1
|
Tang X, Ortner NJ, Nikonishyna YV, Fernández-Quintero ML, Kokot J, Striessnig J, Liedl KR. Pathogenicity of de novo CACNA1D Ca 2+ channel variants predicted from sequence co-variation. Eur J Hum Genet 2024; 32:1065-1073. [PMID: 38553610 PMCID: PMC11369236 DOI: 10.1038/s41431-024-01594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 09/04/2024] Open
Abstract
Voltage-gated L-type Cav1.3 Ca2+ channels support numerous physiological functions including neuronal excitability, sinoatrial node pacemaking, hearing, and hormone secretion. De novo missense mutations in the gene of their pore-forming α1-subunit (CACNA1D) induce severe gating defects which lead to autism spectrum disorder and a more severe neurological disorder with and without endocrine symptoms. The number of CACNA1D variants reported is constantly rising, but their pathogenic potential often remains unclear, which complicates clinical decision-making. Since functional tests are time-consuming and not always available, bioinformatic tools further improving pathogenicity potential prediction of novel variants are needed. Here we employed evolutionary analysis considering sequences of the Cav1.3 α1-subunit throughout the animal kingdom to predict the pathogenicity of human disease-associated CACNA1D missense variants. Co-variation analyses of evolutionary information revealed residue-residue couplings and allowed to generate a score, which correctly predicted previously identified pathogenic variants, supported pathogenicity in variants previously classified as likely pathogenic and even led to the re-classification or re-examination of 18 out of 80 variants previously assessed with clinical and electrophysiological data. Based on the prediction score, we electrophysiologically tested one variant (V584I) and found significant gating changes associated with pathogenic risks. Thus, our co-variation model represents a valuable addition to complement the assessment of the pathogenicity of CACNA1D variants completely independent of clinical diagnoses, electrophysiology, structural or biophysical considerations, and solely based on evolutionary analyses.
Collapse
Affiliation(s)
- Xuechen Tang
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Nadine J Ortner
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Yuliia V Nikonishyna
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Janik Kokot
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria.
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020, Innsbruck, Austria.
| |
Collapse
|
2
|
Plain A, Knödl L, Tegtmeier I, Bandulik S, Warth R. The ex vivo perfused mouse adrenal gland-a new model to study aldosterone secretion. Pflugers Arch 2024; 476:911-922. [PMID: 38538989 PMCID: PMC11139715 DOI: 10.1007/s00424-024-02950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 06/01/2024]
Abstract
Aldosterone is a steroid hormone that is important for maintaining the volume and ionic composition of extracellular fluids and is produced in the zona glomerulosa of the adrenal cortex. The basic mechanisms controlling aldosterone secretion are known. However, more detailed studies on the regulation of aldosterone secretion often fail due to the lack of suitable models: although secretion can be studied in cultured adrenocortical cells under defined conditions, the differentiation status of the cells is difficult to control and the complex anatomy of the adrenal cortex is lost. In living animals, the physiological context is intact, but the influences are manifold and the examination conditions cannot be sufficiently controlled. One method that closes the gap between cell models and studies in living animals is the isolated perfused adrenal gland. In the past, this method has provided important data on the pathophysiology of adrenal glands from larger animals, but the technique was not used in mice. Here, we developed a method for isolation and perfusion of the mouse adrenal gland to study aldosterone secretion. This technique preserves the complex anatomical and functional context of the mouse adrenal cortex, to ensure defined experimental conditions and to minimize extra-adrenal influences. Initial series of experiments with the ex vivo perfused mouse adrenal gland show that this model offers the possibility for unique insights into pathophysiological regulatory principles and is suitable for the use of genetically modified mouse models.
Collapse
Affiliation(s)
- Allein Plain
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Laura Knödl
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Ines Tegtmeier
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Sascha Bandulik
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Richard Warth
- Medical Cell Biology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Jiménez-Pompa A, Albillos A. Nicotinic Receptors in Human Chromaffin Cells: Characterization, Functional and Physical Interactions between Subtypes and Regulation. Int J Mol Sci 2024; 25:2304. [PMID: 38396980 PMCID: PMC10888968 DOI: 10.3390/ijms25042304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
This review summarizes our research on nicotinic acetylcholine receptors in human chromaffin cells. Limited research has been conducted in this field on human tissue, primarily due to the difficulties associated with obtaining human cells. Receptor subtypes were characterized here using molecular biology and electrophysiological patch-clamp techniques. However, the most significant aspect of this study refers to the cross-talk between the two main subtypes identified in these cells, the α7- and α3β4* subtypes, aiming to avoid their desensitization. The article also reviews other aspects, including the regulation of their expression, function or physical interaction by choline, Ca2+, and tyrosine and serine/threonine phosphatases. Additionally, the influence of sex on their expression is also discussed.
Collapse
Affiliation(s)
| | - Almudena Albillos
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, 4 Arzobispo Morcillo Str., 28029 Madrid, Spain;
| |
Collapse
|
4
|
Senthilkumaran M, Koch C, Herselman MF, Bobrovskaya L. Role of the Adrenal Medulla in Hypoglycaemia-Associated Autonomic Failure-A Diabetic Perspective. Metabolites 2024; 14:100. [PMID: 38392992 PMCID: PMC10890365 DOI: 10.3390/metabo14020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoglycaemia-associated autonomic failure (HAAF) is characterised by an impairment in adrenal medullary and neurogenic symptom responses following episodes of recurrent hypoglycaemia. Here, we review the status quo of research related to the regulatory mechanisms of the adrenal medulla in its response to single and recurrent hypoglycaemia in both diabetic and non-diabetic subjects with particular focus given to catecholamine synthesis, enzymatic activity, and the impact of adrenal medullary peptides. Short-term post-transcriptional modifications, particularly phosphorylation at specific residues of tyrosine hydroxylase (TH), play a key role in the regulation of catecholamine synthesis. While the effects of recurrent hypoglycaemia on catecholamine synthetic enzymes remain inconsistent, long-term changes in TH protein expression suggest species-specific responses. Adrenomedullary peptides such as neuropeptide Y (NPY), galanin, and proenkephalin exhibit altered gene and protein expression in response to hypoglycaemia, suggesting a potential role in the modulation of catecholamine secretion. Of note is NPY, since its antagonism has been shown to prevent reductions in TH protein expression. This review highlights the need for further investigation into the molecular mechanisms involved in the adrenal medullary response to hypoglycaemia. Despite advancements in our understanding of HAAF in non-diabetic rodents, a reliable diabetic rodent model of HAAF remains a challenge.
Collapse
Affiliation(s)
- Manjula Senthilkumaran
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Coen Koch
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Mauritz Frederick Herselman
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Guérineau NC. Adaptive remodeling of the stimulus-secretion coupling: Lessons from the 'stressed' adrenal medulla. VITAMINS AND HORMONES 2023; 124:221-295. [PMID: 38408800 DOI: 10.1016/bs.vh.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Stress is part of our daily lives and good health in the modern world is offset by unhealthy lifestyle factors, including the deleterious consequences of stress and associated pathologies. Repeated and/or prolonged stress may disrupt the body homeostasis and thus threatens our lives. Adaptive processes that allow the organism to adapt to new environmental conditions and maintain its homeostasis are therefore crucial. The adrenal glands are major endocrine/neuroendocrine organs involved in the adaptive response of the body facing stressful situations. Upon stress episodes and in response to activation of the sympathetic nervous system, the first adrenal cells to be activated are the neuroendocrine chromaffin cells located in the medullary tissue of the adrenal gland. By releasing catecholamines (mainly epinephrine and to a lesser extent norepinephrine), adrenal chromaffin cells actively contribute to the development of adaptive mechanisms, in particular targeting the cardiovascular system and leading to appropriate adjustments of blood pressure and heart rate, as well as energy metabolism. Specifically, this chapter covers the current knowledge as to how the adrenal medullary tissue remodels in response to stress episodes, with special attention paid to chromaffin cell stimulus-secretion coupling. Adrenal stimulus-secretion coupling encompasses various elements taking place at both the molecular/cellular and tissular levels. Here, I focus on stress-driven changes in catecholamine biosynthesis, chromaffin cell excitability, synaptic neurotransmission and gap junctional communication. These signaling pathways undergo a collective and finely-tuned remodeling, contributing to appropriate catecholamine secretion and maintenance of body homeostasis in response to stress.
