1
|
Li P, Zhang J, Hayashi H, Yue J, Li W, Yang C, Sun C, Shi J, Huberman-Shlaes J, Hibino N, Tian B. Monolithic silicon for high spatiotemporal translational photostimulation. Nature 2024; 626:990-998. [PMID: 38383782 DOI: 10.1038/s41586-024-07016-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/02/2024] [Indexed: 02/23/2024]
Abstract
Electrode-based electrical stimulation underpins several clinical bioelectronic devices, including deep-brain stimulators1,2 and cardiac pacemakers3. However, leadless multisite stimulation is constrained by the technical difficulties and spatial-access limitations of electrode arrays. Optogenetics offers optically controlled random access with high spatiotemporal capabilities, but clinical translation poses challenges4-6. Here we show tunable spatiotemporal photostimulation of cardiac systems using a non-genetic platform based on semiconductor-enabled biomodulation interfaces. Through spatiotemporal profiling of photoelectrochemical currents, we assess the magnitude, precision, accuracy and resolution of photostimulation in four leadless silicon-based monolithic photoelectrochemical devices. We demonstrate the optoelectronic capabilities of the devices through optical overdrive pacing of cultured cardiomyocytes (CMs) targeting several regions and spatial extents, isolated rat hearts in a Langendorff apparatus, in vivo rat hearts in an ischaemia model and an in vivo mouse heart model with transthoracic optical pacing. We also perform the first, to our knowledge, optical override pacing and multisite pacing of a pig heart in vivo. Our systems are readily adaptable for minimally invasive clinical procedures using our custom endoscopic delivery device, with which we demonstrate closed-thoracic operations and endoscopic optical stimulation. Our results indicate the clinical potential of the leadless, lightweight and multisite photostimulation platform as a pacemaker in cardiac resynchronization therapy (CRT), in which lead-placement complications are common.
Collapse
Affiliation(s)
- Pengju Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jing Zhang
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Hidenori Hayashi
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Wen Li
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chuanwang Yang
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Changxu Sun
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jiuyun Shi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | | | - Narutoshi Hibino
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL, USA.
| | - Bozhi Tian
- The James Franck Institute, The University of Chicago, Chicago, IL, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Leemann S, Schneider-Warme F, Kleinlogel S. Cardiac optogenetics: shining light on signaling pathways. Pflugers Arch 2023; 475:1421-1437. [PMID: 38097805 PMCID: PMC10730638 DOI: 10.1007/s00424-023-02892-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
In the early 2000s, the field of neuroscience experienced a groundbreaking transformation with the advent of optogenetics. This innovative technique harnesses the properties of naturally occurring and genetically engineered rhodopsins to confer light sensitivity upon target cells. The remarkable spatiotemporal precision offered by optogenetics has provided researchers with unprecedented opportunities to dissect cellular physiology, leading to an entirely new level of investigation. Initially revolutionizing neuroscience, optogenetics quickly piqued the interest of the wider scientific community, and optogenetic applications were expanded to cardiovascular research. Over the past decade, researchers have employed various optical tools to observe, regulate, and steer the membrane potential of excitable cells in the heart. Despite these advancements, achieving control over specific signaling pathways within the heart has remained an elusive goal. Here, we review the optogenetic tools suitable to control cardiac signaling pathways with a focus on GPCR signaling, and delineate potential applications for studying these pathways, both in healthy and diseased hearts. By shedding light on these exciting developments, we hope to contribute to the ongoing progress in basic cardiac research to facilitate the discovery of novel therapeutic possibilities for treating cardiovascular pathologies.
Collapse
Affiliation(s)
- Siri Leemann
- Institute of Physiology, University of Bern, Bern, Switzerland.
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, and Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Sonja Kleinlogel
- Institute of Physiology, University of Bern, Bern, Switzerland
- F. Hoffmann-La Roche, Translational Medicine Neuroscience, Basel, Switzerland
| |
Collapse
|
3
|
Junge S, Ricci Signorini ME, Al Masri M, Gülink J, Brüning H, Kasperek L, Szepes M, Bakar M, Gruh I, Heisterkamp A, Torres-Mapa ML. A micro-LED array based platform for spatio-temporal optogenetic control of various cardiac models. Sci Rep 2023; 13:19490. [PMID: 37945622 PMCID: PMC10636122 DOI: 10.1038/s41598-023-46149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Optogenetics relies on dynamic spatial and temporal control of light to address emerging fundamental and therapeutic questions in cardiac research. In this work, a compact micro-LED array, consisting of 16 × 16 pixels, is incorporated in a widefield fluorescence microscope for controlled light stimulation. We describe the optical design of the system that allows the micro-LED array to fully cover the field of view regardless of the imaging objective used. Various multicellular cardiac models are used in the experiments such as channelrhodopsin-2 expressing aggregates of cardiomyocytes, termed cardiac bodies, and bioartificial cardiac tissues derived from human induced pluripotent stem cells. The pacing efficiencies of the cardiac bodies and bioartificial cardiac tissues were characterized as a function of illumination time, number of switched-on pixels and frequency of stimulation. To demonstrate dynamic stimulation, steering of calcium waves in HL-1 cell monolayer expressing channelrhodopsin-2 was performed by applying different configurations of patterned light. This work shows that micro-LED arrays are powerful light sources for optogenetic control of contraction and calcium waves in cardiac monolayers, multicellular bodies as well as three-dimensional artificial cardiac tissues.
Collapse
Affiliation(s)
- Sebastian Junge
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Maria Elena Ricci Signorini
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Masa Al Masri
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Jan Gülink
- QubeDot GmbH, Wilhelmsgarten 3, 38100, Brunswick, Germany
| | - Heiko Brüning
- QubeDot GmbH, Wilhelmsgarten 3, 38100, Brunswick, Germany
| | - Leon Kasperek
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Monika Szepes
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Mine Bakar
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Ina Gruh
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany.
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany.
| |
Collapse
|
4
|
Formozov A, Dieter A, Wiegert JS. A flexible and versatile system for multi-color fiber photometry and optogenetic manipulation. CELL REPORTS METHODS 2023; 3:100418. [PMID: 37056369 PMCID: PMC10088095 DOI: 10.1016/j.crmeth.2023.100418] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023]
Abstract
Here, we present simultaneous fiber photometry recordings and optogenetic stimulation based on a multimode fused fiber coupler for both light delivery and collection without the need for dichroic beam splitters. In combination with a multi-color light source and appropriate optical filters, our approach offers remarkable flexibility in experimental design and facilitates the exploration of new molecular tools in vivo at minimal cost. We demonstrate straightforward re-configuration of the setup to operate with green, red, and near-infrared calcium indicators with or without simultaneous optogenetic stimulation and further explore the multi-color photometry capabilities of the system. The ease of assembly, operation, characterization, and customization of this platform holds the potential to foster the development of experimental strategies for multi-color fused fiber photometry combined with optogenetics far beyond its current state.
Collapse
Affiliation(s)
- Andrey Formozov
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Alexander Dieter
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - J. Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
5
|
Heinson YW, Han JL, Entcheva E. Portable low-cost macroscopic mapping system for all-optical cardiac electrophysiology. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:016001. [PMID: 36636698 PMCID: PMC9830584 DOI: 10.1117/1.jbo.28.1.016001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/19/2022] [Indexed: 05/10/2023]
Abstract
Significance All-optical cardiac electrophysiology enables the visualization and control of key parameters relevant to the detection of cardiac arrhythmias. Mapping such responses in human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) is of great interest for cardiotoxicity and personalized medicine applications. Aim We introduce and validate a very low-cost compact mapping system for macroscopic all-optical electrophysiology in layers of hiPSC-CMs. Approach The system uses oblique transillumination, low-cost cameras, light-emitting diodes, and off-the-shelf components (total < $ 15 , 000 ) to capture voltage, calcium, and mechanical waves under electrical or optical stimulation. Results Our results corroborate the equivalency of electrical and optogenetic stimulation of hiPSC-CMs, andV m - [ Ca 2 + ] i similarity in conduction under pacing. Green-excitable optical sensors are combinable with blue optogenetic actuators (chanelrhodopsin2) only under very low green light ( < 0.05 mW / mm 2 ). Measurements in warmer culture medium yield larger spread of action potential duration and higher conduction velocities compared to Tyrode's solution at room temperature. Conclusions As multiple optical sensors and actuators are combined, our results can help handle the "spectral congestion" and avoid parameter distortion. We illustrate the utility of the system for uncovering the action of cellular uncoupling agents and show extensibility to an epi-illumination mode for future imaging of thicker native or engineered tissues.
