1
|
Wu P, Tu Y, Cho H, Yu M, Wu Y, Wu S. An unidentified yet notable modification on I Na and I K (DR) caused by ramelteon. FASEB Bioadv 2024; 6:442-453. [PMID: 39372128 PMCID: PMC11452446 DOI: 10.1096/fba.2024-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 10/08/2024] Open
Abstract
Despite advancement in anti-seizure medications, 30% of patients continue to experience recurrent seizures. Previous data indicated the antiepileptic properties of melatonin and its agonists in several animal models. However, the underlying mechanisms of melatonin and its agonists on cellular excitability remain poorly understood. In this study, we demonstrated the electrophysiological changes of two main kinds of ion channels that are responsible for hyperexcitability of neurons after introduction of melatonin agonists- ramelteon (RAM). In Neuro-2a cells, the amplitude of voltage-gated Na+ (I Na) and delayed-rectifier K+ currents (I K (DR)) could be suppressed under RAM. The IC50 values of 8.7 and 2.9 μM, respectively. RAM also diminished the magnitude of window Na+ current (I Na (W)) elicited by short ascending ramp voltage, with unchanged the overall steady-state current-voltage relationship. The decaying time course of I Na during a train of depolarizing pulses arose upon the exposure to RAM. The conditioning train protocol which blocked I Na fitted the recovery time course into two exponential processes and increased the fast and slow time constant of recovery the presence of RAM. In pituitary tumor (GH3) cells, I Na amplitude was also effectively suppressed by the RAM. In addition, GH3-cells exposure to RAM decreased the firing frequency of spontaneous action potentials observed under current-clamp conditions. As a result, the RAM-mediated effect on INa was closely associated with its ability to decrease spontaneous action potentials. Collectively, we found the direct attenuation of I Na and I K (DR) caused by RAM besides the agonistic action on melatonin receptors, which could partially explain its anti-seizure activity.
Collapse
Affiliation(s)
- Po‐Ming Wu
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Yi‐Fang Tu
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Hsin‐Yen Cho
- Department of PhysiologyNational Cheng Kung University Medical CollegeTainanTaiwan
| | - Meng‐Cheng Yu
- Department of PhysiologyNational Cheng Kung University Medical CollegeTainanTaiwan
| | - Yen‐Hsien Wu
- Department of PediatricsKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Sheng‐Nan Wu
- Department of PhysiologyNational Cheng Kung University Medical CollegeTainanTaiwan
- Institute of Basic Medical SciencesNational Cheng Kung University Medical CollegeTainanTaiwan
- Department of Research and Education, An Nan HospitalChina Medical UniversityTainanTaiwan
| |
Collapse
|
2
|
Xiao H, Xi K, Wang K, Zhou Y, Dong B, Xie J, Xie Y, Zhang H, Ma G, Wang W, Feng D, Guo B, Wu S. Restoring the Function of Thalamocortical Circuit Through Correcting Thalamic Kv3.2 Channelopathy Normalizes Fear Extinction Impairments in a PTSD Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305939. [PMID: 38102998 PMCID: PMC10916658 DOI: 10.1002/advs.202305939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Impaired extinction of fear memory is one of the most common symptoms in post-traumatic stress disorder (PTSD), with limited therapeutic strategies due to the poor understanding of its underlying neural substrates. In this study, functional screening is performed and identified hyperactivity in the mediodorsal thalamic nucleus (MD) during fear extinction. Furthermore, the encoding patterns of the hyperactivated MD is investigated during persistent fear responses using multiple machine learning algorithms. The anterior cingulate cortex (ACC) is also identified as a functional downstream region of the MD that mediates the extinction of fear memory. The thalamocortical circuit is comprehensively analyzed and found that the MD-ACC parvalbumin interneurons circuit is preferentially enhanced in PTSD mice, disrupting the local excitatory and inhibitory balance. It is found that decreased phosphorylation of the Kv3.2 channel contributed to the hyperactivated MD, primarily to the malfunctioning thalamocortical circuit. Using a lipid nanoparticle-based RNA therapy strategy, channelopathy is corrected via a methoxylated siRNA targeting the protein phosphatase 6 catalytic subunit and restored fear memory extinction in PTSD mice. These findings highlight the function of the thalamocortical circuit in PTSD-related impaired extinction of fear memory and provide therapeutic insights into Kv3.2-targeted RNA therapy for PTSD.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Kaiwen Xi
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Kaifang Wang
- Department of AnesthesiologyTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Yongsheng Zhou
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Eastern Theater Air Force Hospital of PLANanjing210000China
| | - Baowen Dong
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Jinyi Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Yuqiao Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Haifeng Zhang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Guaiguai Ma
