1
|
Zhang Y, Zhang C, Yi X, Wang Q, Zhang T, Li Y. Gabapentinoids for the treatment of stroke. Neural Regen Res 2024; 19:1509-1516. [PMID: 38051893 PMCID: PMC10883501 DOI: 10.4103/1673-5374.387968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/04/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Gabapentinoid drugs (pregabalin and gabapentin) have been successfully used in the treatment of neuropathic pain and in focal seizure prevention. Recent research has demonstrated their potent activities in modulating neurotransmitter release in neuronal tissue, oxidative stress, and inflammation, which matches the mechanism of action via voltage-gated calcium channels. In this review, we briefly elaborate on the medicinal history and ligand-binding sites of gabapentinoids. We systematically summarize the preclinical and clinical research on gabapentinoids in stroke, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, seizures after stroke, cortical spreading depolarization after stroke, pain after stroke, and nerve regeneration after stroke. This review also discusses the potential targets of gabapentinoids in stroke; however, the existing results are still uncertain regarding the effect of gabapentinoids on stroke and related diseases. Further preclinical and clinical trials are needed to test the therapeutic potential of gabapentinoids in stroke. Therefore, gabapentinoids have both opportunities and challenges in the treatment of stroke.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoli Yi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qi Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Zhou JJ, Shao JY, Chen SR, Chen H, Pan HL. Calcineurin regulates synaptic Ca 2+-permeable AMPA receptors in hypothalamic presympathetic neurons via α2δ-1-mediated GluA1/GluA2 assembly. J Physiol 2024; 602:2179-2197. [PMID: 38630836 PMCID: PMC11096015 DOI: 10.1113/jp286081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Hypertension is a major adverse effect of calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, used clinically as immunosuppressants. Calcineurin inhibitor-induced hypertension (CIH) is linked to augmented sympathetic output from the hypothalamic paraventricular nucleus (PVN). GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) are a key feature of glutamatergic synaptic plasticity, yet their role in CIH remains elusive. Here, we found that systemic administration of FK506 in rats significantly increased serine phosphorylation of GluA1 and GluA2 in PVN synaptosomes. Strikingly, FK506 treatment reduced GluA1/GluA2 heteromers in both synaptosomes and endoplasmic reticulum-enriched fractions from the PVN. Blocking CP-AMPARs with IEM-1460 induced a larger reduction of AMPAR-mediated excitatory postsynaptic current (AMPAR-EPSC) amplitudes in retrogradely labelled, spinally projecting PVN neurons in FK506-treated rats than in vehicle-treated rats. Furthermore, FK506 treatment shifted the current-voltage relationship of AMPAR-EPSCs from linear to inward rectification in labelled PVN neurons. FK506 treatment profoundly enhanced physical interactions of α2δ-1 with GluA1 and GluA2 in the PVN. Inhibiting α2δ-1 with gabapentin, α2δ-1 genetic knockout, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide restored GluA1/GluA2 heteromers in the PVN and diminished inward rectification of AMPAR-EPSCs in labelled PVN neurons induced by FK506 treatment. Additionally, microinjection of IEM-1460 or α2δ-1 C terminus peptide into the PVN reduced renal sympathetic nerve discharges and arterial blood pressure elevated in FK506-treated rats but not in vehicle-treated rats. Thus, calcineurin in the hypothalamus constitutively regulates AMPAR subunit composition and phenotypes by controlling GluA1/GluA2 interactions with α2δ-1. Synaptic CP-AMPARs in PVN presympathetic neurons contribute to augmented sympathetic outflow in CIH. KEY POINTS: Systemic treatment with the calcineurin inhibitor increases serine phosphorylation of synaptic GluA1 and GluA2 in the PVN. Calcineurin inhibition enhances the prevalence of postsynaptic Ca2+-permeable AMPARs in PVN presympathetic neurons. Calcineurin inhibition potentiates α2δ-1 interactions with GluA1 and GluA2, disrupting intracellular assembly of GluA1/GluA2 heterotetramers in the PVN. Blocking Ca2+-permeable AMPARs or α2δ-1-AMPAR interactions in the PVN attenuates sympathetic outflow augmented by the calcineurin inhibitor.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Ghosh K, Zhou JJ, Shao JY, Chen SR, Pan HL. DNA demethylation in the hypothalamus promotes transcription of Agtr1a and Slc12a2 and hypertension development. J Biol Chem 2024; 300:105597. [PMID: 38160798 PMCID: PMC10830874 DOI: 10.1016/j.jbc.2023.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Increased expression of angiotensin II AT1A receptor (encoded by Agtr1a) and Na+-K+-Cl- cotransporter-1 (NKCC1, encoded by Slc12a2) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension development. However, little is known about their transcriptional control in the PVN in hypertension. DNA methylation is a critical epigenetic mechanism that regulates gene expression. Here, we determined whether transcriptional activation of Agtr1a and Slc12a2 results from altered DNA methylation in spontaneously hypertensive rats (SHR). Methylated DNA immunoprecipitation and bisulfite sequencing-PCR showed that CpG methylation at Agtr1a and Slc12a2 promoters in the PVN was progressively diminished in SHR compared with normotensive Wistar-Kyoto rats (WKY). Chromatin immunoprecipitation-quantitative PCR revealed that enrichment of DNA methyltransferases (DNMT1 and DNMT3A) and methyl-CpG binding protein 2, a DNA methylation reader protein, at Agtr1a and Slc12a2 promoters in the PVN was profoundly reduced in SHR compared with WKY. By contrast, the abundance of ten-eleven translocation enzymes (TET1-3) at Agtr1a and Slc12a2 promoters in the PVN was much greater in SHR than in WKY. Furthermore, microinjecting of RG108, a selective DNMT inhibitor, into the PVN of WKY increased arterial blood pressure and correspondingly potentiated Agtr1a and Slc12a2 mRNA levels in the PVN. Conversely, microinjection of C35, a specific TET inhibitor, into the PVN of SHR markedly reduced arterial blood pressure, accompanied by a decrease in Agtr1a and Slc12a2 mRNA levels in the PVN. Collectively, our findings suggest that DNA hypomethylation resulting from the DNMT/TET switch at gene promoters in the PVN promotes transcription of Agtr1a and Slc12a2 and hypertension development.
Collapse
Affiliation(s)
- Krishna Ghosh
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
4
|
Varadi G. Mechanism of Analgesia by Gabapentinoid Drugs: Involvement of Modulation of Synaptogenesis and Trafficking of Glutamate-Gated Ion Channels. J Pharmacol Exp Ther 2024; 388:121-133. [PMID: 37918854 DOI: 10.1124/jpet.123.001669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Gabapentinoids have clinically been used for treating epilepsy, neuropathic pain, and several other neurologic disorders for >30 years; however, the definitive molecular mechanism responsible for their therapeutic actions remained uncertain. The conventional pharmacological observation regarding their efficacy in chronic pain modulation is the weakening of glutamate release at presynaptic terminals in the spinal cord. While the α2/δ-1 subunit of voltage-gated calcium channels (VGCCs) has been identified as the primary drug receptor for gabapentinoids, the lack of consistent effect of this drug class on VGCC function is indicative of a minor role in regulating this ion channel's activity. The current review targets the efficacy and mechanism of gabapentinoids in treating chronic pain. The discovery of interaction of α2/δ-1 with thrombospondins established this protein as a major synaptogenic neuronal receptor for thrombospondins. Other findings identified α2/δ-1 as a powerful regulator of N-methyl-D-aspartate receptor (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) by potentiating the synaptic expression, a putative pathophysiological mechanism of neuropathic pain. Further, the interdependent interactions between thrombospondin and α2/δ-1 contribute to chronic pain states, while gabapentinoid ligands efficaciously reverse such pain conditions. Gabapentin normalizes and even blocks NMDAR and AMPAR synaptic targeting and activity elicited by nerve injury. SIGNIFICANCE STATEMENT: Gabapentinoid drugs are used to treat various neurological conditions including chronic pain. In chronic pain states, gene expression of cacnα2/δ-1 and thrombospondins are upregulated and promote aberrant excitatory synaptogenesis. The complex trait of protein associations that involve interdependent interactions between α2/δ-1 and thrombospondins, further, association of N-methyl-D-aspartate receptor and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor with the C-tail of α2/δ-1, constitutes a macromolecular signaling complex that forms the crucial elements for the pharmacological mode of action of gabapentinoids.
