1
|
Biddinger JE, Elson AET, Fathi PA, Sweet SR, Nishimori K, Ayala JE, Simerly RB. AgRP neurons mediate activity-dependent development of oxytocin connectivity and autonomic regulation. Proc Natl Acad Sci U S A 2024; 121:e2403810121. [PMID: 39585985 PMCID: PMC11626166 DOI: 10.1073/pnas.2403810121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
During postnatal life, leptin specifies neuronal inputs to the paraventricular nucleus of the hypothalamus (PVH) and activates agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus. Activity-dependent developmental mechanisms impact refinement of sensory circuits, but whether leptin-mediated postnatal neuronal activity specifies hypothalamic neural projections is largely unexplored. Here, we used chemogenetics to manipulate the activity of AgRP neurons during a discrete postnatal critical period and evaluated the development of AgRP inputs to the PVH and descending efferent outflow to the dorsal vagal complex (DVC). In leptin-deficient mice, targeting of AgRP neuronal outgrowth to PVH oxytocin neurons was reduced, and despite the lack of leptin receptors found on oxytocin neurons in the PVH, oxytocin-containing connections to the DVC were also impaired. Activation of AgRP neurons during early postnatal life not only normalized AgRP inputs to the PVH but also oxytocin outputs to the DVC in leptin-deficient mice. Blocking AgRP neuron activity during the same postnatal period reduced the density of AgRP inputs to the PVH of wild type mice, as well as the density of oxytocin-containing DVC fibers, and these innervation deficits were associated with dysregulated autonomic function. These findings suggest that leptin-mediated AgRP neuronal activity is required for the development of PVH connectivity and represents a unique activity-dependent mechanism for specification of neural pathways involved in the hypothalamic integration of autonomic responses.
Collapse
Affiliation(s)
- Jessica E. Biddinger
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN37232
| | - Amanda E. T. Elson
- Developmental Neuroscience Program, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA90027
| | - Payam A. Fathi
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN37232
| | - Serena R. Sweet
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN37232
| | - Katsuhiko Nishimori
- Department of Obesity and Internal Inflammation, Fukushima Medical University, Fukushima City960-1295, Japan
| | - Julio E. Ayala
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN37232
| | - Richard B. Simerly
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN37232
| |
Collapse
|
2
|
Zilkha N, Chuartzman SG, Fishman R, Ben-Dor S, Kimchi T. Maternal high-fat or low-protein diets promote autism-related behavior and altered social behavior within groups in offspring male mice. Sci Rep 2024; 14:19227. [PMID: 39164365 PMCID: PMC11336096 DOI: 10.1038/s41598-024-70062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Maternal malnutrition has been associated with neurodevelopmental deficits and long-term implications on the offspring's health and behavior. Here, we investigated the effects of maternal low-protein diet (LPD) or obesity-inducing maternal high-fat diet (HFD) on dyadic social interactions, group organization and autism-related behaviors in mice. We found that maternal HFD induced an autism-related behavioral phenotype in the male offspring, including a robust decrease in sociability, increased aggression, cognitive rigidity and repetitive behaviors. Maternal LPD led to a milder yet significant effect on autism-related symptoms, with no effects on olfactory-mediated social behavior. Under naturalistic conditions in a group setting, this manifested in altered behavioral repertoires, increased magnitude in dominance relations, and reduced interactions with novel social stimuli in the HFD male offspring, but not in the LPD offspring. Finally, we found HFD-induced transcriptomic changes in the olfactory bulbs of the male offspring. Together, our findings show that maternal malnutrition induces long-lasting effects on aggression and autism-related behaviors in male offspring, and potential impairments in brain regions processing chemosensory signals.