Collapse
Affiliation(s)
- Yuli W. Heinson
- George Washington University, Department of Biomedical Engineering, Washington, DC, United States
| | - Julie L. Han
- George Washington University, Department of Biomedical Engineering, Washington, DC, United States
| | - Emilia Entcheva
- George Washington University, Department of Biomedical Engineering, Washington, DC, United States
| |
Collapse
|
6
|
Ripplinger CM, Glukhov AV, Kay MW, Boukens BJ, Chiamvimonvat N, Delisle BP, Fabritz L, Hund TJ, Knollmann BC, Li N, Murray KT, Poelzing S, Quinn TA, Remme CA, Rentschler SL, Rose RA, Posnack NG. Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals. Am J Physiol Heart Circ Physiol 2022; 323:H1137-H1166. [PMID: 36269644 PMCID: PMC9678409 DOI: 10.1152/ajpheart.00439.2022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Collapse
Affiliation(s)
- Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Bastiaan J Boukens
- Department Physiology, University Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
- Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
- Veterans Affairs Northern California Healthcare System, Mather, California
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Larissa Fabritz
- University Center of Cardiovascular Science, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf with DZHK Hamburg/Kiel/Luebeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas J Hund
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Na Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Katherine T Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven Poelzing
- Virginia Tech Carilon School of Medicine, Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech, Roanoke, Virginia
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey L Rentschler
- Cardiovascular Division, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
- Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia
| |
Collapse
|
7
|
Junge S, Schmieder F, Sasse P, Czarske J, Torres-Mapa ML, Heisterkamp A. Holographic optogenetic stimulation with calcium imaging as an all optical tool for cardiac electrophysiology. JOURNAL OF BIOPHOTONICS 2022; 15:e202100352. [PMID: 35397155 DOI: 10.1002/jbio.202100352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
All optical approaches to control and read out the electrical activity in a cardiac syncytium can improve our understanding of cardiac electrophysiology. Here, we demonstrate optogenetic stimulation of cardiomyocytes with high spatial precision using light foci generated with a ferroelectric spatial light modulator. Computer generated holograms binarized by bidirectional error diffusion create multiple foci with more even intensity distribution compared with thresholding approach. We evoke the electrical activity of cardiac HL1 cells expressing the channelrhodopsin-2 variant, ChR2(H134R) using single and multiple light foci and at the same time visualize the action potential using a calcium sensitive indicator called Cal-630. We show that localized regions in the cardiac monolayer can be stimulated enabling us to initiate signal propagation from a precise location. Furthermore, we demonstrate that probing the cardiac cells with multiple light foci enhances the excitability of the cardiac network. This approach opens new applications in manipulating and visualizing the electrical activity in a cardiac syncytium.
Collapse
Affiliation(s)
- Sebastian Junge
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Felix Schmieder
- Faculty of Electrical and Computer Engineering, Laboratory of Measurement and Sensor System Technique and Competence Center Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
| | - Philipp Sasse
- Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Jürgen Czarske
- Faculty of Electrical and Computer Engineering, Laboratory of Measurement and Sensor System Technique and Competence Center Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
- Faculty of Physics, School of Science and Excellence Cluster Physics of Life, TU Dresden, Dresden, Germany
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
8
|
Liu Y, Zhang L, Hu N, Shao J, Yang D, Ruan C, Huang S, Wang L, Lu WW, Zhang X, Yang F. An optogenetic approach for regulating human parathyroid hormone secretion. Nat Commun 2022; 13:771. [PMID: 35140213 PMCID: PMC8828854 DOI: 10.1038/s41467-022-28472-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Parathyroid hormone (PTH) plays crucial role in maintaining calcium and phosphorus homeostasis. In the progression of secondary hyperparathyroidism (SHPT), expression of calcium-sensing receptors (CaSR) in the parathyroid gland decreases, which leads to persistent hypersecretion of PTH. How to precisely manipulate PTH secretion in parathyroid tissue and underlying molecular mechanism is not clear. Here, we establish an optogenetic approach that bypasses CaSR to inhibit PTH secretion in human hyperplastic parathyroid cells. We found that optogenetic stimulation elevates intracellular calcium, inhibits both PTH synthesis and secretion in human parathyroid cells. Long-term pulsatile PTH secretion induced by light stimulation prevented hyperplastic parathyroid tissue-induced bone loss by influencing the bone remodeling in mice. The effects are mediated by light stimulation of opsin expressing parathyroid cells and other type of cells in parathyroid tissue. Our study provides a strategy to regulate release of PTH and associated bone loss of SHPT through an optogenetic approach. Parathyroid hormone (PTH) plays a role in maintaining calcium and phosphorus homeostasis, and in secondary hyperparathyroidism excess PTH secretion contributes to bone loss. Here the authors report an optogenetic approach to inhibit PTH secretion in human hyperplastic parathyroid cells, and prevented hyperplastic parathyroid tissue-induced bone loss in mice.
Collapse
Affiliation(s)
- Yunhui Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zhang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Nan Hu
- Department of Nephrology and Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Jie Shao
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dazhi Yang
- Department of Orthopedics, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Shishu Huang
- Department of Orthopaedic Surgery and Orthopaedic Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Liping Wang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - William W Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Xinzhou Zhang
- Department of Nephrology and Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms. Basic Res Cardiol 2022; 117:25. [PMID: 35488105 PMCID: PMC9054908 DOI: 10.1007/s00395-022-00933-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023]
Abstract
Cardiac action potential (AP) shape and propagation are regulated by several key dynamic factors such as ion channel recovery and intracellular Ca2+ cycling. Experimental methods for manipulating AP electrical dynamics commonly use ion channel inhibitors that lack spatial and temporal specificity. In this work, we propose an approach based on optogenetics to manipulate cardiac electrical activity employing a light-modulated depolarizing current with intensities that are too low to elicit APs (sub-threshold illumination), but are sufficient to fine-tune AP electrical dynamics. We investigated the effects of sub-threshold illumination in isolated cardiomyocytes and whole hearts by using transgenic mice constitutively expressing a light-gated ion channel (channelrhodopsin-2, ChR2). We find that ChR2-mediated depolarizing current prolongs APs and reduces conduction velocity (CV) in a space-selective and reversible manner. Sub-threshold manipulation also affects the dynamics of cardiac electrical activity, increasing the magnitude of cardiac alternans. We used an optical system that uses real-time feedback control to generate re-entrant circuits with user-defined cycle lengths to explore the role of cardiac alternans in spontaneous termination of ventricular tachycardias (VTs). We demonstrate that VT stability significantly decreases during sub-threshold illumination primarily due to an increase in the amplitude of electrical oscillations, which implies that cardiac alternans may be beneficial in the context of self-termination of VT.
Collapse
|
10
|
Müllenbroich MC, Kelly A, Acker C, Bub G, Bruegmann T, Di Bona A, Entcheva E, Ferrantini C, Kohl P, Lehnart SE, Mongillo M, Parmeggiani C, Richter C, Sasse P, Zaglia T, Sacconi L, Smith GL. Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review. Front Physiol 2021; 12:769586. [PMID: 34867476 PMCID: PMC8637189 DOI: 10.3389/fphys.2021.769586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 2018, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research.
Collapse
Affiliation(s)
| | - Allen Kelly
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Corey Acker
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, United States
| | - Gil Bub
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Tobias Bruegmann
- Institute for Cardiovascular Physiology, University Medical Center Goettingen, Goettingen, Germany
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | | | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Stephan E. Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, Göttingen, Germany
- Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Claudia Richter
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Leonardo Sacconi
- European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- National Institute of Optics, National Research Council, Florence, Italy
| | - Godfrey L. Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Chua CJ, Han JL, Li W, Liu W, Entcheva E. Integration of Engineered "Spark-Cell" Spheroids for Optical Pacing of Cardiac Tissue. Front Bioeng Biotechnol 2021; 9:658594. [PMID: 34222210 PMCID: PMC8249938 DOI: 10.3389/fbioe.2021.658594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 12/03/2022] Open
Abstract
Optogenetic methods for pacing of cardiac tissue can be realized by direct genetic modification of the cardiomyocytes to express light-sensitive actuators, such as channelrhodopsin-2, ChR2, or by introduction of light-sensitized non-myocytes that couple to the cardiac cells and yield responsiveness to optical pacing. In this study, we engineer three-dimensional “spark cells” spheroids, composed of ChR2-expressing human embryonic kidney cells (from 100 to 100,000 cells per spheroid), and characterize their morphology as function of cell density and time. These “spark-cell” spheroids are then deployed to demonstrate site-specific optical pacing of human stem-cell-derived cardiomyocytes (hiPSC-CMs) in 96-well format using non-localized light application and all-optical electrophysiology with voltage and calcium small-molecule dyes or genetically encoded sensors. We show that the spheroids can be handled using liquid pipetting and can confer optical responsiveness of cardiac tissue earlier than direct viral or liposomal genetic modification of the cardiomyocytes, with 24% providing reliable stimulation of the iPSC-CMs within 6 h and >80% within 24 h. Moreover, our data show that the spheroids can be frozen in liquid nitrogen for long-term storage and transportation, after which they can be deployed as a reagent on site for optical cardiac pacing. In all cases, optical stimulation was achieved at relatively low light levels (<0.15 mW/mm2) when 5 ms or longer pulses were used. Our results demonstrate a scalable, cost-effective method with a cryopreservable reagent to achieve contactless optical stimulation of cardiac cell constructs without genetically modifying the myocytes, that can be integrated in a robotics-amenable workflow for high-throughput drug testing.