Collapse
Affiliation(s)
- Nathalie C Guérineau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
6
|
Maneu V, Borges R, Gandía L, García AG. Forty years of the adrenal chromaffin cell through ISCCB meetings around the world. Pflugers Arch 2023; 475:667-690. [PMID: 36884064 PMCID: PMC10185644 DOI: 10.1007/s00424-023-02793-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 03/09/2023]
Abstract
This historical review focuses on the evolution of the knowledge accumulated during the last two centuries on the biology of the adrenal medulla gland and its chromaffin cells (CCs). The review emerged in the context of a series of meetings that started on the Spanish island of Ibiza in 1982 with the name of the International Symposium on Chromaffin Cell Biology (ISCCB). Hence, the review is divided into two periods namely, before 1982 and from this year to 2022, when the 21st ISCCB meeting was just held in Hamburg, Germany. The first historical period extends back to 1852 when Albert Kölliker first described the fine structure and function of the adrenal medulla. Subsequently, the adrenal staining with chromate salts identified the CCs; this was followed by the establishment of the embryological origin of the adrenal medulla, and the identification of adrenaline-storing vesicles. By the end of the nineteenth century, the basic morphology, histochemistry, and embryology of the adrenal gland were known. The twentieth century began with breakthrough findings namely, the experiment of Elliott suggesting that adrenaline was the sympathetic neurotransmitter, the isolation of pure adrenaline, and the deciphering of its molecular structure and chemical synthesis in the laboratory. In the 1950s, Blaschko isolated the catecholamine-storing vesicles from adrenal medullary extracts. This switched the interest in CCs as models of sympathetic neurons with an explosion of studies concerning their functions, i.e., uptake of catecholamines by chromaffin vesicles through a specific coupled transport system; the identification of several vesicle components in addition to catecholamines including chromogranins, ATP, opioids, and other neuropeptides; the calcium-dependence of the release of catecholamines; the underlying mechanism of exocytosis of this release, as indicated by the co-release of proteins; the cross-talk between the adrenal cortex and the medulla; and the emission of neurite-like processes by CCs in culture, among other numerous findings. The 1980s began with the introduction of new high-resolution techniques such as patch-clamp, calcium probes, marine toxins-targeting ion channels and receptors, confocal microscopy, or amperometry. In this frame of technological advances at the Ibiza ISCCB meeting in 1982, 11 senior researchers in the field predicted a notable increase in our knowledge in the field of CCs and the adrenal medulla; this cumulative knowledge that occurred in the last 40 years of history of the CC is succinctly described in the second part of this historical review. It deals with cell excitability, ion channel currents, the exocytotic fusion pore, the handling of calcium ions by CCs, the kinetics of exocytosis and endocytosis, the exocytotic machinery, and the life cycle of secretory vesicles. These concepts together with studies on the dynamics of membrane fusion with super-resolution imaging techniques at the single-protein level were extensively reviewed by top scientists in the field at the 21st ISCCB meeting in Hamburg in the summer of 2022; this frontier topic is also briefly reviewed here. Many of the concepts arising from those studies contributed to our present understanding of synaptic transmission. This has been studied in physiological or pathophysiological conditions, in CCs from animal disease models. In conclusion, the lessons we have learned from CC biology as a peripheral model for brain and brain disease pertain more than ever to cutting-edge research in neurobiology. In the 22nd ISCCB meeting in Israel in 2024 that Uri Asheri is organizing, we will have the opportunity of seeing the progress of the questions posed in Ibiza, and on other questions that undoubtedly will arise.
Collapse
Affiliation(s)
- Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain
| | - Ricardo Borges
- Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Luis Gandía
- Instituto Fundación Teófilo Hernando, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G. García
- Instituto Fundación Teófilo Hernando, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
- Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Gonçalves PP, Stenovec M, Grácio L, Kreft M, Zorec R. Calcium-dependent subquantal peptide release from single docked lawn-resident vesicles of pituitary lactotrophs. Cell Calcium 2023; 109:102687. [PMID: 36528978 DOI: 10.1016/j.ceca.2022.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Regulated exocytosis consists of the fusion between vesicles and the plasma membranes, leading to the formation of a narrow fusion pore through which secretions exit the vesicle lumen into the extracellular space. An increase in the cytosolic concentration of free Ca2+ ([Ca2+]i) is considered the stimulus of this process. However, whether this mechanism can be preserved in a simplified system of membrane lawns with docked secretory vesicles, devoid of cellular components, is poorly understood. Here, we studied peptide discharge from individual secretory vesicles docked at the plasma membrane, prepared from primary endocrine pituitary cells (the lactotrophs), releasing hormone prolactin. To label secretory vesicles, we transfected lactotrophs to express the fluorescent atrial natriuretic peptide (ANP.emd), previously shown to be expressed in and released from prolactin-containing vesicles. We used stimulating solutions containing different [Ca2+] to evoke vesicle peptide discharge, which appeared similar in membrane lawns and in intact stimulated lactotrophs. All vesicles examined discharged peptides in a subquantal manner, either exhibiting a unitary or sequential time course. In the membrane lawns, the unitary vesicle peptide discharge was predominant and slightly slower than that recorded in intact cells, but with a shorter delay with respect to the stimulation onset. This study revealed directly that Ca2+ triggers peptide discharge from docked single vesicles in the membrane lawns with a half-maximal response of ∼8 µM [Ca2+], consistent with previous whole-cell patch-clamp studies in endocrine cells where the rapid component of exocytosis, interpreted to represent docked vesicles, was fully activated at <10 µM [Ca2+]. Interestingly, the sequential subquantal peptide vesicle discharge indicates that fluctuations between constricted and dilated fusion pore states are preserved in membrane lawns and that fusion pore regulation appears to be an autonomously controlled process.
Collapse
Affiliation(s)
- Paula P Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Zaloška 4, 1000, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia
| | - Luciano Grácio
- CRACS & INESC-TEC - Centre for Research in Advanced Computing Systems & Institute for Systems and Computer Engineering, Technology and Science, Department of Computer Science, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Zaloška 4, 1000, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Department of Biology, University of Ljubljana, Biotechnical Faculty, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Zaloška 4, 1000, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Borges R, De la Iglesia A, García AG. Online Detection of Catecholamine Release from the Perfused Rat Adrenal Gland. Methods Mol Biol 2023; 2565:91-103. [PMID: 36205889 DOI: 10.1007/978-1-0716-2671-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Retrogradely perfused adrenal glands have historically served for establishing many of our current knowledge on the stimulus-secretion coupling process. Although the use of intact adrenals has largely been switched to isolated chromaffin cells, adrenal glands are still a very valuable tool to characterize physiological and pharmacological questions. Even more, this is an excellent preparation for studying the splanchnic nerve/chromaffin cell interaction. In this chapter, we will provide the ways to (i) perform retrograde perfusion of isolated rat adrenals, (ii) the method to apply electrical splanchnic nerve stimulation, and (iii) the preparation of adrenals to conduct online electrochemical detection of catecholamine release.