Collapse
|
5
|
Zahner MR, Brown MC, Chandley MJ. Inactivation of the paraventricular nucleus attenuates the cardiogenic sympathetic afferent reflex in the spontaneously hypertensive rat. J Hypertens 2024; 42:70-78. [PMID: 37889604 PMCID: PMC10792548 DOI: 10.1097/hjh.0000000000003542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
BACKGROUND Myocardial ischemia causes the release of bradykinin, which stimulates cardiac afferents, causing sympathetic excitation and chest pain. Glutamatergic activation of the paraventricular hypothalamic nucleus (PVN) in the spontaneously hypertensive rat (SHR) drives elevated basal sympathetic activity. Thus, we tested the hypothesis that inactivation of the PVN attenuates the elevated reflex response to epicardial bradykinin in the SHR and that ionotropic PVN glutamate receptors mediate the elevated reflex. METHODS We recorded the arterial pressure and renal sympathetic nerve activity (RSNA) response to epicardial bradykinin application in anesthetized SHR and Wistar Kyoto (WKY) rats before and after PVN microinjection of GABA A agonist muscimol or ionotropic glutamate receptor antagonist kynurenic acid. RESULTS Muscimol significantly decreased the arterial pressure response to bradykinin from 180.4 ± 5.8 to 119.5 ± 6.9 mmHg in the SHR and from 111.8 ± 7.0 to 84.2 ± 8.3 mmHg in the WKY and the RSNA response from 186.2 ± 7.1 to 142.7 ± 7.3% of baseline in the SHR and from 201.0 ± 11.5 to 160.2 ± 9.3% of baseline in the WKY. Kynurenic acid significantly decreased the arterial pressure response in the SHR from 164.5 ± 5.0 to 126.2 ± 7.7 mmHg and the RSNA response from 189.9 ± 13.7to 168.5 ± 12.7% of baseline but had no effect in the WKY. CONCLUSION These results suggest that tonic PVN activity is critical for the full manifestation of the CSAR in both the WKY and SHR. Glutamatergic PVN activity contributes to the augmented CSAR observed in the SHR.
Collapse
Affiliation(s)
- Matthew R Zahner
- Department of Health Sciences, East Tennessee State University College of Public Health
| | - Mary C Brown
- Department of Health Sciences, East Tennessee State University College of Public Health
| | - Michelle J Chandley
- Department of Biomedical Science, East Tennessee State University College of Medicine, Johnson City, Tennessee, USA
| |
Collapse
|
6
|
Wang W, Sun JC, Ye P, Tan X, Gao Y, Duan W, Wang YK, Wang WZ. miR-22-3p in the rostral ventrolateral medulla promotes hypertension through inhibiting β-arrestin-1. J Physiol 2024; 602:317-332. [PMID: 38152023 DOI: 10.1113/jp283960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that β-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension. The purpose of this study was to determine the role of miR-22-3p in β-arrestin-1-mediated central cardiovascular regulation in hypertension. It was observed that miR-22-3p was upregulated in the RVLM of SHRs compared with normotensive Wistar-Kyoto (WKY) rats, and it was subsequently confirmed to target the β-arrestin-1 gene using a dual-luciferase reporter assay. miR-22-3p was downregulated in the RVLM using adeno-associated virus with 'tough decoys', which caused a significant increase of β-arrestin-1 expression and decrease of noradrenaline and blood pressure (BP) in SHRs. However, upregulation of miR-22-3p using lentivirus in the RVLM of WKY rats significantly increased BP. In in vitro PC12 cells, enhanced oxidative stress activity induced by angiotensin II was counteracted by pretreatment with miR-22-3p inhibitor, and this effect could be abolished by β-arrestin-1 gene knockdown. Furthermore, microglia exhaustion significantly diminished miR-22-3p expression, and enhanced β-arrestin-1 expression in the RVLM of SHRs. Activation of BV2 cells in vitro evoked a significant increase of miR-22-3p expression, and this BV2 cell culture medium was also able to facilitate miR-22-3p expression in PC12 cells. Collectively, our findings support a critical role for microglia-derived miR-22-3p in inhibiting β-arrestin-1 in the RVLM, which is involved in central cardiovascular regulation in hypertension. KEY POINTS: Impairment of β-arrestin-1 function in the rostral ventrolateral medulla (RVLM) has been reported to be associated with the development of sympathetic overactivity in hypertension. However, little is known about the potential mechanisms of β-arrestin-1 dysfunction in hypertension. miR-22-3p is implicated in multiple biological processes, but the role of miR-22-3p in central regulation of cardiovascular activity in hypertension remains unknown. We predicted that miR-22-3p could directly bind to the β-arrestin-1 gene (Arrb1), and this hypothesis was confirmed by using a dual-luciferase reporter assay. Inhibition of β-arrestin-1 by miR-22-3p was further verified in both in vivo and in vitro experiments. Furthermore, our results suggested miR-22-3p as a risk factor for oxidative stress in the RVLM, thus contributing to sympatho-excitation and hypertension. Our present study provides evidence that microglia-derived miR-22-3p may underlie the pathogenesis and progression of neuronal hypertension by inhibiting β-arrestin-1 in the RVLM.
Collapse
Affiliation(s)
- Wen Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jia-Cen Sun
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Peng Ye
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yuan Gao
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Duan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
7
|
Xie RG, Xu GY, Wu SX, Luo C. Presynaptic glutamate receptors in nociception. Pharmacol Ther 2023; 251:108539. [PMID: 37783347 DOI: 10.1016/j.pharmthera.2023.108539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/19/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Chronic pain is a frequent, distressing and poorly understood health problem. Plasticity of synaptic transmission in the nociceptive pathways after inflammation or injury is assumed to be an important cellular basis for chronic, pathological pain. Glutamate serves as the main excitatory neurotransmitter at key synapses in the somatosensory nociceptive pathways, in which it acts on both ionotropic and metabotropic glutamate receptors. Although conventionally postsynaptic, compelling anatomical and physiological evidence demonstrates the presence of presynaptic glutamate receptors in the nociceptive pathways. Presynaptic glutamate receptors play crucial roles in nociceptive synaptic transmission and plasticity. They modulate presynaptic neurotransmitter release and synaptic plasticity, which in turn regulates pain sensitization. In this review, we summarize the latest understanding of the expression of presynaptic glutamate receptors in the nociceptive pathways, and how they contribute to nociceptive information processing and pain hypersensitivity associated with inflammation / injury. We uncover the cellular and molecular mechanisms of presynaptic glutamate receptors in shaping synaptic transmission and plasticity to mediate pain chronicity, which may provide therapeutic approaches for treatment of chronic pain.
Collapse
Affiliation(s)
- Rou-Gang Xie
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Sheng-Xi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Ceng Luo
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
8
|
Jiang C, Wang C, Qu W, Wang Y, Wang H, Wei X, Wang M, He Q, Wang Y, Yuan L, Gao Y. Cherry leaf decoction inhibits NMDAR expression and thereby ameliorates CUMS- induced depression-like behaviors through downregulation of α2δ-1. Heliyon 2023; 9:e21743. [PMID: 38034773 PMCID: PMC10681947 DOI: 10.1016/j.heliyon.2023.e21743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Depression is a complex and prevalent mental illness. Cherry leaf is a traditional Chinese herbal medicine, which has confirmed to exert a certain antidepressant effect, but its potential neural regulation mechanism is not clear. This paper aims to investigate the improved action of cherry leaf decoction (CLD) on chronic unpredictable mild stress (CUMS) rats and its potential neural regulation mechanism by verifying the role and function of NMDAR regulatory target α2δ-1 in depression due to CUMS. Male SD rats were subjected to random stressors persisting for 5 weeks to establish the CUMS depression rat model. CLD could effectively alleviate depression-like behaviors of CUMS rats in behavioral tests including sucrose preference test, forced swimming test, tail suspension test and open field test. After the administration of the CLD, the expression of corticotropic-releasing hormone (CRH) in the hypothalamus was inhibited. Moreover, the levels of CRH, adrenal cortical hormone (ACTH) and corticosterone (CORT) in serum also decreased significantly. CUMS upregulated the expressions of α2δ-1, N-methyl-d-aspartate receptor 1 (NR1), NR2A and NR2B, and enhanced the binding ability to of α2δ-1 and NR1, which were reversed by CLD. The results demonstrated that CLD could ameliorate depression-like behaviors due to CUMS, which was related to the fact that CLD down-regulated α2δ-1 level and interfered with α2δ-1 binding to NR1, thereby reducing NMDAR expression and ultimately inhibiting HPA axis activity.