Collapse
Affiliation(s)
- Christianne J Chua
- Cardiac Optogenetics & Optical Imaging Lab, Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Julie L Han
- Cardiac Optogenetics & Optical Imaging Lab, Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Weizhen Li
- Cardiac Optogenetics & Optical Imaging Lab, Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Wei Liu
- Cardiac Optogenetics & Optical Imaging Lab, Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Emilia Entcheva
- Cardiac Optogenetics & Optical Imaging Lab, Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| |
Collapse
|
12
|
Boyle PM, Yu J, Klimas A, Williams JC, Trayanova NA, Entcheva E. OptoGap is an optogenetics-enabled assay for quantification of cell-cell coupling in multicellular cardiac tissue. Sci Rep 2021; 11:9310. [PMID: 33927252 PMCID: PMC8085001 DOI: 10.1038/s41598-021-88573-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Intercellular electrical coupling is an essential means of communication between cells. It is important to obtain quantitative knowledge of such coupling between cardiomyocytes and non-excitable cells when, for example, pathological electrical coupling between myofibroblasts and cardiomyocytes yields increased arrhythmia risk or during the integration of donor (e.g., cardiac progenitor) cells with native cardiomyocytes in cell-therapy approaches. Currently, there is no direct method for assessing heterocellular coupling within multicellular tissue. Here we demonstrate experimentally and computationally a new contactless assay for electrical coupling, OptoGap, based on selective illumination of inexcitable cells that express optogenetic actuators and optical sensing of the response of coupled excitable cells (e.g., cardiomyocytes) that are light-insensitive. Cell-cell coupling is quantified by the energy required to elicit an action potential via junctional current from the light-stimulated cell(s). The proposed technique is experimentally validated against the standard indirect approach, GapFRAP, using light-sensitive cardiac fibroblasts and non-transformed cardiomyocytes in a two-dimensional setting. Its potential applicability to the complex three-dimensional setting of the native heart is corroborated by computational modelling and proper calibration. Lastly, the sensitivity of OptoGap to intrinsic cell-scale excitability is robustly characterized via computational analysis.
Collapse
Affiliation(s)
- Patrick M Boyle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Jinzhu Yu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Aleksandra Klimas
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Department of Biomedical Engineering, George Washington University, 800 22nd Street NW, Suite 5000, Washington, DC, 20052, USA
| | - John C Williams
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
- Department of Biomedical Engineering, George Washington University, 800 22nd Street NW, Suite 5000, Washington, DC, 20052, USA.
| |
Collapse
|
13
|
Abstract
The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.
Collapse
|
14
|
Biasci V, Sacconi L, Cytrynbaum EN, Pijnappels DA, De Coster T, Shrier A, Glass L, Bub G. Universal mechanisms for self-termination of rapid cardiac rhythm. CHAOS (WOODBURY, N.Y.) 2020; 30:121107. [PMID: 33380016 DOI: 10.1063/5.0033813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Excitable media sustain circulating waves. In the heart, sustained circulating waves can lead to serious impairment or even death. To investigate factors affecting the stability of such waves, we have used optogenetic techniques to stimulate a region at the apex of a mouse heart at a fixed delay after the detection of excitation at the base of the heart. For long delays, rapid circulating rhythms can be sustained, whereas for shorter delays, there are paroxysmal bursts of activity that start and stop spontaneously. By considering the dependence of the action potential and conduction velocity on the preceding recovery time using restitution curves, as well as the reduced excitability (fatigue) due to the rapid excitation, we model prominent features of the dynamics including alternation of the duration of the excited phases and conduction times, as well as termination of the bursts for short delays. We propose that this illustrates universal mechanisms that exist in biological systems for the self-termination of such activities.
Collapse
Affiliation(s)
- Valentina Biasci
- Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Leonardo Sacconi
- National Institute of Optics, National Research Council, 50125 Florence, Italy
| | - Eric N Cytrynbaum
- Department of Mathematics, UBC, Vancouver British Columbia V6T 1Z2, Canada
| | - Daniël A Pijnappels
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2 2333 ZA Leiden, The Netherlands
| | - Tim De Coster
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2 2333 ZA Leiden, The Netherlands
| | - Alvin Shrier
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Leon Glass
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Gil Bub
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
15
|
Wei L, Li W, Entcheva E, Li Z. Microfluidics-enabled 96-well perfusion system for high-throughput tissue engineering and long-term all-optical electrophysiology. LAB ON A CHIP 2020; 20:4031-4042. [PMID: 32996969 PMCID: PMC7680692 DOI: 10.1039/d0lc00615g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This work demonstrates a novel high-throughput (HT) microfluidics-enabled uninterrupted perfusion system (HT-μUPS) and validates its use with chronic all-optical electrophysiology in human excitable cells. HT-μUPS consists of a soft multichannel microfluidic plate cover which could button on a commercial HT 96-well plate. Herein, we demonstrate the manufacturing process of the system and its usages in acute and chronic all-optical electrophysiological studies of human induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CM) and engineered excitable (spiking HEK) cells. HT-μUPS perfusion maintained functional voltage and calcium responses in iPSC-CM and spiking HEK cells under spontaneous conditions and under optogenetic pacing. Long-term culture with HT-μUPS improved cell viability and optogenetically-tracked calcium responses in spiking HEK cells. The simplicity of this design and its compatibility with HT all-optical electrophysiology can empower cell-based assays for personalized medicine using patient-derived cells.
Collapse
Affiliation(s)
- Lai Wei
- Department of Biomedical Engineering, The George Washington University, Washington DC, USA
- These authors contributed equally: Lai Wei, Weizhen Li
| | - Weizhen Li
- Department of Biomedical Engineering, The George Washington University, Washington DC, USA
- These authors contributed equally: Lai Wei, Weizhen Li
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington DC, USA
- ,
| | - Zhenyu Li
- Department of Biomedical Engineering, The George Washington University, Washington DC, USA
- ,
| |
Collapse
|
16
|
Li A, Tanzi RE. <p>Optogenetic Pacing: Current Insights and Future Potential</p>. RESEARCH REPORTS IN CLINICAL CARDIOLOGY 2020. [DOI: 10.2147/rrcc.s242650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Cardiac Optogenetics in Atrial Fibrillation: Current Challenges and Future Opportunities. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8814092. [PMID: 33195698 PMCID: PMC7641281 DOI: 10.1155/2020/8814092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022]
Abstract
Although rarely life-threatening on short term, atrial fibrillation leads to increased mortality and decreased quality of life through its complications, including heart failure and stroke. Recent studies highlight the benefits of maintaining sinus rhythm. However, pharmacological long-term rhythm control strategies may be shadowed by associated proarrhythmic effects. At the same time, electrical cardioversion is limited to hospitals, while catheter ablation therapy, although effective, is invasive and is dedicated to specific patients, usually with low amounts of atrial fibrosis (preferably Utah I-II). Cardiac optogenetics allows influencing the heart's electrical activity by applying specific wavelength light pulses to previously engineered cardiomyocytes into expressing microbial derived light-sensitive proteins called opsins. The resulting ion influx may give rise to either hyperpolarizing or depolarizing currents, thus offering a therapeutic potential in cardiac electrophysiology, including pacing, resynchronization, and arrhythmia termination. Optogenetic atrial fibrillation cardioversion might be achieved by inducing a conduction block or filling of the excitable gap. The authors agree that transmural opsin expression and appropriate illumination with an exposure time longer than the arrhythmia cycle length are necessary to achieve successful arrhythmia termination. However, the efficiency and safety of biological cardioversion in humans remain to be seen, as well as side effects such as immune reactions and loss of opsin expression. The possibility of delivering pain-free shocks with out-of-hospital biological cardioversion is tempting; however, there are several issues that need to be addressed first: applicability and safety in humans, long-term behaviour, anticoagulation requirements, and fibrosis interactions.
Collapse
|
18
|
Li W, Han JL, Entcheva E. Syncytium cell growth increases Kir2.1 contribution in human iPSC-cardiomyocytes. Am J Physiol Heart Circ Physiol 2020; 319:H1112-H1122. [PMID: 32986966 PMCID: PMC7789971 DOI: 10.1152/ajpheart.00148.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable cardiotoxicity testing and personalized medicine. However, their maturity is of concern, including relatively depolarized resting membrane potential and more spontaneous activity compared with adult cardiomyocytes, implicating low or lacking inward rectifier potassium current (Ik1). Here, protein quantification confirms Kir2.1 expression in hiPSC-CM syncytia, albeit several times lower than in adult heart tissue. We find that hiPSC-CM culture density influences Kir2.1 expression at the mRNA level (potassium inwardly rectifying channel subfamily J member 2) and at the protein level and its associated electrophysiology phenotype. Namely, all-optical cardiac electrophysiology and pharmacological treatments reveal reduction of spontaneous and irregular activity and increase in action potential upstroke in denser cultures. Blocking Ik1-like currents with BaCl2 increased spontaneous frequency and blunted action potential upstrokes during pacing in a dose-dependent manner only in the highest-density cultures, in line with Ik1’s role in regulating the resting membrane potential. Our results emphasize the importance of syncytial growth of hiPSC-CMs for more physiologically relevant phenotype and the power of all-optical electrophysiology to study cardiomyocytes in their multicellular setting. NEW & NOTEWORTHY We identify cell culture density and cell-cell contact as an important factor in determining the expression of a key ion channel at the transcriptional and the protein levels, KCNJ2/Kir2.1, and its contribution to the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes. Our results indicate that studies on isolated cells, out of tissue context, may underestimate the cellular ion channel properties being characterized.
