1
|
Ahmad M, Wu S, Luo S, Shi W, Guo X, Cao Y, Perrimon N, He L. Dietary amino acids promote glucagon-like hormone release to generate global calcium waves in adipose tissues in Drosophila. Nat Commun 2025; 16:247. [PMID: 39747032 PMCID: PMC11696257 DOI: 10.1038/s41467-024-55371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Propagation of intercellular calcium waves through tissues has been found to coordinate different multicellular responses. Nevertheless, our understanding of how calcium waves operate remains limited. In this study, we explore the real-time dynamics of intercellular calcium waves in Drosophila adipose tissues. We identify Adipokinetic Hormone (AKH), the fly functional homolog of glucagon, as the key factor driving Ca2+ activities in adipose tissue. We find that AKH, which is released into the hemolymph from the AKH-producing neurosecretory cells, stimulates calcium waves in the larval fat by a previously unrecognized gap-junction-independent mechanism to promote lipolysis. In the adult fat body, however, gap-junction-dependent intercellular calcium waves are triggered by a presumably uniformly diffused AKH. Additionally, we discover that amino acids activate the AKH-producing neurosecretory cells, leading to increased intracellular Ca2+ and AKH secretion. Altogether, we show that dietary amino acids regulate the AKH release from the AKH-producing neurosecretory cells in the brain, which subsequently stimulates gap-junction-independent intercellular calcium waves in adipose tissue, enhancing lipid metabolism.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Shang Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shengyao Luo
- Yuanpei College, Peking University, Beijing, China
| | - Wenjia Shi
- Department of Applied Physics, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Xuan Guo
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yuansheng Cao
- Department of Physics, Tsinghua University, Beijing, China.
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - Li He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
2
|
Ulrich H, Glaser T, Thomas AP. Purinergic signaling in liver disease: calcium signaling and induction of inflammation. Purinergic Signal 2024:10.1007/s11302-024-10044-9. [PMID: 39320433 DOI: 10.1007/s11302-024-10044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
Purinergic signaling regulates many metabolic functions and is implicated in liver physiology and pathophysiology. Liver functionality is modulated by ionotropic P2X and metabotropic P2Y receptors, specifically P2Y1, P2Y2, and P2Y6 subtypes, which physiologically exert their influence through calcium signaling, a key second messenger controlling glucose and fat metabolism in hepatocytes. Purinergic receptors, acting through calcium signaling, play an important role in a range of liver diseases. Ionotropic P2X receptors, such as the P2X7 subtype, and certain metabotropic P2Y receptors can induce aberrant intracellular calcium transients that impact normal hepatocyte function and initiate the activation of other liver cell types, including Kupffer and stellate cells. These P2Y- and P2X-dependent intracellular calcium increases are particularly relevant in hepatic disease states, where stellate and Kupffer cells respond with innate immune reactions to challenges, such as excess fat accumulation, chronic alcohol abuse, or infections, and can eventually lead to liver fibrosis. This review explores the consequences of excessive extracellular ATP accumulation, triggering calcium influx through P2X4 and P2X7 receptors, inflammasome activation, and programmed cell death. In addition, P2Y2 receptors contribute to hepatic steatosis and insulin resistance, while inhibiting the expression of P2Y6 receptors can alleviate alcoholic liver steatosis. Adenosine receptors may also contribute to fibrosis through extracellular matrix production by fibroblasts. Thus, pharmacological modulation of P1 and P2 receptors and downstream calcium signaling may open novel therapeutic avenues.
Collapse
Affiliation(s)
- Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
3
|
He L, Ahmad M, Wu S, Luo S, Shi W, Guo X, Cao Y, Perrimon N. Dietary Amino Acids Promote Glucagon-like Hormone Release to Generate Novel Calcium Waves in Adipose Tissues. RESEARCH SQUARE 2024:rs.3.rs-4493132. [PMID: 38947048 PMCID: PMC11213180 DOI: 10.21203/rs.3.rs-4493132/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Nutrient sensing and the subsequent metabolic responses are fundamental functions of animals, closely linked to diseases such as type 2 diabetes and various obesity-related morbidities. Among different metabolic regulatory signals, cytosolic Ca2+ plays pivotal roles in metabolic regulation, including glycolysis, gluconeogenesis, and lipolysis. Recently, intercellular calcium waves (ICWs), the propagation of Ca2+ signaling through tissues, have been found in different systems to coordinate multicellular responses. Nevertheless, our understanding of how ICWs are modulated and operate within living organisms remains limited. In this study, we explore the real-time dynamics, both in organ culture and free-behaving animals, of ICWs in Drosophila larval and adult adipose tissues. We identified Adipokinetic hormone (AKH), the fly functional homolog of mammalian glucagon, as the key factor driving Ca2+ activities in adipose tissue. Interestingly, we found that AKH, which is released in a pulsatile manner into the circulating hemolymph from the AKH-producing neurosecretory cells (APCs) in the brain, stimulates ICWs in the larval fat by a previously unrecognized gap-junction-independent mechanism to promote lipolysis. In the adult fat body, however, gap-junction-dependent random ICWs are triggered by a presumably uniformly diffused AKH. This highlights the stage-specific interplay of hormone secretion, extracellular diffusion, and intercellular communication in the regulation of Ca2+ dynamics. Additionally, we discovered that specific dietary amino acids activate the APCs, leading to increased intracellular Ca2+ and subsequent AKH secretion. Altogether, our findings identify that dietary amino acids regulate the release of AKH peptides from the APCs, which subsequently stimulates novel gap-junction-independent ICWs in adipose tissues, thereby enhancing lipid metabolism.