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Wenting Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Dayun Feng
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Baolin Guo
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Shengxi Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| |
Collapse
|
3
|
Feng H, Clatot J, Kaneko K, Flores-Mendez M, Wengert ER, Koutcher C, Hoddeson E, Lopez E, Lee D, Arias L, Liang Q, Zhang X, Somarowthu A, Covarrubias M, Gunthorpe MJ, Large CH, Akizu N, Goldberg EM. Targeted therapy improves cellular dysfunction, ataxia, and seizure susceptibility in a model of a progressive myoclonus epilepsy. Cell Rep Med 2024; 5:101389. [PMID: 38266642 PMCID: PMC10897515 DOI: 10.1016/j.xcrm.2023.101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
The recurrent variant KCNC1-p.Arg320His causes progressive myoclonus epilepsy (EPM) type 7, defined by progressive myoclonus, epilepsy, and ataxia, and is without effective treatment. KCNC1 encodes the voltage-gated potassium channel subunit Kv3.1, specifically expressed in high-frequency-firing neurons. Variant subunits act via loss of function; hence, EPM7 pathogenesis may involve impaired excitability of Kv3.1-expressing neurons, while enhancing Kv3 activity could represent a viable therapeutic strategy. We generate a mouse model, Kcnc1-p.Arg320His/+, which recapitulates the core features of EPM7, including progressive ataxia and seizure susceptibility. Kv3.1-expressing cerebellar granule cells and neocortical parvalbumin-positive GABAergic interneurons exhibit abnormalities consistent with Kv3 channel dysfunction. A Kv3-specific positive modulator (AUT00206) selectively enhances the firing frequency of Kv3.1-expressing neurons and improves motor function and seizure susceptibility in Kcnc1-Arg320His/+ mice. This work identifies a cellular and circuit basis of dysfunction in EPM7 and demonstrates that Kv3 positive modulators such as AUT00206 have therapeutic potential for the treatment of EPM7.
Collapse
Affiliation(s)
- Huijie Feng
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jerome Clatot
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Keisuke Kaneko
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Anesthesiology, Nihon University, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Marco Flores-Mendez
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eric R Wengert
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carly Koutcher
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emily Hoddeson
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emily Lopez
- The University of Pennsylvania School of Arts and Sciences, Philadelphia, PA, USA
| | - Demetrius Lee
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Leroy Arias
- The University of Pennsylvania School of Arts and Sciences, Philadelphia, PA, USA
| | - Qiansheng Liang
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xiaohong Zhang
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Manuel Covarrubias
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Martin J Gunthorpe
- Autifony Therapeutics, Ltd., Stevenage Bioscience Catalyst, Stevenage SG1 2FX, UK
| | - Charles H Large
- Autifony Therapeutics, Ltd., Stevenage Bioscience Catalyst, Stevenage SG1 2FX, UK
| | - Naiara Akizu
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Pathology & Laboratory Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Zheng F, Kamiya H. Simulation test for impartment of use-dependent plasticity by inactivation of axonal potassium channels on hippocampal mossy fibers. Front Cell Neurosci 2023; 17:1154910. [PMID: 37180950 PMCID: PMC10169617 DOI: 10.3389/fncel.2023.1154910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/31/2023] [Indexed: 05/16/2023] Open
Abstract
Modification of axonal excitability directly impacts information transfer through the neuronal networks in the brain. However, the functional significance of modulation of axonal excitability by the preceding neuronal activity largely remains elusive. One remarkable exception is the activity-dependent broadening of action potential (AP) propagating along the hippocampal mossy fibers. The duration of AP is progressively prolonged during repetitive stimuli and facilitated presynaptic Ca2+ entry and subsequent transmitter release. As an underlying mechanism, accumulated inactivation of axonal K+ channels during AP train has been postulated. As the inactivation of axonal K+ channels proceeds on a timescale of several tens of milliseconds slower than the millisecond scale of AP, the contribution of K+ channel inactivation in AP broadening needs to be tested and evaluated quantitatively. Using the computer simulation approach, this study aimed to explore the effects of the removal of the inactivation process of axonal K+ channels in the simple but sufficiently realistic model of hippocampal mossy fibers and found that the use-dependent AP broadening was completely abolished in the model replaced with non-inactivating K+ channels. The results demonstrated the critical roles of K+ channel inactivation in the activity-dependent regulation of axonal excitability during repetitive action potentials, which critically imparts additional mechanisms for robust use-dependent short-term plasticity characteristics for this particular synapse.
