1
|
Skobeleva K, Wang G, Kaznacheyeva E. STIM Proteins: The Gas and Brake of Calcium Entry in Neurons. Neurosci Bull 2024:10.1007/s12264-024-01272-5. [PMID: 39266936 DOI: 10.1007/s12264-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 09/14/2024] Open
Abstract
Stromal interaction molecules (STIM)s are Ca2+ sensors in internal Ca2+ stores of the endoplasmic reticulum. They activate the store-operated Ca2+ channels, which are the main source of Ca2+ entry in non-excitable cells. Moreover, STIM proteins interact with other Ca2+ channel subunits and active transporters, making STIMs an important intermediate molecule in orchestrating a wide variety of Ca2+ influxes into excitable cells. Nevertheless, little is known about the role of STIM proteins in brain functioning. Being involved in many signaling pathways, STIMs replenish internal Ca2+ stores in neurons and mediate synaptic transmission and neuronal excitability. Ca2+ dyshomeostasis is a signature of many pathological conditions of the brain, including neurodegenerative diseases, injuries, stroke, and epilepsy. STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca2+ entry but also by regulating Ca2+ influx through other channels. Here, we review the present knowledge of STIMs in neurons and their involvement in brain pathology.
Collapse
Affiliation(s)
- Ksenia Skobeleva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064.
| |
Collapse
|
2
|
Maciąg F, Chhikara A, Heine M. Calcium channel signalling at neuronal endoplasmic reticulum-plasma membrane junctions. Biochem Soc Trans 2024; 52:1617-1629. [PMID: 38934485 DOI: 10.1042/bst20230819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Neurons are highly specialised cells that need to relay information over long distances and integrate signals from thousands of synaptic inputs. The complexity of neuronal function is evident in the morphology of their plasma membrane (PM), by far the most intricate of all cell types. Yet, within the neuron lies an organelle whose architecture adds another level to this morphological sophistication - the endoplasmic reticulum (ER). Neuronal ER is abundant in the cell body and extends to distant axonal terminals and postsynaptic dendritic spines. It also adopts specialised structures like the spine apparatus in the postsynapse and the cisternal organelle in the axon initial segment. At membrane contact sites (MCSs) between the ER and the PM, the two membranes come in close proximity to create hubs of lipid exchange and Ca2+ signalling called ER-PM junctions. The development of electron and light microscopy techniques extended our knowledge on the physiological relevance of ER-PM MCSs. Equally important was the identification of ER and PM partners that interact in these junctions, most notably the STIM-ORAI and VAP-Kv2.1 pairs. The physiological functions of ER-PM junctions in neurons are being increasingly explored, but their molecular composition and the role in the dynamics of Ca2+ signalling are less clear. This review aims to outline the current state of research on the topic of neuronal ER-PM contacts. Specifically, we will summarise the involvement of different classes of Ca2+ channels in these junctions, discuss their role in neuronal development and neuropathology and propose directions for further research.
Collapse
Affiliation(s)
- Filip Maciąg
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Hanns-Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Arun Chhikara
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Hanns-Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Martin Heine
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Hanns-Dieter Hüsch Weg 15, 55128 Mainz, Germany
| |
Collapse
|
3
|
Mansouri Z, Khodagholi F, Zaringhalam J, Abbaszadeh F, Ghasemi R, Maghsoudi N. Intranasal CEPO-FC prevents attention deficits in streptozotocin-induced rat model of Alzheimer's disease: Focus on synaptic plasticity-related factors. EXCLI JOURNAL 2024; 23:491-508. [PMID: 38741725 PMCID: PMC11089095 DOI: 10.17179/excli2023-6818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Alzheimer's disease remains an issue of great controversy due to its pathology. It is characterized by cognitive impairments and neuropsychiatric symptoms. The FDA approved medications for this disease, can only mitigate the symptoms. One reason for the lack of effective medications is the inaccessibility of the brain which is encompassed by the blood-brain barrier, making intranasal (IN) route of administration potentially advantageous. Male Wistar rats underwent stereotaxic surgery to induce an Alzheimer's disease model via intracerebroventricular (ICV) streptozotocin injection, and Carbamylated Erythropoietin-Fc (CEPO-FC), a derivative of Erythropoietin without its harmful characteristics, was administered intranasally for ten consecutive days. Cognition performance for memory and attention was assessed using the Novel Object Recognition Test and the Object-Based Attention Test respectively. Depression like behavior was evaluated using the Forced Swim Test. Western blotting was done on the extracted hippocampus to quantify STIM proteins. Calbindin, PSD-95, Neuroplastin, Synaptophysin and GAP-43 genes were assessed by Realtime PCR. Behavioral tests demonstrated that IN CEPO-FC could halt cognition deficits and molecular investigations showed that, STIM proteins were decreased in Alzheimer's model, and increased after IN CEPO-FC treatment. Calbindin and PSD-95 were downregulated in our disease model and upregulated when treated with IN CEPO-FC. While Neuroplastin, and GAP-43 expressions remained unchanged. This study suggests that IN CEPO-FC in low doses could be promising for improving cognition and synaptic plasticity deficits in Alzheimer's disease and since IN route of administration is a convenient way, choosing IN CEPO-FC for clinical trial might worth consideration. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Zahra Mansouri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Hu Y, Zhao Z, Xu F, Ren X, Liu M, Zheng Z, Wang Q. Transcriptome and Animal Model Integration Reveals Inhibition of Calcium Homeostasis-Associated Gene ITPKB Alleviates Amyloid Plaque Deposition. J Mol Neurosci 2024; 74:42. [PMID: 38613644 DOI: 10.1007/s12031-024-02221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Alzheimer's disease (AD) is a severe neurological illness that causes memory loss and is a global problem. The calcium hypothesis recently steadily evolved in AD. The prospective targets for calcium homeostasis therapy, however, are limited, and gene expression-level research connected to calcium homeostasis in AD remains hazy. In this study, we analyzed the microarray dataset (GSE132903) taken from the Gene Expression Omnibus (GEO) database to investigate calcium homeostasis-related genes for AD. Using immunoblot analysis, we examined the association of ITPKB with inflammation in AD. Additionally, the immunofluorescence technique was employed to assess the impact of pharmacological inhibition of ITPKB on the amyloid-β (Aβ) plaque deposition in APP/PS1 mice. This article's further exploration of calcium homeostasis-related genes has propelled the validation of the calcium homeostasis theory in AD.
Collapse
Affiliation(s)
- Yufei Hu
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
| | - Zijun Zhao
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
- Department of Anesthesiology, Hebei Provincial Chest Hospital, Shijiazhuang, Hebei, 050047, China
| | - Fang Xu
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
| | - Xiaoqin Ren
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
| | - Menglin Liu
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
| | - Zilei Zheng
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
- Department of Anesthesiology, Zhangjiakou Fourth Hospital, Zhangjiakou, Hebei, 075000, China
| | - Qiujun Wang
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China.
| |
Collapse
|
5
|
Courjaret R, Prakriya M, Machaca K. SOCE as a regulator of neuronal activity. J Physiol 2024; 602:1449-1462. [PMID: 37029630 DOI: 10.1113/jp283826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Store operated Ca2+ entry (SOCE) is a ubiquitous signalling module with established roles in the immune system, secretion and muscle development. Recent evidence supports a complex role for SOCE in the nervous system. In this review we present an update of the current knowledge on SOCE function in the brain with a focus on its role as a regulator of brain activity and excitability.
Collapse
Affiliation(s)
- Raphael Courjaret
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
6
|
Kim S, Kang SJ, Nguyen HS, Jeong SW. Store-operated calcium entry in the satellite glial cells of rat sympathetic ganglia. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:93-103. [PMID: 38154968 PMCID: PMC10762485 DOI: 10.4196/kjpp.2024.28.1.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Satellite glial cells (SGCs), a major type of glial cell in the autonomic ganglia, closely envelop the cell body and even the synaptic regions of a single neuron with a very narrow gap. This structurally unique organization suggests that autonomic neurons and SGCs may communicate reciprocally. Glial Ca2+ signaling is critical for controlling neural activity. Here, for the first time we identified the machinery of store-operated Ca2+ entry (SOCE) which is critical for cellular Ca2+ homeostasis in rat sympathetic ganglia under normal and pathological states. Quantitative realtime PCR and immunostaining analyses showed that Orai1 and stromal interaction molecules 1 (STIM1) proteins are the primary components of SOCE machinery in the sympathetic ganglia. When the internal Ca2+ stores were depleted in the absence of extracellular Ca2+, the number of plasmalemmal Orai1 puncta was increased in neurons and SGCs, suggesting activation of the Ca2+ entry channels. Intracellular Ca2+ imaging revealed that SOCE was present in SGCs and neurons; however, the magnitude of SOCE was much larger in the SGCs than in the neurons. The SOCE was significantly suppressed by GSK7975A, a selective Orai1 blocker, and Pyr6, a SOCE blocker. Lipopolysaccharide (LPS) upregulated the glial fibrillary acidic protein and Toll-like receptor 4 in the sympathetic ganglia. Importantly, LPS attenuated SOCE via downregulating Orai1 and STIM1 expression. In conclusion, sympathetic SGCs functionally express the SOCE machinery, which is indispensable for intracellular Ca2+ signaling. The SOCE is highly susceptible to inflammation, which may affect sympathetic neuronal activity and thereby autonomic output.
Collapse
Affiliation(s)
- Sohyun Kim
- Department of Physiology, Laboratory of Molecular Neurophysiology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Seong Jun Kang
- Department of Physiology, Laboratory of Molecular Neurophysiology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Huu Son Nguyen
- Department of Physiology, Laboratory of Molecular Neurophysiology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Seong-Woo Jeong
- Department of Physiology, Laboratory of Molecular Neurophysiology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| |
Collapse
|
7
|
Serwach K, Nurowska E, Klukowska M, Zablocka B, Gruszczynska-Biegala J. STIM2 regulates NMDA receptor endocytosis that is induced by short-term NMDA receptor overactivation in cortical neurons. Cell Mol Life Sci 2023; 80:368. [PMID: 37989792 PMCID: PMC10663207 DOI: 10.1007/s00018-023-05028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Recent findings suggest an important role for the dysregulation of stromal interaction molecule (STIM) proteins, activators of store-operated Ca2+ channels, and the prolonged activation of N-methyl-D-aspartate receptors (NMDARs) in the development of neurodegenerative diseases. We previously demonstrated that STIM silencing increases Ca2+ influx through NMDAR and STIM-NMDAR2 complexes are present in neurons. However, the interplay between NMDAR subunits (GluN1, GluN2A, and GluN2B) and STIM1/STIM2 with regard to intracellular trafficking remains unknown. Here, we found that the activation of NMDAR endocytosis led to an increase in STIM2-GluN2A and STIM2-GluN2B interactions in primary cortical neurons. STIM1 appeared to migrate from synaptic to extrasynaptic sites. STIM2 silencing inhibited post-activation NMDAR translocation from the plasma membrane and synaptic spines and increased NMDAR currents. Our findings reveal a novel molecular mechanism by which STIM2 regulates NMDAR synaptic trafficking by promoting NMDAR endocytosis after receptor overactivation, which may suggest protection against excessive uncontrolled Ca2+ influx through NMDARs.