Collapse
Affiliation(s)
- Li He
- University of Science and Technology of China
| | | | - Shang Wu
- University of Science and Technology of China
| | | | | | | | | | | |
Collapse
|
4
|
Ahmad M, Wu S, Guo X, Perrimon N, He L. Sensing of dietary amino acids and regulation of calcium dynamics in adipose tissues through Adipokinetic hormone in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583442. [PMID: 38496667 PMCID: PMC10942355 DOI: 10.1101/2024.03.04.583442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Nutrient sensing and the subsequent metabolic responses are fundamental functions of animals, closely linked to diseases such as type 2 diabetes and various obesity-related diseases. Drosophila melanogaster has emerged as an excellent model for investigating metabolism and its associated disorders. In this study, we used live-cell imaging to demonstrate that the fly functional homolog of mammalian glucagon, Adipokinetic hormone (AKH), secreted from AKH hormone-producing cells (APCs) in the corpora cardiaca, stimulates intracellular Ca 2+ waves in the larval fat body/adipose tissue to promote lipid metabolism. Further, we show that specific dietary amino acids activate the APCs, leading to increased intracellular Ca 2+ and subsequent AKH secretion. Finally, a comparison of Ca 2+ dynamics in larval and adult fat bodies revealed different mechanisms of regulation, highlighting the interplay of pulses of AKH secretion, extracellular diffusion of the hormone, and intercellular communication through gap junctions. Our study underscores the suitability of Drosophila as a powerful model for exploring real-time nutrient sensing and inter-organ communication dynamics.
Collapse
|
5
|
Liu Y, Yu X, Wang Y, Wu J, Feng B, Li M. The role of differentially expressed genes and immune cell infiltration in the progression of nonalcoholic steatohepatitis (NASH) to hepatocellular carcinoma (HCC): a new exploration based on bioinformatics analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1415-1430. [PMID: 38319987 DOI: 10.1080/15257770.2024.2310044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/08/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of chronic liver disease characterized. The condition ranges from isolated excessive hepatocyte triglyceride accumulation and steatosis (nonalcoholic fatty liver (NAFL), to hepatic triglyceride accumulation plus inflammation and hepatocyte injury (nonalcoholic steatohepatitis (NASH)) and finally to hepatic fibrosis and cirrhosis and/or hepatocellular carcinoma (HCC). However, the mechanism driving this process is not yet clear. Obtain sample microarray from the GEO database. Extract 6 healthy liver samples, 74 nonalcoholic hepatitis samples, 8 liver cirrhosis samples, and 53 liver cancer samples from the GSE164760 dataset. We used the GEO2R tool for differentially expressed genes (DEGs) analysis of disease progression (nonalcoholic hepatitis healthy group, cirrhosis nonalcoholic hepatitis group, and liver cancer cirrhosis group) and necroptosis gene set. Gene set variation analysis (GSVA) is used to evaluate the association between biological pathways and gene features. The STRING database and Cytoscape software were used to establish and visualize protein-protein interaction (PPI) networks and identify the key functional modules of DEGs, drawn factor-target genes regulatory network. Gene Ontology (GO) and KEGG pathway enrichment analyses of DEGs were also performed. Additionally, immune infiltration patterns were analyzed using the cibersort, and the correlation between immune cell-type abundance and DEGs expression was investigated. We further screened and obtained a total of 152 intersecting DEGs from three groups. 23 key genes were obtained through the MCODE plugin. Transcription factors regulating common differentially expressed genes were obtained in the hTFtarget database, and a TF target network diagram was drawn. There are 118 nodes, 251 edges, and 4 clusters in the PPI network. The key genes of the four modules include METAP2, RPL14, SERBP1, EEF2; HR4A1; CANX; ARID1A, UBE2K. METAP2, RPL14, SERBP1 and EEF2 was identified as the key hub genes. CREB1 was identified as the hub TF interacting with those gens by taking the intersection of potential TFs. The types of key gene changes were genetic mutations. It can be seen that the incidence of key gene mutations is 1.7% in EEF2, 0.8% in METAP2, and 0.3% in RPL14, respectively. Finally, We found that the most significant expression differences of the immune infiltrating cells among the three groups, were Tregs and M2, M0 type macrophages. We identified four hub genes METAP2, RPL14, SERBP1 and EEF2 being the most closely with the process from NASH to cirrhosis to HCC. It is beneficial to examine and understand the interaction between hub DEGs and potential regulatory molecules in the process. This knowledge may provide a novel theoretical foundation for the development of diagnostic biomarkers and gene-related therapy targets in the process.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, Dandong Central Hospital, Dandong, Liaoning, China
| | - Xiaohan Yu
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| | - Yuegu Wang
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| | - Jinge Wu
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| | - Bo Feng
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| | - Meng Li
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| |
Collapse
|
6
|
Hassan N, Murray BG, Jagadeeshan S, Thomas R, Katselis GS, Ianowski JP. Intracellular Ca 2+ oscillation frequency and amplitude modulation mediate epithelial apical and basolateral membranes crosstalk. iScience 2024; 27:108629. [PMID: 38188522 PMCID: PMC10767210 DOI: 10.1016/j.isci.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Since the early seminal studies on epithelial solute transport, it has been understood that there must be crosstalk among different members of the transport machinery to coordinate their activity and, thus, generate localized electrochemical gradients that force solute flow in the required direction that would otherwise be thermodynamically unfavorable. However, mechanisms underlying intracellular crosstalk remain unclear. We present evidence that crosstalk between apical and basolateral membrane transporters is mediated by intracellular Ca2+ signaling in insect renal epithelia. Ion flux across the basolateral membrane is encoded in the intracellular Ca2+ oscillation frequency and amplitude modulation and that information is used by the apical membrane to adjust ion flux accordingly. Moreover, imposing experimentally generated intracellular Ca2+ oscillation modulation causes cells to predictably adjust their ion transport properties. Our results suggest that intracellular Ca2+ oscillation frequency and amplitude modulation encode information on transmembrane ion flux that is required for crosstalk.