Collapse
Affiliation(s)
- Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | - Ruth Fishman
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
3
|
Ferrario CR, Münzberg-Gruening H, Rinaman L, Betley JN, Borgland SL, Dus M, Fadool DA, Medler KF, Morton GJ, Sandoval DA, de La Serre CB, Stanley SA, Townsend KL, Watts AG, Maruvada P, Cummings D, Cooke BM. Obesity- and diet-induced plasticity in systems that control eating and energy balance. Obesity (Silver Spring) 2024; 32:1425-1440. [PMID: 39010249 PMCID: PMC11269035 DOI: 10.1002/oby.24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 07/17/2024]
Abstract
In April 2023, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), in partnership with the National Institute of Child Health and Human Development, the National Institute on Aging, and the Office of Behavioral and Social Sciences Research, hosted a 2-day online workshop to discuss neural plasticity in energy homeostasis and obesity. The goal was to provide a broad view of current knowledge while identifying research questions and challenges regarding neural systems that control food intake and energy balance. This review includes highlights from the meeting and is intended both to introduce unfamiliar audiences with concepts central to energy homeostasis, feeding, and obesity and to highlight up-and-coming research in these areas that may be of special interest to those with a background in these fields. The overarching theme of this review addresses plasticity within the central and peripheral nervous systems that regulates and influences eating, emphasizing distinctions between healthy and disease states. This is by no means a comprehensive review because this is a broad and rapidly developing area. However, we have pointed out relevant reviews and primary articles throughout, as well as gaps in current understanding and opportunities for developments in the field.
Collapse
Grants
- P30 DK048520 NIDDK NIH HHS
- NSF1949989 National Science Foundation
- T32 DC000044 NIDCD NIH HHS
- R01 DK133464 NIDDK NIH HHS
- R01 DK089056 NIDDK NIH HHS
- R01 DK130246 NIDDK NIH HHS
- R01 DK124801 NIDDK NIH HHS
- R01 DK100685 NIDDK NIH HHS
- R01 DK124238 NIDDK NIH HHS
- R01 DK130875 NIDDK NIH HHS
- R01 DK125890 NIDDK NIH HHS
- Z99 DK999999 Intramural NIH HHS
- R01 DK124461 NIDDK NIH HHS
- K26 DK138368 NIDDK NIH HHS
- R01 DK121995 NIDDK NIH HHS
- R01 DK121531 NIDDK NIH HHS
- P30 DK089503 NIDDK NIH HHS
- P01 DK119130 NIDDK NIH HHS
- R01 DK118910 NIDDK NIH HHS
- R01 AT011683 NCCIH NIH HHS
- Reported research was supported by DK130246, DK092587, AT011683, MH059911, DK100685, DK119130, DK124801, DK133399, AG079877, DK133464, T32DC000044, F31DC016817, NSF1949989, DK089056, DK124238, DK138368, DK121995, DK125890, DK118910, DK121531, DK124461, DK130875; Canada Research Chair: 950-232211, CIHRFDN148473, CIHRPJT185886; USDA Predoctoral Fellowship; Endowment from the Robinson Family and Tallahassee Memorial Hospital; Department of Defense W81XWH-20-1-0345 and HT9425-23-1-0244; American Diabetes Association #1-17-ACE-31; W.M. Keck Foundation Award; National Science Foundation CAREER 1941822
- R01 DK133399 NIDDK NIH HHS
- HT9425-23-1-0244 Department of Defense
- R01 DK092587 NIDDK NIH HHS
- W81XWH-20-1-0345 Department of Defense
- 1941822 National Science Foundation
- R01 MH059911 NIMH NIH HHS
- F31 DC016817 NIDCD NIH HHS
- R01 AG079877 NIA NIH HHS
- P30 DK017047 NIDDK NIH HHS
Collapse
Affiliation(s)
- Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Heike Münzberg-Gruening
- Laboratory of Central Leptin Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Debra A Fadool
- Department of Biological Science, Program in Neuroscience, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Kathryn F Medler
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Gregory J Morton
- Department of Medicine, University of Washington Medicine Diabetes Institute at South Lake Union, Seattle, Washington, USA
| | - Darleen A Sandoval
- Department of Pediatrics, Section of Nutrition, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claire B de La Serre
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Padma Maruvada
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Diana Cummings
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Bradley M Cooke
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| |
Collapse
|
4
|
de Barcellos Filho PG, Dantzler HA, Hasser EM, Kline DD. Oxytocin and corticotropin-releasing hormone exaggerate nucleus tractus solitarii neuronal and synaptic activity following chronic intermittent hypoxia. J Physiol 2024; 602:3375-3400. [PMID: 38698722 PMCID: PMC11251298 DOI: 10.1113/jp286069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Chronic intermittent hypoxia (CIH) in rodents mimics the hypoxia-induced elevation of blood pressure seen in individuals experiencing episodic breathing. The brainstem nucleus tractus solitarii (nTS) is the first site of visceral sensory afferent integration, and thus is critical for cardiorespiratory homeostasis and its adaptation during a variety of stressors. In addition, the paraventricular nucleus of the hypothalamus (PVN), in part through its nTS projections that contain oxytocin (OT) and/or corticotropin-releasing hormone (CRH), contributes to cardiorespiratory regulation. Within the nTS, these PVN-derived neuropeptides alter nTS activity and the cardiorespiratory response to