Collapse
Affiliation(s)
- Karolina Serwach
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Nurowska
- Department of Pharmacotherapy and Pharmaceutical Care, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland
| | - Marta Klukowska
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Zablocka
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
8
|
Kushnireva L, Korkotian E, Segal M. Exposure of Cultured Hippocampal Neurons to the Mitochondrial Uncoupler Carbonyl Cyanide Chlorophenylhydrazone Induces a Rapid Growth of Dendritic Processes. Int J Mol Sci 2023; 24:12940. [PMID: 37629119 PMCID: PMC10455170 DOI: 10.3390/ijms241612940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
A major route for the influx of calcium ions into neurons uses the STIM-Orai1 voltage-independent channel. Once cytosolic calcium ([Ca2+]i) elevates, it activates mitochondrial and endoplasmic calcium stores to affect downstream molecular pathways. In the present study, we employed a novel drug, carbonyl cyanide chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, to explore the role of mitochondria in cultured neuronal morphology. CCCP caused a sustained elevation of [Ca2+]i and, quite surprisingly, a massive increase in the density of dendritic filopodia and spines in the affected neurons. This morphological change can be prevented in cultures exposed to a calcium-free medium, Orai1 antagonist 2APB, or cells transfected with a mutant Orai1 plasmid. It is suggested that CCCP activates mitochondria through the influx of calcium to cause rapid growth of dendritic processes.
Collapse
Affiliation(s)
- Liliia Kushnireva
- Faculty of Biology, Perm State University, 614068 Perm, Russia;
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Eduard Korkotian
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Menahem Segal
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
| |
Collapse
|
9
|
Bouron A. Neuronal Store-Operated Calcium Channels. Mol Neurobiol 2023:10.1007/s12035-023-03352-5. [PMID: 37118324 DOI: 10.1007/s12035-023-03352-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
The endoplasmic reticulum (ER) is the major intracellular calcium (Ca2+) storage compartment in eukaryotic cells. In most instances, the mobilization of Ca2+ from this store is followed by a delayed and sustained uptake of Ca2+ through Ca2+-permeable channels of the cell surface named store-operated Ca2+ channels (SOCCs). This gives rise to a store-operated Ca2+ entry (SOCE) that has been thoroughly investigated in electrically non-excitable cells where it is the principal regulated Ca2+ entry pathway. The existence of this Ca2+ route in neurons has long been a matter of debate. However, a growing body of experimental evidence indicates that the recruitment of Ca2+ from neuronal ER Ca2+ stores generates a SOCE. The present review summarizes the main studies supporting the presence of a depletion-dependent Ca2+ entry in neurons. It also addresses the question of the molecular composition of neuronal SOCCs, their expression, pharmacological properties, as well as their physiological relevance.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, Inserm UA13 BGE, 38000, Grenoble, France.
| |
Collapse
|
10
|
Kushnireva L, Basnayake K, Holcman D, Segal M, Korkotian E. Dynamic Regulation of Mitochondrial [Ca 2+] in Hippocampal Neurons. Int J Mol Sci 2022; 23:ijms232012321. [PMID: 36293178 PMCID: PMC9604040 DOI: 10.3390/ijms232012321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
While neuronal mitochondria have been studied extensively in their role in health and disease, the rules that govern calcium regulation in mitochondria remain somewhat vague. In the present study using cultured rat hippocampal neurons transfected with the mtRCaMP mitochondrial calcium sensor, we investigated the effects of cytosolic calcium surges on the dynamics of mitochondrial calcium ([Ca2+]m). Cytosolic calcium ([Ca2+]c) was measured using the high affinity sensor Fluo-2. We recorded two types of calcium events: local and global ones. Local events were limited to a small, 2–5 µm section of the dendrite, presumably caused by local synaptic activity, while global events were associated with network bursts and extended throughout the imaged dendrite. In both cases, cytosolic surges were followed by a delayed rise in [Ca2+]m. In global events, the rise lasted longer and was observed in all mitochondrial clusters. At the end of the descending part of the global event, [Ca2+]m was still high. Global events were accompanied by short and rather high [Ca2+]m surges which we called spikelets, and were present until the complete decay of the cytosolic event. In the case of local events, selective short-term responses were limited to the part of the mitochondrial cluster that was located directly in the center of [Ca2+]c activity, and faded quickly, while responses in the neighboring regions were rarely observed. Caffeine (which recruits ryanodine receptors to supply calcium to the mitochondria), and carbonyl cyanide m-chlorophenyl hydrazine (CCCP, a mitochondrial uncoupler) could affect [Ca2+]m in both global and local events. We constructed a computational model to simulate the fundamental role of mitochondria in restricting calcium signals within a narrow range under synapses, preventing diffusion into adjacent regions of the dendrite. Our results indicate that local cytoplasmic and mitochondrial calcium concentrations are highly correlated. This reflects a key role of signaling pathways that connect the postsynaptic membrane to local mitochondrial clusters.
Collapse
Affiliation(s)
- Liliya Kushnireva
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kanishka Basnayake
- Computational Biology and Applied Mathematics (IBENS), Ecole Normale Supérieure-PSL, 75005 Paris, France
| | - David Holcman
- Computational Biology and Applied Mathematics (IBENS), Ecole Normale Supérieure-PSL, 75005 Paris, France
| | - Menahem Segal
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
- Correspondence:
| | - Eduard Korkotian
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Xia J, Dou Y, Mei Y, Munoz FM, Gao R, Gao X, Li D, Osei-Owusu P, Schiffenhaus J, Bekker A, Tao YX, Hu H. Orai1 is a crucial downstream partner of group I metabotropic glutamate receptor signaling in dorsal horn neurons. Pain 2022; 163:652-664. [PMID: 34252911 PMCID: PMC8741882 DOI: 10.1097/j.pain.0000000000002396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Group I metabotropic glutamate receptors (group I mGluRs) have been implicated in several central nervous system diseases including chronic pain. It is known that activation of group I mGluRs results in the production of inositol triphosphate (IP3) and diacylglycerol that leads to activation of extracellular signal-regulated kinases (ERKs) and an increase in neuronal excitability, but how group I mGluRs mediate this process remains unclear. We previously reported that Orai1 is responsible for store-operated calcium entry and plays a key role in central sensitization. However, how Orai1 is activated under physiological conditions is unknown. Here, we tested the hypothesis that group I mGluRs recruit Orai1 as part of its downstream signaling pathway in dorsal horn neurons. We demonstrate that neurotransmitter glutamate induces STIM1 puncta formation, which is not mediated by N-Methyl-D-aspartate (NMDA) or α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Glutamate-induced Ca2+ entry in the presence of NMDA or AMPA receptor antagonists is eliminated in Orai1-deficient neurons. Dihydroxyphenylglycine (DHPG) (an agonist of group I mGluRs)-induced Ca2+ entry is abolished by Orai1 deficiency, but not affected by knocking down of transient receptor potential cation channel 1 (TRPC1) or TRPC3. Dihydroxyphenylglycine-induced activation of ERKs and modulation of neuronal excitability are abolished in cultured Orai1-deficient neurons. Moreover, DHPG-induced nociceptive behavior is markedly reduced in Orai1-deficient mice. Our findings reveal previously unknown functional coupling between Orai1 and group I mGluRs and shed light on the mechanism underlying group I mGluRs-mediated neuronal plasticity.
Collapse
Affiliation(s)
- Jingsheng Xia
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yannong Dou
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Frances M. Munoz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Ruby Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Xinghua Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Daling Li
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Patrick Osei-Owusu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - James Schiffenhaus
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
12
|
Khonacha SE, Mirbehbahani SH, Rahdar M, Davoudi S, Borjkhani M, Khodaghli F, Motamedi F, Janahmadia M. Kisspeptin-13 prevented the electrophysiological alterations induced by Amyloid-Beta pathology in rat: Possible involvement of stromal interaction molecules and pCREB. Brain Res Bull 2022; 184:13-23. [PMID: 35272006 DOI: 10.1016/j.brainresbull.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurological disease that slowly causing memory impairments with no effective treatment. We have recently reported that kisspeptin-13 (KP-13) ameliorates Aβ toxicity-induced memory deficit in rats. Here, the possible cellular impact of kisspeptin receptor activation in a rat model of the early stage AD was assessed using whole-cell patch-clamp recording from CA1 pyramidal neurons and molecular approaches. Compared to neurons from the control group, cells from the Aβ-treated group displayed spontaneous and evoked hyperexcitability with lower spike frequency adaptation. These cells had also a lower sag ratio in response to hyperpolarizing prepulse current delivered before a depolarizing current injection. Neurons from the Aβ-treated group exhibited short spike onset latency, lower rheobase and short utilization time compared with those in the control group. Furthermore, phase plot analysis of action potential showed that Aβ treatment affected the action potential features. These electrophysiological changes induced by Aβ were associated with increased expression of stromal interaction molecules (STIMs), particularly (STIM2) and decreased pCREB/CREB ratio. Treatment with KP-13 following Aβ injection into the entorhinal cortex, however, prevented the excitatory effect of Aβ on spontaneous and evoked neuronal activity, increased the latency of onset, enhanced the sag ratio, increased the rheobase and utilization time, and prevented the changes induced Aβ on spike parameters. In addition, the KP-13 application after Aβ treatment reduced the expression of STIMs and increased the pCREB/CREB ratio compared to those receiving Aβ treatment alone. In summary, these results provide evidence that activation of kisspeptin receptor may be effective against pathology of Aβ.