Collapse
Affiliation(s)
- Weizhen Li
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Julie L Han
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| |
Collapse
|
19
|
Men J, Li A, Jerwick J, Li Z, Tanzi RE, Zhou C. Non-invasive red-light optogenetic control of Drosophila cardiac function. Commun Biol 2020; 3:336. [PMID: 32601302 PMCID: PMC7324573 DOI: 10.1038/s42003-020-1065-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/03/2020] [Indexed: 02/03/2023] Open
Abstract
Drosophila is a powerful genetic model system for cardiovascular studies. Recently, optogenetic pacing tools have been developed to control Drosophila heart rhythm noninvasively with blue light, which has a limited penetration depth. Here we developed both a red-light sensitive opsin expressing Drosophila system and an integrated red-light stimulation and optical coherence microscopy (OCM) imaging system. We demonstrated noninvasive control of Drosophila cardiac rhythms using a single light source, including simulated tachycardia in ReaChR-expressing flies and bradycardia and cardiac arrest in halorhodopsin (NpHR)-expressing flies at multiple developmental stages. By using red excitation light, we were able to pace flies at higher efficiency and with lower power than with equivalent blue light excitation systems. The recovery dynamics after red-light stimulation of NpHR flies were observed and quantified. The combination of red-light stimulation, OCM imaging, and transgenic Drosophila systems provides a promising and easily manipulated research platform for noninvasive cardiac optogenetic studies. Men et al. develop an optogenetic pacing tool to control Drosophila heart rhythm noninvasively with red light. Using optical coherence microscopy imaging, they demonstrate effective light-induced tachypacing, bradypacing, and restorable cardiac arrest in transgenic fly models. This study provides a user-friendly research platform for noninvasive cardiac optogenetic studies.
Collapse
Affiliation(s)
- Jing Men
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA
| | - Airong Li
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jason Jerwick
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA.,Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Zilong Li
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Chao Zhou
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA. .,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA. .,Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, 18015, USA.
| |
Collapse
|
20
|
Majumder R, De Coster T, Kudryashova N, Verkerk AO, Kazbanov IV, Ördög B, Harlaar N, Wilders R, de Vries AA, Ypey DL, Panfilov AV, Pijnappels DA. Self-restoration of cardiac excitation rhythm by anti-arrhythmic ion channel gating. eLife 2020; 9:55921. [PMID: 32510321 PMCID: PMC7316504 DOI: 10.7554/elife.55921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Homeostatic regulation protects organisms against hazardous physiological changes. However, such regulation is limited in certain organs and associated biological processes. For example, the heart fails to self-restore its normal electrical activity once disturbed, as with sustained arrhythmias. Here we present proof-of-concept of a biological self-restoring system that allows automatic detection and correction of such abnormal excitation rhythms. For the heart, its realization involves the integration of ion channels with newly designed gating properties into cardiomyocytes. This allows cardiac tissue to i) discriminate between normal rhythm and arrhythmia based on frequency-dependent gating and ii) generate an ionic current for termination of the detected arrhythmia. We show in silico, that for both human atrial and ventricular arrhythmias, activation of these channels leads to rapid and repeated restoration of normal excitation rhythm. Experimental validation is provided by injecting the designed channel current for arrhythmia termination in human atrial myocytes using dynamic clamp.
Collapse
Affiliation(s)
- Rupamanjari Majumder
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Tim De Coster
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands.,Department of Physics and Astronomy, Ghent University, Ghent, Belgium.,Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Nina Kudryashova
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands.,Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam UMC, Amsterdam, Netherlands
| | - Ivan V Kazbanov
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Balázs Ördög
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Niels Harlaar
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands
| | - Antoine Af de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk L Ypey
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Alexander V Panfilov
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands.,Department of Physics and Astronomy, Ghent University, Ghent, Belgium.,Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russian Federation
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
21
|
Sigalas C, Cremer M, Winbo A, Bose SJ, Ashton JL, Bub G, Montgomery JM, Burton RAB. Combining tissue engineering and optical imaging approaches to explore interactions along the neuro-cardiac axis. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200265. [PMID: 32742694 PMCID: PMC7353978 DOI: 10.1098/rsos.200265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/27/2020] [Indexed: 05/05/2023]
Abstract
Interactions along the neuro-cardiac axis are being explored with regard to their involvement in cardiac diseases, including catecholaminergic polymorphic ventricular tachycardia, hypertension, atrial fibrillation, long QT syndrome and sudden death in epilepsy. Interrogation of the pathophysiology and pathogenesis of neuro-cardiac diseases in animal models present challenges resulting from species differences, phenotypic variation, developmental effects and limited availability of data relevant at both the tissue and cellular level. By contrast, tissue-engineered models containing cardiomyocytes and peripheral sympathetic and parasympathetic neurons afford characterization of cellular- and tissue-level behaviours while maintaining precise control over developmental conditions, cellular genotype and phenotype. Such approaches are uniquely suited to long-term, high-throughput characterization using optical recording techniques with the potential for increased translational benefit compared to more established techniques. Furthermore, tissue-engineered constructs provide an intermediary between whole animal/tissue experiments and in silico models. This paper reviews the advantages of tissue engineering methods of multiple cell types and optical imaging techniques for the characterization of neuro-cardiac diseases.
Collapse
Affiliation(s)
| | - Maegan Cremer
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Annika Winbo
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Department of Paediatric and Congenital Cardiac Services, Starship Children's Hospital, Auckland, New Zealand
| | - Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Jesse L. Ashton
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, Canada
| | | | - Rebecca A. B. Burton
- Department of Pharmacology, University of Oxford, Oxford, UK
- Author for correspondence: Rebecca A. B. Burton e-mail:
| |
Collapse
|
22
|
Joshi J, Rubart M, Zhu W. Optogenetics: Background, Methodological Advances and Potential Applications for Cardiovascular Research and Medicine. Front Bioeng Biotechnol 2020; 7:466. [PMID: 32064254 PMCID: PMC7000355 DOI: 10.3389/fbioe.2019.00466] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022] Open
Abstract
Optogenetics is an elegant approach of precisely controlling and monitoring the biological functions of a cell, group of cells, tissues, or organs with high temporal and spatial resolution by using optical system and genetic engineering technologies. The field evolved with the need to precisely control neurons and decipher neural circuity and has made great accomplishments in neuroscience. It also evolved in cardiovascular research almost a decade ago and has made considerable progress in both in vitro and in vivo animal studies. Thus, this review is written with an objective to provide information on the evolution, background, methodical advances, and potential scope of the field for cardiovascular research and medicine. We begin with a review of literatures on optogenetic proteins related to their origin, structure, types, mechanism of action, methods to improve their performance, and the delivery vehicles and methods to express such proteins on target cells and tissues for cardiovascular research. Next, we reviewed historical and recent literatures to demonstrate the scope of optogenetics for cardiovascular research and regenerative medicine and examined that cardiac optogenetics is vital in mimicking heart diseases, understanding the mechanisms of disease progression and also in introducing novel therapies to treat cardiac abnormalities, such as arrhythmias. We also reviewed optogenetics as promising tools in providing high-throughput data for cardiotoxicity screening in drug development and also in deciphering dynamic roles of signaling moieties in cell signaling. Finally, we put forth considerations on the need of scaling up of the optogenetic system, clinically relevant in vivo and in silico models, light attenuation issues, and concerns over the level, immune reactions, toxicity, and ectopic expression with opsin expression. Detailed investigations on such considerations would accelerate the translation of cardiac optogenetics from present in vitro and in vivo animal studies to clinical therapies.
Collapse
Affiliation(s)
- Jyotsna Joshi
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Mayo Clinic, Phoenix, AZ, United States
| | - Michael Rubart
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wuqiang Zhu
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
23
|
Bub G, Daniels MJ. Feasibility of Using Adjunctive Optogenetic Technologies in Cardiomyocyte Phenotyping - from the Single Cell to the Whole Heart. Curr Pharm Biotechnol 2020; 21:752-764. [PMID: 30961485 PMCID: PMC7527548 DOI: 10.2174/1389201020666190405182251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/21/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
In 1791, Galvani established that electricity activated excitable cells. In the two centuries that followed, electrode stimulation of neuronal, skeletal and cardiac muscle became the adjunctive method of choice in experimental, electrophysiological, and clinical arenas. This approach underpins breakthrough technologies like implantable cardiac pacemakers that we currently take for granted. However, the contact dependence, and field stimulation that electrical depolarization delivers brings inherent limitations to the scope and experimental scale that can be achieved. Many of these were not exposed until reliable in vitro stem-cell derived experimental materials, with genotypes of interest, were produced in the numbers needed for multi-well screening platforms (for toxicity or efficacy studies) or the 2D or 3D tissue surrogates required to study propagation of depolarization within multicellular constructs that mimic clinically relevant arrhythmia in the heart or brain. Here the limitations of classical electrode stimulation are discussed. We describe how these are overcome by optogenetic tools which put electrically excitable cells under the control of light. We discuss how this enables studies in cardiac material from the single cell to the whole heart scale. We review the current commercial platforms that incorporate optogenetic stimulation strategies, and summarize the global literature to date on cardiac applications of optogenetics. We show that the advantages of optogenetic stimulation relevant to iPS-CM based screening include independence from contact, elimination of electrical stimulation artefacts in field potential measuring approaches such as the multi-electrode array, and the ability to print re-entrant patterns of depolarization at will on 2D cardiomyocyte monolayers.