Collapse
Affiliation(s)
- Ricardo Borges
- Department of Physical Medicine and Pharmacology, Universidad de La Laguna, La Laguna, Spain.
| | - Ana De la Iglesia
- Pharmacology Unit, Department of Physical Medicine and Pharmacology, Medical School, Universidad de La Laguna, Tenerife, Spain
| | - Antonio G García
- Instituto Fundación Teófilo Hernando, Departamento de Farmacología y Terapéutica, and Instituto de Investigación Sanitaria de La Princesa, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Petersen OH. Watching Living Cells in Action in the Exocrine Pancreas: The Palade Prize Lecture. FUNCTION 2022; 4:zqac061. [PMID: 36606242 PMCID: PMC9809903 DOI: 10.1093/function/zqac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
George Palade's pioneering electron microscopical studies of the pancreatic acinar cell revealed the intracellular secretory pathway from the rough endoplasmic reticulum at the base of the cell to the zymogen granules in the apical region. Palade also described for the first time the final stage of exocytotic enzyme secretion into the acinar lumen. The contemporary studies of the mechanism by which secretion is acutely controlled, and how the pancreas is destroyed in the disease acute pancreatitis, rely on monitoring molecular events in the various identified pancreatic cell types in the living pancreas. These studies have been carried out with the help of high-resolution fluorescence recordings, often in conjunction with patch clamp current measurements. In such studies we have gained much detailed information about the regulatory events in the exocrine pancreas in health as well as disease, and new therapeutic opportunities have been revealed.
Collapse
Affiliation(s)
- Ole H Petersen
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Wales, CF10 3AX, UK
| |
Collapse
|
10
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
11
|
Savorgnan F, Flores S, Loomba RS, Checchia PA, Bronicki RA, Farias JS, Acosta S. Hemodynamic Response to Calcium Chloride Boluses in Single-Ventricle Patients with Parallel Circulation. Pediatr Cardiol 2022; 43:554-560. [PMID: 34652494 DOI: 10.1007/s00246-021-02754-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
The purpose of this study is to assess the effect of calcium bolus in response to a hypotensive episode by assessing high-fidelity hemodynamic data obtained from children with single-ventricle physiology with parallel circulation. Single-center, retrospective analysis of hemodynamic data after calcium bolus administrations within the first 2 weeks post-surgery. Time intervals were the baseline (- 60 to - 10 min); the hypotensive episode (- 10 to 0 min); time point zero at the bolus administration; and the response (0 to 60 min). The main responses assessed were the peak increase in mean blood pressure (mBP), duration of the response after the bolus, and markers of oximetric effects. These analyses included 128 boluses in 63 patients. Of the total boluses analyzed, 80% increased the mBP by 5 mmHg or higher with the effect lasting at least 10 min, whereas 10% of the boluses analyzed increased the mBP by 20 mmHg or higher with the effect lasting at least 50 min. The boluses induced a significant increase in arterial oxygen saturation and an upward trend in pulmonary-to-systemic flow ratio, without increasing renal or cerebral oxygen extraction ratios. Calcium chloride boluses are an effective rescue medication for hypotensive episodes in children with parallel circulation. They lead to an improvement in mBP, as well as an increase in pulmonary-to-systemic blood flow ratio. More importantly, these boluses do not compromise systemic oxygen delivery.
Collapse
Affiliation(s)
- Fabio Savorgnan
- Department of Pediatrics, Divisions of Critical Care Medicine and Cardiology, Texas Children's Hospital and Baylor College of Medicine, Lester A. Smith Legacy Tower, 6651 Main Street, 14th floor, Houston, TX, 77030, USA
| | - Saul Flores
- Department of Pediatrics, Divisions of Critical Care Medicine and Cardiology, Texas Children's Hospital and Baylor College of Medicine, Lester A. Smith Legacy Tower, 6651 Main Street, 14th floor, Houston, TX, 77030, USA.
| | - Rohit S Loomba
- Department of Pediatrics, The Heart Institute, Advocate Children's Hospital, Chicago Medical School and Rosalind Franklin University of Medicine and Science, Oak Lawn, Illinois, USA
| | - Paul A Checchia
- Department of Pediatrics, Divisions of Critical Care Medicine and Cardiology, Texas Children's Hospital and Baylor College of Medicine, Lester A. Smith Legacy Tower, 6651 Main Street, 14th floor, Houston, TX, 77030, USA
| | - Ronald A Bronicki
- Department of Pediatrics, Divisions of Critical Care Medicine and Cardiology, Texas Children's Hospital and Baylor College of Medicine, Lester A. Smith Legacy Tower, 6651 Main Street, 14th floor, Houston, TX, 77030, USA
| | - Juan S Farias
- Tecnologico de Monterrey, Escuela de Medicina Y Ciencias de La Salud, Monterrey, Nuevo Leon, Mexico
| | - Sebastian Acosta
- Department of Pediatrics, Divisions of Critical Care Medicine and Cardiology, Texas Children's Hospital and Baylor College of Medicine, Lester A. Smith Legacy Tower, 6651 Main Street, 14th floor, Houston, TX, 77030, USA
| |
Collapse
|
12
|
Sodium background currents in endocrine/neuroendocrine cells: Towards unraveling channel identity and contribution in hormone secretion. Front Neuroendocrinol 2021; 63:100947. [PMID: 34592201 DOI: 10.1016/j.yfrne.2021.100947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/03/2021] [Accepted: 09/23/2021] [Indexed: 02/04/2023]
Abstract
In endocrine/neuroendocrine tissues, excitability of secretory cells is patterned by the repertoire of ion channels and there is clear evidence that extracellular sodium (Na+) ions contribute to hormone secretion. While voltage-gated channels involved in action potential generation are well-described, the background 'leak' channels operating near the resting membrane potential are much less known, and in particular the channels supporting a background entry of Na+ ions. These background Na+ currents (called here 'INab') have the ability to modulate the resting membrane potential and subsequently affect action potential firing. Here we compile and analyze the data collected from three endocrine/neuroendocrine tissues: the anterior pituitary gland, the adrenal medulla and the endocrine pancreas. We also model how INab can be functionally involved in cellular excitability. Finally, towards deciphering the physiological role of INab in endocrine/neuroendocrine cells, its implication in hormone release is also discussed.
Collapse
|
13
|
Bergantin LB. A Hypothesis for the Relationship between Depression and Cancer: Role of Ca2+/cAMP Signalling. Anticancer Agents Med Chem 2021; 20:777-782. [PMID: 32077833 DOI: 10.2174/1871520620666200220113817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/02/2019] [Accepted: 01/14/2020] [Indexed: 01/17/2023]
Abstract
Limitations on the pharmacotherapy and a high prevalence worldwide are critical issues related to depression and cancer. It has been discussed that a dysregulation of intracellular Ca2+ homeostasis is involved in the pathogenesis of both these diseases. In addition, depression raises the risk of cancer incidence. Consistent data support the concept that depression is an independent risk issue for cancer. However, the cellular mechanisms involved in this link between depression and cancer remain uncertain. Considering our previous reports about Ca2+ and cAMP signalling pathways (Ca2+/cAMP signalling), I herein discussed the putative contribution of Ca2+/cAMP signalling in this link between depression and cancer. Moreover, it is important to take depression into account during the process of prevention and treatment of cancer.