Collapse
Affiliation(s)
- Chuan Jiang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Chaonan Wang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Weizhong Qu
- Department of Physical Education, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Yuanyuan Wang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Hua Wang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Xin Wei
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Mingyan Wang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Qianqian He
- Department of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Yihan Wang
- Department of Basic Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Lirong Yuan
- Department of Humanities and Management, Hebei University of Chinese Medicine, Xingyuan Road, Shijiazhuang 050200, Hebei, People's Republic of China
| | - Yonggang Gao
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, Hebei, People's Republic of China
- Hebei Key Laboratory of Chinese Medicine Research On Cardio-Cerebrovascular Disease, Shijiazhuang 050200, Hebei, People's Republic of China
| |
Collapse
|
9
|
Zhou JJ, Shao JY, Chen SR, Pan HL. Brain α2δ-1-Bound NMDA Receptors Drive Calcineurin Inhibitor-Induced Hypertension. Circ Res 2023; 133:611-627. [PMID: 37605933 PMCID: PMC10529656 DOI: 10.1161/circresaha.123.322562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Calcineurin is highly enriched in immune T cells and the nervous system. Calcineurin inhibitors, including cyclosporine and tacrolimus (FK506), are the cornerstone of immunosuppressive regimens for preserving transplanted organs and tissues. However, these drugs often cause persistent hypertension owing to excess sympathetic outflow, which is maintained by N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory input to the hypothalamic paraventricular nucleus (PVN). It is unclear how calcineurin inhibitors increase NMDAR activity in the PVN to augment sympathetic vasomotor activity. α2δ-1 (encoded by the Cacna2d1 gene), known colloquially as a calcium channel subunit, is a newly discovered NMDAR-interacting protein. In this study, we determined whether α2δ-1 plays a role in calcineurin inhibitor-induced synaptic NMDAR hyperactivity in the PVN and hypertension development. METHODS Immunoblotting and coimmunoprecipitation assays were used to quantify synaptic protein levels and the physical interaction between GluN1 (the obligatory NMDAR subunit) and α2δ-1. Whole-cell patch-clamp recordings of retrogradely labeled, spinally projecting PVN were conducted in perfused brain slices to measure presynaptic and postsynaptic NMDAR activity. Radio-telemetry was implanted in rodents to continuously record arterial blood pressure in conscious states. RESULTS Prolonged treatment with FK506 in rats significantly increased protein levels of α2δ-1, GluN1, and the α2δ-1-GluN1 complex in PVN synaptosomes. These effects were blocked by inhibiting α2δ-1 with gabapentin or interrupting the α2δ-1-NMDAR interaction with an α2δ-1 C-terminus peptide. Treatment with FK506 potentiated the activity of presynaptic and postsynaptic NMDARs in spinally projecting PVN neurons; such effects were abolished by gabapentin, Cacna2d1 knockout, or α2δ-1 C-terminus peptide. Furthermore, microinjection of α2δ-1 C-terminus peptide into the PVN diminished renal sympathetic nerve discharges and arterial blood pressure that had been increased by FK506 treatment. Remarkably, concurrent administration of gabapentin prevented the development of FK506-induced hypertension in rats. Additionally, FK506 treatment induced sustained hypertension in wild-type mice but not in Cacna2d1 knockout mice. CONCLUSIONS α2δ-1 is essential for calcineurin inhibitor-induced increases in synaptic NMDAR activity in PVN presympathetic neurons and sympathetic outflow. Thus, α2δ-1 and α2δ-1-bound NMDARs represent new targets for treating calcineurin inhibitor-induced hypertension. Gabapentinoids (gabapentin and pregabalin) could be repurposed for treating calcineurin inhibitor-induced neurogenic hypertension.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Ma H, Cui Z, Guo X, Zhao Q, Zhang Y, Guan Y, Yang P, Zhu H, Wang S, Zhang X, Zhang Y, Pan HL, Ma H. Corticotropin-releasing factor potentiates glutamatergic input and excitability of presympathetic neurons in the hypothalamus in spontaneously hypertensive rats. Neuropharmacology 2023; 230:109506. [PMID: 36924924 DOI: 10.1016/j.neuropharm.2023.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
Hyperactivity of presympathetic neurons in the hypothalamic paraventricular nucleus (PVN) plays a key role in generating excess sympathetic output in hypertension. However, the mechanisms driving hyperactivity of PVN presympathetic neurons in hypertension are unclear. In this study, we determined the role of corticotropin-releasing factor (CRF) in the PVN in augmented glutamatergic input, neuronal excitability and sympathetic outflow in hypertension. The number of CRF or c-Fos immunoreactive neurons and CRF/c-Fos double-labeled neurons in the PVN was significantly greater in spontaneously hypertensive rats (SHRs) than in normotensive Wistar-Kyoto (WKY) rats. Blocking glutamatergic input reduced the CRF-potentiated excitability of spinally projecting PVN neurons. Furthermore, CRF knockdown via Crispr/Cas9 in the PVN decreased the frequencies of spontaneous firing and miniature excitatory postsynaptic currents (mEPSCs) in spinally projecting PVN neurons in SHRs. In addition, the mRNA and protein levels of CRFR1, but not CRFR2, in the PVN were significantly higher in SHRs than in WKY rats. Blocking CRFR1 with NBI-35965, but not blocking CRFR2 with Antisauvagine-30, reduced the frequencies of spontaneous firing and mEPSCs of spinally projecting PVN neurons in SHRs. Also, microinjection of NBI-35965 into the PVN significantly reduced arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) in anesthetized SHRs, but not in WKY rats. However, microinjection of Antisauvagine-30 into the PVN had no effect on ABP or RSNA in WKY rats and SHRs. Our findings suggest that endogenous CRF in the PVN potentiates glutamatergic input and firing activity of PVN presympathetic neurons via CRFR1, resulting in augmented sympathetic outflow in hypertension.
Collapse
Affiliation(s)
- Hongyu Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ziye Cui
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Xinqi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Qiyue Zhao
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ying Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, 050017, Hebei, China
| | - Peiyun Yang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Huaibing Zhu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, 050017, Hebei, China
| | - Xiangjian Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, 050017, Hebei, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China.
| |
Collapse
|
11
|
Huang Y, Chen H, Jin D, Chen SR, Pan HL. NMDA Receptors at Primary Afferent-Excitatory Neuron Synapses Differentially Sustain Chemotherapy- and Nerve Trauma-Induced Chronic Pain. J Neurosci 2023; 43:3933-3948. [PMID: 37185237 PMCID: PMC10217996 DOI: 10.1523/jneurosci.0183-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The spinal dorsal horn contains vesicular glutamate transporter-2 (VGluT2)-expressing excitatory neurons and vesicular GABA transporter (VGAT)-expressing inhibitory neurons, which normally have different roles in nociceptive transmission. Spinal glutamate NMDAR hyperactivity is a crucial mechanism of chronic neuropathic pain. However, it is unclear how NMDARs regulate primary afferent input to spinal excitatory and inhibitory neurons in neuropathic pain. Also, the functional significance of presynaptic NMDARs in neuropathic pain has not been defined explicitly. Here we showed that paclitaxel treatment or spared nerve injury (SNI) similarly increased the NMDAR-mediated mEPSC frequency and dorsal root-evoked EPSCs in VGluT2 dorsal horn neurons in male and female mice. By contrast, neither paclitaxel nor SNI had any effect on mEPSCs or evoked EPSCs in VGAT neurons. In mice with conditional Grin1 (gene encoding GluN1) KO in primary sensory neurons (Grin1-cKO), paclitaxel treatment failed to induce pain hypersensitivity. Unexpectedly, SNI still caused long-lasting pain hypersensitivity in Grin1-cKO mice. SNI increased the amplitude of puff NMDA currents in VGluT2 neurons and caused similar depolarizing shifts in GABA reversal potentials in WT and Grin1-cKO mice. Concordantly, spinal Grin1 knockdown diminished SNI-induced pain hypersensitivity. Thus, presynaptic NMDARs preferentially amplify primary afferent input to spinal excitatory neurons in neuropathic pain. Although presynaptic NMDARs are required for chemotherapy-induced pain hypersensitivity, postsynaptic NMDARs in spinal excitatory neurons play a dominant role in traumatic nerve injury-induced chronic pain. Our findings reveal the divergent synaptic connectivity and functional significance of spinal presynaptic and postsynaptic NMDARs in regulating cell type-specific nociceptive input in neuropathic pain with different etiologies.SIGNIFICANCE STATEMENT Spinal excitatory neurons relay input from nociceptors, whereas inhibitory neurons repress spinal nociceptive transmission. Chronic nerve pain is associated with aberrant NMDAR activity in the spinal dorsal horn. This study demonstrates, for the first time, that chemotherapy and traumatic nerve injury preferentially enhance the NMDAR activity at primary afferent-excitatory neuron synapses but have no effect on primary afferent input to spinal inhibitory neurons. NMDARs in primary sensory neurons are essential for chemotherapy-induced chronic pain, whereas nerve trauma causes pain hypersensitivity predominantly via postsynaptic NMDARs in spinal excitatory neurons. Thus, presynaptic and postsynaptic NMDARs at primary afferent-excitatory neuron synapses are differentially engaged in chemotherapy- and nerve injury-induced chronic pain and could be targeted respectively for treating these painful conditions.