Collapse
Affiliation(s)
| | - Matthew J. Daniels
- Address correspondence to this author at the Institute of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK; Tel: +441865234913; E-mails: ;
| |
Collapse
|
24
|
Ferenczi EA, Tan X, Huang CLH. Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems. Front Physiol 2019; 10:1096. [PMID: 31572204 PMCID: PMC6749684 DOI: 10.3389/fphys.2019.01096] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Optogenetic techniques permit studies of excitable tissue through genetically expressed light-gated microbial channels or pumps permitting transmembrane ion movement. Light activation of these proteins modulates cellular excitability with millisecond precision. This review summarizes optogenetic approaches, using examples from neurobiological applications, and then explores their application in cardiac electrophysiology. We review the available opsins, including depolarizing and hyperpolarizing variants, as well as modulators of G-protein coupled intracellular signaling. We discuss the biophysical properties that determine the ability of microbial opsins to evoke reliable, precise stimulation or silencing of electrophysiological activity. We also review spectrally shifted variants offering possibilities for enhanced depth of tissue penetration, combinatorial stimulation for targeting different cell subpopulations, or all-optical read-in and read-out studies. Expression of the chosen optogenetic tool in the cardiac cell of interest then requires, at the single-cell level, introduction of opsin-encoding genes by viral transduction, or coupling "spark cells" to primary cardiomyocytes or a stem-cell derived counterpart. At the system-level, this requires construction of transgenic mice expressing ChR2 in their cardiomyocytes, or in vivo injection (myocardial or systemic) of adenoviral expression systems. Light delivery, by laser or LED, with widespread or multipoint illumination, although relatively straightforward in vitro may be technically challenged by cardiac motion and light-scattering in biological tissue. Physiological read outs from cardiac optogenetic stimulation include single cell patch clamp recordings, multi-unit microarray recordings from cell monolayers or slices, and electrical recordings from isolated Langendorff perfused hearts. Optical readouts of specific cellular events, including ion transients, voltage changes or activity in biochemical signaling cascades, using small detecting molecules or genetically encoded sensors now offer powerful opportunities for all-optical control and monitoring of cellular activity. Use of optogenetics has expanded in cardiac physiology, mainly using optically controlled depolarizing ion channels to control heart rate and for optogenetic defibrillation. ChR2-expressing cardiomyocytes show normal baseline and active excitable membrane and Ca2+ signaling properties and are sensitive even to ~1 ms light pulses. They have been employed in studies of the intrinsic cardiac adrenergic system and of cardiac arrhythmic properties.
Collapse
Affiliation(s)
- Emily A. Ferenczi
- Department of Neurology, Massachusetts General Hospital and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Zaglia T, Di Bona A, Mongillo M. A Light Wand to Untangle the Myocardial Cell Network. Methods Protoc 2019; 2:E34. [PMID: 31164614 PMCID: PMC6632158 DOI: 10.3390/mps2020034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/30/2022] Open
Abstract
The discovery of optogenetics has revolutionized research in neuroscience by providing the tools for noninvasive, cell-type selective modulation of membrane potential and cellular function in vitro and in vivo. Rhodopsin-based optogenetics has later been introduced in experimental cardiology studies and used as a tool to photoactivate cardiac contractions or to identify the sites, timing, and location most effective for defibrillating impulses to interrupt cardiac arrhythmias. The exploitation of cell-selectivity of optogenetics, and the generation of model organisms with myocardial cell type targeted expression of opsins has started to yield novel and sometimes unexpected notions on myocardial biology. This review summarizes the main results, the different uses, and the prospective developments of cardiac optogenetics.
Collapse
Affiliation(s)
- Tania Zaglia
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35122 Padova, Italy.
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy.
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy.
| | - Marco Mongillo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35122 Padova, Italy.
- CNR Institute of Neuroscience, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
26
|
O’Shea C, Holmes AP, Winter J, Correia J, Ou X, Dong R, He S, Kirchhof P, Fabritz L, Rajpoot K, Pavlovic D. Cardiac Optogenetics and Optical Mapping - Overcoming Spectral Congestion in All-Optical Cardiac Electrophysiology. Front Physiol 2019; 10:182. [PMID: 30899227 PMCID: PMC6416196 DOI: 10.3389/fphys.2019.00182] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Optogenetic control of the heart is an emergent technology that offers unparalleled spatio-temporal control of cardiac dynamics via light-sensitive ion pumps and channels (opsins). This fast-evolving technique holds broad scope in both clinical and basic research setting. Combination of optogenetics with optical mapping of voltage or calcium fluorescent probes facilitates 'all-optical' electrophysiology, allowing precise optogenetic actuation of cardiac tissue with high spatio-temporal resolution imaging of action potential and calcium transient morphology and conduction patterns. In this review, we provide a synopsis of optogenetics and discuss in detail its use and compatibility with optical interrogation of cardiac electrophysiology. We briefly discuss the benefits of all-optical cardiac control and electrophysiological interrogation compared to traditional techniques, and describe mechanisms, unique features and limitations of optically induced cardiac control. In particular, we focus on state-of-the-art setup design, challenges in light delivery and filtering, and compatibility of opsins with fluorescent reporters used in optical mapping. The interaction of cardiac tissue with light, and physical and computational approaches to overcome the 'spectral congestion' that arises from the combination of optogenetics and optical mapping are discussed. Finally, we summarize recent preclinical work applications of combined cardiac optogenetics and optical mapping approach.
Collapse
Affiliation(s)
- Christopher O’Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
- EPSRC Centre for Doctoral Training in Physical Sciences for Health, School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James Winter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joao Correia
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ruirui Dong
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Shicheng He
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Cardiology, UHB NHS Trust, Birmingham, United Kingdom
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Cardiology, UHB NHS Trust, Birmingham, United Kingdom
| | - Kashif Rajpoot
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
27
|
Multimodal on-axis platform for all-optical electrophysiology with near-infrared probes in human stem-cell-derived cardiomyocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 154:62-70. [PMID: 30850184 DOI: 10.1016/j.pbiomolbio.2019.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/27/2022]
Abstract
Combined optogenetic stimulation and optical imaging permit scalable, contact-free high-throughput probing of cellular electrophysiology and optimization of stem-cell derived excitable cells, such as neurons and muscle cells. We report a new "on-axis" configuration (combined single optical path for stimulation and for multiparameter imaging) of OptoDyCE, our all-optical platform for studying human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) and other cell types, optically driven by Channelrhodopsin2 (ChR2). This solid-state system integrates optogenetic stimulation with temporally-multiplexed simultaneous recording of membrane voltage (Vm) and intracellular calcium ([Ca2+]i) dynamics using a single photodetector. We demonstrate the capacity for combining multiple spectrally-compatible actuators and sensors, including newer high-performance near-infrared (NIR) voltage probes BeRST1 and Di-4-ANBDQBS, to record complex spatiotemporal responses of hiPSC-CMs to drugs in a high-throughput manner.
Collapse
|
28
|
O'Shea C, Holmes AP, Yu TY, Winter J, Wells SP, Correia J, Boukens BJ, De Groot JR, Chu GS, Li X, Ng GA, Kirchhof P, Fabritz L, Rajpoot K, Pavlovic D. ElectroMap: High-throughput open-source software for analysis and mapping of cardiac electrophysiology. Sci Rep 2019; 9:1389. [PMID: 30718782 PMCID: PMC6362081 DOI: 10.1038/s41598-018-38263-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023] Open
Abstract
The ability to record and analyse electrical behaviour across the heart using optical and electrode mapping has revolutionised cardiac research. However, wider uptake of these technologies is constrained by the lack of multi-functional and robustly characterised analysis and mapping software. We present ElectroMap, an adaptable, high-throughput, open-source software for processing, analysis and mapping of complex electrophysiology datasets from diverse experimental models and acquisition modalities. Key innovation is development of standalone module for quantification of conduction velocity, employing multiple methodologies, currently not widely available to researchers. ElectroMap has also been designed to support multiple methodologies for accurate calculation of activation, repolarisation, arrhythmia detection, calcium handling and beat-to-beat heterogeneity. ElectroMap implements automated signal segmentation, ensemble averaging and integrates optogenetic approaches. Here we employ ElectroMap for analysis, mapping and detection of pro-arrhythmic phenomena in silico, in cellulo, animal model and in vivo patient datasets. We anticipate that ElectroMap will accelerate innovative cardiac research and enhance the uptake, application and interpretation of mapping technologies leading to novel approaches for arrhythmia prevention.
Collapse
Affiliation(s)
- Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- EPSRC Centre for Doctoral Training in Physical Sciences for Health, School of Chemistry, University of Birmingham, Birmingham, UK
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Ting Y Yu
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - James Winter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Simon P Wells
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Joao Correia
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Bastiaan J Boukens
- Amsterdam UMC, University of Amsterdam, Department of Anatomy and Physiology, Amsterdam, The Netherlands
| | - Joris R De Groot
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Cardiology, Amsterdam, The Netherlands
| | - Gavin S Chu
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Xin Li
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - G Andre Ng
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, UHB NHS Trust, Birmingham, UK
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, UHB NHS Trust, Birmingham, UK
| | - Kashif Rajpoot
- School of Computer Science, University of Birmingham, Birmingham, UK.