Collapse
Affiliation(s)
- Shima Ebrahimi Khonacha
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Borjkhani
- Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran
| | - Fariba Khodaghli
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadia
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Hunanyan L, Ghamaryan V, Makichyan A, Popugaeva E. Computer-Based Drug Design of Positive Modulators of Store-Operated Calcium Channels to Prevent Synaptic Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222413618. [PMID: 34948414 PMCID: PMC8707499 DOI: 10.3390/ijms222413618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Store-operated calcium entry (SOCE) constitutes a fine-tuning mechanism responsible for the replenishment of intracellular stores. Hippocampal SOCE is regulated by store-operated channels (SOC) organized in tripartite complex TRPC6/ORAI2/STIM2. It is suggested that in neurons, SOCE maintains intracellular homeostatic Ca2+ concentration at resting conditions and is needed to support the structure of dendritic spines. Recent evidence suggests that positive modulators of SOC are prospective drug candidates to treat Alzheimer’s disease (AD) at early stages. Although STIM2 and ORAI2 are definitely involved in the regulation of nSOC amplitude and a play major role in AD pathogenesis, growing evidence suggest that it is not easy to target these proteins pharmacologically. Existing positive modulators of TRPC6 are unsuitable for drug development due to either bad pharmacokinetics or side effects. Thus, we concentrate the review on perspectives to develop specific nSOC modulators based on available 3D structures of TRPC6, ORAI2, and STIM2. We shortly describe the structural features of existing models and the methods used to prepare them. We provide commonly used steps applied for drug design based on 3D structures of target proteins that might be used to develop novel AD preventing therapy.
Collapse
Affiliation(s)
- Lernik Hunanyan
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (V.G.); (A.M.)
| | - Viktor Ghamaryan
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (V.G.); (A.M.)
| | - Ani Makichyan
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (V.G.); (A.M.)
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Correspondence:
| |
Collapse
|
14
|
Basnayake K, Mazaud D, Kushnireva L, Bemelmans A, Rouach N, Korkotian E, Holcman D. Nanoscale molecular architecture controls calcium diffusion and ER replenishment in dendritic spines. SCIENCE ADVANCES 2021; 7:eabh1376. [PMID: 34524854 PMCID: PMC8443180 DOI: 10.1126/sciadv.abh1376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Dendritic spines are critical components of neuronal synapses as they receive and transform synaptic inputs into a succession of calcium-regulated biochemical events. The spine apparatus (SA), an extension of smooth endoplasmic reticulum, regulates slow and fast calcium dynamics in spines. Calcium release events deplete SA calcium ion reservoir rapidly, yet the next cycle of signaling requires its replenishment. How spines achieve this replenishment without triggering calcium release remains unclear. Using computational modeling, calcium and STED superresolution imaging, we show that the SA replenishment involves the store-operated calcium entry pathway during spontaneous calcium transients. We identified two main conditions for SA replenishment without depletion: a small amplitude and a slow timescale for calcium influx, and a close proximity between SA and plasma membranes. Thereby, spine’s nanoscale organization separates SA replenishment from depletion. We further conclude that spine’s receptor organization also determines the calcium dynamics during the induction of long-term synaptic changes.
Collapse
Affiliation(s)
- Kanishka Basnayake
- Computational Biology and Applied Mathematics, Institut de Biologie de l’École Normale Supérieure-PSL, Paris, France
| | - David Mazaud
- Neuroglial Interactions in Cerebral Physiology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | | | - Alexis Bemelmans
- Commissariat à l’Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center and Centre National de la Recherche Scientifique UMR9199, Université Paris-Sud, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Eduard Korkotian
- Faculty of Biology, Perm State University, Perm, Russia
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - David Holcman
- Computational Biology and Applied Mathematics, Institut de Biologie de l’École Normale Supérieure-PSL, Paris, France
- Churchill College and the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Chanaday NL, Nosyreva E, Shin OH, Zhang H, Aklan I, Atasoy D, Bezprozvanny I, Kavalali ET. Presynaptic store-operated Ca 2+ entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. Neuron 2021; 109:1314-1332.e5. [PMID: 33711258 PMCID: PMC8068669 DOI: 10.1016/j.neuron.2021.02.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 01/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Store-operated calcium entry (SOCE) is activated by depletion of Ca2+ from the endoplasmic reticulum (ER) and mediated by stromal interaction molecule (STIM) proteins. Here, we show that in rat and mouse hippocampal neurons, acute ER Ca2+ depletion increases presynaptic Ca2+ levels and glutamate release through a pathway dependent on STIM2 and the synaptic Ca2+ sensor synaptotagmin-7 (syt7). In contrast, synaptotagmin-1 (syt1) can suppress SOCE-mediated spontaneous release, and STIM2 is required for the increase in spontaneous release seen during syt1 loss of function. We also demonstrate that chronic ER stress activates the same pathway leading to syt7-dependent potentiation of spontaneous glutamate release. During ER stress, inhibition of SOCE or syt7-driven fusion partially restored basal neurotransmission and decreased expression of pro-apoptotic markers, indicating that these processes participate in the amplification of ER-stress-related damage. Taken together, we propose that presynaptic SOCE links ER stress and augmented spontaneous neurotransmission, which may, in turn, facilitate neurodegeneration.
Collapse
Affiliation(s)
- Natali L. Chanaday
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Elena Nosyreva
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ok-Ho Shin
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Hua Zhang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Iltan Aklan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA,FOE Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Ilya Bezprozvanny
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.,Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Ege T. Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA.,Vanderbilt Brain Institute.,Corresponding author: Ege T. Kavalali, Ph.D., Department of Pharmacology, Vanderbilt University, 465 21st Avenue South, 7130A MRBIII, PMB407933 Nashville, TN 37240-7933, phone: 615-343-5480,
| |
Collapse
|
16
|
Prakriya M. Orai1 is in neurons: Reply to "where have all the Orais gone?". Cell Calcium 2021; 96:102389. [PMID: 33744779 DOI: 10.1016/j.ceca.2021.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, United States.
| |
Collapse
|
17
|
Kushnireva L, Korkotian E, Segal M. Calcium Sensors STIM1 and STIM2 Regulate Different Calcium Functions in Cultured Hippocampal Neurons. Front Synaptic Neurosci 2021; 12:573714. [PMID: 33469426 PMCID: PMC7813759 DOI: 10.3389/fnsyn.2020.573714] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
There are growing indications for the involvement of calcium stores in the plastic properties of neurons and particularly in dendritic spines of central neurons. The store-operated calcium entry (SOCE) channels are assumed to be activated by the calcium sensor stromal interaction molecule (STIM)which leads to activation of its associated Orai channel. There are two STIM species, and the differential role of the two in SOCE is not entirely clear. In the present study, we were able to distinguish between transfected STIM1, which is more mobile primarily in young neurons, and STIM2 which is less mobile and more prominent in older neurons in culture. STIM1 mobility is associated with spontaneous calcium sparks, local transient rise in cytosolic [Ca2+]i, and in the formation and elongation of dendritic filopodia/spines. In contrast, STIM2 is associated with older neurons, where it is mobile and moves into dendritic spines primarily when cytosolic [Ca2+]i levels are reduced, apparently to activate resident Orai channels. These results highlight a role for STIM1 in the regulation of [Ca2+]i fluctuations associated with the formation of dendritic spines or filopodia in the developing neuron, whereas STIM2 is associated with the maintenance of calcium entry into stores in the adult neuron.
Collapse
Affiliation(s)
- Liliya Kushnireva
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel.,Faculty of Biology, Perm State University, Perm, Russia
| | - Eduard Korkotian
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel.,Faculty of Biology, Perm State University, Perm, Russia
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| |
Collapse
|
18
|
Czeredys M. Dysregulation of Neuronal Calcium Signaling via Store-Operated Channels in Huntington's Disease. Front Cell Dev Biol 2020; 8:611735. [PMID: 33425919 PMCID: PMC7785827 DOI: 10.3389/fcell.2020.611735] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric problems. It is caused by a polyglutamine expansion in the huntingtin protein that leads to striatal degeneration via the transcriptional dysregulation of several genes, including genes that are involved in the calcium (Ca2+) signalosome. Recent research has shown that one of the major Ca2+ signaling pathways, store-operated Ca2+ entry (SOCE), is significantly elevated in HD. SOCE refers to Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. The dysregulation of Ca2+ homeostasis is postulated to be a cause of HD progression because the SOCE pathway is indirectly and abnormally activated by mutant huntingtin (HTT) in γ-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs) from the striatum in HD models before the first symptoms of the disease appear. The present review summarizes recent studies that revealed a relationship between HD pathology and elevations of SOCE in different models of HD, including YAC128 mice (a transgenic model of HD), cellular HD models, and induced pluripotent stem cell (iPSC)-based GABAergic medium spiny neurons (MSNs) that are obtained from adult HD patient fibroblasts. SOCE in MSNs was shown to be mediated by currents through at least two different channel groups, Ca2+ release-activated Ca2+ current (ICRAC) and store-operated Ca2+ current (ISOC), which are composed of stromal interaction molecule (STIM) proteins and Orai or transient receptor potential channel (TRPC) channels. Their role under physiological and pathological conditions in HD are discussed. The role of Huntingtin-associated protein 1 isoform A in elevations of SOCE in HD MSNs and potential compounds that may stabilize elevations of SOCE in HD are also summarized. Evidence is presented that shows that the dysregulation of molecular components of SOCE or pathways upstream of SOCE in HD MSN neurons is a hallmark of HD, and these changes could lead to HD pathology, making them potential therapeutic targets.
Collapse
Affiliation(s)
- Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Serwach K, Gruszczynska-Biegala J. Target Molecules of STIM Proteins in the Central Nervous System. Front Mol Neurosci 2020; 13:617422. [PMID: 33424550 PMCID: PMC7786003 DOI: 10.3389/fnmol.2020.617422] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Stromal interaction molecules (STIMs), including STIM1 and STIM2, are single-pass transmembrane proteins that are located predominantly in the endoplasmic reticulum (ER). They serve as calcium ion (Ca2+) sensors within the ER. In the central nervous system (CNS), they are involved mainly in Orai-mediated store-operated Ca2+ entry (SOCE). The key molecular components of the SOCE pathway are well-characterized, but the molecular mechanisms that underlie the regulation of this pathway need further investigation. Numerous intracellular target proteins that are located in the plasma membrane, ER, cytoskeleton, and cytoplasm have been reported to play essential roles in concert with STIMs, such as conformational changes in STIMs, their translocation, the stabilization of their interactions with Orai, and the activation of other channels. The present review focuses on numerous regulators, such as Homer, SOCE-associated regulatory factor (SARAF), septin, synaptopodin, golli proteins, partner of STIM1 (POST), and transcription factors and proteasome inhibitors that regulate STIM-Orai interactions in the CNS. Further we describe novel roles of STIMs in mediating Ca2+ influx via other than Orai pathways, including TRPC channels, VGCCs, AMPA and NMDA receptors, and group I metabotropic glutamate receptors. This review also summarizes recent findings on additional molecular targets of STIM proteins including SERCA, IP3Rs, end-binding proteins (EB), presenilin, and CaMKII. Dysregulation of the SOCE-associated toolkit, including STIMs, contributes to the development of neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Huntington's disease), traumatic brain injury, epilepsy, and stroke. Emerging evidence points to the role of STIM proteins and several of their molecular effectors and regulators in neuronal and glial physiology and pathology, suggesting their potential application for future therapeutic strategies.