Collapse
Affiliation(s)
- Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
12
|
Jin D, Chen H, Chen SR, Pan HL. α2δ-1 protein drives opioid-induced conditioned reward and synaptic NMDA receptor hyperactivity in the nucleus accumbens. J Neurochem 2023; 164:143-157. [PMID: 36222452 PMCID: PMC9892208 DOI: 10.1111/jnc.15706] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/19/2022] [Accepted: 10/08/2022] [Indexed: 02/04/2023]
Abstract
Glutamate NMDA receptors (NMDARs) in the nucleus accumbens (NAc) are critically involved in drug dependence and reward. α2δ-1 is a newly discovered NMDAR-interacting protein that promotes synaptic trafficking of NMDARs independently of its conventional role as a calcium channel subunit. However, it remains unclear how repeated opioid exposure affects synaptic NMDAR activity and α2δ-1-NMDAR interaction in the NAc. In this study, whole-cell patch-clamp recordings showed that repeated treatment with morphine in mice markedly increased the NMDAR-mediated frequency of miniature excitatory postsynaptic currents (mEPSCs) and amplitude of puff NMDAR currents in medium spiny neurons in the NAc core region. Morphine treatment significantly increased the physical interaction of α2δ-1 with GluN1 and their synaptic trafficking in the NAc. In Cacna2d1 knockout mice, repeated treatment with morphine failed to increase the frequency of mEPSCs and amplitude of puff NMDAR currents in the NAc core. Furthermore, inhibition of α2δ-1 with gabapentin or disruption of the α2δ-1-NMDAR interaction with the α2δ-1 C terminus-interfering peptide blocked the morphine-elevated frequency of mEPSCs and amplitude of puff NMDAR currents in the NAc core. Correspondingly, systemically administered gabapentin, Cacna2d1 ablation, or microinjection of the α2δ-1 C terminus-interfering peptide into the NAc core attenuated morphine-induced conditioned place preference and locomotor sensitization. Our study reveals that repeated opioid exposure strengthens presynaptic and postsynaptic NMDAR activity in the NAc via α2δ-1. The α2δ-1-bound NMDARs in the NAc have a key function in the rewarding effect of opioids and could be targeted for treating opioid use disorder and addiction.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
13
|
Wu T, Chen SR, Pan HL, Luo Y. The α2δ-1-NMDA receptor complex and its potential as a therapeutic target for ischemic stroke. Front Neurol 2023; 14:1148697. [PMID: 37153659 PMCID: PMC10157046 DOI: 10.3389/fneur.2023.1148697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a critical role in excitotoxicity caused by ischemic stroke, but NMDAR antagonists have failed to be translated into clinical practice for treating stroke patients. Recent studies suggest that targeting the specific protein-protein interactions that regulate NMDARs may be an effective strategy to reduce excitotoxicity associated with brain ischemia. α2δ-1 (encoded by the Cacna2d1 gene), previously known as a subunit of voltage-gated calcium channels, is a binding protein of gabapentinoids used clinically for treating chronic neuropathic pain and epilepsy. Recent studies indicate that α2δ-1 is an interacting protein of NMDARs and can promote synaptic trafficking and hyperactivity of NMDARs in neuropathic pain conditions. In this review, we highlight the newly identified roles of α2δ-1-mediated NMDAR activity in the gabapentinoid effects and NMDAR excitotoxicity during brain ischemia as well as targeting α2δ-1-bound NMDARs as a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Hui-Lin Pan
| | - Yi Luo
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Yi Luo
| |
Collapse
|
14
|
Zhou JJ, Shao JY, Chen SR, Pan HL. Calcineurin Controls Hypothalamic NMDA Receptor Activity and Sympathetic Outflow. Circ Res 2022; 131:345-360. [PMID: 35862168 PMCID: PMC9357136 DOI: 10.1161/circresaha.122.320976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Hypertension is a common and serious adverse effect of calcineurin inhibitors, including cyclosporine and tacrolimus (FK506). Although increased sympathetic nerve discharges are associated with calcineurin inhibitor–induced hypertension, the sources of excess sympathetic outflow and underlying mechanisms remain elusive. Calcineurin (protein phosphatase-2B) is broadly expressed in the brain, including the paraventricular nuclear (PVN) of the hypothalamus, which is critically involved in regulating sympathetic vasomotor tone.
Objective:
We determined whether prolonged treatment with the calcineurin inhibitor causes elevated sympathetic output and persistent hypertension by potentiating synaptic N-methyl-D-aspartate (NMDA) receptor activity in the PVN.
Methods and Results:
Telemetry recordings showed that systemic administration of FK506 (3 mg/kg per day) for 14 days caused a gradual and profound increase in arterial blood pressure in rats, which lasted at least 7 days after discontinuing FK506 treatment. Correspondingly, systemic treatment with FK506 markedly reduced calcineurin activity in the PVN and circumventricular organs, but not rostral ventrolateral medulla, and increased the phosphorylation level and synaptic trafficking of NMDA receptors in the PVN. Immunocytochemistry labeling showed that calcineurin was expressed in presympathetic neurons in the PVN. Whole-cell patch-clamp recordings in brain slices revealed that treatment with FK506 increased baseline firing activity of PVN presympathetic neurons; this increase was blocked by the NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist. Also, treatment with FK506 markedly increased presynaptic and postsynaptic NMDA receptor activity of PVN presympathetic neurons. Furthermore, microinjection of the NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist into the PVN of anesthetized rats preferentially attenuated renal sympathetic nerve discharges and blood pressure elevated by FK506 treatment. In addition, systemic administration of memantine, a clinically used NMDA receptor antagonist, effectively attenuated FK506 treatment–induced hypertension in conscious rats.
Conclusions:
Our findings reveal that normal calcineurin activity in the PVN constitutively restricts sympathetic vasomotor tone via suppressing NMDA receptor activity, which may be targeted for treating calcineurin inhibitor–induced hypertension.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
15
|
Chen S, Siedhoff HR, Zhang H, Liu P, Balderrama A, Li R, Johnson C, Greenlief CM, Koopmans B, Hoffman T, DePalma RG, Li DP, Cui J, Gu Z. Low-intensity blast induces acute glutamatergic hyperexcitability in mouse hippocampus leading to long-term learning deficits and altered expression of proteins involved in synaptic plasticity and serine protease inhibitors. Neurobiol Dis 2022; 165:105634. [PMID: 35077822 DOI: 10.1016/j.nbd.2022.105634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/26/2022] Open
Abstract
Neurocognitive consequences of blast-induced traumatic brain injury (bTBI) pose significant concerns for military service members and veterans with the majority of "invisible injury." However, the underlying mechanism of such mild bTBI by low-intensity blast (LIB) exposure for long-term cognitive and mental deficits remains elusive. Our previous studies have shown that mice exposed to LIB result in nanoscale ultrastructural abnormalities in the absence of gross or apparent cellular damage in the brain. Here we tested the hypothesis that glutamatergic hyperexcitability may contribute to long-term learning deficits. Using brain slice electrophysiological recordings, we found an increase in averaged frequencies with a burst pattern of miniature excitatory postsynaptic currents (mEPSCs) in hippocampal CA3 neurons in LIB-exposed mice at 1- and 7-days post injury, which was blocked by a specific NMDA receptor antagonist AP5. In addition, cognitive function assessed at 3-months post LIB exposure by automated home-cage monitoring showed deficits in dynamic patterns of discrimination learning and cognitive flexibility in LIB-exposed mice. Collected hippocampal tissue was further processed for quantitative global-proteomic analysis. Advanced data-independent acquisition for quantitative tandem mass spectrometry analysis identified altered expression of proteins involved in synaptic plasticity and serine protease inhibitors in LIB-exposed mice. Some were correlated with the ability of discrimination learning and cognitive flexibility. These findings show that acute glutamatergic hyperexcitability in the hippocampus induced by LIB may contribute to long-term cognitive dysfunction and protein alterations. Studies using this military-relevant mouse model of mild bTBI provide valuable insights into developing a potential therapeutic strategy to ameliorate hyperexcitability-modulated LIB injuries.