Collapse
Affiliation(s)
- Leandro B Bergantin
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Pedro de Toledo, 669, Vila Clementino, Sao Paulo, SP, Brazil
| |
Collapse
|
14
|
Gridina A, Su X, Khan SA, Peng YJ, Wang B, Nanduri J, Fox AP, Prabhakar NR. Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells. J Neurophysiol 2021; 125:1533-1542. [PMID: 33729866 DOI: 10.1152/jn.00669.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Emerging evidence suggests that gaseous molecules, carbon monoxide (CO), and hydrogen sulfide (H2S) generated by heme oxygenase (HO)-2 and cystathionine γ-lyase (CSE), respectively, function as transmitters in the nervous system. Present study examined the roles of CO and H2S in hypoxia-induced catecholamine (CA) release from adrenal medullary chromaffin cells (AMCs). Studies were performed on AMCs from adult (≥6 wk of age) wild-type (WT), HO-2 null, CSE null, and HO-2/CSE double null mice of either gender. CA secretion was determined by carbon fiber amperometry and [Ca2+]i by microflurometry using Fura-2. HO-2- and CSE immunoreactivities were seen in WT AMC, which were absent in HO-2 and CSE null mice. Hypoxia (medium Po2 30-38 mmHg) evoked CA release and elevated [Ca2+]i. The magnitude of hypoxic response was greater in HO-2 null mice and in HO inhibitor-treated WT AMC compared with controls. H2S levels were elevated in HO-2 null AMC. Either pharmacological inhibition or genetic deletion of CSE prevented the augmented hypoxic responses of HO-2 null AMC and H2S donor rescued AMC responses to hypoxia in HO-2/CSE double null mice. CORM3, a CO donor, prevented the augmented hypoxic responses in WT and HO-2 null AMC. CO donor reduced H2S levels in WT AMC. The effects of CO donor were blocked by either ODQ or 8pCT, inhibitors of soluble guanylyl cyclase (SGC) or protein kinase G, respectively. These results suggest that HO-2-derived CO inhibits hypoxia-evoked CA secretion from adult murine AMC involving soluble guanylyl cyclase (SGC)-protein kinase G (PKG)-dependent regulation of CSE-derived H2S.NEW & NOTEWORTHY Catecholamine secretion from adrenal chromaffin cells is an important physiological mechanism for maintaining homeostasis during hypoxia. Here, we delineate carbon monoxide (CO)-sensitive hydrogen sulfide (H2S) signaling as an important mediator of hypoxia-induced catecholamine secretion from murine adrenal chromaffin cells. Heme oxygenase-2 derived CO is a physiological inhibitor of catcholamince secretion by hypoxia and the effects of CO involve inhibition of cystathionine γ-lyase-derived H2S production through soluble guanylyl cyclase-protein kinase G signaling cascade.
Collapse
Affiliation(s)
- Anna Gridina
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Xiaoyu Su
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Shakil A Khan
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Benjamin Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Aaron P Fox
- Department of Neuroscience, Physiology and Pharmacology, Biological Science Division, University of Chicago, Chicago, Illinois
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Martínez-Ramírez C, Gil-Gómez I, G de Diego AM, García AG. Acute reversible SERCA blockade facilitates or blocks exocytosis, respectively in mouse or bovine chromaffin cells. Pflugers Arch 2021; 473:273-286. [PMID: 33108514 DOI: 10.1007/s00424-020-02483-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022]
Abstract
Pre-blockade of the sarco-endoplasmic reticulum (ER) calcium ATPase (SERCA) with irreversible thapsigargin depresses exocytosis in adrenal bovine chromaffin cells (BCCs). Distinct expression of voltage-dependent Ca2+-channel subtypes and of the Ca2+-induced Ca2+ release (CICR) mechanism in BCCs versus mouse chromaffin cells (MCCs) has been described. We present a parallel study on the effects of the acute SERCA blockade with reversible cyclopizonic acid (CPA), to repeated pulsing with acetylcholine (ACh) at short (15 s) and long intervals (60 s) at 37 °C, allowing the monitoring of the initial size of a ready-release vesicle pool (RRP) and its depletion and recovery in subsequent stimuli. We found (i) strong depression of exocytosis upon ACh pulsing at 15-s intervals and slower depression at 60-s intervals in both cell types; (ii) facilitation of exocytosis upon acute SERCA inhibition, with back to depression upon CPA washout in MCCs; (iii) blockade of exocytosis upon acute SERCA inhibition and pronounced rebound of exocytosis upon CPA washout in BCCs; (iv) basal [Ca2+]c elevation upon stimulation with ACh at short intervals (but not at long intervals) in both cell types; and (v) augmentation of basal [Ca2+]c and inhibition of peak [Ca2+]c amplitude upon CPA treatment in both cell types, with milder effects upon stimulation at 60-s intervals. These results are compatible with the view that while in MCCs the uptake of Ca2+ via SERCA contributes to the mitigation of physiological ACh triggered secretion, in BCCs the uptake of Ca2+ into the ER facilitates such responses likely potentiating a Ca2+-induced Ca2+ release mechanism. These drastic differences in the regulation of ACh-triggered secretion at 37 °C may help to understand different patterns of the regulation of exocytosis by the circulation of Ca2+ at a functional ER Ca2+ store.
Collapse
Affiliation(s)
- Carmen Martínez-Ramírez
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
- Fundación Teófilo Hernando, Parque científico de Madrid, Madrid, Spain
| | - Irene Gil-Gómez
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
- Fundación Teófilo Hernando, Parque científico de Madrid, Madrid, Spain
| | - Antonio M G de Diego
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.
- Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, Spain.
- Fundación Teófilo Hernando, Parque científico de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital de La Princesa, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
- DNS Neuroscience, Instituto Teófilo Hernando, Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Antonio G García
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
- Fundación Teófilo Hernando, Parque científico de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital de La Princesa, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- DNS Neuroscience, Instituto Teófilo Hernando, Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Bergantin LB. Depression Rises the Risk of Hypertension Incidence: Discussing the Link through the Ca2+/cAMP Signalling. Curr Hypertens Rev 2020; 16:73-78. [PMID: 30648516 DOI: 10.2174/1573402115666190116095223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Depression and hypertension are medical problems both with clearly restricted pharmacotherapies, along with a high prevalence around the world. In fact, an intensive discussion in the field is that a dysregulation of the intracellular Ca2+ homeostasis (e.g. excess of intracellular Ca2+) contributes to the pathogenesis of both hypertension and depression. Furthermore, depression rises the risk of hypertension incidence. Indeed, several data support the concept that depression is an independent risk issue for hypertension. CONCLUSION Then, which are the possible cellular mechanisms involved in this link between depression and hypertension? Considering our previous reports about the Ca2+ and cAMP signalling pathways (Ca2+/cAMP signalling), in this review I have discussed the virtual involvement of the Ca2+/cAMP signalling in this link (between depression and hypertension). Then, it is important to consider depression into account during the process of prevention, and treatment, of hypertension.
Collapse
Affiliation(s)
- Leandro B Bergantin
- Department of Pharmacology-Escola Paulista de Medicina-Universidade Federal de Sao Paulo, Rua Pedro de Toledo, 669-Vila Clementino, Sao Paulo-SP, Postal Code: 04039-032, Brazil
| |
Collapse
|
17
|
Abdullah MA, Lee YR, Mastuki SN, Leong SW, Wan Ibrahim WN, Mohammad Latif MA, Ramli ANM, Mohd Aluwi MFF, Mohd Faudzi SM, Kim CH. Development of diarylpentadienone analogues as alpha-glucosidase inhibitor: Synthesis, in vitro biological and in vivo toxicity evaluations, and molecular docking analysis. Bioorg Chem 2020; 104:104277. [PMID: 32971414 DOI: 10.1016/j.bioorg.2020.104277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/31/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
Abstract
A series of aminated- (1-9) and sulfonamide-containing diarylpentadienones (10-18) were synthesized, structurally characterized, and evaluated for their in vitro anti-diabetic potential on α-glucosidase and DPP-4 enzymes. It was found that all the new molecules were non-associated PAINS compounds. The sulfonamide-containing series (compounds 10-18) selectively inhibited α-glucosidase over DPP-4, in which compound 18 demonstrated the highest activity with an IC50 value of 5.69 ± 0.5 µM through a competitive inhibition mechanism. Structure-activity relationship (SAR) studies concluded that the introduction of the trifluoromethylbenzene sulfonamide moiety was essential for the suppression of α-glucosidase. The most active compound 18, was then further tested for in vivo toxicities using the zebrafish animal model, with no toxic effects detected in the normal embryonic development, blood vessel formation, and apoptosis of zebrafish. Docking simulation studies were also carried out to better understand the binding interactions of compound 18 towards the homology modeled α -glucosidase and the human lysosomal α -glucosidase enzymes. The overall results suggest that the new sulfonamide-containing diarylpentadienones, compound 18, could be a promising candidate in the search for a new α-glucosidase inhibitor, and can serve as a basis for further studies involving hit-to-lead optimization, in vivo efficacy and safety assessment in an animal model and mechanism of action for the treatment of T2DM patients.