Collapse
Affiliation(s)
- Karolina Serwach
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
20
|
Maneshi MM, Toth AB, Ishii T, Hori K, Tsujikawa S, Shum AK, Shrestha N, Yamashita M, Miller RJ, Radulovic J, Swanson GT, Prakriya M. Orai1 Channels Are Essential for Amplification of Glutamate-Evoked Ca 2+ Signals in Dendritic Spines to Regulate Working and Associative Memory. Cell Rep 2020; 33:108464. [PMID: 33264616 PMCID: PMC7832685 DOI: 10.1016/j.celrep.2020.108464] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Store-operated Orai1 calcium channels function as highly Ca2+-selective ion channels and are broadly expressed in many tissues including the central nervous system, but their contributions to cognitive processing are largely unknown. Here, we report that many measures of synaptic, cellular, and behavioral models of learning are markedly attenuated in mice lacking Orai1 in forebrain excitatory neurons. Results with focal glutamate uncaging in hippocampal neurons support an essential role of Orai1 channels in amplifying NMDA-receptor-induced dendritic Ca2+ transients that drive activity-dependent spine morphogenesis and long-term potentiation at Schaffer collateral-CA1 synapses. Consistent with these signaling roles, mice lacking Orai1 in pyramidal neurons (but not interneurons) exhibit striking deficits in working and associative memory tasks. These findings identify Orai1 channels as essential regulators of dendritic spine Ca2+ signaling, synaptic plasticity, and cognition.
Collapse
Affiliation(s)
- Mohammad Mehdi Maneshi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anna B Toth
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Toshiyuki Ishii
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kotaro Hori
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shogo Tsujikawa
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew K Shum
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nisha Shrestha
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Richard J Miller
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jelena Radulovic
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Zhang I, Hu H. Store-Operated Calcium Channels in Physiological and Pathological States of the Nervous System. Front Cell Neurosci 2020; 14:600758. [PMID: 33328896 PMCID: PMC7732603 DOI: 10.3389/fncel.2020.600758] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Store-operated calcium channels (SOCs) are widely expressed in excitatory and non-excitatory cells where they mediate significant store-operated calcium entry (SOCE), an important pathway for calcium signaling throughout the body. While the activity of SOCs has been well studied in non-excitable cells, attention has turned to their role in neurons and glia in recent years. In particular, the role of SOCs in the nervous system has been extensively investigated, with links to their dysregulation found in a wide variety of neurological diseases from Alzheimer’s disease (AD) to pain. In this review, we provide an overview of their molecular components, expression, and physiological role in the nervous system and describe how the dysregulation of those roles could potentially lead to various neurological disorders. Although further studies are still needed to understand how SOCs are activated under physiological conditions and how they are linked to pathological states, growing evidence indicates that SOCs are important players in neurological disorders and could be potential new targets for therapies. While the role of SOCE in the nervous system continues to be multifaceted and controversial, the study of SOCs provides a potentially fruitful avenue into better understanding the nervous system and its pathologies.
Collapse
Affiliation(s)
- Isis Zhang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
22
|
Hori K, Tsujikawa S, Novakovic MM, Yamashita M, Prakriya M. Regulation of chemoconvulsant-induced seizures by store-operated Orai1 channels. J Physiol 2020; 598:5391-5409. [PMID: 32851638 DOI: 10.1113/jp280119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Temporal lobe epilepsy is a complex neurological disease caused by imbalance of excitation and inhibition in the brain. Growing literature implicates altered Ca2+ signalling in many aspects of epilepsy but the diversity of Ca2+ channels that regulate this syndrome are not well-understood. Here, we report that mice lacking the store-operated Ca2+ channel, Orai1, in the brain show markedly stronger seizures in response to the chemoconvulsants, kainic acid and pilocarpine. Electrophysiological analysis reveals that selective deletion of Orai1 channels in inhibitory neurons disables chemoconvulsant-induced excitation of GABAergic neurons in the CA1 hippocampus. Likewise, deletion of Orai1 in GABAergic neurons abrogates the chemoconvulsant-induced burst of spontaneous inhibitory postsynaptic currents (sIPSCs) on CA1 pyramidal neurons in the hippocampus. This loss of chemoconvulsant inhibition likely aggravates status epilepticus in Orai1 KO mice. These results identify Orai1 channels as regulators of hippocampal interneuron excitability and seizures. ABSTRACT Store-operated Orai1 channels are a major mechanism for Ca2+ entry in many cells and mediate numerous functions including gene expression, cytokine production and gliotransmitter release. Orai1 is expressed in many regions of the mammalian brain; however, its role in regulating neuronal excitability, synaptic function and brain disorders has only now begun to be investigated. To investigate a potential role of Orai1 channels in status epilepticus induced by chemoconvulsants, we examined acute seizures evoked by intraperitoneal injections of kainic acid (KA) and pilocarpine in mice with a conditional deletion of Orai1 (or its activator STIM1) in the brain. Brain-specific Orai1 and STIM1 knockout (KO) mice exhibited significantly stronger seizures (P = 0.00003 and P < 0.00001), and higher chemoconvulsant-induced mortality (P = 0.02) compared with wildtype (WT) littermates. Electrophysiological recordings in hippocampal brain slices revealed that KA stimulated the activity of inhibitory interneurons in the CA1 hippocampus (P = 0.04) which failed to occur in Orai1 KO mice. Further, KA and pilocarpine increased the frequency of spontaneous IPSCs in CA1 pyramidal neurons >twofold (KA: P = 0.04; pilocarpine: P = 0.0002) which was abolished in Orai1 KO mice. Mice with selective deletion of Orai1 in GABAergic neurons alone also showed stronger seizures to KA (P = 0.001) and pilocarpine (P < 0.00001) and loss of chemoconvulsant-induced increases in sIPSC responses compared with WT controls. We conclude that Orai1 channels regulate chemoconvulsant-induced excitation in GABAergic neurons and that destabilization of the excitatory/inhibitory balance in Orai1 KO mice aggravates chemoconvulsant-mediated seizures. These results identify Orai1 channels as novel molecular regulators of hippocampal neuronal excitability and seizures.
Collapse
Affiliation(s)
- Kotaro Hori
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shogo Tsujikawa
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michaela M Novakovic
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
23
|
Knockout of stim2a Increases Calcium Oscillations in Neurons and Induces Hyperactive-Like Phenotype in Zebrafish Larvae. Int J Mol Sci 2020; 21:ijms21176198. [PMID: 32867296 PMCID: PMC7503814 DOI: 10.3390/ijms21176198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
Stromal interaction molecule (STIM) proteins play a crucial role in store-operated calcium entry (SOCE) as endoplasmic reticulum Ca2+ sensors. In neurons, STIM2 was shown to have distinct functions from STIM1. However, its role in brain activity and behavior was not fully elucidated. The present study analyzed behavior in zebrafish (Danio rerio) that lacked stim2a. The mutant animals had no morphological abnormalities and were fertile. RNA-sequencing revealed alterations of the expression of transcription factor genes and several members of the calcium toolkit. Neuronal Ca2+ activity was measured in vivo in neurons that expressed the GCaMP5G sensor. Optic tectum neurons in stim2a-/- fish had more frequent Ca2+ signal oscillations compared with neurons in wildtype (WT) fish. We detected an increase in activity during the visual-motor response test, an increase in thigmotaxis in the open field test, and the disruption of phototaxis in the dark/light preference test in stim2a-/- mutants compared with WT. Both groups of animals reacted to glutamate and pentylenetetrazol with an increase in activity during the visual-motor response test, with no major differences between groups. Altogether, our results suggest that the hyperactive-like phenotype of stim2a-/- mutant zebrafish is caused by the dysregulation of Ca2+ homeostasis and signaling.
Collapse
|
24
|
Transgenic Mice Overexpressing Human STIM2 and ORAI1 in Neurons Exhibit Changes in Behavior and Calcium Homeostasis but Show No Signs of Neurodegeneration. Int J Mol Sci 2020; 21:ijms21030842. [PMID: 32012922 PMCID: PMC7037127 DOI: 10.3390/ijms21030842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/10/2023] Open
Abstract
The maintenance of proper cytosolic Ca2+ level is crucial for neuronal survival, and dysregulation of Ca2+ homeostasis is found in a variety of neurological disorders, including Alzheimer’s disease. According to the “Ca2+ hypothesis of aging”, Ca2+ disturbances precede the onset of AD symptoms and lead to neurodegeneration. STIM and ORAI proteins are involved in neuronal physiological and pathological processes as essential components of the store-operated Ca2+ entry. Our previous data suggested that overexpression of STIM2 and ORAI1 might increase basal neuronal cytosolic Ca2+ level. We generated double transgenic mice overexpressing these two genes in neurons, expecting that the increased basal Ca2+ concentration will lead to premature neurodegeneration. We observed changes in Ca2+ homeostasis and electrophysiological properties in acute brain slices of STIM2/ORAI1 neurons. However, we did not observe any augmentation of neurodegenerative processes, as tested by Fluoro-Jade® C staining and assessment of amyloidogenesis. The battery of behavioral tests did not show any signs of accelerated aging. We conclude that changes of calcium homeostasis induced by overexpression of STIM2 and ORAI1 had no substantial adverse effects on neurons and did not lead to early neurodegeneration.