Collapse
Affiliation(s)
| | - Haruyuki Kamiya
- Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Wang X, Sela-Donenfeld D, Wang Y. Axonal and presynaptic FMRP: Localization, signal, and functional implications. Hear Res 2023; 430:108720. [PMID: 36809742 PMCID: PMC9998378 DOI: 10.1016/j.heares.2023.108720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Fragile X mental retardation protein (FMRP) binds a selected set of mRNAs and proteins to guide neural circuit assembly and regulate synaptic plasticity. Loss of FMRP is responsible for Fragile X syndrome, a neuropsychiatric disorder characterized with auditory processing problems and social difficulty. FMRP actions in synaptic formation, maturation, and plasticity are site-specific among the four compartments of a synapse: presynaptic and postsynaptic neurons, astrocytes, and extracellular matrix. This review summarizes advancements in understanding FMRP localization, signals, and functional roles in axons and presynaptic terminals.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
6
|
McCullagh EA, Peacock J, Lucas A, Poleg S, Greene NT, Gaut A, Lagestee S, Zhang Y, Kaczmarek LK, Park TJ, Tollin DJ, Klug A. Auditory brainstem development of naked mole-rats ( Heterocephalus glaber). Proc Biol Sci 2022; 289:20220878. [PMID: 35946148 PMCID: PMC9363996 DOI: 10.1098/rspb.2022.0878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023] Open
Abstract
Life underground often leads to animals having specialized auditory systems to accommodate the constraints of acoustic transmission in tunnels. Despite living underground, naked mole-rats use a highly vocal communication system, implying that they rely on central auditory processing. However, little is known about these animals' central auditory system, and whether it follows a similar developmental time course as other rodents. Naked mole-rats show slowed development in the hippocampus suggesting they have altered brain development compared to other rodents. Here, we measured morphological characteristics and voltage-gated potassium channel Kv3.3 expression and protein levels at different key developmental time points (postnatal days 9, 14, 21 and adulthood) to determine whether the auditory brainstem (lateral superior olive and medial nucleus of the trapezoid body) develops similarly to two common auditory rodent model species: gerbils and mice. Additionally, we measured the hearing onset of naked mole-rats using auditory brainstem response recordings at the same developmental timepoints. In contrast with other work in naked mole-rats showing that they are highly divergent in many aspects of their physiology, we show that naked mole-rats have a similar hearing onset, between postnatal day (P) 9 and P14, to many other rodents. On the other hand, we show some developmental differences, such as a unique morphology and Kv3.3 protein levels in the brainstem.
Collapse
Affiliation(s)
| | - John Peacock
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Lucas
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shani Poleg
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathaniel T. Greene
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Addison Gaut
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Samantha Lagestee
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Yalan Zhang
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Leonard K. Kaczmarek
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Thomas J. Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Daniel J. Tollin
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Inhibitory Effectiveness in Delayed-Rectifier Potassium Current Caused by Vortioxetine, Known to Be a Novel Antidepressant. Biomedicines 2022; 10:biomedicines10061318. [PMID: 35740340 PMCID: PMC9220334 DOI: 10.3390/biomedicines10061318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Vortioxetine (VOR) is recognized to exert antidepressant actions. However, whether this drug modifies ionic currents in excitable cells remains unclear. The aim of this study was to explore the electrophysiological effects of VOR and other related compounds in pituitary GH3 cells and in Neuro-2a cells. VOR suppressed the delayed-rectifier K+ current (IK(DR)) in a concentration-, time-, and state-dependent manner. Effective IC50 values needed to inhibit peak and sustained IK(DR) were computed to be 31.2 and 8.5 μM, respectively, while the KD value estimated from minimal binding scheme was 7.9 μM. Cell exposure to serotonin (10 μM) alone failed to alter IK(DR), while fluoxetine (10 μM), a compound structurally similar to VOR, mildly suppressed current amplitude. In continued presence of VOR, neither further addition of propranolol nor risperidone reversed VOR-mediated inhibition of IK(DR). Increasing VOR concentration not only depressed IK(DR) conductance but also shifted toward the hyperpolarized potential. As the VOR concentration was raised, the recovery of IK(DR) block became slowed. The IK(DR) activated by a downsloping ramp was suppressed by its presence. The inhibition of IK(DR) by a train pulse was enhanced during exposure to VOR. In Neuro-2a cells, this drug decreased IK(DR). Overall, inhibitory effects of VOR on ionic currents might constitute another underlying mechanism of its actions.