Collapse
Affiliation(s)
- Shanyan Chen
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Heather R Siedhoff
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Hua Zhang
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Pei Liu
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, MO 65211, USA
| | - Ashley Balderrama
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Runting Li
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Catherine Johnson
- Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - C Michael Greenlief
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, MO 65211, USA
| | | | - Timothy Hoffman
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington DC 20420, USA; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - De-Pei Li
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jiankun Cui
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| | - Zezong Gu
- Truman VA Hospital Research Service, Columbia, MO 65201, USA; Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| |
Collapse
|
16
|
Zhou JJ, Shao JY, Chen SR, Chen H, Pan HL. α2δ-1 Protein Promotes Synaptic Expression of Ca 2+ Permeable-AMPA Receptors by Inhibiting GluA1/GluA2 Heteromeric Assembly in the Hypothalamus in Hypertension. J Neurochem 2022; 161:40-52. [PMID: 35038178 DOI: 10.1111/jnc.15573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/29/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Glutamate AMPA receptors (AMPARs) lacking GluA2 subunit are calcium permeable (CP-AMPARs), which are increased in the hypothalamic paraventricular nucleus (PVN) and maintain sympathetic outflow in hypertension. Here, we determined the role of α2δ-1, an NMDA receptor-interacting protein, in regulating synaptic CP-AMPARs in the hypothalamus in spontaneously hypertensive rats (SHR). Co-immunoprecipitation showed that levels of GluA1/GluA2, but not GluA2/GluA3, protein complexes in hypothalamic synaptosomes were reduced in SHR compared with Wistar-Kyoto rats (WKY). The level of GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of the hypothalamus was significantly lower in SHR than in WKY, which was restored by inhibiting α2δ-1 with gabapentin. Gabapentin also switched AMPAR-mediated excitatory postsynaptic currents (AMPAR-EPSCs) from inward rectifying to linear and attenuated the inhibitory effect of IEM-1460, a selective CP-AMPAR blocker, on AMPAR-EPSCs in spinally projecting PVN neurons in SHR. Furthermore, co-immunoprecipitation revealed that α2δ-1 directly interacted with GluA1 and GluA2 in the hypothalamus of rats and humans. Levels of α2δ-1/GluA1 and α2δ-1/GluA2 protein complexes in the hypothalamus were significantly greater in SHR than in WKY. Disrupting the α2δ-1-AMPAR interaction with an α2δ-1 C terminus peptide normalized GluA1/GluA2 heteromers in the endoplasmic reticulum of the hypothalamus diminished in SHR. In addition, α2δ-1 C terminus peptide diminished inward rectification of AMPAR-EPSCs and the inhibitory effect of IEM-1460 on AMPAR-EPSCs of PVN neurons in SHR. Thus, α2δ-1 augments synaptic CP-AMPARs by inhibiting GluA1/GluA2 heteromeric assembly in the hypothalamus in hypertension. These findings extend our understanding of the molecular basis of sustained sympathetic outflow in neurogenic hypertension.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
17
|
Wang Y, Han J, Zhu J, Zhang M, Ju M, Du Y, Tian Z. GluN2A/ERK/CREB Signaling Pathway Involved in Electroacupuncture Regulating Hypothalamic-Pituitary-Adrenal Axis Hyperactivity. Front Neurosci 2021; 15:703044. [PMID: 34658758 PMCID: PMC8514998 DOI: 10.3389/fnins.2021.703044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/09/2021] [Indexed: 12/05/2022] Open
Abstract
The hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis caused by stress will inevitably disrupt the homeostasis of the neuroendocrine system and damage physiological functions. It has been demonstrated that electroacupuncture (EA) can modulate HPA axis hyperactivity during the perioperative period. As the initiating factor of the HPA axis, hypothalamic corticotrophin-releasing hormone (CRH) is the critical molecule affected by EA. However, the mechanism by which EA reduces CRH synthesis and secretion remains unclear. Activated N-methyl-D-aspartate receptor (NMDAR) has been linked to over-secretion of hypothalamic CRH induced by stress. To determine whether NMDAR is involved in EA regulating the over-expression of CRH, a surgical model of partial hepatectomy (HT) was established in our experiment. The effect of EA on hypothalamic NMDAR expression in HT mice was examined. Then, we investigated whether the extracellular regulated protein kinases (ERK)/cyclic adenosine monophosphate response element-binding protein (CREB) signaling pathway mediated by NMDAR was involved in EA regulating HPA axis hyperactivity. It was found that surgery enhanced the expression of hypothalamic CRH and caused HPA axis hyperactivity. Intriguingly, EA effectively suppressed the expression of CRH and decreased the activation of GluN2A (NMDAR subunit), ERK, and CREB in HT mice. GluN2A, ERK, and CREB antagonists had similar effects on normalizing the expression of CRH and HPA axis function compared with EA. Our findings suggested that surgery enhanced the activation of the hypothalamic GluN2A/ERK/CREB signaling pathway, thus promoting the synthesis and secretion of CRH. EA suppressed the phosphorylation of GluN2A, ERK, and CREB in mice that had undergone surgery, indicating that the GluN2A/ERK/CREB signaling pathway was involved in EA alleviating HPA axis hyperactivity.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing Han
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mizhen Zhang
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Minda Ju
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yueshan Du
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhanzhuang Tian
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Zhou JJ, Shao JY, Chen SR, Li DP, Pan HL. α2δ-1-Dependent NMDA Receptor Activity in the Hypothalamus Is an Effector of Genetic-Environment Interactions That Drive Persistent Hypertension. J Neurosci 2021; 41:6551-6563. [PMID: 34193557 PMCID: PMC8318080 DOI: 10.1523/jneurosci.0346-21.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
The interplay between genetic and environmental factors is critically involved in hypertension development. The paraventricular nucleus (PVN) of the hypothalamus regulates sympathetic output during stress responses and chronic hypertension. In this study, we determined mechanisms of synaptic plasticity in the PVN in chronic stress-induced persistent hypertension in male borderline hypertensive rats (BHR), the first offspring of spontaneously hypertensive rats and normotensive Wistar-Kyoto rats. In Wistar-Kyoto rats, chronic unpredictable mild stress (CUMS) increased arterial blood pressure (ABP) and heart rate, which quickly returned to baseline after CUMS ended. In contrast, in BHR, CUMS caused persistent elevation in ABP, which lasted at least 2 weeks after CUMS ended. CUMS also increased the mRNA level of α2δ-1 and synaptic protein levels of GluN1, α2δ-1, and α2δ-1-GluN1 complexes in the PVN in BHR. Furthermore, CUMS significantly increased the frequency of miniature EPSCs and the amplitude of NMDAR currents in spinally projecting PVN neurons in BHR; these increases were normalized by blocking NMDARs with AP5, inhibiting α2δ-1 with gabapentin, or disrupting the α2δ-1-NMDAR interaction with α2δ-1Tat peptide. Microinjection of AP5 or α2δ-1Tat peptide into the PVN normalized elevated ABP and renal sympathetic nerve activity in stressed BHR. In addition, systemically administered gabapentin or memantine attenuated higher ABP induced by CUMS in BHR. Our findings indicate that chronic stress-induced persistent hypertension is mediated by augmented sympathetic outflow via α2δ-1-bound NMDARs in the PVN. This new information provides a cellular and molecular basis for how the genetic-environment interactions cause persistent hypertension.SIGNIFICANCE STATEMENT Chronic stress is a major risk factor for hypertension development, especially for individuals with a genetic predisposition to hypertension. Using a rat model of borderline hypertension, we showed that chronic stress induced long-lasting hypertension and sympathetic nerve hyperactivity, which were maintained by NMDAR activation in the hypothalamus. Chronic stress also increased the expression of α2δ-1, previously regarded as a Ca2+ channel subunit, promoting physical interaction with and synaptic trafficking of NMDARs in the hypothalamus. Inhibiting α2δ-1, blocking NMDARs, or disrupting α2δ-1-bound NMDARs reversed chronic stress-induced sympathetic outflow and persistent hypertension. Thus, α2δ-1-dependent NMDAR activity in the hypothalamus is an effector of genetic-environment interactions and may be targeted for treating stress-induced neurogenic hypertension.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - De-Pei Li
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
19
|
Zhou MH, Chen SR, Wang L, Huang Y, Deng M, Zhang J, Zhang J, Chen H, Yan J, Pan HL. Protein Kinase C-Mediated Phosphorylation and α2δ-1 Interdependently Regulate NMDA Receptor Trafficking and Activity. J Neurosci 2021; 41:6415-6429. [PMID: 34252035 PMCID: PMC8318084 DOI: 10.1523/jneurosci.0757-21.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are important for synaptic plasticity associated with many physiological functions and neurologic disorders. Protein kinase C (PKC) activation increases the phosphorylation and activity of NMDARs, and α2δ-1 is a critical NMDAR-interacting protein and controls synaptic trafficking of NMDARs. In this study, we determined the relative roles of PKC and α2δ-1 in the control of NMDAR activity. We found that α2δ-1 coexpression significantly increased NMDAR activity in HEK293 cells transfected with GluN1/GluN2A or GluN1/GluN2B. PKC activation with phorbol 12-myristate 13-acetate (PMA) increased receptor activity only in cells coexpressing GluN1/GluN2A and α2δ-1. Remarkably, PKC inhibition with Gӧ6983 abolished α2δ-1-coexpression-induced potentiation of NMDAR activity in cells transfected with GluN1/GluN2A or GluN1/GluN2B. Treatment with PMA increased the α2δ-1-GluN1 interaction and promoted α2δ-1 and GluN1 cell surface trafficking. PMA also significantly increased NMDAR activity of spinal dorsal horn neurons and the amount of α2δ-1-bound GluN1 protein complexes in spinal cord synaptosomes in wild-type mice, but not in α2δ-1 knockout mice. Furthermore, inhibiting α2δ-1 with pregabalin or disrupting the α2δ-1-NMDAR interaction with the α2δ-1 C-terminus peptide abolished the potentiating effect of PMA on NMDAR activity. Additionally, using quantitative phosphoproteomics and mutagenesis analyses, we identified S929 on GluN2A and S1413 (S1415 in humans) on GluN2B as the phosphorylation sites responsible for NMDAR potentiation by PKC and α2δ-1. Together, our findings demonstrate the interdependence of α2δ-1 and PKC phosphorylation in regulating NMDAR trafficking and activity. The phosphorylation-dependent, dynamic α2δ-1-NMDAR interaction constitutes an important molecular mechanism of synaptic plasticity.SIGNIFICANCE STATEMENT A major challenge in studies of protein phosphorylation is to define the functional significance of each phosphorylation event and determine how various signaling pathways are coordinated in response to neuronal activity to shape synaptic plasticity. PKC phosphorylates transporters, ion channels, and G-protein-coupled receptors in signal transduction. In this study, we showed that α2δ-1 is indispensable for PKC-activation-induced surface and synaptic trafficking of NMDARs, whereas the α2δ-1-NMDAR interaction is controlled by PKC-induced phosphorylation. Our findings reveal that α2δ-1 mainly functions as a phospho-binding protein in the control of NMDAR trafficking and activity. This information provides new mechanistic insight into the reciprocal roles of PKC-mediated phosphorylation and α2δ-1 in regulating NMDARs and in the therapeutic actions of gabapentinoids.