Collapse
Affiliation(s)
- Noman Hassan
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - Brendan G. Murray
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | | | - Robert Thomas
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - George S. Katselis
- Department of Medicine, Division of Canadian Centre for Rural and Agricultural Health, College of Medicine, University of Saskatchewan, Saskatoon S7N 2Z4, Canada
| | - Juan P. Ianowski
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| |
Collapse
|
7
|
Humbert A, Lefebvre R, Nawrot M, Caussy C, Rieusset J. Calcium signalling in hepatic metabolism: Health and diseases. Cell Calcium 2023; 114:102780. [PMID: 37506596 DOI: 10.1016/j.ceca.2023.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The flexibility between the wide array of hepatic functions relies on calcium (Ca2+) signalling. Indeed, Ca2+ is implicated in the control of many intracellular functions as well as intercellular communication. Thus, hepatocytes adapt their Ca2+ signalling depending on their nutritional and hormonal environment, leading to opposite cellular functions, such as glucose storage or synthesis. Interestingly, hepatic metabolic diseases, such as obesity, type 2 diabetes and non-alcoholic fatty liver diseases, are associated with impaired Ca2+ signalling. Here, we present the hepatocytes' toolkit for Ca2+ signalling, complete with regulation systems and signalling pathways activated by nutrients and hormones. We further discuss the current knowledge on the molecular mechanisms leading to alterations of Ca2+ signalling in hepatic metabolic diseases, and review the literature on the clinical impact of Ca2+-targeting therapeutics.
Collapse
Affiliation(s)
- Alexandre Humbert
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Rémy Lefebvre
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Margaux Nawrot
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Cyrielle Caussy
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France; Département Endocrinologie, Diabète et Nutrition, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France.
| |
Collapse
|
8
|
Thomas AP, Corrêa-Velloso JC. Calcium Wave Propagation Underlying Intercellular Signaling and Coordination of Tissue Responses. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac011. [PMID: 35356151 PMCID: PMC8945820 DOI: 10.1093/function/zqac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Andrew P Thomas
- Lead Contact and Address correspondence to A.P.T. (e-mail: )
| | - Juliana C Corrêa-Velloso
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, USA
| |
Collapse
|
9
|
Rotoli BM, Visigalli R, Ferrari F, Ranieri M, Tamma G, Dall’Asta V, Barilli A. Desmopressin Stimulates Nitric Oxide Production in Human Lung Microvascular Endothelial Cells. Biomolecules 2022; 12:biom12030389. [PMID: 35327581 PMCID: PMC8945551 DOI: 10.3390/biom12030389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/10/2023] Open
Abstract
Desmopressin (dDAVP) is the best characterized analogue of vasopressin, the endocrine regulator of water balance endowed with potent vasoconstrictive effects. Despite the use of dDAVP in clinical practice, ranging from the treatment of nephrogenic diabetes insipidus to bleeding disorders, much remains to be understood about the impact of the drug on endothelial phenotype. The aim of this study was, thus, to evaluate the effects of desmopressin on the viability and function of human pulmonary microvascular endothelial cells (HLMVECs). The results obtained demonstrate that the vasopressor had no cytotoxic effect on the endothelium; similarly, no sign of endothelial activation was induced by dDAVP, indicated by the lack of effect on the expression of inflammatory cytokines and adhesion molecules. Conversely, the drug significantly stimulated the production of nitric oxide (NO) and the expression of the inducible isoform of nitric oxide synthase, NOS2/iNOS. Since the intracellular level of cAMP also increased, we can hypothesize that NO release is consequent to the activation of the vasopressin receptor 2 (V2R)/guanylate cyclase (Gs)/cAMP axis. Given the multifaceted role of NOS2-deriving NO for many physio-pathological conditions, the meanings of these findings in HLMVECs appears intriguing and deserves to be further addressed.
Collapse
Affiliation(s)
- Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (B.M.R.); (R.V.); (F.F.); (V.D.)
| | - Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (B.M.R.); (R.V.); (F.F.); (V.D.)
| | - Francesca Ferrari
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (B.M.R.); (R.V.); (F.F.); (V.D.)
| | - Marianna Ranieri
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (G.T.)
| | - Grazia Tamma
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (G.T.)
| | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (B.M.R.); (R.V.); (F.F.); (V.D.)
| | - Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (B.M.R.); (R.V.); (F.F.); (V.D.)
- Correspondence:
| |
Collapse
|
10
|
Márta K, Booth D, Csordás G, Hajnóczky G. Fluorescent protein transgenic mice for the study of Ca 2+ and redox signaling. Free Radic Biol Med 2022; 181:241-250. [PMID: 35158029 PMCID: PMC8988923 DOI: 10.1016/j.freeradbiomed.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/10/2022] [Indexed: 01/29/2023]
Abstract
Many unanswered questions of physiology and medicine require in vivo studies of cellular processes in murine models. These processes commonly depend on intracellular Ca2+ and redox alterations. Fluorescent dyes have succeeded in real-time intracellular monitoring of Ca2+, redox and the different Reactive Oxygen Species (ROS) in single cells, but have seldomly been applied in vivo. The advance in Fluorescent Protein (FP) technology has created alternative tools for the same task, which can be delivered with viruses or genomic integration strategies into mice. With the availability of several color options for both Ca2+ and redox reporting FP, multiparameter measurements have also become feasible: measuring different species, and the same parameter at different locations using organelle-specific targeting sequences at the same time. We, here, focus on mice with genomic integration of Ca2+ and redox reporters, provide a list of the available models and summarize the strategies of their generation and utilization. We also describe a novel Calcium DoubleSpy mouse model that conditionally expresses both RCaMP in the cytoplasm and GEM-GECO1 in the mitochondrial matrix, allowing the study of mitochondrial Ca2+ related physiology and pathogenesis simultaneously in two distinct intracellular compartments.