hypoxia. Nevertheless, their contribution to nTS activity after CIH is not fully understood. We hypothesized that OT and CRH would increase nTS activity to a greater extent following CIH, and co-activation of OT+CRH receptors would further magnify nTS activity. Our data show that compared to their normoxic controls, 10 days' CIH exaggerated nTS discharge, excitatory synaptic currents and Ca2+ influx in response to CRH, which were further enhanced by the addition of OT. CIH increased the tonic functional contribution of CRH receptors, which occurred with elevation of mRNA and protein. Together, our data demonstrate that intermittent hypoxia exaggerates the expression and function of neuropeptides on nTS activity. KEY POINTS: Episodic breathing and chronic intermittent hypoxia (CIH) are associated with autonomic dysregulation, including elevated sympathetic nervous system activity. Altered nucleus tractus solitarii (nTS) activity contributes to this response. Neurons originating in the paraventricular nucleus (PVN), including those containing oxytocin (OT) and corticotropin-releasing hormone (CRH), project to the nTS, and modulate the cardiorespiratory system. Their role in CIH is unknown. In this study, we focused on OT and CRH individually and together on nTS activity from rats exposed to either CIH or normoxia control. We show that after CIH, CRH alone and with OT increased to a greater extent overall nTS discharge, neuronal calcium influx, synaptic transmission to second-order nTS neurons, and OT and CRH receptor expression. These results provide insights into the underlying circuits and mechanisms contributing to autonomic dysfunction during periods of episodic breathing.
Collapse
Affiliation(s)
- Procopio Gama de Barcellos Filho
- Department of Biomedical Sciences, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
- Department of Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
| | - Heather A. Dantzler
- Department of Biomedical Sciences, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
- Department of Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
| | - Eileen M. Hasser
- Department of Biomedical Sciences, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
- Department of Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
- Department of Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
| |
Collapse
|
5
|
Biddinger JE, Elson AET, Fathi PA, Sweet SR, Nishimori K, Ayala JE, Simerly RB. AgRP neurons mediate activity-dependent development of oxytocin connectivity and autonomic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.592838. [PMID: 38895484 PMCID: PMC11185571 DOI: 10.1101/2024.06.02.592838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
During postnatal life, the adipocyte-derived hormone leptin is required for proper targeting of neural inputs to the paraventricular nucleus of the hypothalamus (PVH) and impacts the activity of neurons containing agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus. Activity-dependent developmental mechanisms are known to play a defining role during postnatal organization of neural circuits, but whether leptin-mediated postnatal neuronal activity specifies neural projections to the PVH or impacts downstream connectivity is largely unexplored. Here, we blocked neuronal activity of AgRP neurons during a discrete postnatal period and evaluated development of AgRP inputs to defined regions in the PVH, as well as descending projections from PVH oxytocin neurons to the dorsal vagal complex (DVC) and assessed their dependence on leptin or postnatal AgRP neuronal activity. In leptin-deficient mice, AgRP inputs to PVH neurons were significantly reduced, as well as oxytocin-specific neuronal targeting by AgRP. Moreover, downstream oxytocin projections from the PVH to the DVC were also impaired, despite the lack of leptin receptors found on PVH oxytocin neurons. Blocking AgRP neuron activity specifically during early postnatal life reduced the density of AgRP inputs to the PVH, as well as the density of projections from PVH oxytocin neurons to the DVC, and these innervation deficits were associated with dysregulated autonomic function. These findings suggest that postnatal targeting of descending PVH oxytocin projections to the DVC requires leptin-mediated AgRP neuronal activity, and represents a novel activity-dependent mechanism for hypothalamic specification of metabolic circuitry, with consequences for autonomic regulation. Significance statement Hypothalamic neural circuits maintain homeostasis by coordinating endocrine signals with autonomic responses and behavioral outputs to ensure that physiological responses remain in tune with environmental demands. The paraventricular nucleus of the hypothalamus (PVH) plays a central role in metabolic regulation, and the architecture of its neural inputs and axonal projections is a defining feature of how it receives and conveys neuroendocrine information. In adults, leptin regulates multiple aspects of metabolic physiology, but it also functions during development to direct formation of circuits controlling homeostatic functions. Here we demonstrate that leptin acts to specify the input-output architecture of PVH circuits through an activity-dependent, transsynaptic mechanism, which represents a novel means of sculpting neuroendocrine circuitry, with lasting effects on how the brain controls energy balance.