Collapse
Affiliation(s)
- Meng-Hua Zhou
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Li Wang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yuying Huang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meichun Deng
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jixiang Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
20
|
Fu M, Liu F, Zhang YY, Lin J, Huang CL, Li YL, Wang H, Zhou C, Li CJ, Shen JF. The α2δ-1-NMDAR1 interaction in the trigeminal ganglion contributes to orofacial ectopic pain following inferior alveolar nerve injury. Brain Res Bull 2021; 171:162-171. [PMID: 33811955 DOI: 10.1016/j.brainresbull.2021.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023]
Abstract
Orofacial ectopic pain can often arise following nerve injury. However, the exact mechanism responsible for orofacial ectopic pain induced by trigeminal nerve injury remains unknown. The α2δ-1 and glutamate N-methyl-d-aspartic acid receptor (NMDAR) interactions have been demonstrated to participate in neuropathic pain regulation in the spinal cord. In this study, a rat model of inferior alveolar nerve transection (IANX) was used to investigate the role of α2δ-1-NMDAR1 interaction in the trigeminal ganglion (TG) in regard to the regulation of orofacial ectopic pain. Western blot (WB) analysis indicated that α2δ-1 and NMDAR1 in the TG were substantially higher in IANX rats than they were in sham/naive rats. Additionally, immunofluorescence (IF) results revealed that α2δ-1 and NMDAR1 were co-expressed and distributed within neurons and activated satellite glial cells in the TG. Co-immunoprecipitation (Co-IP) results indicated that α2δ-1-NMDAR1 complex levels in the TG were higher in IANX rats than they were in sham rats. Furthermore, the results of behavioral tests demonstrated that intra-TG injection of gabapentin (α2δ-1 inhibitory ligand) or memantine hydrochloride (NMDAR antagonist) reversed the decrease in mechanical head-withdrawal threshold (HWT) in IANX rats. Moreover, inhibition of α2δ-1 by intra-TG administration of gabapentin suppressed the upregulation of the NMDAR1 protein, and the inhibition of NMDAR by intra-TG administration of memantine hydrochloride inhibited the increased expression of α2δ-1 protein induced by IANX. In conclusion, the physical and functional interaction between α2δ-1 and NMDAR1 is critical for the development of orofacial ectopic pain, indicating that α2δ-1, NMDAR1, and the α2δ-1-NMDAR1 complex may represent potential targets for the treatment of orofacial ectopic pain.
Collapse
Affiliation(s)
- Min Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chao-Lan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Zhou JJ, Pachuau J, Li DP, Chen SR, Pan HL. Group III metabotropic glutamate receptors regulate hypothalamic presympathetic neurons through opposing presynaptic and postsynaptic actions in hypertension. Neuropharmacology 2020; 174:108159. [PMID: 32454125 PMCID: PMC7315613 DOI: 10.1016/j.neuropharm.2020.108159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/04/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) plays a major role in generating increased sympathetic output in hypertension. Although group III metabotropic glutamate receptors (mGluRs) are expressed in the hypothalamus, little is known about their contribution to regulating PVN presympathetic neurons in hypertension. Here we show that activating group III mGluRs with L-2-amino-4-phosphonobutyric acid (L-AP4) consistently inhibited the firing activity of spinally projecting PVN neurons in normotensive rats. However, in spontaneously hypertensive rats (SHRs), L-AP4 inhibited 45% of PVN neurons but excited 37%. L-AP4 significantly reduced glutamatergic and GABAergic input to PVN neurons in both groups. Blocking postsynaptic G protein signaling eliminated the excitatory but not the inhibitory effect of L-AP4 on PVN neurons in SHRs. Remarkably, prior activation of group I mGluRs converted the L-AP4 effect from inhibitory to excitatory in PVN neurons, and L-AP4 consistently inhibited PVN neurons when mGluR5 was blocked in SHRs. Furthermore, the expression level of mGluR4 and mGluR6 in the PVN was significantly higher in SHRs than in normotensive rats. Microinjection of L-AP4 into the PVN decreased blood pressure and lumbar sympathetic nerve discharges in normotensive rats and SHRs. Additionally, blocking group I mGluRs in the PVN potentiated L-AP4's sympathoinhibitory effect in SHRs. Therefore, activation of presynaptic group III mGluRs inhibits the excitability of PVN presympathetic neurons to attenuate sympathetic vasomotor activity. Through crosstalk with mGluR5, postsynaptic group III mGluR stimulation paradoxically excites PVN presympathetic neurons in SHRs. Concurrently blocking mGluR5 and activating group III mGluRs in the PVN can effectively reduce sympathetic outflow in hypertension.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Judith Pachuau
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - De-Pei Li
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Ablinger C, Geisler SM, Stanika RI, Klein CT, Obermair GJ. Neuronal α 2δ proteins and brain disorders. Pflugers Arch 2020; 472:845-863. [PMID: 32607809 PMCID: PMC7351808 DOI: 10.1007/s00424-020-02420-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/31/2023]
Abstract
α2δ proteins are membrane-anchored extracellular glycoproteins which are abundantly expressed in the brain and the peripheral nervous system. They serve as regulatory subunits of voltage-gated calcium channels and, particularly in nerve cells, regulate presynaptic and postsynaptic functions independently from their role as channel subunits. α2δ proteins are the targets of the widely prescribed anti-epileptic and anti-allodynic drugs gabapentin and pregabalin, particularly for the treatment of neuropathic pain conditions. Recently, the human genes (CACNA2D1-4) encoding for the four known α2δ proteins (isoforms α2δ-1 to α2δ-4) have been linked to a large variety of neurological and neuropsychiatric disorders including epilepsy, autism spectrum disorders, bipolar disorders, schizophrenia, and depressive disorders. Here, we provide an overview of the hitherto identified disease associations of all known α2δ genes, hypothesize on the pathophysiological mechanisms considering their known physiological roles, and discuss the most immanent future research questions. Elucidating their specific physiological and pathophysiological mechanisms may open the way for developing entirely novel therapeutic paradigms for treating brain disorders.
Collapse
Affiliation(s)
- Cornelia Ablinger
- Institute of Physiology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Stefanie M Geisler
- Department of Pharmacology and Toxicology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Ruslan I Stanika
- Division Physiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Christian T Klein
- Department of Life Sciences, IMC University of Applied Sciences, 3500, Krems, Austria
| | - Gerald J Obermair
- Institute of Physiology, Medical University Innsbruck, 6020, Innsbruck, Austria.