Collapse
Affiliation(s)
- Katalin Márta
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - David Booth
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - György Csordás
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
11
|
Verma A, Manchel A, Narayanan R, Hoek JB, Ogunnaike BA, Vadigepalli R. A Spatial Model of Hepatic Calcium Signaling and Glucose Metabolism Under Autonomic Control Reveals Functional Consequences of Varying Liver Innervation Patterns Across Species. Front Physiol 2021; 12:748962. [PMID: 34899380 PMCID: PMC8662697 DOI: 10.3389/fphys.2021.748962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Rapid breakdown of hepatic glycogen stores into glucose plays an important role during intense physical exercise to maintain systemic euglycemia. Hepatic glycogenolysis is governed by several different liver-intrinsic and systemic factors such as hepatic zonation, circulating catecholamines, hepatocellular calcium signaling, hepatic neuroanatomy, and the central nervous system (CNS). Of the factors regulating hepatic glycogenolysis, the extent of lobular innervation varies significantly between humans and rodents. While rodents display very few autonomic nerve terminals in the liver, nearly every hepatic layer in the human liver receives neural input. In the present study, we developed a multi-scale, multi-organ model of hepatic metabolism incorporating liver zonation, lobular scale calcium signaling, hepatic innervation, and direct and peripheral organ-mediated communication between the liver and the CNS. We evaluated the effect of each of these governing factors on the total hepatic glucose output and zonal glycogenolytic patterns within liver lobules during simulated physical exercise. Our simulations revealed that direct neuronal stimulation of the liver and an increase in circulating catecholamines increases hepatic glucose output mediated by mobilization of intracellular calcium stores and lobular scale calcium waves. Comparing simulated glycogenolysis between human-like and rodent-like hepatic innervation patterns (extensive vs. minimal) suggested that propagation of calcium transients across liver lobules acts as a compensatory mechanism to improve hepatic glucose output in sparsely innervated livers. Interestingly, our simulations suggested that catecholamine-driven glycogenolysis is reduced under portal hypertension. However, increased innervation coupled with strong intercellular communication can improve the total hepatic glucose output under portal hypertension. In summary, our modeling and simulation study reveals a complex interplay of intercellular and multi-organ interactions that can lead to differing calcium dynamics and spatial distributions of glycogenolysis at the lobular scale in the liver.
Collapse
Affiliation(s)
- Aalap Verma
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States.,Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexandra Manchel
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rahul Narayanan
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jan B Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Babatunde A Ogunnaike
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
12
|
Bi Y, Guo X, Zhang M, Zhu K, Shi C, Fan B, Wu Y, Yang Z, Ji G. Bone marrow derived-mesenchymal stem cell improves diabetes-associated fatty liver via mitochondria transformation in mice. Stem Cell Res Ther 2021; 12:602. [PMID: 34895322 PMCID: PMC8665517 DOI: 10.1186/s13287-021-02663-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) has become a global epidemic disease. Its incidence is associated with type 2 diabetes mellitus (T2DM). Presently, there is no approved pharmacological agents specially developed for NAFLD. One promising disease-modifying strategy is the transplantation of stem cells to promote metabolic regulation and repair of injury. Method In this study, a T2DM model was established through 28-week high-fat diet (HFD) feeding resulting in T2DM-associated NAFLD, followed by the injection of bone marrow mesenchymal stem cells (BMSCs). The morphology, function, and transfer of hepatocyte mitochondria were evaluated in both vivo and in vitro. Results BMSC implantation resulted in the considerable recovery of increasing weight, HFD-induced steatosis, liver function, and disordered glucose and lipid metabolism. The treatment with BMSC transplantation was accompanied by reduced fat accumulation. Moreover, mitochondrial transfer was observed in both vivo and vitro studies. And the mitochondria-recipient steatotic cells exhibited significantly enhanced OXPHOS activity, ATP production, and mitochondrial membrane potential, and reduced reactive oxygen species levels, which were not achieved by the blocking of mitochondrial transfer. Conclusion Mitochondrial transfer from BMSCs is a feasible process to combat NAFLD via rescuing dysfunction mitochondria, and has a promising therapeutic effect on metabolism-related diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02663-5.
Collapse
Affiliation(s)
- Youkun Bi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejun Guo
- Puyang Oilfield General Hospital, Affiliated to Xinxiang Medical College, Puyang city, 457000, Henan Province, China.
| | - Mengqi Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqi Zhu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chentao Shi
- Puyang Oilfield General Hospital, Affiliated to Xinxiang Medical College, Puyang city, 457000, Henan Province, China
| | - Baoqi Fan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanyun Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiguang Yang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangju Ji
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
13
|
Xing P, Hong L, Yan G, Tan B, Qiao J, Wang S, Li Z, JieYang, Zheng E, Cai G, Wu Z, Gu T. Neuronatin gene expression levels affect foetal growth and development by regulating glucose transport in porcine placenta. Gene 2021; 809:146051. [PMID: 34756962 DOI: 10.1016/j.gene.2021.146051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/04/2022]
Abstract
Imprinted genes play important regulatory roles in the growth and development of placentas and foetuses during pregnancy. In a previous study, we found that the imprinted gene Neuronatin (NNAT) is involved in foetal development; NNAT expression was significantly lower in the placentas of piglets that died neonatally compared to the placentas of surviving piglets. However, the function and mechanism of NNAT in regulating porcine placental development is still unknown. In this study, we collected the placentas of high- and low-weight foetuses at gestational day (GD 65, 90), (n = 4-5 litters/GD) to investigate the role of NNAT in regulating foetal growth and development. We found that the mRNA and protein levels of NNAT were significantly higher in the placentas of high-weight than low-weight foetuses. We then overexpressed NNAT in porcine placental trophoblast cell lines (pTr2) and demonstrated that NNAT activated the PI3K-AKT pathway, and further promoted the expression of glucose transporter 1 (GLUT1) and increased cellular calcium ion levels, which improved glucose transport in placental trophoblast cells in vitro. To conclude, our study suggests that NNAT expression impacts porcine foetal development by regulating placental glucose transport.