Collapse
|
8
|
Richardson A, Ciampani V, Stancu M, Bondarenko K, Newton S, Steinert JR, Pilati N, Graham BP, Kopp-Scheinpflug C, Forsythe ID. Kv3.3 subunits control presynaptic action potential waveform and neurotransmitter release at a central excitatory synapse. eLife 2022; 11:75219. [PMID: 35510987 PMCID: PMC9110028 DOI: 10.7554/elife.75219] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Kv3 potassium currents mediate rapid repolarisation of action potentials (APs), supporting fast spikes and high repetition rates. Of the four Kv3 gene family members, Kv3.1 and Kv3.3 are highly expressed in the auditory brainstem and we exploited this to test for subunit-specific roles at the calyx of Held presynaptic terminal in the mouse. Deletion of Kv3.3 (but not Kv3.1) reduced presynaptic Kv3 channel immunolabelling, increased presynaptic AP duration and facilitated excitatory transmitter release; which in turn enhanced short-term depression during high-frequency transmission. The response to sound was delayed in the Kv3.3KO, with higher spontaneous and lower evoked firing, thereby reducing signal-to-noise ratio. Computational modelling showed that the enhanced EPSC and short-term depression in the Kv3.3KO reflected increased vesicle release probability and accelerated activity-dependent vesicle replenishment. We conclude that Kv3.3 mediates fast repolarisation for short precise APs, conserving transmission during sustained high-frequency activity at this glutamatergic excitatory synapse.
Collapse
Affiliation(s)
- Amy Richardson
- epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Victoria Ciampani
- epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Mihai Stancu
- Division of Neurobiology, Ludwig-Maximilians-Universität München, Munchen, Germany
| | - Kseniia Bondarenko
- epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Sherylanne Newton
- epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Joern R Steinert
- epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Nadia Pilati
- Istituto di Ricerca Pediatrica Citta'della Speranza, Padova, Italy
| | - Bruce P Graham
- Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom
| | | | - Ian D Forsythe
- epartment of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
9
|
Baldassano JF, MacLeod KM. Kv1 channels regulate variations in spike patterning and temporal reliability in the avian cochlear nucleus angularis. J Neurophysiol 2022; 127:116-129. [PMID: 34817286 PMCID: PMC8742726 DOI: 10.1152/jn.00460.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Diverse physiological phenotypes in a neuronal population can broaden the range of computational capabilities within a brain region. The avian cochlear nucleus angularis (NA) contains a heterogeneous population of neurons whose variation in intrinsic properties results in electrophysiological phenotypes with a range of sensitivities to temporally modulated input. The low-threshold potassium conductance (GKLT) is a key feature of neurons involved in fine temporal structure coding for sound localization, but a role for these channels in intensity or spectrotemporal coding has not been established. To determine whether GKLT affects the phenotypical variation and temporal properties of NA neurons, we applied dendrotoxin-I (DTX), a potent antagonist of Kv1-type potassium channels, to chick brain stem slices in vitro during whole cell patch-clamp recordings. We found a cell-type specific subset of NA neurons that was sensitive to DTX: single-spiking NA neurons were most profoundly affected, as well as a subset of tonic-firing neurons. Both tonic I (phasic onset bursting) and tonic II (delayed firing) neurons showed DTX sensitivity in their firing rate and phenotypical firing pattern. Tonic III neurons were unaffected. Spike time reliability and fluctuation sensitivity measured in DTX-sensitive NA neurons was also reduced with DTX. Finally, DTX reduced spike threshold adaptation in these neurons, suggesting that GKLT contributes to the temporal properties that allow coding of rapid changes in the inputs to NA neurons. These results suggest that variation in Kv1 channel expression may be a key factor in functional diversity in the avian cochlear nucleus.NEW & NOTEWORTHY The dendrotoxin-sensitive voltage-gated potassium conductance typically associated with neuronal coincidence detection in the timing pathway for sound localization is demonstrated to affect spiking patterns and temporal input sensitivity in the intensity pathway in the avian auditory brain stem. The Kv1-family channels appear to be present in a subset of cochlear nucleus angularis neurons, regulate spike threshold dynamics underlying high-pass membrane filtering, and contribute to intrinsic firing diversity.