Collapse
|
25
|
Popugaeva E, Bezprozvanny I, Chernyuk D. Reversal of Calcium Dysregulation as Potential Approach for Treating Alzheimer's Disease. Curr Alzheimer Res 2020; 17:344-354. [PMID: 32469698 PMCID: PMC8210816 DOI: 10.2174/1567205017666200528162046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/25/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Despite decades of research and effort, there is still no effective disease-modifying treatment for Alzheimer's Disease (AD). Most of the recent AD clinical trials were targeting amyloid pathway, but all these trials failed. Although amyloid pathology is a hallmark and defining feature of AD, targeting the amyloid pathway has been very challenging due to low efficacy and serious side effects. Alternative approaches or mechanisms for our understanding of the major cause of memory loss in AD need to be considered as potential therapeutic targets. Increasing studies suggest that Ca2+ dysregulation in AD plays an important role in AD pathology and is associated with other AD abnormalities, such as excessive inflammation, increased ROS, impaired autophagy, neurodegeneration, synapse, and cognitive dysfunction. Ca2+ dysregulation in cytosolic space, Endoplasmic Reticulum (ER) and mitochondria have been reported in the context of various AD models. Drugs or strategies, to correct the Ca2+ dysregulation in AD, have been demonstrated to be promising as an approach for the treatment of AD in preclinical models. This review will discuss the mechanisms of Ca2+ dysregulation in AD and associated pathology and discuss potential approaches or strategies to develop novel drugs for the treatment of AD by targeting Ca2+ dysregulation.
Collapse
Affiliation(s)
- Elena Popugaeva
- Department of Medical Physics, Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg Polytechnic University, St Petersburg, Russia
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, USA
| | - Daria Chernyuk
- Department of Medical Physics, Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg Polytechnic University, St Petersburg, Russia
| |
Collapse
|
26
|
Kikuta S, Iguchi Y, Kakizaki T, Kobayashi K, Yanagawa Y, Takada M, Osanai M. Store-Operated Calcium Channels Are Involved in Spontaneous Slow Calcium Oscillations in Striatal Neurons. Front Cell Neurosci 2019; 13:547. [PMID: 31920549 PMCID: PMC6927941 DOI: 10.3389/fncel.2019.00547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
The striatum plays an important role in linking cortical activity to basal ganglia output. Striatal neurons exhibit spontaneous slow Ca2+ oscillations that result from Ca2+ release from the endoplasmic reticulum (ER) induced by the mGluR5-IP3R signaling cascade. The maximum duration of a single oscillatory event is about 300 s. A major question arises as to how such a long-duration Ca2+ elevation is maintained. Store-operated calcium channels (SOCCs) are one of the calcium (Ca2+)-permeable ion channels. SOCCs are opened by activating the metabotropic glutamate receptor type 5 and inositol 1,4,5-trisphosphate receptor (mGluR5-IP3R) signal transduction cascade and are related to the pathophysiology of several neurological disorders. However, the functions of SOCCs in striatal neurons remain unclear. Here, we show that SOCCs exert a functional role in striatal GABAergic neurons. Depletion of calcium stores from the ER induced large, sustained calcium entry that was blocked by SKF96365, an inhibitor of SOCCs. Moreover, the application of SKF96365 greatly reduced the frequency of slow Ca2+ oscillations. The present results indicate that SOCCs contribute to Ca2+ signaling in striatal GABAergic neurons, including medium spiny projection neurons (MSNs) and GABAergic interneurons, through elevated Ca2+ due to spontaneous slow Ca2+ oscillations.
Collapse
Affiliation(s)
- Satomi Kikuta
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoshio Iguchi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Toshikazu Kakizaki
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Makoto Osanai
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Laboratory for Physiological Functional Imaging, Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
27
|
Tiscione SA, Vivas O, Ginsburg KS, Bers DM, Ory DS, Santana LF, Dixon RE, Dickson EJ. Disease-associated mutations in Niemann-Pick type C1 alter ER calcium signaling and neuronal plasticity. J Cell Biol 2019; 218:4141-4156. [PMID: 31601621 PMCID: PMC6891088 DOI: 10.1083/jcb.201903018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/12/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) protein is essential for the transport of externally derived cholesterol from lysosomes to other organelles. Deficiency of NPC1 underlies the progressive NPC1 neurodegenerative disorder. Currently, there are no curative therapies for this fatal disease. Given the Ca2+ hypothesis of neurodegeneration, which posits that altered Ca2+ dynamics contribute to neuropathology, we tested if disease mutations in NPC1 alter Ca2+ signaling and neuronal plasticity. We determine that NPC1 inhibition or disease mutations potentiate store-operated Ca2+ entry (SOCE) due to a presenilin 1 (PSEN1)-dependent reduction in ER Ca2+ levels alongside elevated expression of the molecular SOCE components ORAI1 and STIM1. Associated with this dysfunctional Ca2+ signaling is destabilization of neuronal dendritic spines. Knockdown of PSEN1 or inhibition of the SREBP pathway restores Ca2+ homeostasis, corrects differential protein expression, reduces cholesterol accumulation, and rescues spine density. These findings highlight lysosomes as a crucial signaling platform responsible for tuning ER Ca2+ signaling, SOCE, and synaptic architecture in health and disease.
Collapse
Affiliation(s)
- Scott A Tiscione
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Oscar Vivas
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | | | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, CA
| | - Daniel S Ory
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Luis F Santana
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| |
Collapse
|
28
|
Presenilin 1 Regulates [Ca 2+]i and Mitochondria/ER Interaction in Cultured Rat Hippocampal Neurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7284967. [PMID: 31467635 PMCID: PMC6701405 DOI: 10.1155/2019/7284967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/26/2019] [Accepted: 06/11/2019] [Indexed: 01/17/2023]
Abstract
Mutations in the presenilin 1 (PS1) gene are a major trigger of familial Alzheimer's disease (AD), yet the mechanisms affected by mutated PS1 causing cognitive decline are not yet elucidated. In the present study, we compared rat hippocampal neurons in culture, transfected with PS1 or with mutant (M146V) PS1 (mPS1) plasmids in several neuronal functions. Initially, we confirmed earlier observations that mPS1-expressing neurons are endowed with fewer mature “mushroom” spines and more filopodial immature protrusions. The correlation between calcium changes in the cytosol, mitochondria, and endoplasmic reticulum (ER) is mitigated in the mPS1 neurons, tested by the response to an abrupt increase in ambient [Ca2+]o; cytosolic [Ca2+]i is higher in the mPS1 neurons but mitochondrial [Ca2+] is lower than in control neurons. Strikingly, mPS1-transfected neurons express higher excitability and eventual lower survival rate when exposed to the oxidative stressor, paraquat. These results highlight an impaired calcium regulation in mPS1 neurons, resulting in a reduced ability to handle oxidative stress, which may lead to cell death and AD.
Collapse
|
29
|
Basnayake K, Mazaud D, Bemelmans A, Rouach N, Korkotian E, Holcman D. Fast calcium transients in dendritic spines driven by extreme statistics. PLoS Biol 2019; 17:e2006202. [PMID: 31163024 PMCID: PMC6548358 DOI: 10.1371/journal.pbio.2006202] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Fast calcium transients (<10 ms) remain difficult to analyse in cellular microdomains, yet they can modulate key cellular events such as trafficking, local ATP production by endoplasmic reticulum-mitochondria complex (ER-mitochondria complex), or spontaneous activity in astrocytes. In dendritic spines receiving synaptic inputs, we show here that in the presence of a spine apparatus (SA), which is an extension of the smooth ER, a calcium-induced calcium release (CICR) is triggered at the base of the spine by the fastest calcium ions arriving at a Ryanodyne receptor (RyR). The mechanism relies on the asymmetric distributions of RyRs and sarco/ER calcium-ATPase (SERCA) pumps that we predict using a computational model and further confirm experimentally in culture and slice hippocampal neurons. The present mechanism for which the statistics of the fastest particles arriving at a small target, followed by an amplification, is likely to be generic in molecular transduction across cellular microcompartments, such as thin neuronal processes, astrocytes, endfeets, or protrusions.
Collapse
Affiliation(s)
- Kanishka Basnayake
- Computational Biology and Applied Mathematics, Institut de Biologie de l'École Normale Supérieure, Paris, France
| | - David Mazaud
- Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, Paris Sciences et Lettres Research University, Paris, France
| | - Alexis Bemelmans
- Commissariat à l’Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center and Centre National de la Recherche Scientifique UMR9199, Université Paris-Sud, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, Paris Sciences et Lettres Research University, Paris, France
| | - Eduard Korkotian
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Faculty of Biology, Perm State University, Perm, Russia
| | - David Holcman
- Computational Biology and Applied Mathematics, Institut de Biologie de l'École Normale Supérieure, Paris, France
- Department of Applied Mathematics and Theoretical Physics, Churchill College, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Serwach K, Gruszczynska-Biegala J. STIM Proteins and Glutamate Receptors in Neurons: Role in Neuronal Physiology and Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20092289. [PMID: 31075835 PMCID: PMC6539036 DOI: 10.3390/ijms20092289] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
Neuronal calcium (Ca2+) influx has long been ascribed mainly to voltage-gated Ca2+ channels and glutamate receptor channels. Recent research has shown that it is also complemented by stromal interaction molecule (STIM) protein-mediated store-operated Ca2+ entry (SOCE). SOCE is described as Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. The present review summarizes recent studies that indicate a relationship between neuronal SOCE that is mediated by STIM1 and STIM2 proteins and glutamate receptors under both physiological and pathological conditions, such as neurodegenerative disorders. We present evidence that the dysregulation of neuronal SOCE and glutamate receptor activity are hallmarks of acute neurodegenerative diseases (e.g., traumatic brain injury and cerebral ischemia) and chronic neurodegenerative diseases (e.g., Alzheimer's disease and Huntington's disease). Emerging evidence indicates a role for STIM proteins and glutamate receptors in neuronal physiology and pathology, making them potential therapeutic targets.