Collapse
Affiliation(s)
- Pingping Xing
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guanhao Yan
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baohua Tan
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaxin Qiao
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shanshan Wang
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, China; Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Wens Breeding Swine Technology Co., Ltd, Yunfu, China
| | - JieYang
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, China; Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangzhou, China; Guangdong Wens Breeding Swine Technology Co., Ltd, Yunfu, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, Guangzhou, China & College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
14
|
Receptor-specific Ca 2+ oscillation patterns mediated by differential regulation of P2Y purinergic receptors in rat hepatocytes. iScience 2021; 24:103139. [PMID: 34646983 PMCID: PMC8496176 DOI: 10.1016/j.isci.2021.103139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Extracellular agonists linked to inositol-1,4,5-trisphosphate (IP3) formation elicit cytosolic Ca2+ oscillations in many cell types, but despite a common signaling pathway, distinct agonist-specific Ca2+ spike patterns are observed. Using qPCR, we show that rat hepatocytes express multiple purinergic P2Y and P2X receptors (R). ADP acting through P2Y1R elicits narrow Ca2+ oscillations, whereas UTP acting through P2Y2R elicits broad Ca2+ oscillations, with composite patterns observed for ATP. P2XRs do not play a role at physiological agonist levels. The discrete Ca2+ signatures reflect differential effects of protein kinase C (PKC), which selectively modifies the falling phase of the Ca2+ spikes. Negative feedback by PKC limits the duration of P2Y1R-induced Ca2+ spikes in a manner that requires extracellular Ca2+. By contrast, P2Y2R is resistant to PKC negative feedback. Thus, the PKC leg of the bifurcated IP3 signaling pathway shapes unique Ca2+ oscillation patterns that allows for distinct cellular responses to different agonists. Distinct stereotypic Ca2+ oscillations are elicited by P2Y1 and P2Y2 receptors P2X receptors do not contribute to the generation of Ca2+ oscillations Agonist-specific Ca2+ spike shapes reflect discrete modes of PKC negative feedback Bifurcation of IP3/PKC signaling yields unique Ca2+ oscillation signatures
Collapse
|
15
|
Kongthitilerd P, Sharma A, Guidry HE, Rong W, Nguyen J, Yao S, Adisakwattana S, Cheng H. Antidiuretic hormone inhibits osteogenic differentiation of dental follicle stem cells via V1a receptors and the PLC-IP 3 pathway. Arch Oral Biol 2021; 128:105169. [PMID: 34058720 DOI: 10.1016/j.archoralbio.2021.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The aim of this study was to elucidate the molecular mechanism by which antidiuretic hormone (ADH) inhibited osteogenesis in dental follicle stem cells. DESIGN Rat dental follicle stem cells were cultured in osteogenic differentiation medium supplemented with ADH. Alkaline phosphatase enzyme activity, Alizarin Red S staining, MTT assay and RT-qPCR was used to examine ADH's impact on cell mineralization, viability, and osteogenic gene expression. Real-time calcium imaging analysis was performed to identify the ADH receptor and its mechanism of action. RESULTS ADH supplementation to the osteogenic differentiation medium inhibited cell mineralization without compromising cell viability and downregulated the expression of key osteogenic genes: DCN (Decorin), RUNX2 (Runt-related transcription factor 2) and BSP (Bone sialoprotein). Real-time calcium imaging analysis revealed that ADH (1-1000 nM) increased intracellular calcium in a concentration-dependent manner. Pretreatment of cells with V2255, a V1a receptor blocker, inhibited the calcium signals, but not with the V1b (Nelivaptan) or V2 (Tolvaptan). V2255 also reversed the inhibitory effect of ADH on osteogenesis. Furthermore, U73122, a Phospholipase C (PLC) inhibitor, 2-APB, an Inositol Triphosphate (IP3) receptor blocker, and depletion of endoplasmic reticulum calcium stores abolished the calcium signals by ADH. CONCLUSIONS Our results demonstrated that ADH activates V1a receptors and the PLC-IP3 pathway to stimulate intracellular calcium signals, which inhibits cell mineralization and osteogenic gene expression. These findings uncovered a novel function for ADH as a negative regulator of osteogenesis in dental follicle stem cells. The role of ADH in the pathogenesis of bone diseases remains to be determined.