Collapse
|
10
|
Kv3 Channels Contribute to the Excitability of Subpopulations of Spinal Cord Neurons in Lamina VII. eNeuro 2022; 9:ENEURO.0510-21.2021. [PMID: 35058310 PMCID: PMC8868027 DOI: 10.1523/eneuro.0510-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022] Open
Abstract
Autonomic parasympathetic preganglionic neurons (PGNs) drive contraction of the bladder during micturition but remain quiescent during bladder filling. This quiescence is postulated to be because of recurrent inhibition of PGN by fast-firing adjoining interneurons. Here, we defined four distinct neuronal types within Lamina VII, where PGN are situated, by combining whole cell patch clamp recordings with k-means clustering of a range of electrophysiological parameters. Additional morphologic analysis separated these neuronal classes into parasympathetic preganglionic populations (PGN) and a fast-firing interneuronal population. Kv3 channels are voltage-gated potassium channels (Kv) that allow fast and precise firing of neurons. We found that blockade of Kv3 channels by tetraethylammonium (TEA) reduced neuronal firing frequency and isolated high-voltage-activated Kv currents in the fast-firing population but had no effect in PGN populations. Furthermore, Kv3 blockade potentiated the local and descending inhibitory inputs to PGN indicating that Kv3-expressing inhibitory neurons are synaptically connected to PGN. Taken together, our data reveal that Kv3 channels are crucial for fast and regulated neuronal output of a defined population that may be involved in intrinsic spinal bladder circuits that underpin recurrent inhibition of PGN.
Collapse
|
11
|
Zhang Y, Quraishi IH, McClure H, Williams LA, Cheng Y, Kale S, Dempsey GT, Agrawal S, Gerber DJ, McManus OB, Kaczmarek LK. Suppression of Kv3.3 channels by antisense oligonucleotides reverses biochemical effects and motor impairment in spinocerebellar ataxia type 13 mice. FASEB J 2021; 35:e22053. [PMID: 34820911 DOI: 10.1096/fj.202101356r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Mutations in KCNC3, the gene that encodes the Kv3.3 voltage dependent potassium channel, cause Spinocerebellar Ataxia type 13 (SCA13), a disease associated with disrupted motor behaviors, progressive cerebellar degeneration, and abnormal auditory processing. The Kv3.3 channel directly binds Hax-1, a cell survival protein. A disease-causing mutation, Kv3.3-G592R, causes overstimulation of Tank Binding Kinase 1 (Tbk1) in the cerebellum, resulting in the degradation of Hax-1 by promoting its trafficking into multivesicular bodies and then to lysosomes. We have now tested the effects of antisense oligonucleotides (ASOs) directed against the Kv3.3 channel on both wild type mice and those bearing the Kv3.3-G592R-encoding mutation. Intracerebroventricular infusion of the Kcnc3-specific ASO suppressed both mRNA and protein levels of the Kv3.3 channel. In wild-type animals, this produced no change in levels of activated Tbk1, Hax-1 or Cd63, a tetraspanin marker for late endosomes/multivesicular bodies. In contrast, in mice homozygous for the Kv3.3-G592R-encoding mutation, the same ASO reduced Tbk1 activation and levels of Cd63, while restoring the expression of Hax-1 in the cerebellum. The motor behavior of the mice was tested using a rotarod assay. Surprisingly, the active ASO had no effects on the motor behavior of wild type mice but restored the behavior of the mutant mice to those of age-matched wild type animals. Our findings indicate that, in mature intact animals, suppression of Kv3.3 expression can reverse the deleterious effects of a SCA13 mutation while having little effect on wild type animals. Thus, targeting Kv3.3 expression may prove a viable therapeutic approach for SCA13.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Imran H Quraishi
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Heather McClure
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