- Division Physiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria.
| |
Collapse
|
23
|
Taylor CP, Harris EW. Analgesia with Gabapentin and Pregabalin May Involve N-Methyl-d-Aspartate Receptors, Neurexins, and Thrombospondins. J Pharmacol Exp Ther 2020; 374:161-174. [DOI: 10.1124/jpet.120.266056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
|
24
|
Calcineurin Inhibition Causes α2δ-1-Mediated Tonic Activation of Synaptic NMDA Receptors and Pain Hypersensitivity. J Neurosci 2020; 40:3707-3719. [PMID: 32269108 DOI: 10.1523/jneurosci.0282-20.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
Calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, are widely used as standard immunosuppressants in organ transplantation recipients. However, these drugs can cause severe pain in patients, commonly referred to as calcineurin inhibitor-induced pain syndrome (CIPS). Although calcineurin inhibition increases NMDAR activity in the spinal cord, the underlying mechanism remains enigmatic. Using an animal model of CIPS, we found that systemic administration of FK506 in male and female mice significantly increased the amount of α2δ-1-GluN1 complexes in the spinal cord and the level of α2δ-1-bound GluN1 proteins in spinal synaptosomes. Treatment with FK506 significantly increased the frequency of mEPSCs and the amplitudes of monosynaptic EPSCs evoked from the dorsal root and puff NMDAR currents in spinal dorsal horn neurons. Inhibiting α2δ-1 with gabapentin or disrupting the α2δ-1-NMDAR interaction with α2δ-1Tat peptide completely reversed the effects of FK506. In α2δ-1 gene KO mice, treatment with FK506 failed to increase the frequency of NMDAR-mediated mEPSCs and the amplitudes of evoked EPSCs and puff NMDAR currents in spinal dorsal horn neurons. Furthermore, systemic administration of gabapentin or intrathecal injection of α2δ-1Tat peptide reversed thermal and mechanical hypersensitivity in FK506-treated mice. In addition, genetically deleting GluN1 in dorsal root ganglion neurons or α2δ-1 genetic KO similarly attenuated FK506-induced thermal and mechanical hypersensitivity. Together, our findings indicate that α2δ-1-bound NMDARs mediate calcineurin inhibitor-induced tonic activation of presynaptic and postsynaptic NMDARs at the spinal cord level and that presynaptic NMDARs play a prominent role in the development of CIPS.SIGNIFICANCE STATEMENT Calcineurin inhibitors are immunosuppressants used to prevent rejection of transplanted organs and tissues. However, these drugs can cause severe, unexplained pain. We showed that calcineurin inhibition enhances physical interaction between α2δ-1 and NMDARs and their synaptic trafficking in the spinal cord. α2δ-1 is essential for calcineurin inhibitor-induced aberrant activation of presynaptic and postsynaptic NMDARs in the spinal cord. Furthermore, inhibiting α2δ-1 or disrupting α2δ-1-NMDAR interaction reduces calcineurin inhibitor-induced pain hypersensitivity. Eliminating NMDARs in primary sensory neurons or α2δ-1 KO also attenuates calcineurin inhibitor-induced pain hypersensitivity. This new information extends our mechanistic understanding of the role of endogenous calcineurin in regulating synaptic plasticity and nociceptive transmission and suggests new strategies for treating this painful condition.
Collapse
|
25
|
α2δ-1-Bound N-Methyl-D-aspartate Receptors Mediate Morphine-induced Hyperalgesia and Analgesic Tolerance by Potentiating Glutamatergic Input in Rodents. Anesthesiology 2020; 130:804-819. [PMID: 30839350 DOI: 10.1097/aln.0000000000002648] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic use of μ-opioid receptor agonists paradoxically causes both hyperalgesia and the loss of analgesic efficacy. Opioid treatment increases presynaptic N-methyl-D-aspartate receptor activity to potentiate nociceptive input to spinal dorsal horn neurons. However, the mechanism responsible for this opioid-induced activation of presynaptic N-methyl-D-aspartate receptors remains unclear. α2δ-1, formerly known as a calcium channel subunit, interacts with N-methyl-D-aspartate receptors and is primarily expressed at presynaptic terminals. This study tested the hypothesis that α2δ-1-bound N-methyl-D-aspartate receptors contribute to presynaptic N-methyl-D-aspartate receptor hyperactivity associated with opioid-induced hyperalgesia and analgesic tolerance. METHODS Rats (5 mg/kg) and wild-type and α2δ-1-knockout mice (10 mg/kg) were treated intraperitoneally with morphine twice/day for 8 consecutive days, and nociceptive thresholds were examined. Presynaptic N-methyl-D-aspartate receptor activity was recorded in spinal cord slices. Coimmunoprecipitation was performed to examine protein-protein interactions. RESULTS Chronic morphine treatment in rats increased α2δ-1 protein amounts in the dorsal root ganglion and spinal cord. Chronic morphine exposure also increased the physical interaction between α2δ-1 and N-methyl-D-aspartate receptors by 1.5 ± 0.3 fold (means ± SD, P = 0.009, n = 6) and the prevalence of α2δ-1-bound N-methyl-D-aspartate receptors at spinal cord synapses. Inhibiting α2δ-1 with gabapentin or genetic knockout of α2δ-1 abolished the increase in presynaptic N-methyl-D-aspartate receptor activity in the spinal dorsal horn induced by morphine treatment. Furthermore, uncoupling the α2δ-1-N-methyl-D-aspartate receptor interaction with an α2δ-1 C terminus-interfering peptide fully reversed morphine-induced tonic activation of N-methyl-D-aspartate receptors at the central terminal of primary afferents. Finally, intraperitoneal injection of gabapentin or intrathecal injection of an α2δ-1 C terminus-interfering peptide or α2δ-1 genetic knockout abolished the mechanical and thermal hyperalgesia induced by chronic morphine exposure and largely preserved morphine's analgesic effect during 8 days of morphine treatment. CONCLUSIONS α2δ-1-Bound N-methyl-D-aspartate receptors contribute to opioid-induced hyperalgesia and tolerance by augmenting presynaptic N-methyl-D-aspartate receptor expression and activity at the spinal cord level.
Collapse
|
26
|
Ovalles AC, Contoreggi NH, Marques-Lopes J, Van Kempen TA, Iadecola C, Waters EM, Glass MJ, Milner TA. Plasma Membrane Affiliated AMPA GluA1 in Estrogen Receptor β-containing Paraventricular Hypothalamic Neurons Increases Following Hypertension in a Mouse Model of Post-menopause. Neuroscience 2019; 423:192-205. [PMID: 31682817 DOI: 10.1016/j.neuroscience.2019.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Sex and ovarian function contribute to hypertension susceptibility, however, the mechanisms are not well understood. Prior studies show that estrogens and neurogenic factors, including hypothalamic glutamatergic NMDA receptor plasticity, play significant roles in rodent hypertension. Here, we investigated the role of sex and ovarian failure on AMPA receptor plasticity in estrogen-sensitive paraventricular nucleus (PVN) neurons in naïve and angiotensin II (AngII) infused male and female mice and female mice at early and late stages of accelerated ovarian failure (AOF). High-resolution electron microscopy was used to assess the subcellular distribution of AMPA GluA1 in age-matched male and female estrogen receptor beta (ERβ) enhanced green fluorescent protein (EGFP) reporter mice as well as female ERβ-EGFP mice treated with 4-vinylcyclohexene diepoxide. In the absence of AngII, female mice at a late stage of AOF displayed higher levels of GluA1 on the plasma membrane, indicative of functional protein, in ERβ-expressing PVN dendrites when compared to male, naïve female and early stage AOF mice. Following slow-pressor AngII infusion, males, as well as early and late stage AOF females had elevated blood pressure. Significantly, only late stage-AOF female mice infused with AngII had an increase in GluA1 near the plasma membrane in dendrites of ERβ-expressing PVN neurons. In contrast, prior studies reported that plasmalemmal NMDA GluN1 increased in ERβ-expressing PVN dendrites in males and early, but not late stage AOF females. Together, these findings reveal that early and late stage AOF female mice display unique molecular signatures of long-lasting synaptic strength prior to, and following hypertension.
Collapse
Affiliation(s)
- Astrid C Ovalles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA.