Collapse
Affiliation(s)
- P Kongthitilerd
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA; Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - A Sharma
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - H E Guidry
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - W Rong
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - J Nguyen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - S Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - S Adisakwattana
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - H Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
16
|
Turovsky EA, Turovskaya MV, Dynnik VV. Deregulation of Ca 2+-Signaling Systems in White Adipocytes, Manifested as the Loss of Rhythmic Activity, Underlies the Development of Multiple Hormonal Resistance at Obesity and Type 2 Diabetes. Int J Mol Sci 2021; 22:ijms22105109. [PMID: 34065973 PMCID: PMC8150837 DOI: 10.3390/ijms22105109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023] Open
Abstract
Various types of cells demonstrate ubiquitous rhythmicity registered as simple and complex Ca2+-oscillations, spikes, waves, and triggering phenomena mediated by G-protein and tyrosine kinase coupled receptors. Phospholipase C/IP3-receptors (PLC/IP3R) and endothelial NO-synthase/Ryanodine receptors (NOS/RyR)–dependent Ca2+ signaling systems, organized as multivariate positive feedback generators (PLC-G and NOS-G), underlie this rhythmicity. Loss of rhythmicity at obesity may indicate deregulation of these signaling systems. To issue the impact of cell size, receptors’ interplay, and obesity on the regulation of PLC-G and NOS-G, we applied fluorescent microscopy, immunochemical staining, and inhibitory analysis using cultured adipocytes of epididumal white adipose tissue of mice. Acetylcholine, norepinephrine, atrial natriuretic peptide, bradykinin, cholecystokinin, angiotensin II, and insulin evoked complex [Ca2+]i responses in adipocytes, implicating NOS-G or PLC-G. At low sub-threshold concentrations, acetylcholine and norepinephrine or acetylcholine and peptide hormones (in paired combinations) recruited NOS-G, based on G proteins subunits interplay and signaling amplification. Rhythmicity was cell size- dependent and disappeared in hypertrophied cells filled with lipids. Contrary to control cells, adipocytes of obese hyperglycemic and hypertensive mice, growing on glucose, did not accumulate lipids and demonstrated hormonal resistance being non responsive to any hormone applied. Preincubation of preadipocytes with palmitoyl-L-carnitine (100 nM) provided accumulation of lipids, increased expression and clustering of IP3R and RyR proteins, and partially restored hormonal sensitivity and rhythmicity (5–15% vs. 30–80% in control cells), while adipocytes of diabetic mice were not responsive at all. Here, we presented a detailed kinetic model of NOS-G and discussed its control. Collectively, we may suggest that universal mechanisms underlie loss of rhythmicity, Ca2+-signaling systems deregulation, and development of general hormonal resistance to obesity.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (E.A.T.); (M.V.T.)
| | - Maria V. Turovskaya
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (E.A.T.); (M.V.T.)
| | - Vladimir V. Dynnik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: ; Tel.: +79-2-5150-6655
| |
Collapse
|
17
|
Petersen OH. Different Effects of Alcohol on the Liver and the Pancreas. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab008. [PMID: 35330811 PMCID: PMC8788802 DOI: 10.1093/function/zqab008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 01/06/2023]
Affiliation(s)
- Ole H Petersen
- School of Biosciences, Cardiff University, Wales, UK,Corresponding author: E-mail:
| |
Collapse
|
18
|
Gaspers LD, Thomas AP, Hoek JB, Bartlett PJ. Ethanol Disrupts Hormone-Induced Calcium Signaling in Liver. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab002. [PMID: 33604575 PMCID: PMC7875097 DOI: 10.1093/function/zqab002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 01/06/2023]
Abstract
Receptor-coupled phospholipase C (PLC) is an important target for the actions of ethanol. In the ex vivo perfused rat liver, concentrations of ethanol >100 mM were required to induce a rise in cytosolic calcium (Ca2+) suggesting that these responses may only occur after binge ethanol consumption. Conversely, pharmacologically achievable concentrations of ethanol (≤30 mM) decreased the frequency and magnitude of hormone-stimulated cytosolic and nuclear Ca2+ oscillations and the parallel translocation of protein kinase C-β to the membrane. Ethanol also inhibited gap junction communication resulting in the loss of coordinated and spatially organized intercellular Ca2+ waves in hepatic lobules. Increasing the hormone concentration overcame the effects of ethanol on the frequency of Ca2+ oscillations and amplitude of the individual Ca2+ transients; however, the Ca2+ responses in the intact liver remained disorganized at the intercellular level, suggesting that gap junctions were still inhibited. Pretreating hepatocytes with an alcohol dehydrogenase inhibitor suppressed the effects of ethanol on hormone-induced Ca2+ increases, whereas inhibiting aldehyde dehydrogenase potentiated the inhibitory actions of ethanol, suggesting that acetaldehyde is the underlying mediator. Acute ethanol intoxication inhibited the rate of rise and the magnitude of hormone-stimulated production of inositol 1,4,5-trisphosphate (IP3), but had no effect on the size of Ca2+ spikes induced by photolysis of caged IP3. These findings suggest that ethanol inhibits PLC activity, but does not affect IP3 receptor function. We propose that by suppressing hormone-stimulated PLC activity, ethanol interferes with the dynamic modulation of [IP3] that is required to generate large, amplitude Ca2+ oscillations.
Collapse
Affiliation(s)
- Lawrence D Gaspers
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA,Address correspondence to L.D.G. (e-mail: )
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paula J Bartlett
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
19
|
Dejos C, Gkika D, Cantelmo AR. The Two-Way Relationship Between Calcium and Metabolism in Cancer. Front Cell Dev Biol 2020; 8:573747. [PMID: 33282859 PMCID: PMC7691323 DOI: 10.3389/fcell.2020.573747] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium ion (Ca2+) signaling is critical to many physiological processes, and its kinetics and subcellular localization are tightly regulated in all cell types. All Ca2+ flux perturbations impact cell function and may contribute to various diseases, including cancer. Several modulators of Ca2+ signaling are attractive pharmacological targets due to their accessibility at the plasma membrane. Despite this, the number of specific inhibitors is still limited, and to date there are no anticancer drugs in the clinic that target Ca2+ signaling. Ca2+ dynamics are impacted, in part, by modifications of cellular metabolic pathways. Conversely, it is well established that Ca2+ regulates cellular bioenergetics by allosterically activating key metabolic enzymes and metabolite shuttles or indirectly by modulating signaling cascades. A coordinated interplay between Ca2+ and metabolism is essential in maintaining cellular homeostasis. In this review, we provide a snapshot of the reciprocal interaction between Ca2+ and metabolism and discuss the potential consequences of this interplay in cancer cells. We highlight the contribution of Ca2+ to the metabolic reprogramming observed in cancer. We also describe how the metabolic adaptation of cancer cells influences this crosstalk to regulate protumorigenic signaling pathways. We suggest that the dual targeting of these processes might provide unprecedented opportunities for anticancer strategies. Interestingly, promising evidence for the synergistic effects of antimetabolites and Ca2+-modulating agents is emerging.