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
29
|
Vila OF, Uzel SG, Ma SP, Williams D, Pak J, Kamm RD, Vunjak-Novakovic G. Quantification of human neuromuscular function through optogenetics. Am J Cancer Res 2019; 9:1232-1246. [PMID: 30867827 PMCID: PMC6401498 DOI: 10.7150/thno.25735] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 12/23/2018] [Indexed: 01/15/2023] Open
Abstract
The study of human neuromuscular diseases has traditionally been performed in animal models, due to the difficulty of performing studies in human subjects. Despite the unquestioned value of animal models, inter-species differences hamper the translation of these findings to clinical trials. Tissue-engineered models of the neuromuscular junction (NMJ) allow for the recapitulation of the human physiology in tightly controlled in vitro settings. Methods: Here we report the first human patient-specific tissue-engineered model of the neuromuscular junction (NMJ) that combines stem cell technology with tissue engineering, optogenetics, microfabrication and image processing. The combination of custom-made hardware and software allows for repeated, quantitative measurements of NMJ function in a user-independent manner. Results: We demonstrate the utility of this model for basic and translational research by characterizing in real time the functional changes during physiological and pathological processes. Principal Conclusions: This system holds great potential for the study of neuromuscular diseases and drug screening, allowing for the extraction of quantitative functional data from a human, patient-specific system.
Collapse
|
30
|
A Software Architecture to Mimic a Ventricular Tachycardia in Intact Murine Hearts by Means of an All-Optical Platform. Methods Protoc 2019; 2:mps2010007. [PMID: 31164591 PMCID: PMC6481051 DOI: 10.3390/mps2010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 11/17/2022] Open
Abstract
Optogenetics is an emerging method that uses light to manipulate electrical activity in excitable cells exploiting the interaction between light and light-sensitive depolarizing ion channels, such as channelrhodopsin-2 (ChR2). Initially used in the neuroscience, it has been adopted in cardiac research where the expression of ChR2 in cardiac preparations allows optical pacing, resynchronization and defibrillation. Recently, optogenetics has been leveraged to manipulate cardiac electrical activity in the intact heart in real-time. This new approach was applied to simulate a re-entrant circuit across the ventricle. In this technical note, we describe the development and the implementation of a new software package for real-time optogenetic intervention. The package consists of a single LabVIEW program that simultaneously captures images at very high frame rates and delivers precisely timed optogenetic stimuli based on the content of the images. The software implementation guarantees closed-loop optical manipulation at high temporal resolution by processing the raw data in workstation memory. We demonstrate that this strategy allows the simulation of a ventricular tachycardia with high stability and with a negligible loss of data with a temporal resolution of up to 1 ms.
Collapse
|
31
|
Quach B, Krogh-Madsen T, Entcheva E, Christini DJ. Light-Activated Dynamic Clamp Using iPSC-Derived Cardiomyocytes. Biophys J 2018; 115:2206-2217. [PMID: 30447994 PMCID: PMC6289097 DOI: 10.1016/j.bpj.2018.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/23/2018] [Accepted: 10/02/2018] [Indexed: 01/31/2023] Open
Abstract
iPSC-derived cardiomyocytes (iPSC-CMs) are a potentially advantageous platform for drug screening because they provide a renewable source of human cardiomyocytes. One obstacle to their implementation is their immature electrophysiology, which reduces relevance to adult arrhythmogenesis. To address this, dynamic clamp is used to inject current representing the insufficient potassium current, IK1, thereby producing more adult-like electrophysiology. However, dynamic clamp requires patch clamp and is therefore low throughput and ill-suited for large-scale drug screening. Here, we use optogenetics to generate such a dynamic-clamp current. The optical dynamic clamp (ODC) uses outward-current-generating opsin, ArchT, to mimic IK1, resulting in more adult-like action potential morphology, similar to IK1 injection via classic dynamic clamp. Furthermore, in the presence of an IKr blocker, ODC revealed expected action potential prolongation and reduced spontaneous excitation. The ODC presented here still requires an electrode to measure Vm but provides a first step toward contactless dynamic clamp, which will not only enable high-throughput screening but may also allow control within multicellular iPSC-CM formats to better recapitulate adult in vivo physiology.
Collapse
Affiliation(s)
- Bonnie Quach
- Cardiovascular Research Institute, New York, New York; Weill Cornell Medicine, New York, New York
| | - Trine Krogh-Madsen
- Cardiovascular Research Institute, New York, New York; Weill Cornell Medicine, New York, New York
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - David J Christini
- Cardiovascular Research Institute, New York, New York; Weill Cornell Medicine, New York, New York.
| |
Collapse
|
32
|
Majumder R, Feola I, Teplenin AS, de Vries AA, Panfilov AV, Pijnappels DA. Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system. eLife 2018; 7:41076. [PMID: 30260316 PMCID: PMC6195347 DOI: 10.7554/elife.41076] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
Propagation of non-linear waves is key to the functioning of diverse biological systems. Such waves can organize into spirals, rotating around a core, whose properties determine the overall wave dynamics. Theoretically, manipulation of a spiral wave core should lead to full spatiotemporal control over its dynamics. However, this theory lacks supportive evidence (even at a conceptual level), making it thus a long-standing hypothesis. Here, we propose a new phenomenological concept that involves artificially dragging spiral waves by their cores, to prove the aforementioned hypothesis in silico, with subsequent in vitro validation in optogenetically modified monolayers of rat atrial cardiomyocytes. We thereby connect previously established, but unrelated concepts of spiral wave attraction, anchoring and unpinning to demonstrate that core manipulation, through controlled displacement of heterogeneities in excitable media, allows forced movement of spiral waves along pre-defined trajectories. Consequently, we impose real-time spatiotemporal control over spiral wave dynamics in a biological system. From a spinning galaxy to a swarm of honeybees, rotating spirals are widespread in nature. Even within the muscles of the heart, waves of electrical activity sometimes rotate spirally, leading to irregular heart rhythms or arrhythmia – a condition that can be fatal. Irrespective of where they occur, spiral waves organize around a center or core with different biophysical properties compared to the rest of the medium. The properties of the core determine the overall dynamics of the spiral. This means that, theoretically, it should be possibly to completely control a spiral wave just by manipulating its core. Now, Majumder, Feola et al. have tested this long-standing hypothesis using a combination of computer modeling and experiments with single layers of rat heart cells grown in a laboratory. First, the heart cells were genetically modified so that their electrical properties could be altered with light; in other words, the cells were put under optical control. Next, by using of a narrow beam of light, Majumder, Feola et al. precisely controlled the electrical properties of a small number of cells, which then attracted and supported a rotating spiral wave by acting as its new core. Moving the light beam allowed the core of the spiral wave to be shifted too, meaning the spiral wave could now be steered along any desired path in the cell layer. Majumder, Feola et al. hope that these underlying principles may one day provide the basis of new treatments for irregular heartbeats that are more effective and less damaging to the heart than existing options. Yet first, more work is needed to translate these findings from single layers of cells to actual hearts.
Collapse
Affiliation(s)
- Rupamanjari Majumder
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Iolanda Feola
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander S Teplenin
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Antoine Af de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander V Panfilov
- Department of Physics and Astronomy, Gent University, Gent, Belgium.,Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia
| | - Daniel A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
33
|
Scardigli M, Müllenbroich C, Margoni E, Cannazzaro S, Crocini C, Ferrantini C, Coppini R, Yan P, Loew LM, Campione M, Bocchi L, Giulietti D, Cerbai E, Poggesi C, Bub G, Pavone FS, Sacconi L. Real-time optical manipulation of cardiac conduction in intact hearts. J Physiol 2018; 596:3841-3858. [PMID: 29989169 PMCID: PMC6117584 DOI: 10.1113/jp276283] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/05/2018] [Indexed: 11/28/2022] Open
Abstract
Key points Although optogenetics has clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies lack the capability to react acutely to ongoing cardiac wave dynamics. Here, we developed an all‐optical platform to monitor and control electrical activity in real‐time. The methodology was applied to restore normal electrical activity after atrioventricular block and to manipulate the intraventricular propagation of the electrical wavefront. The closed‐loop approach was also applied to simulate a re‐entrant circuit across the ventricle. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time all‐optical stimulation can control cardiac rhythm in normal and abnormal conditions.
Abstract Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all‐optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide‐field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free‐run mode with submillisecond temporal resolution or in a closed‐loop fashion: a tailored hardware and software platform allowed real‐time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real‐time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real‐time resynchronization therapy and cardiac defibrillation. Furthermore, the closed‐loop approach was applied to simulate a re‐entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart. Although optogenetics has clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies lack the capability to react acutely to ongoing cardiac wave dynamics. Here, we developed an all‐optical platform to monitor and control electrical activity in real‐time. The methodology was applied to restore normal electrical activity after atrioventricular block and to manipulate the intraventricular propagation of the electrical wavefront. The closed‐loop approach was also applied to simulate a re‐entrant circuit across the ventricle. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time all‐optical stimulation can control cardiac rhythm in normal and abnormal conditions.