OIsen T, Capurro A, Švent M, Pilati N, Large C, Hartell N, Hamann M. Sparsely Distributed, Pre-synaptic Kv3 K + Channels Control Spontaneous Firing and Cross-Unit Synchrony via the Regulation of Synaptic Noise in an Auditory Brainstem Circuit. Front Cell Neurosci 2021; 15:721371. [PMID: 34539351 PMCID: PMC8446535 DOI: 10.3389/fncel.2021.721371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Spontaneous subthreshold activity in the central nervous system is fundamental to information processing and transmission, as it amplifies and optimizes sub-threshold signals, thereby improving action potential initiation and maintaining reliable firing. This form of spontaneous activity, which is frequently considered noise, is particularly important at auditory synapses where acoustic information is encoded by rapid and temporally precise firing rates. In contrast, when present in excess, this form of noise becomes detrimental to acoustic information as it contributes to the generation and maintenance of auditory disorders such as tinnitus. The most prominent contribution to subthreshold noise is spontaneous synaptic transmission (synaptic noise). Although numerous studies have examined the role of synaptic noise on single cell excitability, little is known about its pre-synaptic modulation owing in part to the difficulties of combining noise modulation with monitoring synaptic release. Here we study synaptic noise in the auditory brainstem dorsal cochlear nucleus (DCN) of mice and show that pharmacological potentiation of Kv3 K+ currents reduces the level of synaptic bombardment onto DCN principal fusiform cells. Using a transgenic mouse line (SyG37) expressing SyGCaMP2-mCherry, a calcium sensor that targets pre-synaptic terminals, we show that positive Kv3 K+ current modulation decreases calcium influx in a fifth of pre-synaptic boutons. Furthermore, while maintaining rapid and precise spike timing, positive Kv3 K+ current modulation increases the synchronization of local circuit neurons by reducing spontaneous activity. In conclusion, our study identifies a unique pre-synaptic mechanism which reduces synaptic noise at auditory synapses and contributes to the coherent activation of neurons in a local auditory brainstem circuit. This form of modulation highlights a new therapeutic target, namely the pre-synaptic bouton, for ameliorating the effects of hearing disorders which are dependent on aberrant spontaneous activity within the central auditory system.
Collapse
Affiliation(s)
- Timothy OIsen
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, United Kingdom.,Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Alberto Capurro
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, United Kingdom.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maša Švent
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Charles Large
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Nick Hartell
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Martine Hamann
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, United Kingdom.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
13
|
Scheiblich H, Steinert JR. Nitrergic modulation of neuronal excitability in the mouse hippocampus is mediated via regulation of Kv2 and voltage-gated sodium channels. Hippocampus 2021; 31:1020-1038. [PMID: 34047430 DOI: 10.1002/hipo.23366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/10/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Regulation of neuronal activity is a necessity for communication and information transmission. Many regulatory processes which have been studied provide a complex picture of how neurons can respond to permanently changing functional requirements. One such activity-dependent mechanism involves signaling mediated by nitric oxide (NO). Within the brain, NO is generated in response to neuronal NO synthase (nNOS) activation but NO-dependent pathways regulating neuronal excitability in the hippocampus remain to be fully elucidated. This study was set out to systematically assess the effects of NO on ion channel activities and intrinsic excitabilities of pyramidal neurons within the CA1 region of the mouse hippocampus. We characterized whole-cell potassium and sodium currents, both involved in action potential (AP) shaping and propagation and determined NO-mediated changes in excitabilities and AP waveforms. Our data describe a novel signaling by which NO, in a cGMP-independent manner, suppresses voltage-gated Kv2 potassium and voltage-gated sodium channel activities, thereby widening AP waveforms and reducing depolarization-induced AP firing rates. Our data show that glutathione, which possesses denitrosylating activity, is sufficient to prevent the observed nitrergic effects on potassium and sodium channels, whereas inhibition of cGMP signaling is also sufficient to abolish NO modulation of sodium currents. We propose that NO suppresses both ion channel activities via redox signaling and that an additional cGMP-mediated component is required to exert effects on sodium currents. Both mechanisms result in a dampened excitability and firing ability providing new data on nitrergic activities in the context of activity-dependent regulation of neuronal function following nNOS activation.