Collapse
Affiliation(s)
- Camille Dejos
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, Lille, France
| | - Dimitra Gkika
- Univ. Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,Institut Universitaire de France (IUF), Paris, France
| | - Anna Rita Cantelmo
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, Lille, France
| |
Collapse
|
20
|
Bartlett PJ, Cloete I, Sneyd J, Thomas AP. IP 3-Dependent Ca 2+ Oscillations Switch into a Dual Oscillator Mechanism in the Presence of PLC-Linked Hormones. iScience 2020; 23:101062. [PMID: 32353764 PMCID: PMC7191650 DOI: 10.1016/j.isci.2020.101062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 12/11/2019] [Accepted: 04/09/2020] [Indexed: 11/28/2022] Open
Abstract
Ca2+ oscillations that depend on inositol-1,4,5-trisphosphate (IP3) have been ascribed to biphasic Ca2+ regulation of the IP3 receptor (IP3R) or feedback mechanisms controlling IP3 levels in different cell types. IP3 uncaging in hepatocytes elicits Ca2+ transients that are often localized at the subcellular level and increase in magnitude with stimulus strength. However, this does not reproduce the broad baseline-separated global Ca2+ oscillations elicited by vasopressin. Addition of hormone to cells activated by IP3 uncaging initiates a qualitative transition from high-frequency spatially disorganized Ca2+ transients, to low-frequency, oscillatory Ca2+ waves that propagate throughout the cell. A mathematical model with dual coupled oscillators that integrates Ca2+-induced Ca2+ release at the IP3R and mutual feedback mechanisms of cross-coupling between Ca2+ and IP3 reproduces this behavior. Thus, multiple Ca2+ oscillation modes can coexist in the same cell, and hormonal stimulation can switch from the simpler to the more complex to yield robust signaling.
Collapse
Affiliation(s)
- Paula J Bartlett
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Ielyaas Cloete
- Department of Mathematics, The University of Auckland, Auckland, New Zealand
| | - James Sneyd
- Department of Mathematics, The University of Auckland, Auckland, New Zealand
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
21
|
Ramzan R, Vogt S, Kadenbach B. Stress-mediated generation of deleterious ROS in healthy individuals - role of cytochrome c oxidase. J Mol Med (Berl) 2020; 98:651-657. [PMID: 32313986 PMCID: PMC7220878 DOI: 10.1007/s00109-020-01905-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Psychosocial stress is known to cause an increased incidence of coronary heart disease. In addition, multiple other diseases like cancer and diabetes mellitus have been related to stress and are mainly based on excessive formation of reactive oxygen species (ROS) in mitochondria. The molecular interactions between stress and ROS, however, are still unknown. Here we describe the missing molecular link between stress and an increased cellular ROS, based on the regulation of cytochrome c oxidase (COX). In normal healthy cells, the "allosteric ATP inhibition of COX" decreases the oxygen uptake of mitochondria at high ATP/ADP ratios and keeps the mitochondrial membrane potential (ΔΨm) low. Above ΔΨm values of 140 mV, the production of ROS in mitochondria increases exponentially. Stress signals like hypoxia, stress hormones, and high glutamate or glucose in neurons increase the cytosolic Ca2+ concentration which activates a mitochondrial phosphatase that dephosphorylates COX. This dephosphorylated COX exhibits no allosteric ATP inhibition; consequently, an increase of ΔΨm and ROS formation takes place. The excess production of mitochondrial ROS causes apoptosis or multiple diseases.
Collapse
Affiliation(s)
- Rabia Ramzan
- Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 2, D-35043, Marburg, Germany
- Department of Heart Surgery, The University Hospital of Giessen and Marburg, Baldinger Strasse 1, D-35043, Marburg, Germany
| | - Sebastian Vogt
- Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps-University Marburg, Karl-von-Frisch-Strasse 2, D-35043, Marburg, Germany
- Department of Heart Surgery, The University Hospital of Giessen and Marburg, Baldinger Strasse 1, D-35043, Marburg, Germany
| | - Bernhard Kadenbach
- Department of Chemistry/Biochemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032, Marburg, Germany.
