efficacy of essential amino acid (EAA) supplementation as a strategy to increase dietary protein intake and improve muscle mass, strength and function in older adults. A sufficient daily protein intake is widely recognised to be fundamental for the successful management of sarcopenia in older undernourished adults. In practice, optimising protein intakes in older adults is complex, requiring consideration of the dose and amino acid composition (i.e. a complete EAA profile and abundant leucine content) of ingested protein on a per meal basis, alongside the age-related decline in appetite and the satiating properties of protein. Recent studies in older adults demonstrate that EAA-based supplements are non-satiating and can be administered alongside food to enhance the anabolic properties of a meal containing a suboptimal dose of protein; an effect magnified when combined with resistance exercise training. These findings support the notion that EAA supplementation could serve as an effective strategy to improve musculoskeletal health in older adults suffering from non-communicable diseases such as sarcopenia. Compliance is critical for the long-term success of complex interventions. Hence, aspects of palatability and desire to eat are important considerations regarding EAA supplementation. In conclusion, EAA-based supplements enriched with l-leucine offer an alternative strategy to whole protein sources to assist older adults in meeting protein recommendations. In practice, EAA supplements could be administered alongside meals of suboptimal protein content, or alternatively between meals on occasions when older adults achieve their per meal protein intake recommendations.
Collapse
|