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
27
|
Ma H, Chen SR, Chen H, Pan HL. Endogenous AT1 receptor-protein kinase C activity in the hypothalamus augments glutamatergic input and sympathetic outflow in hypertension. J Physiol 2019; 597:4325-4340. [PMID: 31241170 PMCID: PMC6697190 DOI: 10.1113/jp278427] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS The angiotensin AT1 receptor expression and protein kinase C (PKC)-mediated NMDA receptor phosphorylation levels in the hypothalamus are increased in a rat genetic model of hypertension. Blocking AT1 receptors or PKC activity normalizes the increased pre- and postsynaptic NMDA receptor activity of hypothalamic presympathetic neurons in hypertensive animals. Inhibition of AT1 receptor-PKC activity in the hypothalamus reduces arterial blood pressure and sympathetic nerve discharges in hypertensive animals. AT1 receptors in the hypothalamus are endogenously activated to sustain NMDA receptor hyperactivity and elevated sympathetic outflow via PKC in hypertension. ABSTRACT Increased synaptic N-methyl-d-aspartate receptor (NMDAR) activity in the hypothalamic paraventricular nucleus (PVN) plays a major role in elevated sympathetic output in hypertension. Although exogenous angiotensin II (AngII) can increase NMDAR activity in the PVN, whether endogenous AT1 receptor-protein kinase C (PKC) activity mediates the augmented NMDAR activity of PVN presympathetic neurons in hypertension is unclear. Here we show that blocking AT1 receptors with losartan or inhibiting PKC with chelerythrine significantly decreased the frequency of NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) and the amplitude of puff NMDA currents of retrogradely labelled spinally projecting PVN neurons in spontaneously hypertensive rats (SHRs). Also, treatment with chelerythrine abrogated the potentiating effect of AngII on mEPSCs and puff NMDA currents of labelled PVN neurons in SHRs. In contrast, neither losartan nor chelerythrine had any effect on mEPSCs or puff NMDA currents in labelled PVN neurons in Wistar-Kyoto (WKY) rats. Furthermore, levels of AT1 receptor mRNA and PKC-mediated NMDAR phosphorylation in the PVN were significantly higher in SHRs than in WKY rats. In addition, microinjection of losartan or chelerythrine into the PVN substantially reduced blood pressure and renal sympathetic nerve discharges in SHRs but not in WKY rats. Chelerythrine blocked sympathoexcitatory responses to AngII microinjected into the PVN. Our findings suggest that endogenous AT1 receptor-PKC activity is essential for presynaptic and postsynaptic NMDAR hyperactivity of PVN presympathetic neurons and for the augmented sympathetic outflow in hypertension. This information advances our mechanistic understanding of the interplay between angiotensinergic and glutamatergic excitatory inputs in hypertension.
Collapse
Affiliation(s)
- Huijie Ma
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
28
|
Deng M, Chen SR, Pan HL. Presynaptic NMDA receptors control nociceptive transmission at the spinal cord level in neuropathic pain. Cell Mol Life Sci 2019; 76:1889-1899. [PMID: 30788514 PMCID: PMC6482077 DOI: 10.1007/s00018-019-03047-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/20/2022]
Abstract
Chronic neuropathic pain is a debilitating condition that remains challenging to treat. Glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been used to treat neuropathic pain, but the exact sites of their actions have been unclear until recently. Although conventionally postsynaptic, NMDARs are also expressed presynaptically, particularly at the central terminals of primary sensory neurons, in the spinal dorsal horn. However, presynaptic NMDARs in the spinal cord are normally quiescent and are not actively involved in physiological nociceptive transmission. In this review, we describe the emerging role of presynaptic NMDARs at the spinal cord level in chronic neuropathic pain and the implications of molecular mechanisms for more effective treatment. Recent studies indicate that presynaptic NMDAR activity at the spinal cord level is increased in several neuropathic pain conditions but not in chronic inflammatory pain. Increased presynaptic NMDAR activity can potentiate glutamate release from primary afferent terminals to spinal dorsal horn neurons, which is crucial for the synaptic plasticity associated with neuropathic pain caused by traumatic nerve injury and chemotherapy-induced peripheral neuropathy. Furthermore, α2δ-1, previously considered a calcium channel subunit, can directly interact with NMDARs through its C-terminus to increase presynaptic NMDAR activity by facilitating synaptic trafficking of α2δ-1-NMDAR complexes in neuropathic pain caused by chemotherapeutic agents and peripheral nerve injury. Targeting α2δ-1-bound NMDARs with gabapentinoids or α2δ-1 C-terminus peptides can attenuate nociceptive drive form primary sensory nerves to dorsal horn neurons in neuropathic pain.
Collapse
Affiliation(s)
- Meichun Deng
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 110, Houston, TX, 77030, USA
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 110, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 110, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Impaired Hypothalamic Regulation of Sympathetic Outflow in Primary Hypertension. Neurosci Bull 2018; 35:124-132. [PMID: 30506315 DOI: 10.1007/s12264-018-0316-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/01/2018] [Indexed: 01/01/2023] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is a crucial region involved in maintaining homeostasis through the regulation of cardiovascular, neuroendocrine, and other functions. The PVN provides a dominant source of excitatory drive to the sympathetic outflow through innervation of the brainstem and spinal cord in hypertension. We discuss current findings on the role of the PVN in the regulation of sympathetic output in both normotensive and hypertensive conditions. The PVN seems to play a major role in generating the elevated sympathetic vasomotor activity that is characteristic of multiple forms of hypertension, including primary hypertension in humans. Recent studies in the spontaneously hypertensive rat model have revealed an imbalance of inhibitory and excitatory synaptic inputs to PVN pre-sympathetic neurons as indicated by impaired inhibitory and enhanced excitatory synaptic inputs in hypertension. This imbalance of inhibitory and excitatory synaptic inputs in the PVN forms the basis for elevated sympathetic outflow in hypertension. In this review, we discuss the disruption of balance between glutamatergic and GABAergic inputs and the associated cellular and molecular alterations as mechanisms underlying the hyperactivity of PVN pre-sympathetic neurons in hypertension.
Collapse
|
30
|
Dampney RA, Michelini LC, Li DP, Pan HL. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am J Physiol Heart Circ Physiol 2018; 315:H1200-H1214. [PMID: 30095973 PMCID: PMC6297824 DOI: 10.1152/ajpheart.00216.2018] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) is a unique and important brain region involved in the control of cardiovascular, neuroendocrine, and other physiological functions pertinent to homeostasis. The PVN is a major source of excitatory drive to the spinal sympathetic outflow via both direct and indirect projections. In this review, we discuss the role of the PVN in the regulation of sympathetic output in normal physiological conditions and in hypertension. In normal healthy animals, the PVN presympathetic neurons do not appear to have a major role in sustaining resting sympathetic vasomotor activity or in regulating sympathetic responses to short-term homeostatic challenges such as acute hypotension or hypoxia. Their role is, however, much more significant during longer-term challenges, such as sustained water deprivation, chronic intermittent hypoxia, and pregnancy. The PVN also appears to have a major role in generating the increased sympathetic vasomotor activity that is characteristic of multiple forms of hypertension. Recent studies in the spontaneously hypertensive rat model have shown that impaired inhibitory and enhanced excitatory synaptic inputs to PVN presympathetic neurons are the basis for the heightened sympathetic outflow in hypertension. We discuss the molecular mechanisms underlying the presynaptic and postsynaptic alterations in GABAergic and glutamatergic inputs to PVN presympathetic neurons in hypertension. In addition, we discuss the ability of exercise training to correct sympathetic hyperactivity by restoring blood-brain barrier integrity, reducing angiotensin II availability, and decreasing oxidative stress and inflammation in the PVN.
Collapse
Affiliation(s)
- Roger A Dampney
- Department of Physiology, University of Sydney , Sydney, New South Wales , Australia
| | - Lisete C Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - De-Pei Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
31
|
Zhou JJ, Li DP, Chen SR, Luo Y, Pan HL. The α2δ-1-NMDA receptor coupling is essential for corticostriatal long-term potentiation and is involved in learning and memory. J Biol Chem 2018; 293:19354-19364. [PMID: 30355732 DOI: 10.1074/jbc.ra118.003977] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/18/2018] [Indexed: 11/06/2022] Open
Abstract
The striatum receives extensive cortical input and plays a prominent role in motor learning and habit formation. Glutamate N-methyl-d-aspartate (NMDA) receptor (NMDAR)-mediated long-term potentiation (LTP) is a major synaptic plasticity involved in learning and memory. However, the molecular mechanism underlying NMDAR plasticity in corticostriatal LTP is unclear. Here, we show that theta-burst stimulation (TBS) consistently induced corticostriatal LTP and increased the coincident presynaptic and postsynaptic NMDAR activity of medium spiny neurons. We also found that α2δ-1 (previously known as a subunit of voltage-gated calcium channels; encoded by the Cacna2d1 gene) physically interacted with NMDARs in the striatum of mice and humans, indicating that this cross-talk is conserved across species. Strikingly, inhibiting α2δ-1 trafficking with gabapentin or disrupting the α2δ-1-NMDAR interaction with an α2δ-1 C terminus-interfering peptide abolished TBS-induced LTP. In Cacna2d1-knockout mice, TBS failed to induce corticostriatal LTP and the associated increases in presynaptic and postsynaptic NMDAR activities. Moreover, systemic gabapentin treatment, microinjection of α2δ-1 C terminus-interfering peptide into the dorsomedial striatum, or Cacna2d1 ablation impaired the alternation T-maze task and rotarod performance in mice. Our findings indicate that the interaction between α2δ-1 and NMDARs is of high physiological relevance and that a TBS-induced switch from α2δ-1-free to α2δ-1-bound NMDARs is critically involved in corticostriatal LTP and LTP-associated learning and memory. Gabapentinoids at high doses may adversely affect cognitive function by targeting α2δ-1-NMDAR complexes.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| | - De-Pei Li
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Shao-Rui Chen
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Yi Luo
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and.,the Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Hui-Lin Pan
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| |
Collapse
|