Collapse
Affiliation(s)
- Maryam Aisyah Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yu-Ri Lee
- Department of Biology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Siti Nurulhuda Mastuki
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Wei Leong
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wan Norhamidah Wan Ibrahim
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Alif Mohammad Latif
- Department of Chemistry, Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, 26300 Pahang, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, 26300 Pahang, Malaysia
| | - Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea.
| |
Collapse
|
18
|
Shi W, Ye B, Rame M, Wang Y, Cioca D, Reibel S, Peng J, Qi S, Vitale N, Luo H, Wu J. The receptor tyrosine kinase EPHB6 regulates catecholamine exocytosis in adrenal gland chromaffin cells. J Biol Chem 2020; 295:7653-7668. [PMID: 32321761 DOI: 10.1074/jbc.ra120.013251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Indexed: 11/06/2022] Open
Abstract
The erythropoietin-producing human hepatocellular receptor EPH receptor B6 (EPHB6) is a receptor tyrosine kinase that has been shown previously to control catecholamine synthesis in the adrenal gland chromaffin cells (AGCCs) in a testosterone-dependent fashion. EPHB6 also has a role in regulating blood pressure, but several facets of this regulation remain unclear. Using amperometry recordings, we now found that catecholamine secretion by AGCCs is compromised in the absence of EPHB6. AGCCs from male knockout (KO) mice displayed reduced cortical F-actin disassembly, accompanied by decreased catecholamine secretion through exocytosis. This phenotype was not observed in AGCCs from female KO mice, suggesting that testosterone, but not estrogen, contributes to this phenotype. Of note, reverse signaling from EPHB6 to ephrin B1 (EFNB1) and a 7-amino acid-long segment in the EFNB1 intracellular tail were essential for the regulation of catecholamine secretion. Further downstream, the Ras homolog family member A (RHOA) and FYN proto-oncogene Src family tyrosine kinase (FYN)-proto-oncogene c-ABL-microtubule-associated monooxygenase calponin and LIM domain containing 1 (MICAL-1) pathways mediated the signaling from EFNB1 to the defective F-actin disassembly. We discuss the implications of EPHB6's effect on catecholamine exocytosis and secretion for blood pressure regulation.
Collapse
Affiliation(s)
- Wei Shi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Bei Ye
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Marion Rame
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| | - Yujia Wang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | - Junzheng Peng
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Shijie Qi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada .,Nephrology Department, CHUM, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Petersen OH, Petersen CC. In Memoriam Sir Michael Berridge 1938 - 2020. Cell Calcium 2020; 88:102209. [PMID: 32353559 DOI: 10.1016/j.ceca.2020.102209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/18/2022]
Abstract
The article is an 'In Memoriam' article honouring the memory of Sir Michael Berridge.
Collapse
Affiliation(s)
- Ole H Petersen
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK.
| | - Carl Ch Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
20
|
Hone AJ, Rueda-Ruzafa L, Gordon TJ, Gajewiak J, Christensen S, Dyhring T, Albillos A, McIntosh JM. Expression of α3β2β4 nicotinic acetylcholine receptors by rat adrenal chromaffin cells determined using novel conopeptide antagonists. J Neurochem 2020; 154:158-176. [PMID: 31967330 DOI: 10.1111/jnc.14966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
Adrenal chromaffin cells release neurotransmitters in response to stress and may be involved in conditions such as post-traumatic stress and anxiety disorders. Neurotransmitter release is triggered, in part, by activation of nicotinic acetylcholine receptors (nAChRs). However, despite decades of use as a model system for studying exocytosis, the nAChR subtypes involved have not been pharmacologically identified. Quantitative real-time PCR of rat adrenal medulla revealed an abundance of mRNAs for α3, α7, β2, and β4 subunits. Whole-cell patch-clamp electrophysiology of chromaffin cells and subtype-selective ligands were used to probe for nAChRs derived from the mRNAs found in adrenal medulla. A novel conopeptide antagonist, PeIA-5469, was created that is highly selective for α3β2 over other nAChR subtypes heterologously expressed in Xenopus laevis oocytes. Experiments using PeIA-5469 and the α3β4-selective α-conotoxin TxID revealed that rat adrenal medulla contain two populations of chromaffin cells that express either α3β4 nAChRs alone or α3β4 together with the α3β2β4 subtype. Conclusions were derived from observations that acetylcholine-gated currents in some cells were sensitive to inhibition by PeIA-5469 and TxID, while in other cells, currents were sensitive only to TxID. Expression of functional α7 nAChRs was determined using three α7-selective ligands: the agonist PNU282987, the positive allosteric modulator PNU120596, and the antagonist α-conotoxin [V11L,V16D]ArIB. The results of these studies identify for the first time the expression of α3β2β4 nAChRs as well as functional α7 nAChRs by rat adrenal chromaffin cells.
Collapse
Affiliation(s)
- Arik J Hone
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.,School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA.,Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lola Rueda-Ruzafa
- Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Thomas J Gordon
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | - Joanna Gajewiak
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | - Sean Christensen
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | | | - Almudena Albillos
- Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.,School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA.,Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
21
|
Carbone E, Borges R, Eiden LE, García AG, Hernández‐Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Bergantin LB. Hypertension, Diabetes and Neurodegenerative Diseases: Is there a Clinical Link through the Ca2+/cAMP Signalling Interaction? Curr Hypertens Rev 2019; 15:32-39. [PMID: 30117399 DOI: 10.2174/1573402114666180817113242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hypertension, diabetes and neurodegenerative diseases are among the most prevalent medical problems around the world, costing millions of dollars to the medical health systems. Indeed, hypertension has been associated with higher risk for decline of cognition, as evidenced in patients with Alzheimer´s disease (AD). Furthermore, there is a clear relationship between hypertension and diabetes, reflecting substantial overlap in their etiology. Calcium (Ca2+) channel blockers (CCBs) have been classically prescribed for treating hypertension because of their mechanism of action due to reducing the influx of Ca2+ into the smooth muscles cells. In addition, many clinical and experimental studies have been demonstrating pleiotropic effects for CCBs. For instance, in hypertensive patients treated with CCBs, it can be observed lower incidence of neurodegenerative diseases such as AD. The virtual mechanism of action could be attributed to a restoration and maintenance of Ca2+ homeostasis, which is dysregulated in the neurodegenerative diseases, including also a reduction of neuronal apoptosis as part of these CCBs pleiotropic effects. Similarly, in hypertensive patients treated with CCBs, it can be observed an improvement of diabetes status such as glycemic control. A possible mechanism of action under debate could be attributed to a restoration of insulin secretion, then achieving glycemic control, and reduction of pancreatic β-cell apoptosis. CONCLUSION Considering the discovery of our group entitled "calcium paradox" due to Ca2+/cAMP signalling interaction, in this review I discussed the virtual involvement of this interaction in the pleiotropic effects of CCBs, including the possible role of the Ca2+/cAMP signalling interaction in the association between hypertension and higher risk for the decline of cognition, and diabetes.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology-Universidade Federal de Sao Paulo-Escola Paulista de Medicina, Laboratory of Autonomic and Cardiovascular Pharmacology-55 11 5576-4973, Rua Pedro de Toledo, 669-Vila Clementino, Sao Paulo-SP, CEP: 04039-032, Brazil
| |
Collapse
|
23
|
Abstract
Ca2+-dependent secretion is a process by which important signaling molecules that are produced within a cell-including proteins and neurotransmitters-are expelled to the extracellular environment. The cellular mechanism that underlies secretion is referred to as exocytosis. Many years of work have revealed that exocytosis in neurons and neuroendocrine cells is tightly coupled to Ca2+ and orchestrated by a series of protein-protein/protein-lipid interactions. Here, we highlight landmark discoveries that have informed our current understanding of the process. We focus principally on reductionist studies performed using powerful model secretory systems and cell-free reconstitution assays. In recent years, molecular cloning and genetics have implicated the involvement of a sizeable number of proteins in exocytosis. We expect reductionist approaches will be central to attempts to resolve their roles. The Journal of General Physiology will continue to be an outlet for much of this work, befitting its tradition of publishing strongly mechanistic, basic research.