| |
Collapse
|
22
|
Facchinetti F, Appetecchia M, Aragona C, Bevilacqua A, Bezerra Espinola MS, Bizzarri M, D'Anna R, Dewailly D, Diamanti-Kandarakis E, Hernández Marín I, Kamenov ZA, Kandaraki E, Laganà AS, Monastra G, Montanino Oliva M, Nestler JE, Orio F, Ozay AC, Papalou O, Pkhaladze L, Porcaro G, Prapas N, Soulage CO, Stringaro A, Wdowiak A, Unfer V. Experts' opinion on inositols in treating polycystic ovary syndrome and non-insulin dependent diabetes mellitus: a further help for human reproduction and beyond. Expert Opin Drug Metab Toxicol 2020; 16:255-274. [PMID: 32129111 DOI: 10.1080/17425255.2020.1737675] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/28/2020] [Indexed: 01/05/2023]
Abstract
Introduction: This Experts' opinion provides an updated scientific support to gynecologists, obstetricians, endocrinologists, nutritionists, neurologists and general practitioners on the use of Inositols in the therapy of Polycystic Ovary Syndrome (PCOS) and non-insulin dependent (type 2) diabetes mellitus (NIDDM).Areas covered: This paper summarizes the physiology of Myo-Inositol (MI) and D-Chiro-Inositol (DCI), two important molecules present in human organisms, and their therapeutic role, also for treating infertility. Some deep differences between the physiological functions of MI and DCI, as well as their safety and intestinal absorption are discussed. Updates include new evidence on the efficacy exerted in PCOS by the 40:1 MI/DCI ratio, and the innovative approach based on alpha-lactalbumin to overcome the decreased therapeutic efficacy of Inositols in some patients.Expert opinion: The evidence suggests that MI, alone or with DCI in the 40:1 ratio, offers a promising treatment for PCOS and NIDDM. However, additional studies need to evaluate some still unresolved issues, such as the best MI/DCI ratio for treating NIDDM, the potential cost-effectiveness of reduced gonadotropins administration in IVF due to MI treatment, or the benefit of MI supplementation in ovulation induction with clomiphene citrate in PCOS patients.
Collapse
Affiliation(s)
- Fabio Facchinetti
- Department of Obstetrics and Gynecology and Pediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Cesare Aragona
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Arturo Bevilacqua
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Mariano Bizzarri
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosario D'Anna
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Didier Dewailly
- Faculty of Medicine, University of Lille, Lille, France
- INSERM, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, Lille, France
| | | | - Imelda Hernández Marín
- Human Reproduction Department, Hospital Juárez de México, México City Mexico
- Facultad de Medicina, Universidad Nacional Autónoma De México (UNAM), México City, México
| | - Zdravko A Kamenov
- Department of Internal Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Eleni Kandaraki
- Department of Endocrinology & Diabetes, HYGEIA Hospital, Marousi, Athens, Greece
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Varese, Italy
| | - Giovanni Monastra
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - John E Nestler
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Francesco Orio
- Department of Endocrinology, "Parthenope" University of Naples, Italy
| | - Ali Cenk Ozay
- Faculty of Medicine, Department of Obstetrics and Gynecology, Near East University, Nicosia Cyprus
- Near East University, Research Center of Experimental Health Sciences, Nicosia, Cyprus
| | - Olga Papalou
- Department of Endocrinology & Diabetes, HYGEIA Hospital, Marousi, Athens, Greece
| | - Lali Pkhaladze
- Department of Gynecological Endocrinology, Ioseb Zhordania Institute of Reproductology, Tbilisi, Georgia
| | | | - Nikos Prapas
- 3rd Department of OB-GYNAE, Aristotle University of Thessaloniki, Thessaloniki Greece
- IVF Laboratory, IAKENTRO Fertility Centre, Thessaloniki, Greece
| | | | - Annarita Stringaro
- National Center for Drug Research and Evaluation - Italian National Institute of Health, Rome, Italy
| | - Artur Wdowiak
- Diagnostic Techniques Unit, Medical University of Lublin, Poland
| | - Vittorio Unfer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Ali ES, Rychkov GY, Barritt GJ. Deranged hepatocyte intracellular Ca 2+ homeostasis and the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma. Cell Calcium 2019; 82:102057. [PMID: 31401389 DOI: 10.1016/j.ceca.2019.102057] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths in men, and the sixth in women. Non-alcoholic fatty liver disease (NAFLD) is now one of the major risk factors for HCC. NAFLD, which involves the accumulation of excess lipid in cytoplasmic lipid droplets in hepatocytes, can progress to non-alcoholic steatosis, fibrosis, and HCC. Changes in intracellular Ca2+ constitute important signaling pathways for the regulation of lipid and carbohydrate metabolism in normal hepatocytes. Recent studies of steatotic hepatocytes have identified lipid-induced changes in intracellular Ca2+, and have provided evidence that altered Ca2+ signaling exacerbates lipid accumulation and may promote HCC. The aims of this review are to summarise current knowledge of the lipid-induced changes in hepatocyte Ca2+ homeostasis, to comment on the mechanisms involved, and discuss the pathways leading from altered Ca2+ homeostasis to enhanced lipid accumulation and the potential promotion of HCC. In steatotic hepatocytes, lipid inhibits store-operated Ca2+ entry and SERCA2b, and activates Ca2+ efflux from the endoplasmic reticulum (ER) and its transfer to mitochondria. These changes are associated with changes in Ca2+ concentrations in the ER (decreased), cytoplasmic space (increased) and mitochondria (likely increased). They lead to: inhibition of lipolysis, lipid autophagy, lipid oxidation, and lipid secretion; activation of lipogenesis; increased lipid; ER stress, generation of reactive oxygen species (ROS), activation of Ca2+/calmodulin-dependent kinases and activation of transcription factor Nrf2. These all can potentially mediate the transition of NAFLD to HCC. It is concluded that lipid-induced changes in hepatocyte Ca2+ homeostasis are important in the initiation and progression of HCC. Further research is desirable to better understand the cause and effect relationships, the time courses and mechanisms involved, and the potential of Ca2+ transporters, channels, and binding proteins as targets for pharmacological intervention.
Collapse
Affiliation(s)
- Eunus S Ali
- Department of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Grigori Y Rychkov
- School of Medicine, The University of Adelaide, and South Australian Health and Medical Research Institute, Adelaide, South Australia, 5005, Australia
| | - Greg J Barritt
- Department of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|