Collapse
Affiliation(s)
- Karolina Serwach
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.
| | - Joanna Gruszczynska-Biegala
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.
| |
Collapse
|
31
|
Familial Alzheimer's disease-linked presenilin mutants and intracellular Ca 2+ handling: A single-organelle, FRET-based analysis. Cell Calcium 2019; 79:44-56. [PMID: 30822648 DOI: 10.1016/j.ceca.2019.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
An imbalance in Ca2+ homeostasis represents an early event in the pathogenesis of Alzheimer's disease (AD). Presenilin-1 and -2 (PS1 and PS2) mutations, the major cause of familial AD (FAD), have been extensively associated with alterations in different Ca2+ signaling pathways, in particular those handled by storage compartments. However, FAD-PSs effect on organelles Ca2+ content is still debated and the mechanism of action of mutant proteins is unclear. To fulfil the need of a direct investigation of intracellular stores Ca2+ dynamics, we here present a detailed and quantitative single-cell analysis of FAD-PSs effects on organelle Ca2+ handling using specifically targeted, FRET (Fluorescence/Förster Resonance Energy Transfer)-based Ca2+ indicators. In SH-SY5Y human neuroblastoma cells and in patient-derived fibroblasts expressing different FAD-PSs mutations, we directly measured Ca2+ concentration within the main intracellular Ca2+ stores, e.g., Endoplasmic Reticulum (ER) and Golgi Apparatus (GA) medial- and trans-compartment. We unambiguously demonstrate that the expression of FAD-PS2 mutants, but not FAD-PS1, in either SH-SY5Y cells or FAD patient-derived fibroblasts, is able to alter Ca2+ handling of ER and medial-GA, but not trans-GA, reducing, compared to control cells, the Ca2+ content within these organelles by partially blocking SERCA (Sarco/Endoplasmic Reticulum Ca2+-ATPase) activity. Moreover, by using a cytosolic Ca2+ probe, we show that the expression of both FAD-PS1 and -PS2 reduces the Ca2+ influx activated by stores depletion (Store-Operated Ca2+ Entry; SOCE), by decreasing the expression levels of one of the key molecules, STIM1 (STromal Interaction Molecule 1), controlling this pathway. Our data indicate that FAD-linked PSs mutants differentially modulate the Ca2+ content of intracellular stores yet leading to a complex dysregulation of Ca2+ homeostasis, which represents a common disease phenotype of AD.
Collapse
|
32
|
Non-linear calcium signalling and synaptic plasticity in interneurons. Curr Opin Neurobiol 2019; 54:98-103. [DOI: 10.1016/j.conb.2018.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 01/24/2023]
|
33
|
Mustaly-Kalimi S, Littlefield AM, Stutzmann GE. Calcium Signaling Deficits in Glia and Autophagic Pathways Contributing to Neurodegenerative Disease. Antioxid Redox Signal 2018; 29:1158-1175. [PMID: 29634342 DOI: 10.1089/ars.2017.7266] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Numerous cellular processes and signaling mechanisms have been identified that contribute to Alzheimer's disease (AD) pathology; however, a comprehensive or unifying pathway that binds together the major disease features remains elusive. As an upstream mechanism, altered calcium (Ca2+) signaling is a common driving force for many pathophysiological events that emerge during normal aging and development of neurodegenerative disease. Recent Advances: Over the previous three decades, accumulated evidence has validated the concept that intracellular Ca2+ dysregulation is centrally involved in AD pathogenesis, including the aggregation of pathogenic β-amyloid (Aβ) and phospho-τ species, synapse loss and dysfunction, cognitive impairment, and neurotoxicity. CRITICAL ISSUES Although neuronal Ca2+ signaling within the cytosol and endoplasmic reticulum (ER) has been well studied, other critical central nervous system-resident cell types affected by aberrant Ca2+ signaling, such as astrocytes and microglia, have not been considered as thoroughly. In addition, certain intracellular Ca2+-harboring organelles have been well studied, such as the ER and mitochondria; however other critical Ca2+-regulated organelles, such as lysosomes and autophagosomes, have only more recently been investigated. In this review, we examine Ca2+ dysregulation in microglia and astrocytes, as well as key intracellular organelles important for cellular maintenance and protein handling. Ca2+ dysregulation within these non-neuronal cells and organelles is hypothesized to disrupt the effective clearance of misaggregated proteins and cellular signaling pathways needed for memory networks. FUTURE DIRECTIONS Overall, we aim to explore how these disrupted mechanisms could be involved in AD pathology and consider their role as potential therapeutic targets. Antioxid. Redox Signal. 29, 1158-1175.
Collapse
Affiliation(s)
- Sarah Mustaly-Kalimi
- 1 Department of Neuroscience, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Alyssa M Littlefield
- 1 Department of Neuroscience, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Grace E Stutzmann
- 2 Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| |
Collapse
|
34
|
Popugaeva E, Pchitskaya E, Bezprozvanny I. Dysregulation of Intracellular Calcium Signaling in Alzheimer's Disease. Antioxid Redox Signal 2018; 29:1176-1188. [PMID: 29890840 PMCID: PMC6157344 DOI: 10.1089/ars.2018.7506] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Calcium (Ca2+) hypothesis of Alzheimer's disease (AD) gains popularity. It points to new signaling pathways that may underlie AD pathogenesis. Based on calcium hypothesis, novel targets for the development of potential AD therapies are identified. Recent Advances: Recently, the key role of neuronal store-operated calcium entry (nSOCE) in the development of AD has been described. Correct regulation of nSOCE is necessary for the stability of postsynaptic contacts to preserve the memory formation. Molecular identity of hippocampal nSOCE is defined. Perspective nSOCE-activating molecule, prototype of future anti-AD drugs, is described. CRITICAL ISSUES Endoplasmic reticulum Ca2+ overload happens in many but not in all AD models. The nSOCE targeting therapy described in this review may not be universally applicable. FUTURE DIRECTIONS There is a need to determine whether AD is a syndrome with one critical signaling pathway that initiates pathology, or it is a disorder with many different signaling pathways that are disrupted simultaneously or one after each other. It is necessary to validate applicability of nSOCE-activating therapy for the development of anti-AD medication. There is an experimental correlation between downregulated nSOCE and disrupted postsynaptic contacts in AD mouse models. Signaling mechanisms downstream of nSOCE which are responsible for the regulation of stability of postsynaptic contacts have to be discovered. That will bring new targets for the development of AD-preventing therapies. Antioxid. Redox Signal. 29, 1176-1188.
Collapse
Affiliation(s)
- Elena Popugaeva
- 1 Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St.Petersburg Polytechnic University , St.Petersburg, Russian Federation
| | - Ekaterina Pchitskaya
- 1 Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St.Petersburg Polytechnic University , St.Petersburg, Russian Federation
| | - Ilya Bezprozvanny
- 1 Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St.Petersburg Polytechnic University , St.Petersburg, Russian Federation.,2 Department of Physiology, UT Southwestern Medical Center at Dallas , Dallas, Texas
| |
Collapse
|
35
|
Angiotensin II-mediated suppression of synaptic proteins in mouse hippocampal neuronal HT22 cell was inhibited by propofol: role of calcium signaling pathway. J Anesth 2018; 32:856-865. [DOI: 10.1007/s00540-018-2565-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
|
36
|
Segal M. Calcium stores regulate excitability in cultured rat hippocampal neurons. J Neurophysiol 2018; 120:2694-2705. [PMID: 30230988 DOI: 10.1152/jn.00447.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Extracellular calcium ions support synaptic activity but also reduce excitability of central neurons. In the present study, the effect of calcium on excitability was explored in cultured hippocampal neurons. CaCl2 injected by pressure in the vicinity of a neuron that is bathed only in MgCl2 as the main divalent cation caused a depolarizing shift in action potential threshold and a reduction in excitability. This effect was not seen if the intracellular milieu consisted of Cs+ instead of K-gluconate as the main cation or when it contained ruthenium red, which blocks release of calcium from stores. The suppression of excitability by calcium was mimicked by caffeine, and calcium store antagonists cyclopiazonic acid or thapsigargin blocked this action. Neurons taken from synaptopodin-knockout mice show significantly reduced efficacy of calcium modulation of action potential threshold. Likewise, in Orai1 knockdown cells, calcium is less effective in modulating excitability of neurons. Activation of small-conductance K (SK) channels increased action potential threshold akin to that produced by calcium ions, whereas blockade of SK channels but not big K channels reduced the threshold for action potential discharge. These results indicate that calcium released from stores may suppress excitability of central neurons. NEW & NOTEWORTHY Extracellular calcium reduces excitability of cultured hippocampal neurons. This effect is mediated by calcium-gated potassium currents, possibly small-conductance K channels. Release of calcium from internal stores mimics the effect of extracellular calcium. It is proposed that calcium stores modulate excitability of central neurons.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Neurobiology, The Weizmann Institute , Rehovot , Israel
| |
Collapse
|
37
|
Zuccolo E, Laforenza U, Negri S, Botta L, Berra-Romani R, Faris P, Scarpellino G, Forcaia G, Pellavio G, Sancini G, Moccia F. Muscarinic M5 receptors trigger acetylcholine-induced Ca 2+ signals and nitric oxide release in human brain microvascular endothelial cells. J Cell Physiol 2018; 234:4540-4562. [PMID: 30191989 DOI: 10.1002/jcp.27234] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
Basal forebrain neurons control cerebral blood flow (CBF) by releasing acetylcholine (Ach), which binds to endothelial muscarinic receptors to induce nitric (NO) release and vasodilation in intraparenchymal arterioles. Nevertheless, the mechanism whereby Ach stimulates human brain microvascular endothelial cells to produce NO is still unknown. Herein, we sought to assess whether Ach stimulates NO production in a Ca2+ -dependent manner in hCMEC/D3 cells, a widespread model of human brain microvascular endothelial cells. Ach induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+ ]i ) that was prevented by the genetic blockade of M5 muscarinic receptors (M5-mAchRs), which was the only mAchR isoform coupled to phospholipase Cβ (PLCβ) present in hCMEC/D3 cells. A comprehensive real-time polymerase chain reaction analysis revealed the expression of the transcripts encoding for type 3 inositol-1,4,5-trisphosphate receptors (InsP3 R3), two-pore channels 1 and 2 (TPC1-2), Stim2, Orai1-3. Pharmacological manipulation showed that the Ca2+ response to Ach was mediated by InsP3 R3, TPC1-2, and store-operated Ca2+ entry (SOCE). Ach-induced NO release, in turn, was inhibited in cells deficient of M5-mAchRs. Likewise, Ach failed to increase NO levels in the presence of l-NAME, a selective NOS inhibitor, or BAPTA, a membrane-permeant intracellular Ca2+ buffer. Moreover, the pharmacological blockade of the Ca2+ response to Ach also inhibited the accompanying NO production. These data demonstrate for the first time that synaptically released Ach may trigger NO release in human brain microvascular endothelial cells by stimulating a Ca2+ signal via M5-mAchRs.