Collapse
Affiliation(s)
- Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Alex J B Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA
| |
Collapse
|
24
|
de Diego AMG, García AG. Altered exocytosis in chromaffin cells from mouse models of neurodegenerative diseases. Acta Physiol (Oxf) 2018; 224:e13090. [PMID: 29742321 DOI: 10.1111/apha.13090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/26/2022]
Abstract
Chromaffin cells from the adrenal gland (CCs) have extensively been used to explore the molecular structure and function of the exocytotic machinery, neurotransmitter release and synaptic transmission. The CC is integrated in the sympathoadrenal axis that helps the body maintain homoeostasis during both routine life and in acute stress conditions. This function is exquisitely controlled by the cerebral cortex and the hypothalamus. We propose the hypothesis that damage undergone by the brain during neurodegenerative diseases is also affecting the neurosecretory function of adrenal medullary CCs. In this context, we review here the following themes: (i) How the discharge of catecholamines is centrally and peripherally regulated at the sympathoadrenal axis; (ii) which are the intricacies of the amperometric techniques used to study the quantal release of single-vesicle exocytotic events; (iii) which are the alterations of the exocytotic fusion pore so far reported, in CCs of mouse models of neurodegenerative diseases; (iv) how some proteins linked to neurodegenerative pathologies affect the kinetics of exocytotic events; (v) finally, we try to integrate available data into a hypothesis to explain how the centrally originated neurodegenerative diseases may alter the kinetics of single-vesicle exocytotic events in peripheral adrenal medullary CCs.
Collapse
Affiliation(s)
- A. M. García de Diego
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Instituto de Investigación Sanitaria; Hospital Universitario de la Princesa; Universidad Autónoma de Madrid; Madrid Spain
- DNS Neuroscience; Parque Científico de Madrid; Madrid Spain
| | - A. García García
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Instituto de Investigación Sanitaria; Hospital Universitario de la Princesa; Universidad Autónoma de Madrid; Madrid Spain
- DNS Neuroscience; Parque Científico de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
25
|
Nanclares C, Gameiro-Ros I, Méndez-López I, Martínez-Ramírez C, Padín-Nogueira JF, Colmena I, Baraibar AM, Gandía L, García AG. Dual Antidepressant Duloxetine Blocks Nicotinic Receptor Currents, Calcium Signals and Exocytosis in Chromaffin Cells Stimulated with Acetylcholine. J Pharmacol Exp Ther 2018; 367:28-39. [PMID: 30006476 DOI: 10.1124/jpet.118.250969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023] Open
Abstract
The inhibition of nicotinic acetylcholine receptors (nAChRs) has been proposed as a potential strategy to develop new antidepressant drugs. This is based on the observation that antidepressants that selectively block noradrenaline (NA) or serotonin (5-HT) reuptake also inhibit nAChRs. Dual antidepressants blocking both NA and 5-HT reuptake were proposed to shorten the delay in exerting their clinical effects; whether duloxetine, a prototype of dual antidepressants, also blocks nAChRs is unknown. Here we explored this question in bovine chromaffin cells (BCCs) that express native α3, α5, and α7 nAChRs and in cell lines expressing human α7, α3β4, or α4β2 nAChRs. We have found that duloxetine fully blocked the acetylcholine (ACh)-elicited nicotinic currents in BCCs with an IC50 of 0.86 µM. Such blockade seemed to be noncompetitive, voltage dependent, and partially use dependent. The ACh-elicited membrane depolarization, the elevation of cytosolic calcium ([Ca2+]c), and catecholamine release in BCCs were also blocked by duloxetine. This blockade developed slowly, and the recovery of secretion was also slow and gradual. Duloxetine did not affect Na+ or Ca2+ channel currents neither the high-K+-elicited [Ca2+]c transients and secretion. Of interest was that in cell lines expressing human α7, α3β4, and α4β2 nAChRs, duloxetine blocked nicotinic currents with IC50 values of 0.1, 0.56, and 0.85 µM, respectively. Thus, in blocking α7 receptors, which are abundantly expressed in the brain, duloxetine exhibited approximately 10-fold to 100- fold higher potency with respect to reported IC50 values for various antidepressant drugs. This may contribute to the antidepressant effect of duloxetine.
Collapse
Affiliation(s)
- Carmen Nanclares
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Isabel Gameiro-Ros
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Iago Méndez-López
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Carmen Martínez-Ramírez
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - J Fernando Padín-Nogueira
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Inés Colmena
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Andrés M Baraibar
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Luis Gandía
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Antonio G García
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| |
Collapse
|
26
|
Félix-Martínez GJ, Gil A, Segura J, Villanueva J, Gutíerrez LM. Modeling the influence of co-localized intracellular calcium stores on the secretory response of bovine chromaffin cells. Comput Biol Med 2018; 100:165-175. [PMID: 30015013 DOI: 10.1016/j.compbiomed.2018.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 11/19/2022]
Abstract
Catecholamines secretion from chromaffin cells is mediated by a Ca2+-dependent process in the submembrane space where the exocytotic machinery is located and high-Ca2+ microdomains (HCMDs) are formed by the coordinated activity of a functional triad composed of Ca2+ channels, endoplasmic reticulum (ER) and mitochondria. It has been observed experimentally that subpopulations of cortical mitochondria and ER associate to secretory sites in bovine chromaffin cells. Here, we study the effect of the geometrical distribution of the co-localized cortical organelles both in the formation of HCMDs in the vicinity of Ca2+ channels and on the secretory activity of bovine chromaffin cells in response to a single voltage pulse. Our simulations indicate that co-localized organelles have a dual role in the formation of HCMDs, having, on the one hand, an amplification effect due to the Ca2+-induced Ca2+-release mechanism from the ER and, on the other, acting as physical barriers to Ca2+ diffusion. In addition, our simulations suggest that the increased levels of Ca2+ in the microdomain enhances the secretion of the vesicles co-localized to the Ca2+ channels. As a whole, our results support the idea that the functional triads formed by Ca2+ channels, subplasmalemma ER and mitochondria have a positive effect on the secretion of catecholamines in bovine chromaffin cells.