Collapse
Affiliation(s)
- M Scardigli
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| | - C Müllenbroich
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| | - E Margoni
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,Department of Physics, University of Pisa, Pisa, 56127, Italy
| | - S Cannazzaro
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| | - C Crocini
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| | - C Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - R Coppini
- Division of Pharmacology, Department 'NeuroFarBa', University of Florence, Florence, 50139, Italy
| | - P Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - L M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - M Campione
- Neuroscience Institute, National Research Council, Padova, 35121, Italy.,Department of Biomedical Sciences, Univercity ot Padua, Padua, 35121, Italy
| | - L Bocchi
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,Department of Information Engineering, University of Florence, Via S. Marta 3, Florence, 50139, Italy
| | - D Giulietti
- National Institute of Optics, National Research Council, Florence, 50125, Italy.,Department of Physics, University of Pisa, Pisa, 56127, Italy
| | - E Cerbai
- Division of Pharmacology, Department 'NeuroFarBa', University of Florence, Florence, 50139, Italy
| | - C Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - G Bub
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - F S Pavone
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy.,Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, 50019, Italy
| | - L Sacconi
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| |
Collapse
|
34
|
Shcherbakova DM, Stepanenko OV, Turoverov KK, Verkhusha VV. Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales. Trends Biotechnol 2018; 36:1230-1243. [PMID: 30041828 DOI: 10.1016/j.tibtech.2018.06.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Since mammalian tissue is relatively transparent to near-infrared (NIR) light, NIR fluorescent proteins (FPs) engineered from bacterial phytochromes have become widely used probes for non-invasive in vivo imaging. Recently, these genetically encoded NIR probes have been substantially improved, enabling imaging experiments that were not possible previously. Here, we discuss the use of monomeric NIR FPs and NIR biosensors for multiplexed imaging with common visible GFP-based probes and blue light-activatable optogenetic tools. These NIR probes are suitable for visualization of functional activities from molecular to organismal levels. In combination with advanced imaging techniques, such as two-photon microscopy with adaptive optics, photoacoustic tomography and its recent modification reversibly switchable photoacoustic computed tomography, NIR probes allow subcellular resolution at millimeter depths.
Collapse
Affiliation(s)
- Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation; Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russian Federation
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
35
|
Edwards SL, Zlochiver V, Conrad DB, Vaidyanathan R, Valiquette AM, Joshi-Mukherjee R. A Multiwell Cardiac μGMEA Platform for Action Potential Recordings from Human iPSC-Derived Cardiomyocyte Constructs. Stem Cell Reports 2018; 11:522-536. [PMID: 30033088 PMCID: PMC6092761 DOI: 10.1016/j.stemcr.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/14/2023] Open
Abstract
Multielectrode array (MEA) technology has been extensively used for field potential recordings from excitable cells. However, its application for action potential (AP) measurements has not been harnessed. Here, we report a novel platform for high-resolution intracellular AP recordings from induced pluripotent stem cell-cardiomyocyte constructs derived from human cardiac fibroblasts. To gain intracellular access, micro-gold MEAs were used to electroporate multiple constructs simultaneously. High-throughput AP measurements were obtained from 41 multicellular constructs. Repeated electroporations of the same cells did not affect the signal stability. Our model has the capability to distinguish subtle differences in AP morphology to characterize the network profile. Furthermore, we confirm the reliability of the system by recapitulating known drug-induced physiological and arrhythmogenic responses. Overall, the model provides a unique cardio-electronic interface for non-invasive measurements of AP dynamics for drug screening and disease modeling. This technology opens the door for identifying novel cardio-factors to enhance electrophysiological maturation. Electroporation-mediated action potential (AP) recordings using MEA technology Simultaneous high-throughput AP measurement from multiple cell networks Multiple electroporations of the same cells over days with stable signal Model validation for developmental, disease, and drug screening studies
Collapse
Affiliation(s)
- Stacie L Edwards
- Aurora Research Institute, Aurora Health Care, 960 N 12th Avenue, Milwaukee, WI 53233, USA
| | - Viviana Zlochiver
- Aurora Research Institute, Aurora Health Care, 960 N 12th Avenue, Milwaukee, WI 53233, USA
| | - Donald B Conrad
- Aurora Research Institute, Aurora Health Care, 960 N 12th Avenue, Milwaukee, WI 53233, USA
| | - Ravi Vaidyanathan
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin, Madison, WI 53705, USA
| | | | - Rosy Joshi-Mukherjee
- Aurora Research Institute, Aurora Health Care, 960 N 12th Avenue, Milwaukee, WI 53233, USA; Department of Medicine-Cardiovascular, School of Medicine, Johns Hopkins University; Baltimore, MD 21205, USA.
| |
Collapse
|
36
|
Paci M, Pölönen RP, Cori D, Penttinen K, Aalto-Setälä K, Severi S, Hyttinen J. Automatic Optimization of an in Silico Model of Human iPSC Derived Cardiomyocytes Recapitulating Calcium Handling Abnormalities. Front Physiol 2018; 9:709. [PMID: 29997516 PMCID: PMC6028769 DOI: 10.3389/fphys.2018.00709] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
The growing importance of human induced pluripotent stem cell-derived cardiomyoyctes (hiPSC-CMs), as patient-specific and disease-specific models for studying cellular cardiac electrophysiology or for preliminary cardiotoxicity tests, generated better understanding of hiPSC-CM biophysical mechanisms and great amount of action potential and calcium transient data. In this paper, we propose a new hiPSC-CM in silico model, with particular attention to Ca2+ handling. We used (i) the hiPSC-CM Paci2013 model as starting point, (ii) a new dataset of Ca2+ transient measurements to tune the parameters of the inward and outward Ca2+ fluxes of sarcoplasmic reticulum, and (iii) an automatic parameter optimization to fit action potentials and Ca2+ transients. The Paci2018 model simulates, together with the typical hiPSC-CM spontaneous action potentials, more refined Ca2+ transients and delayed afterdepolarizations-like abnormalities, which the old Paci2013 was not able to predict due to its mathematical formulation. The Paci2018 model was validated against (i) the same current blocking experiments used to validate the Paci2013 model, and (ii) recently published data about effects of different extracellular ionic concentrations. In conclusion, we present a new and more versatile in silico model, which will provide a platform for modeling the effects of drugs or mutations that affect Ca2+ handling in hiPSC-CMs.
Collapse
Affiliation(s)
- Michelangelo Paci
- Faculty of Biomedical Sciences and Engineering, BioMediTech Institute, Tampere University of Technology, Tampere, Finland
| | - Risto-Pekka Pölönen
- Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Dario Cori
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Kirsi Penttinen
- Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Tampere, Finland.,Heart Hospital, Tampere University Hospital, Tampere, Finland
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Jari Hyttinen
- Faculty of Biomedical Sciences and Engineering, BioMediTech Institute, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
37
|
Applications of genetically engineered human pluripotent stem cell reporters in cardiac stem cell biology. Curr Opin Biotechnol 2018; 52:66-73. [PMID: 29579626 DOI: 10.1016/j.copbio.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 12/17/2022]
Abstract
The advent of human pluripotent stem cells (hPSCs) has benefited many fields, from regenerative medicine to disease modeling, with an especially profound effect in cardiac research. Coupled with other novel technologies in genome engineering, hPSCs offer a great opportunity to delineate human cardiac lineages, investigate inherited cardiovascular diseases, and assess the safety and efficacy of cell-based therapies. In this review, we provide an overview of methods for generating genetically engineered hPSC reporters and a succinct synopsis of a variety of hPSC reporters, with a particular focus on their applications in cardiac stem cell biology.
Collapse
|
38
|
Delbeke J, Hoffman L, Mols K, Braeken D, Prodanov D. And Then There Was Light: Perspectives of Optogenetics for Deep Brain Stimulation and Neuromodulation. Front Neurosci 2017; 11:663. [PMID: 29311765 PMCID: PMC5732983 DOI: 10.3389/fnins.2017.00663] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Deep Brain Stimulation (DBS) has evolved into a well-accepted add-on treatment for patients with severe Parkinsons disease as well as for other chronic neurological conditions. The focal action of electrical stimulation can yield better responses and it exposes the patient to fewer side effects compared to pharmaceuticals distributed throughout the body toward the brain. On the other hand, the current practice of DBS is hampered by the relatively coarse level of neuromodulation achieved. Optogenetics, in contrast, offers the perspective of much more selective actions on the various physiological structures, provided that the stimulated cells are rendered sensitive to the action of light. Optogenetics has experienced tremendous progress since its first in vivo applications about 10 years ago. Recent advancements of viral vector technology for gene transfer substantially reduce vector-associated cytotoxicity and immune responses. This brings about the possibility to transfer this technology into the clinic as a possible alternative to DBS and neuromodulation. New paths could be opened toward a rich panel of clinical applications. Some technical issues still limit the long term use in humans but realistic perspectives quickly emerge. Despite a rapid accumulation of observations about patho-physiological mechanisms, it is still mostly serendipity and empiric adjustments that dictate clinical practice while more efficient logically designed interventions remain rather exceptional. Interestingly, it is also very much the neuro technology developed around optogenetics that offers the most promising tools to fill in the existing knowledge gaps about brain function in health and disease. The present review examines Parkinson's disease and refractory epilepsy as use cases for possible optogenetic stimulation therapies.
Collapse
Affiliation(s)
- Jean Delbeke
- LCEN3, Department of Neurology, Institute of Neuroscience, Ghent University, Ghent, Belgium
| | | | - Katrien Mols
- Neuroscience Research Flanders, Leuven, Belgium.,Life Science and Imaging, Imec, Leuven, Belgium
| | | | - Dimiter Prodanov
- Neuroscience Research Flanders, Leuven, Belgium.,Environment, Health and Safety, Imec, Leuven, Belgium
| |
Collapse
|
39
|
Aghighi A, Comtois P. Noise-induced effects on multicellular biopacemaker spontaneous activity: Differences between weak and strong pacemaker cells. CHAOS (WOODBURY, N.Y.) 2017; 27:093927. [PMID: 28964145 DOI: 10.1063/1.5000809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-organization of spontaneous activity of a network of active elements is important to the general theory of reaction-diffusion systems as well as for pacemaking activity to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes, consisting of resting and pacemaker cells, exhibit spontaneous activation of their electrical activity. Similarly, one proposed approach to the development of biopacemakers as an alternative to electronic pacemakers for cardiac therapy is based on heterogeneous cardiac cells with resting and spontaneously beating phenotypes. However, the combined effect of pacemaker characteristics, density, and spatial distribution of the pacemaker cells on spontaneous activity is unknown. Using a simple stochastic pattern formation algorithm, we previously showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of pacemaker cells. In this study, we show that this behavior is dependent on the pacemaker cell characteristics, with weaker pacemaker cells requiring higher density and larger clusters to sustain multicellular activity. These multicellular structures also demonstrated an increased sensitivity to voltage noise that favored spontaneous activity at lower density while increasing temporal variation in the period of activity. This information will help researchers overcome the current limitations of biopacemakers.