Collapse
Affiliation(s)
- Estella Zuccolo
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Laura Botta
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Pawan Faris
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy.,Department of Biology, College of Science, Salahaddin University, Erbil, Iraq
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| |
Collapse
|
38
|
Wegierski T, Kuznicki J. Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium 2018; 74:102-111. [DOI: 10.1016/j.ceca.2018.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/20/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
|
39
|
Tong BCK, Wu AJ, Li M, Cheung KH. Calcium signaling in Alzheimer's disease & therapies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1745-1760. [PMID: 30059692 DOI: 10.1016/j.bbamcr.2018.07.018] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and is characterized by the accumulation of amyloid (Aβ) plaques and neurofibrillary tangles in the brain. Much attention has been given to develop AD treatments based on the amyloid cascade hypothesis; however, none of these drugs had good efficacy at improving cognitive functions in AD patients suggesting that Aβ might not be the disease origin. Thus, there are urgent needs for the development of new therapies that target on the proximal cause of AD. Cellular calcium (Ca2+) signals regulate important facets of neuronal physiology. An increasing body of evidence suggests that age-related dysregulation of neuronal Ca2+ homeostasis may play a proximal role in the pathogenesis of AD as disrupted Ca2+ could induce synaptic deficits and promote the accumulation of Aβ plaques and neurofibrillary tangles. Given that Ca2+ disruption is ubiquitously involved in all AD pathologies, it is likely that using chemical agents or small molecules specific to Ca2+ channels or handling proteins on the plasma membrane and membranes of intracellular organelles to correct neuronal Ca2+ dysregulation could open up a new approach to AD prevention and treatment. This review summarizes current knowledge on the molecular mechanisms linking Ca2+ dysregulation with AD pathologies and discusses the possibility of correcting neuronal Ca2+ disruption as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Benjamin Chun-Kit Tong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Aston Jiaxi Wu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - King-Ho Cheung
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| |
Collapse
|
40
|
Gopurappilly R, Deb BK, Chakraborty P, Hasan G. Stable STIM1 Knockdown in Self-Renewing Human Neural Precursors Promotes Premature Neural Differentiation. Front Mol Neurosci 2018; 11:178. [PMID: 29942250 PMCID: PMC6004407 DOI: 10.3389/fnmol.2018.00178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Ca2+ signaling plays a significant role in the development of the vertebrate nervous system where it regulates neurite growth as well as synapse and neurotransmitter specification. Elucidating the role of Ca2+ signaling in mammalian neuronal development has been largely restricted to either small animal models or primary cultures. Here we derived human neural precursor cells (NPCs) from human embryonic stem cells to understand the functional significance of a less understood arm of calcium signaling, Store-operated Ca2+ entry or SOCE, in neuronal development. Human NPCs exhibited robust SOCE, which was significantly attenuated by expression of a stable shRNA-miR targeted toward the SOCE molecule, STIM1. Along with the plasma membrane channel Orai, STIM is an essential component of SOCE in many cell types, where it regulates gene expression. Therefore, we measured global gene expression in human NPCs with and without STIM1 knockdown. Interestingly, pathways down-regulated through STIM1 knockdown were related to cell proliferation and DNA replication processes, whereas post-synaptic signaling was identified as an up-regulated process. To understand the functional significance of these gene expression changes we measured the self-renewal capacity of NPCs with STIM1 knockdown. The STIM1 knockdown NPCs demonstrated significantly reduced neurosphere size and number as well as precocious spontaneous differentiation toward the neuronal lineage, as compared to control cells. These findings demonstrate that STIM1 mediated SOCE in human NPCs regulates gene expression changes, that in vivo are likely to physiologically modulate the self-renewal and differentiation of NPCs.
Collapse
Affiliation(s)
- Renjitha Gopurappilly
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Bipan Kumar Deb
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Pragnya Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
41
|
Interplay between ER Ca 2+ Binding Proteins, STIM1 and STIM2, Is Required for Store-Operated Ca 2+ Entry. Int J Mol Sci 2018; 19:ijms19051522. [PMID: 29783744 PMCID: PMC5983841 DOI: 10.3390/ijms19051522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/04/2023] Open
Abstract
Store-operated calcium entry (SOCE), a fundamentally important homeostatic and Ca2+ signaling pathway in many types of cells, is activated by the direct interaction of stromal interaction molecule 1 (STIM1), an endoplasmic reticulum (ER) Ca2+-binding protein, with Ca2+-selective Orai1 channels localized in the plasma membrane. While much is known about the regulation of SOCE by STIM1, the role of stromal interaction molecule 2 (STIM2) in SOCE remains incompletely understood. Here, using clustered regularly interspaced short palindromic repeats -CRISPR associated protein 9 (CRISPR-Cas9) genomic editing and molecular imaging, we investigated the function of STIM2 in NIH 3T3 fibroblast and αT3 cell SOCE. We found that deletion of Stim2 expression reduced SOCE by more than 90% in NIH 3T3 cells. STIM1 expression levels were unaffected in the Stim2 null cells. However, quantitative confocal fluorescence imaging demonstrated that in the absence of Stim2 expression, STIM1 did not translocate or form punctae in plasma membrane-associated ER membrane (PAM) junctions following ER Ca2+ store depletion. Fluorescence resonance energy transfer (FRET) imaging of intact, living cells revealed that the formation of STIM1 and Orai1 complexes in PAM nanodomains was significantly reduced in the Stim2 knockout cells. Our findings indicate that STIM2 plays an essential role in regulating SOCE in NIH 3T3 and αT3 cells and suggests that dynamic interplay between STIM1 and STIM2 induced by ER Ca2+ store discharge is necessary for STIM1 translocation, its interaction with Orai1, and activation of SOCE.
Collapse
|
42
|
Secondo A, Bagetta G, Amantea D. On the Role of Store-Operated Calcium Entry in Acute and Chronic Neurodegenerative Diseases. Front Mol Neurosci 2018; 11:87. [PMID: 29623030 PMCID: PMC5874322 DOI: 10.3389/fnmol.2018.00087] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
In both excitable and non-excitable cells, calcium (Ca2+) signals are maintained by a highly integrated process involving store-operated Ca2+ entry (SOCE), namely the opening of plasma membrane (PM) Ca2+ channels following the release of Ca2+ from intracellular stores. Upon depletion of Ca2+ store, the stromal interaction molecule (STIM) senses Ca2+ level reduction and migrates from endoplasmic reticulum (ER)-like sites to the PM where it activates the channel proteins Orai and/or the transient receptor potential channels (TRPC) prompting Ca2+ refilling. Accumulating evidence suggests that SOCE dysregulation may trigger perturbation of intracellular Ca2+ signaling in neurons, glia or hematopoietic cells, thus participating to the pathogenesis of diverse neurodegenerative diseases. Under acute conditions, such as ischemic stroke, neuronal SOCE can either re-establish Ca2+ homeostasis or mediate Ca2+ overload, thus providing a non-excitotoxic mechanism of ischemic neuronal death. The dualistic role of SOCE in brain ischemia is further underscored by the evidence that it also participates to endothelial restoration and to the stabilization of intravascular thrombi. In Parkinson's disease (PD) models, loss of SOCE triggers ER stress and dysfunction/degeneration of dopaminergic neurons. Disruption of neuronal SOCE also underlies Alzheimer's disease (AD) pathogenesis, since both in genetic mouse models and in human sporadic AD brain samples, reduced SOCE contributes to synaptic loss and cognitive decline. Unlike the AD setting, in the striatum from Huntington's disease (HD) transgenic mice, an increased STIM2 expression causes elevated synaptic SOCE that was suggested to underlie synaptic loss in medium spiny neurons. Thus, pharmacological inhibition of SOCE is beneficial to synapse maintenance in HD models, whereas the same approach may be anticipated to be detrimental to cortical and hippocampal pyramidal neurons. On the other hand, up-regulation of SOCE may be beneficial during AD. These intriguing findings highlight the importance of further mechanistic studies to dissect the molecular pathways, and their corresponding targets, involved in synaptic dysfunction and neuronal loss during aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Napoli, Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Cosenza, Italy
| | - Diana Amantea
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Cosenza, Italy
| |
Collapse
|
43
|
Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 2018; 70:87-94. [PMID: 28728834 PMCID: PMC5748019 DOI: 10.1016/j.ceca.2017.06.008] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/23/2023]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger that regulates various activities in eukaryotic cells. Especially important role calcium plays in excitable cells. Neurons require extremely precise spatial-temporal control of calcium-dependent processes because they regulate such vital functions as synaptic plasticity. Recent evidence indicates that neuronal calcium signaling is abnormal in many of neurodegenerative disorders such as Alzheimer's disease (AD), Huntington's disease (HD) and Parkinson's disease (PD). These diseases represent a major medical, social, financial and scientific problem, but despite enormous research efforts, they are still incurable and only symptomatic relief drugs are available. Thus, new approaches and targets are needed. This review highlight neuronal calcium-signaling abnormalities in these diseases, with particular emphasis on the role of neuronal store-operated Ca2+ entry (SOCE) pathway and its potential relevance as a therapeutic target for treatment of neurodegeneration.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation; Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
44
|
Martinez-Galan JR, Verdejo A, Caminos E. TRPC1 Channels Are Expressed in Pyramidal Neurons and in a Subset of Somatostatin Interneurons in the Rat Neocortex. Front Neuroanat 2018. [PMID: 29535613 PMCID: PMC5834471 DOI: 10.3389/fnana.2018.00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Disturbances in calcium homeostasis due to canonical transient receptor potential (TRPC) and/or store-operated calcium (SOC) channels can play a key role in a large number of brain disorders. TRPC channels are plasma membrane cation channels included in the transient receptor potential (TRP) superfamily. The most widely distributed member of the TRPC subfamily in the brain is TRPC1, which is frequently linked to group I metabotropic glutamate receptors (mGluRs) and to the components of SOC channels. Proposing TRPC/SOC channels as a therapeutic target in neurological diseases previously requires a detailed knowledge of the distribution of such molecules in the brain. The aim of our study was to analyze the neuroanatomical distribution of TRPC1 in the rat neocortex. By double- and triple-labeling and confocal microscopy, we tested the presence of TRPC1 by using a series of specific neurochemical markers. TRPC1 was abundant in SMI 32-positive pyramidal neurons, and in some glutamic acid decarboxylase 67 (GAD67) interneurons, but was lacking in glial fibrillary acidic protein (GFAP)-positive glial cells. In neurons it colocalized with postsynaptic marker MAP2 in cell bodies and apical dendritic trunks and it was virtually absent in synaptophysin-immunoreactive terminals. By using a panel of antibodies to classify interneurons, we identified the GABAergic interneurons that contained TRPC1. TRPC1 was lacking in basket and chandelier parvalbumin (PVALB) cells, and a very low percentage of calretinin (CALR) or calbindin (CALB) interneurons expressed TRPC1. Moreover, 63% of somatostatin (SST) expressing-cells and 37% of reelin-positive cells expressed TRPC1. All the SST/TRPC1 double-labeled cells, many of which were presumptive Martinotti cells (MC), were positive for reelin. The presence of TRPC1 in the somata and apical dendritic trunks of neocortical pyramidal cells suggests a role for this channel in sensory processing and synaptic plasticity. Conversely in SST/reelin interneurons, TRPC1 could modulate GABAergic transmission, which is responsible for shaping the coordinated activity of the pyramidal cells in the cortical network. In future studies, it would be relevant to investigate whether TRPC1 could be involved in the expression or processing of reelin in SST inhibitory interneurons.