Collapse
Affiliation(s)
- Gerardo J Félix-Martínez
- Depto. de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, 39005, Santander, Spain; Depto. de Ingeniería Eléctrica, Universidad Autónoma Metropolitana, 09340, Mexico City, Mexico.
| | - Amparo Gil
- Depto. de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, 39005, Santander, Spain.
| | - Javier Segura
- Depto. de Matemáticas, Estadística y Computación, Universidad de Cantabria, 39005, Santander, Spain.
| | - José Villanueva
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain.
| | - Luis M Gutíerrez
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
27
|
MacDougall DD, Lin Z, Chon NL, Jackman SL, Lin H, Knight JD, Anantharam A. The high-affinity calcium sensor synaptotagmin-7 serves multiple roles in regulated exocytosis. J Gen Physiol 2018; 150:783-807. [PMID: 29794152 PMCID: PMC5987875 DOI: 10.1085/jgp.201711944] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
MacDougall et al. review the structure and function of the calcium sensor synaptotagmin-7 in exocytosis. Synaptotagmin (Syt) proteins comprise a 17-member family, many of which trigger exocytosis in response to calcium. Historically, most studies have focused on the isoform Syt-1, which serves as the primary calcium sensor in synchronous neurotransmitter release. Recently, Syt-7 has become a topic of broad interest because of its extreme calcium sensitivity and diversity of roles in a wide range of cell types. Here, we review the known and emerging roles of Syt-7 in various contexts and stress the importance of its actions. Unique functions of Syt-7 are discussed in light of recent imaging, electrophysiological, and computational studies. Particular emphasis is placed on Syt-7–dependent regulation of synaptic transmission and neuroendocrine cell secretion. Finally, based on biochemical and structural data, we propose a mechanism to link Syt-7’s role in membrane fusion with its role in subsequent fusion pore expansion via strong calcium-dependent phospholipid binding.
Collapse
Affiliation(s)
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Nara L Chon
- Department of Chemistry, University of Colorado, Denver, CO
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Hai Lin
- Department of Chemistry, University of Colorado, Denver, CO
| | | | - Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
28
|
Eiden LE, Jiang SZ. What's New in Endocrinology: The Chromaffin Cell. Front Endocrinol (Lausanne) 2018; 9:711. [PMID: 30564193 PMCID: PMC6288183 DOI: 10.3389/fendo.2018.00711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
Recent advances in understanding the intracellular and intercellular features of adrenal chromatin cells as stress transducers are reviewed here, along with their implications for endocrine function in other tissues and organs participating in endocrine regulation in the mammalian organism.
Collapse
|
29
|
Old and emerging concepts on adrenal chromaffin cell stimulus-secretion coupling. Pflugers Arch 2017; 470:1-6. [PMID: 29110079 DOI: 10.1007/s00424-017-2082-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
The chromaffin cells (CCs) of the adrenal medulla play a key role in the control of circulating catecholamines to adapt our body function to stressful conditions. A huge research effort over the last 35 years has converted these cells into the Escherichia coli of neurobiology. CCs have been the testing bench for the development of patch-clamp and amperometric recording techniques and helped clarify most of the known molecular mechanisms that regulate cell excitability, Ca2+ signals associated with secretion, and the molecular apparatus that regulates vesicle fusion. This special issue provides a state-of-the-art on the many well-known and unsolved questions related to the molecular processes at the basis of CC function. The issue is also the occasion to highlight the seminal work of Antonio G. García (Emeritus Professor at UAM, Madrid) who greatly contributed to the advancement of our present knowledge on CC physiology and pharmacology. All the contributors of the present issue are distinguished scientists who are either staff members, external collaborators, or friends of Prof. García.
Collapse
|
30
|
L-type calcium channels in exocytosis and endocytosis of chromaffin cells. Pflugers Arch 2017; 470:53-60. [DOI: 10.1007/s00424-017-2064-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022]
|
31
|
de Los Rios C, Cano-Abad MF, Villarroya M, López MG. Chromaffin cells as a model to evaluate mechanisms of cell death and neuroprotective compounds. Pflugers Arch 2017; 470:187-198. [PMID: 28823085 DOI: 10.1007/s00424-017-2044-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
In this review, we show how chromaffin cells have contributed to evaluate neuroprotective compounds with diverse mechanisms of action. Chromaffin cells are considered paraneurons, as they share many common features with neurons: (i) they synthesize, store, and release neurotransmitters upon stimulation and (ii) they express voltage-dependent calcium, sodium, and potassium channels, in addition to a wide variety of receptors. All these characteristics, together with the fact that primary cultures from bovine adrenal glands or chromaffin cells from the tumor pheochromocytoma cell line PC12 are easy to culture, make them an ideal model to study neurotoxic mechanisms and neuroprotective drugs. In the first part of this review, we will analyze the different cytotoxicity models related to calcium dyshomeostasis and neurodegenerative disorders like Alzheimer's or Parkinson's. Along the second part of the review, we describe how different classes of drugs have been evaluated in chromaffin cells to determine their neuroprotective profile in different neurodegenerative-related models.
Collapse
Affiliation(s)
- Cristobal de Los Rios
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria F Cano-Abad
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuela G López
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain. .,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain. .,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
32
|
Rao TC, Santana Rodriguez Z, Bradberry MM, Ranski AH, Dahl PJ, Schmidtke MW, Jenkins PM, Axelrod D, Chapman ER, Giovannucci DR, Anantharam A. Synaptotagmin isoforms confer distinct activation kinetics and dynamics to chromaffin cell granules. J Gen Physiol 2017; 149:763-780. [PMID: 28687607 PMCID: PMC5560776 DOI: 10.1085/jgp.201711757] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/15/2017] [Accepted: 06/12/2017] [Indexed: 01/09/2023] Open
Abstract
Chromaffin cells release transmitters from populations of granules to which synaptotagmin-1 and synaptotagmin-7 are selectively sorted. Rao et al. characterize the functional properties of these granules and show that synaptotagmin-7 confers fast kinetics and high efficacy to the exocytotic event. Adrenomedullary chromaffin cells respond to sympathetic nervous system activation by secreting a cocktail of potent neuropeptides and hormones into the circulation. The distinct phases of the chromaffin cell secretory response have been attributed to the progressive fusion of distinct populations of dense core granules with different activation kinetics. However, it has been difficult to define what distinguishes these populations at the molecular level. Functional segregation of granule pools may depend on selective sorting of synaptotagmin-1 (Syt-1) and synaptotagmin-7 (Syt-7), which our previous work showed are rarely cosorted to the same granule. Here we assess the consequences of selective sorting of Syt isoforms in chromaffin cells, particularly with respect to granule dynamics and activation kinetics. Upon depolarization of cells expressing fluorescent Syt isoforms using elevated K+, we find that Syt-7 granules fuse with faster kinetics than Syt-1 granules, irrespective of stimulation strength. Pharmacological blockade of Ca2+ channels reveals differential dependence of Syt-1 versus Syt-7 granule exocytosis on Ca2+ channel subtypes. Syt-7 granules also show a greater tendency to fuse in clusters than Syt-1 granules, and granules harboring Syt-1 travel a greater distance before fusion than those with Syt-7, suggesting that there is spatial and fusion-site heterogeneity among the two granule populations. However, the greatest functional difference between granule populations is their responsiveness to Ca2+. Upon introduction of Ca2+ into permeabilized cells, Syt-7 granules fuse with fast kinetics and high efficacy, even at low Ca2+ levels (e.g., when cells are weakly stimulated). Conversely, Syt-1 granules require a comparatively larger increase in intracellular Ca2+ for activation. At Ca2+ concentrations above 30 µM, activation kinetics are faster for Syt-1 granules than for Syt-7 granules. Our study provides evidence for functional specialization of chromaffin cell granules via selective expression of Syt isoforms with different Ca2+ sensitivities.