Collapse
Affiliation(s)
- Hannah Scheiblich
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, University of Nottingham, School of Life Sciences, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
14
|
Wu XS, Subramanian S, Zhang Y, Shi B, Xia J, Li T, Guo X, El-Hassar L, Szigeti-Buck K, Henao-Mejia J, Flavell RA, Horvath TL, Jonas EA, Kaczmarek LK, Wu LG. Presynaptic Kv3 channels are required for fast and slow endocytosis of synaptic vesicles. Neuron 2021; 109:938-946.e5. [PMID: 33508244 PMCID: PMC7979485 DOI: 10.1016/j.neuron.2021.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 01/25/2023]
Abstract
Since their discovery decades ago, the primary physiological and pathological effects of potassium channels have been attributed to their ion conductance, which sets membrane potential and repolarizes action potentials. For example, Kv3 family channels regulate neurotransmitter release by repolarizing action potentials. Here we report a surprising but crucial function independent of potassium conductance: by organizing the F-actin cytoskeleton in mouse nerve terminals, the Kv3.3 protein facilitates slow endocytosis, rapid endocytosis, vesicle mobilization to the readily releasable pool, and recovery of synaptic depression during repetitive firing. A channel mutation that causes spinocerebellar ataxia inhibits endocytosis, vesicle mobilization, and synaptic transmission during repetitive firing by disrupting the ability of the channel to nucleate F-actin. These results unmask novel functions of potassium channels in endocytosis and vesicle mobilization crucial for sustaining synaptic transmission during repetitive firing. Potassium channel mutations that impair these "non-conducting" functions may thus contribute to generation of diverse neurological disorders.
Collapse
Affiliation(s)
- Xin-Sheng Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Shobana Subramanian
- Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Bo Shi
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA; Biological Sciences Graduate Program, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20740, USA
| | - Jessica Xia
- Division of Biological Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Tiansheng Li
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Xiaoli Guo
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Lynda El-Hassar
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Klara Szigeti-Buck
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jorge Henao-Mejia
- Department of Immunobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Elizabeth A Jonas
- Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Wu J, Kaczmarek LK. Modulation of Neuronal Potassium Channels During Auditory Processing. Front Neurosci 2021; 15:596478. [PMID: 33613177 PMCID: PMC7887315 DOI: 10.3389/fnins.2021.596478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
The extraction and localization of an auditory stimulus of interest from among multiple other sounds, as in the ‘cocktail-party’ situation, requires neurons in auditory brainstem nuclei to encode the timing, frequency, and intensity of sounds with high fidelity, and to compare inputs coming from the two cochleae. Accurate localization of sounds requires certain neurons to fire at high rates with high temporal accuracy, a process that depends heavily on their intrinsic electrical properties. Studies have shown that the membrane properties of auditory brainstem neurons, particularly their potassium currents, are not fixed but are modulated in response to changes in the auditory environment. Here, we review work focusing on how such modulation of potassium channels is critical to shaping the firing pattern and accuracy of these neurons. We describe how insights into the role of specific channels have come from human gene mutations that impair localization of sounds in space. We also review how short-term and long-term modulation of these channels maximizes the extraction of auditory information, and how errors in the regulation of these channels contribute to deficits in decoding complex auditory information.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
16
|
Kim WB, Kang KW, Sharma K, Yi E. Distribution of K v3 Subunits in Cochlear Afferent and Efferent Nerve Fibers Implies Distinct Role in Auditory Processing. Exp Neurobiol 2020; 29:344-355. [PMID: 33154197 PMCID: PMC7649084 DOI: 10.5607/en20043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
Kv3 family K+ channels, by ensuring speedy repolarization of action potential, enable rapid and high frequency neuronal firing and high precision temporal coding of auditory information in various auditory synapses in the brain. Expression of different Kv3 subtypes within the auditory end organ has been reported. Yet, their precise role at the hair cell synaptic transmission has not been fully elucidated. Using immunolabeling and confocal microscopy we examined the expression pattern of different Kv3 family K+ channel subunits in the nerve fibers innervating the cochlear hair cells. Kv3.1b was found in NKA-positive type 1 afferent fibers, exhibiting high signal intensity at the cell body, the unmyelinated dendritic segment, first heminode and nodes of Ranvier. Kv3.3 signal was detected in the cell body and the unmyelinated dendritic segment of NKA-positive type 1 afferent fibers but not in peripherin-positive type 2 afferent. Kv3.4 was found in ChAT-positive LOC and MOC efferent fibers as well as peripherin-positive type 2 afferent fibers. Such segregated expression pattern implies that each Kv3 subunits participate in different auditory tasks, for example, Kv3.1b and Kv3.3 in ascending signaling while Kv3.4 in feedback upon loud noise exposure.