Collapse
|
6
|
Gruber T, Lechner F, Krieger JP, García-Cáceres C. Neuroendocrine gut-brain signaling in obesity. Trends Endocrinol Metab 2024:S1043-2760(24)00120-6. [PMID: 38821753 DOI: 10.1016/j.tem.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
The past decades have witnessed the rise and fall of several, largely unsuccessful, therapeutic attempts to bring the escalating obesity pandemic to a halt. Looking back to look ahead, the field has now put its highest hopes in translating insights from how the gastrointestinal (GI) tract communicates with the brain to calibrate behavior, physiology, and metabolism. A major focus of this review is to summarize the latest advances in comprehending the neuroendocrine aspects of this so-called 'gut-brain axis' and to explore novel concepts, cutting-edge technologies, and recent paradigm-shifting experiments. These exciting insights continue to refine our understanding of gut-brain crosstalk and are poised to promote the development of additional therapeutic avenues at the dawn of a new era of antiobesity therapeutics.
Collapse
Affiliation(s)
- Tim Gruber
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49506, USA; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Franziska Lechner
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Jean-Philippe Krieger
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland; Institute of Neuroscience and Physiology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Cristina García-Cáceres
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
7
|
Berkhout JB, Poormoghadam D, Yi C, Kalsbeek A, Meijer OC, Mahfouz A. An integrated single-cell RNA-seq atlas of the mouse hypothalamic paraventricular nucleus links transcriptomic and functional types. J Neuroendocrinol 2024; 36:e13367. [PMID: 38281730 DOI: 10.1111/jne.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024]
Abstract
The hypothalamic paraventricular nucleus (PVN) is a highly complex brain region that is crucial for homeostatic regulation through neuroendocrine signaling, outflow of the autonomic nervous system, and projections to other brain areas. In the past years, single-cell datasets of the hypothalamus have contributed immensely to the current understanding of the diverse hypothalamic cellular composition. While the PVN has been adequately classified functionally, its molecular classification is currently still insufficient. To address this, we created a detailed atlas of PVN transcriptomic cell types by integrating various PVN single-cell datasets into a recently published hypothalamus single-cell transcriptome atlas. Furthermore, we functionally profiled transcriptomic cell types, based on relevant literature, existing retrograde tracing data, and existing single-cell data of a PVN-projection target region. Finally, we validated our findings with immunofluorescent stainings. In our PVN atlas dataset, we identify the well-known different neuropeptide types, each composed of multiple novel subtypes. We identify Avp-Tac1, Avp-Th, Oxt-Foxp1, Crh-Nr3c1, and Trh-Nfib as the most important neuroendocrine subtypes based on markers described in literature. To characterize the preautonomic functional population, we integrated a single-cell retrograde tracing study of spinally projecting preautonomic neurons into our PVN atlas. We identify these (presympathetic) neurons to cocluster with the Adarb2+ clusters in our dataset. Further, we identify the expression of receptors for Crh, Oxt, Penk, Sst, and Trh in the dorsal motor nucleus of the vagus, a key region that the pre-parasympathetic PVN neurons project to. Finally, we identify Trh-Ucn3 and Brs3-Adarb2 as some centrally projecting populations. In conclusion, our study presents a detailed overview of the transcriptomic cell types of the murine PVN and provides a first attempt to resolve functionality for the identified populations.
Collapse
Affiliation(s)
- J B Berkhout
- Division of Endocrinology, Department of Medicine, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - D Poormoghadam
- Laboratory of Endocrinology, Department of Laboratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - C Yi
- Laboratory of Endocrinology, Department of Laboratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - A Kalsbeek
- Laboratory of Endocrinology, Department of Laboratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - O C Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - A Mahfouz
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
- Division of Pattern Recognition and Bioinformatics, Department of Intelligent Systems, Technical University Delft, Delft, The Netherlands
| |
Collapse
|
8
|
Bonaz B. Dysregulation of hypothalamic-vagal neurocircuits by perinatal high fat diet. J Physiol 2023; 601:2757-2758. [PMID: 37283028 DOI: 10.1113/jp284986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Affiliation(s)
- Bruno Bonaz
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| |
Collapse
|