Collapse
Affiliation(s)
- Juan R Martinez-Galan
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Ana Verdejo
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Elena Caminos
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
45
|
Domenichini F, Terrié E, Arnault P, Harnois T, Magaud C, Bois P, Constantin B, Coronas V. Store-Operated Calcium Entries Control Neural Stem Cell Self-Renewal in the Adult Brain Subventricular Zone. Stem Cells 2018; 36:761-774. [PMID: 29359518 DOI: 10.1002/stem.2786] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/19/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022]
Abstract
The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774.
Collapse
Affiliation(s)
- Florence Domenichini
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| | - Elodie Terrié
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| | - Patricia Arnault
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| | - Thomas Harnois
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| | - Christophe Magaud
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| | - Patrick Bois
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| | - Bruno Constantin
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| | - Valérie Coronas
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| |
Collapse
|
46
|
Popugaeva E, Bezprozvanny I. STIM proteins as regulators of neuronal store-operated calcium influx. Neurodegener Dis Manag 2018; 8:5-7. [PMID: 29297249 DOI: 10.2217/nmt-2017-0053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St Petersburg Polytechnic University, St Petersburg, 195251, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St Petersburg Polytechnic University, St Petersburg, 195251, Russia.,Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
47
|
Marshad RA, Khatib RA, Amer H, Shammari MA, Otaibi AA, Otaibi FA, Behbehani N, Sayed AA, Hoty NA, Hassan Z, Kamal A. Streptozotocin-induced diabetes mellitus affects the NMDA receptors: Role of caffeine administration in enhancing learning, memory and locomotor deficits. Int J Health Sci (Qassim) 2018; 12:10-17. [PMID: 29896066 PMCID: PMC5969783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To investigate the deterioration of the brain functions by diabetes mellitus (DM) and the beneficial effect of caffeine. MATERIALS AND METHODS First, the component of N-methyl-D-aspartate receptors (NMDA) of the field excitatory postsynaptic potential (fEPSP) were recorded in streptozotocin (STZ)-induced DM and compared with control animals. Later, 40 mice were divided randomly into five groups (8 mice in each): (1) Normal control (Cont), (2) diabetic group (DM), (3) animals pretreated with i.p. caffeine before the induction of DM (Pre Caf), (4) acute caffeine-treated group (Ac Caf), and (5) chronic caffeine group (Ch Caf). Learning and memory were assessed in Morris-Water maze, and motor coordination was tested by rotarod. RESULTS A significant reduction in the NMDA-component of the fEPSPs responses was recorded in the hippocampus of the diabetic animals. All the DM-groups demonstrated defects in learning and memory tasks; only the Ac Caf group could reverse the deteriorating effect of DM. This group showed a significantly lower latency values to reach their target (submerged platform) in the water maze in comparison to the DM, Pre Caf, and Ch Caf groups. Their performance was not significantly different from the control animals. Rotarod testing showed significant role of acute, but not chronic, caffeine administration in enhancing the motor skills. CONCLUSION STZ -induced DM resulted into defects in memory tasks which are associated with a reduction in the hippocampal NMDA-receptor component of the fEPSP. Acute, but not chronic administration of caffeine could reverse the deteriorating effect of DM on learning and memory.
Collapse
Affiliation(s)
- Reem Al Marshad
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Razan Al Khatib
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Hanine Amer
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Munirah Al Shammari
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Aysha Al Otaibi
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Fahad Al Otaibi
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Nadiah Behbehani
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Anwaar Al Sayed
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Norah Al Hoty
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Zuheir Hassan
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Amer Kamal
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain,Address for correspondence: Amer Kamal, Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain. Tel: (+) 973 17239767. Mobile: +973 36622801. Fax.: (+) 973 17271090. E-mail:
| |
Collapse
|
48
|
Wu J, Ryskamp D, Birnbaumer L, Bezprozvanny I. Inhibition of TRPC1-Dependent Store-Operated Calcium Entry Improves Synaptic Stability and Motor Performance in a Mouse Model of Huntington's Disease. J Huntingtons Dis 2018; 7:35-50. [PMID: 29480205 PMCID: PMC6309623 DOI: 10.3233/jhd-170266] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. We previously discovered that mutant Huntingtin sensitizes type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1) to InsP3. This causes calcium leakage from the endoplasmic reticulum (ER) and a compensatory increase in neuronal store-operated calcium (nSOC) entry. We previously demonstrated that supranormal nSOC leads to synaptic loss in striatal medium spiny neurons (MSNs) in YAC128 HD mice. OBJECTIVE We sought to identify calcium channels supporting supranormal nSOC in HD MSNs and to validate these channels as potential therapeutic targets for HD. METHODS Cortico-striatal cultures were established from wild type and YAC128 HD mice and the density of MSN spines was quantified. The expression of candidate nSOC components was suppressed by RNAi knockdown and by CRISPR/Cas9 knockout. TRPC1 knockout mice were crossed with YAC128 HD mice for evaluation of motor performance in a beamwalk assay. RESULTS RNAi-mediated knockdown of TRPC1, TRPC6, Orai1, or Orai2, but not other TRPC isoforms or Orai3, rescued the density of YAC128 MSN spines. Knockdown of stromal interaction molecule 1 (STIM1), an ER calcium sensor and nSOC activator, also rescued YAC128 MSN spines. Knockdown of the same targets suppressed supranormal nSOC in YAC128 MSN spines. These channel subunits co-immunoprecipitated with STIM1 and STIM2 in synaptosomal lysates from mouse striata. Crossing YAC128 mice with TRPC1 knockout mice improved motor performance and rescued MSN spines in vitro and in vivo, indicating that inhibition of TRPC1 may serve as a neuroprotective strategy for HD treatment. CONCLUSIONS TRPC1 channels constitute a potential therapeutic target for treatment of HD.
Collapse
Affiliation(s)
- Jun Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel Ryskamp
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lutz Birnbaumer
- Neurobiology Laboratory, NIEHS, Research Triangle Park, NC, USA
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
49
|
Pchitskaya E, Kraskovskaya N, Chernyuk D, Popugaeva E, Zhang H, Vlasova O, Bezprozvanny I. Stim2-Eb3 Association and Morphology of Dendritic Spines in Hippocampal Neurons. Sci Rep 2017; 7:17625. [PMID: 29247211 PMCID: PMC5732248 DOI: 10.1038/s41598-017-17762-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/30/2017] [Indexed: 01/14/2023] Open
Abstract
Mushroom spines form strong synaptic contacts and are essential for memory storage. We have previously demonstrated that neuronal store-operated calcium entry (nSOC) in hippocampal neurons is regulated by STIM2 protein. This pathway plays a key role in stability of mushroom spines and is compromised in different mice models of Alzheimer's disease (AD). Actin was thought to be the sole cytoskeleton compartment presented in dendritic spines, however, recent studies demonstrated that dynamic microtubules with EB3 capped plus-ends transiently enter spines. We showed that STIM2 forms an endoplasmic reticulum (ER) Ca2+ -dependent complex with EB3 via Ser-x-Ile-Pro aminoacid motif and that disruption of STIM2-EB3 interaction resulted in loss of mushroom spines in hippocampal neurons. Overexpression of EB3 causes increase of mushroom spines fraction and is able to restore their deficiency in hippocampal neurons obtained from PS1-M146V-KI AD mouse model. STIM2 overexpression failed to restore mushroom dendritic spines after EB3 knockdown, while in contrast EB3 overexpression rescued loss of mushroom spines resulting from STIM2 depletion. We propose that EB3 is involved in regulation of dendritic spines morphology, in part due to its association with STIM2, and that modulation of EB3 expression is a potential way to overcome synaptic loss during AD.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Nina Kraskovskaya
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Daria Chernyuk
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Hua Zhang
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Olga Vlasova
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation. .,Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
50
|
González-Sánchez P, Del Arco A, Esteban JA, Satrústegui J. Store-Operated Calcium Entry Is Required for mGluR-Dependent Long Term Depression in Cortical Neurons. Front Cell Neurosci 2017; 11:363. [PMID: 29311823 PMCID: PMC5735122 DOI: 10.3389/fncel.2017.00363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/03/2017] [Indexed: 01/13/2023] Open
Abstract
Store-operated calcium entry (SOCE) is a Calcium (Ca2+) influx pathway activated by depletion of intracellular stores that occurs in eukaryotic cells. In neurons, the presence and functions of SOCE are still in question. Here, we show evidences for the existence of SOCE in primary mouse cortical neurons. Endoplasmic reticulum (ER)-Ca2+ depletion using thapsigargin (Tg) triggered a maintained cytosolic Ca2+ increase, which rapidly returned to basal level in the presence of the SOCE blockers 2-Aminoethoxydiphenyl borate (2-APB) and YM-58483. Neural SOCE is also engaged by activation of metabotropic glutamate receptors (mGluRs) with (S)-3,5-dihydroxyphenylglycine (DHPG) (agonist of group I mGluRs), being an essential mechanism to maintain the mGluR-driven Ca2+ signal. Activation of group I of mGluRs triggers long-term depression (LTD) in many brain regions, but the underlying mechanism and, specifically, the necessity of Ca2+ increase in the postsynaptic neuron is controversial. In primary cortical neurons, we now show that the inhibition of Ca2+ influx through SOCE impaired DHPG-LTD, pointing out a key function of calcium and SOCE in synaptic plasticity.
Collapse
Affiliation(s)
- Paloma González-Sánchez
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Araceli Del Arco
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla la Mancha, Toledo, Spain
| | - José A Esteban
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Jorgina Satrústegui
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| |
Collapse
|