Collapse
Affiliation(s)
- Woo Bin Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Kwon-Woo Kang
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Kushal Sharma
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Eunyoung Yi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| |
Collapse
|
17
|
Middlebrooks JC, Waters MF. Spatial Mechanisms for Segregation of Competing Sounds, and a Breakdown in Spatial Hearing. Front Neurosci 2020; 14:571095. [PMID: 33041763 PMCID: PMC7525094 DOI: 10.3389/fnins.2020.571095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023] Open
Abstract
We live in complex auditory environments, in which we are confronted with multiple competing sounds, including the cacophony of talkers in busy markets, classrooms, offices, etc. The purpose of this article is to synthesize observations from a series of experiments that focused on how spatial hearing might aid in disentangling interleaved sequences of sounds. The experiments were unified by a non-verbal task, "rhythmic masking release", which was applied to psychophysical studies in humans and cats and to cortical physiology in anesthetized cats. Human and feline listeners could segregate competing sequences of sounds from sources that were separated by as little as ∼10°. Similarly, single neurons in the cat primary auditory cortex tended to synchronize selectively to sound sequences from one of two competing sources, again with spatial resolution of ∼10°. The spatial resolution of spatial stream segregation varied widely depending on the binaural and monaural acoustical cues that were available in various experimental conditions. This is in contrast to a measure of basic sound-source localization, the minimum audible angle, which showed largely constant acuity across those conditions. The differential utilization of acoustical cues suggests that the central spatial mechanisms for stream segregation differ from those for sound localization. The highest-acuity spatial stream segregation was derived from interaural time and level differences. Brainstem processing of those cues is thought to rely heavily on normal function of a voltage-gated potassium channel, Kv3.3. A family was studied having a dominant negative mutation in the gene for that channel. Affected family members exhibited severe loss of sensitivity for interaural time and level differences, which almost certainly would degrade their ability to segregate competing sounds in real-world auditory scenes.
Collapse
Affiliation(s)
- John C. Middlebrooks
- Departments of Otolaryngology, Neurobiology and Behavior, Cognitive Sciences, and Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Michael F. Waters
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
18
|
Rajaram E, Pagella S, Grothe B, Kopp-Scheinpflug C. Physiological and anatomical development of glycinergic inhibition in the mouse superior paraolivary nucleus following hearing onset. J Neurophysiol 2020; 124:471-483. [PMID: 32667247 DOI: 10.1152/jn.00053.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neural circuits require balanced synaptic excitation and inhibition to ensure accurate neural computation. Our knowledge about the development and maturation of inhibitory synaptic inputs is less well developed than that concerning excitation. Here we describe the maturation of an inhibitory circuit within the mammalian auditory brainstem where counterintuitively, inhibition drives action potential firing of principal neurons. With the use of combined anatomical tracing and electrophysiological recordings from mice, neurons of the superior paraolivary nucleus (SPN) are shown to receive converging glycinergic input from at least four neurons of the medial nucleus of the trapezoid body (MNTB). These four axons formed 30.71 ± 2.72 (means ± SE) synaptic boutons onto each SPN neuronal soma, generating a total inhibitory conductance of 80 nS. Such strong inhibition drives the underlying postinhibitory rebound firing mechanism, which is a hallmark of SPN physiology. In contrast to inhibitory projections to the medial and lateral superior olives, the inhibitory projection to the SPN does not exhibit experience-dependent synaptic refinement following the onset of hearing. These findings emphasize that the development and function of neural circuits cannot be inferred from one synaptic target to another, even if both originate from the same neuron.NEW & NOTEWORTHY Neuronal activity regulates development and maturation of neural circuits. This activity can include spontaneous burst firing or firing elicited by sensory input during early development. For example, auditory brainstem circuits involved in sound localization require acoustically evoked activity to form properly. Here we show, that an inhibitory circuit, involved in processing sound offsets, gaps, and rhythmically modulated vocal communication signals, matures before the onset of acoustically evoked activity.
Collapse
Affiliation(s)
- Ezhilarasan Rajaram
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Sara Pagella
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Benedikt Grothe
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Conny Kopp-Scheinpflug
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|