Collapse
Affiliation(s)
- Alireza Aghighi
- Research Centre, Montreal Heart Institute, 5000 Belanger E., Montréal, Québec H1T 1C8, Canada
| | - Philippe Comtois
- Research Centre, Montreal Heart Institute, 5000 Belanger E., Montréal, Québec H1T 1C8, Canada
| |
Collapse
|
40
|
Crocini C, Ferrantini C, Pavone FS, Sacconi L. Optogenetics gets to the heart: A guiding light beyond defibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:132-139. [PMID: 28506694 DOI: 10.1016/j.pbiomolbio.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/01/2023]
Abstract
Optogenetics provides a tool for controlling the electrical activity of excitable cells by means of the interaction of light with light-gated ion channels. Despite the fact that optogenetics has been intensively utilized in the neurosciences, it has been more rarely employed as an instrument for studying cardiac pathophysiology. However, the advantages of optical approaches to perturb cardiac electrical activity are numerous, especially when the spatio-temporal qualities of light are utterly exploited. Here, we review the main breakthroughs employing optogenetics to perturb cardiac pathophysiology and attempt a comparison of methods and procedures that have employed optogenetics in the heart. We particularly focus on light-based defibrillation strategies that represent one of the latest achievements in this field. We highlight the important role of advanced optical methods for detecting and stimulating electrical activity for optimizing defibrillation strategies and, more generally, for dissecting novel insights in cardiac physiology. Finally, we discuss the main future perspectives that we envision for optogenetics in the heart, both in terms of translational applications and for addressing fundamental questions of cardiac function.
Collapse
Affiliation(s)
- Claudia Crocini
- European Laboratory for Non Linear Spectroscopy (LENS), Via Nello Carrara, 1 - 50019 Sesto Fiorentino, FI, Italy; National Institute of Optic (CNR-INO), Via Nello Carrara, 1 - 50019 Sesto Fiorentino, Italy.
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Francesco S Pavone
- European Laboratory for Non Linear Spectroscopy (LENS), Via Nello Carrara, 1 - 50019 Sesto Fiorentino, FI, Italy; National Institute of Optic (CNR-INO), Via Nello Carrara, 1 - 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Leonardo Sacconi
- European Laboratory for Non Linear Spectroscopy (LENS), Via Nello Carrara, 1 - 50019 Sesto Fiorentino, FI, Italy; National Institute of Optic (CNR-INO), Via Nello Carrara, 1 - 50019 Sesto Fiorentino, Italy
| |
Collapse
|
41
|
Werley CA, Chien MP, Gaublomme J, Shekhar K, Butty V, Yi BA, Kralj JM, Bloxham B, Boyer LA, Regev A, Cohen AE. Geometry-dependent functional changes in iPSC-derived cardiomyocytes probed by functional imaging and RNA sequencing. PLoS One 2017; 12:e0172671. [PMID: 28333933 PMCID: PMC5363803 DOI: 10.1371/journal.pone.0172671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 02/08/2017] [Indexed: 12/26/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising platform for cardiac studies in vitro, and possibly for tissue repair in humans. However, hiPSC-CM cells tend to retain morphology, metabolism, patterns of gene expression, and electrophysiology similar to that of embryonic cardiomyocytes. We grew hiPSC-CM in patterned islands of different sizes and shapes, and measured the effect of island geometry on action potential waveform and calcium dynamics using optical recordings of voltage and calcium from 970 islands of different sizes. hiPSC-CM in larger islands showed electrical and calcium dynamics indicative of greater functional maturity. We then compared transcriptional signatures of the small and large islands against a developmental time course of cardiac differentiation. Although island size had little effect on expression of most genes whose levels differed between hiPSC-CM and adult primary CM, we identified a subset of genes for which island size drove the majority (58%) of the changes associated with functional maturation. Finally, we patterned hiPSC-CM on islands with a variety of shapes to probe the relative contributions of soluble factors, electrical coupling, and direct cell-cell contacts to the functional maturation. Collectively, our data show that optical electrophysiology is a powerful tool for assaying hiPSC-CM maturation, and that island size powerfully drives activation of a subset of genes involved in cardiac maturation.
Collapse
Affiliation(s)
- Christopher A. Werley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Miao-Ping Chien
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - Karthik Shekhar
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Vincent Butty
- Department of Biology, MIT, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - B. Alexander Yi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Joel M. Kralj
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Blox Bloxham
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Laurie A. Boyer
- Department of Biology, MIT, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, United States of America
| | - Aviv Regev
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Biology, MIT, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
42
|
Karathanos TV, Boyle PM, Trayanova NA. Light-based Approaches to Cardiac Arrhythmia Research: From Basic Science to Translational Applications. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2016; 10:47-60. [PMID: 27840581 PMCID: PMC5094582 DOI: 10.4137/cmc.s39711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/27/2016] [Accepted: 10/09/2016] [Indexed: 02/06/2023]
Abstract
Light has long been used to image the heart, but now it can be used to modulate its electrophysiological function. Imaging modalities and techniques have long constituted an indispensable part of arrhythmia research and treatment. Recently, advances in the fields of optogenetics and photodynamic therapy have provided scientists with more effective approaches for probing, studying and potentially devising new treatments for cardiac arrhythmias. This article is a review of research toward the application of these techniques. It contains (a) an overview of advancements in technology and research that have contributed to light-based cardiac applications and (b) a summary of current and potential future applications of light-based control of cardiac cells, including modulation of heart rhythm, manipulation of cardiac action potential morphology, quantitative analysis of arrhythmias, defibrillation and cardiac ablation.
Collapse
Affiliation(s)
- Thomas V. Karathanos
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick M. Boyle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
43
|
Govorunova EG, Koppel LA. The Road to Optogenetics: Microbial Rhodopsins. BIOCHEMISTRY (MOSCOW) 2016; 81:928-40. [PMID: 27682165 DOI: 10.1134/s0006297916090029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Optogenetics technology (using light-sensitive microbial proteins to control animal cell physiology) is becoming increasingly popular in laboratories around the world. Among these proteins, particularly important are rhodopsins that transport ions across the membrane and are used in optogenetics to regulate membrane potential by light, mostly in neurons. Although rhodopsin ion pumps transport only one charge per captured photon, channelrhodopsins are capable of more efficient passive transport. In this review, we follow the history of channelrhodopsin discovery in flagellate algae and discuss the latest addition to the channelrhodopsin family, channels with anion, rather than cation, selectivity.
Collapse
Affiliation(s)
- E G Govorunova
- Lomonosov Moscow State University, School of Biology, Moscow, 119991, Russia.
| | | |
Collapse
|
44
|
Govorunova EG, Cunha SR, Sineshchekov OA, Spudich JL. Anion channelrhodopsins for inhibitory cardiac optogenetics. Sci Rep 2016; 6:33530. [PMID: 27628215 PMCID: PMC5024162 DOI: 10.1038/srep33530] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/26/2016] [Indexed: 11/19/2022] Open
Abstract
Optical control of the heart muscle is a promising strategy for cardiology because it is more specific than traditional electrical stimulation, and allows a higher temporal resolution than pharmacological interventions. Anion channelrhodopsins (ACRs) from cryptophyte algae expressed in cultured neonatal rat ventricular cardiomyocytes produced inhibitory currents at less than one-thousandth of the light intensity required by previously available optogenetic tools, such as the proton pump archaerhodopsin-3 (Arch). Because of their greater photocurrents, ACRs permitted complete inhibition of cardiomyocyte electrical activity under conditions in which Arch was inefficient. Most importantly, ACR expression allowed precisely controlled shortening of the action potential duration by switching on the light during its repolarization phase, which was not possible with previously used optogenetic tools. Optical shortening of cardiac action potentials may benefit pathophysiology research and the development of optogenetic treatments for cardiac disorders such as the long QT syndrome.
Collapse
Affiliation(s)
- Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry &Molecular Biology, University of Texas Health Science Center at Houston - McGovern Medical School, Houston, Texas, USA
| | - Shane R Cunha
- Department of Integrative Biology &Pharmacology, University of Texas Health Science Center at Houston - McGovern Medical School, Houston, Texas, USA
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry &Molecular Biology, University of Texas Health Science Center at Houston - McGovern Medical School, Houston, Texas, USA
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry &Molecular Biology, University of Texas Health Science Center at Houston - McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
45
|
Guevara MR, Shrier A, Orlowski J, Glass L. George Ralph Mines (1886-1914): the dawn of cardiac nonlinear dynamics. J Physiol 2016; 594:2361-71. [PMID: 27126414 DOI: 10.1113/jp270891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/29/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Michael R Guevara
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Leon Glass
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|