Collapse
Affiliation(s)
- Tejeshwar C Rao
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | | | - Mazdak M Bradberry
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin, Madison, WI
| | | | - Peter J Dahl
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | | | - Paul M Jenkins
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Daniel Axelrod
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Edwin R Chapman
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin, Madison, WI
| | - David R Giovannucci
- Department of Neurosciences, University of Toledo Medical School, Toledo, OH
| | - Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
33
|
Choi JS, Jin SK, Choi YS, Lee JK, Jung JT, Choi YI, Lee HJ, Lee JJ. Effect of Calcium Lactate on Physico-Chemical Characteristics of Shank Bone Extract. Korean J Food Sci Anim Resour 2017; 37:313-319. [PMID: 28515655 PMCID: PMC5434218 DOI: 10.5851/kosfa.2017.37.2.313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 11/06/2022] Open
Abstract
This study was conducted to develop calcium-fortified shank bone extract (SBE) and to determine the effect of adding calcium lactate on physico-chemical characteristics of SBE during cold storage. The following five experiment groups were used: Control (0%, no addition), T1 (0.05% calcium lactate), T2 (0.1% calcium lactate), T3 (0.5% calcium lactate), and T4 (1% calcium lactate). When the concentration of calcium lactate added to the SBE was increased, the pH, redness, and yellowness values were significantly reduced, whereas the salinity, sugar content, and turbidity of SBE were significantly increased. Sensory parameters such as aroma, flavor, and overall acceptability in the control, T1, and T2 had similar scores. The TBARS values of SBE was significantly increased when 1% of calcium lactate was added, and the VBN values of SBE with calcium lactate at day 7 were higher than that of control (p<0.05). However, the addition of calcium lactate showed an inhibition effect on the growth of total microbial counts in SBE until 4 d of storage. The calcium content of SBE was increased by the addition of calcium lactate in a dose-dependently manner. The proper addition level of calcium lactate in the SBE was determined to be 0.1%.
Collapse
Affiliation(s)
- Jung-Seok Choi
- Swine Science & Technology Center, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Sang-Keun Jin
- Swine Science & Technology Center, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Yeong-Seok Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Jin-Kyu Lee
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Ji-Taek Jung
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Yang-Il Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Hyun-Joo Lee
- Department of Nutrition and Culinary Science, Hankyong National University, Ansung 17579, Korea
| | - Jae-Joon Lee
- Corresponding author Jae-Joon Lee Department of Food and Nutrition, Chosun University, Gwangju 501-759, Korea Tel: +82-62-230-7725 Fax: +82-62-234-7452 E-mail:
| |
Collapse
|
34
|
López-Gil A, Nanclares C, Méndez-López I, Martínez-Ramírez C, de Los Rios C, Padín-Nogueira JF, Montero M, Gandía L, García AG. The quantal catecholamine release from mouse chromaffin cells challenged with repeated ACh pulses is regulated by the mitochondrial Na + /Ca 2+ exchanger. J Physiol 2017; 595:2129-2146. [PMID: 27982456 DOI: 10.1113/jp273339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/30/2016] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Upon repeated application of short ACh pulses to C57BL6J mouse chromaffin cells, the amperometrically monitored secretory responses promptly decayed to a steady-state level of around 25% of the initial response. A subsequent K+ pulse, however, overcame such decay. These data suggest that mouse chromaffin cells have a ready release-vesicle pool that is selectively recruited by the physiological neurotransmitter ACh. The ACh-sensitive vesicle pool is refilled and maintained by the rate of Ca2+ delivery from mitochondria to the cytosol, through the mitochondrial Na+ /Ca2+ exchanger (mNCX). ITH12662, a novel blocker of the mNCX, prevented the decay of secretion elicited by ACh pulses and delayed the rate of [Ca2+ ]c clearance. This regulatory pathway may be physiologically relevant in situations of prolonged stressful conflicts where a sustained catecholamine release is regulated by mitochondrial Ca2+ circulation through the mNCX, which couples respiration and ATP synthesis to long-term stimulation of chromaffin cells by endogenously released ACh. ABSTRACT Using caged-Ca2+ photorelease or paired depolarising pulses in voltage-clamped chromaffin cells (CCs), various pools of secretory vesicles with different readiness to undergo exocytosis have been identified. Whether these pools are present in unclamped CCs challenged with ACh, the physiological neurotransmitter at the splanchnic nerve-CC synapse, is unknown. We have explored here whether an ACh-sensitive ready-release vesicle pool (ASP) is present in C57BL6J mouse chromaffin cells (MCCs). Single cells were fast perfused with a Tyrode solution at 37°C, and challenged with 12 sequential ACh pulses (100 μm, 2 s, every 30 s) plus a K+ pulse given at the end (75 mm K+ ). After the first 2-3 ACh pulses the amperometrically monitored secretory responses promptly decayed to a steady-state level of around 25% of the initial response. The last K+ pulse, however, overcame such decay. Repeated ACh pulses to voltage-clamped cells elicited non-desensitising nicotinic currents. Also, the [Ca2+ ]c transients elicited by repeated ACh pulses that were superimposed on a stable baseline elevation did not undergo decay. The novel blocker of the mitochondrial Na+ /Ca2+ exchanger (mNCX) ITH12662 prevented the decay of secretion elicited by ACh pulses and delayed the rate of [Ca2+ ]c clearance. The experiments are compatible with the idea that C57BL6J MCCs have an ASP vesicle pool that is selectively recruited by the physiological neurotransmitter ACh and is regulated by the rate of Ca2+ delivery from mitochondria to the cytosol, through the mNCX.
Collapse
Affiliation(s)
- Angela López-Gil
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Carmen Nanclares
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Iago Méndez-López
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Carmen Martínez-Ramírez
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Cristóbal de Los Rios
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, c/ Diego de León, 62, 28006, Madrid, Spain
| | - J Fernando Padín-Nogueira
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Mayte Montero
- Instituto de Biologia y Genética Molecular, Universidad de Valladolid, c/ Sanz y Forés, 3, 47003, Valladolid, Spain
| | - Luis Gandía
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Antonio G García
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, c/ Diego de León, 62, 28006, Madrid, Spain
| |
Collapse
|
35
|
Han JM, Tanimura A, Kirk V, Sneyd J. A mathematical model of calcium dynamics in HSY cells. PLoS Comput Biol 2017; 13:e1005275. [PMID: 28199326 PMCID: PMC5310762 DOI: 10.1371/journal.pcbi.1005275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/30/2016] [Indexed: 12/03/2022] Open
Abstract
Saliva is an essential part of activities such as speaking, masticating and swallowing. Enzymes in salivary fluid protect teeth and gums from infectious diseases, and also initiate the digestion process. Intracellular calcium (Ca2+) plays a critical role in saliva secretion and regulation. Experimental measurements of Ca2+ and inositol trisphosphate (IP3) concentrations in HSY cells, a human salivary duct cell line, show that when the cells are stimulated with adenosine triphosphate (ATP) or carbachol (CCh), they exhibit coupled oscillations with Ca2+ spike peaks preceding IP3 spike peaks. Based on these data, we construct a mathematical model of coupled Ca2+ and IP3 oscillations in HSY cells and perform model simulations of three different experimental settings to forecast Ca2+ responses. The model predicts that when Ca2+ influx from the extracellular space is removed, oscillations gradually slow down until they stop. The model simulation of applying a pulse of IP3 predicts that photolysis of caged IP3 causes a transient increase in the frequency of the Ca2+ oscillations. Lastly, when Ca2+-dependent activation of PLC is inhibited, we see an increase in the oscillation frequency and a decrease in the amplitude. These model predictions are confirmed by experimental data. We conclude that, although concentrations of Ca2+ and IP3 oscillate, Ca2+ oscillations in HSY cells are the result of modulation of the IP3 receptor by intracellular Ca2+, and that the period is modulated by the accompanying IP3 oscillations.
Collapse
Affiliation(s)
- Jung Min Han
- Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Akihiko Tanimura
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Vivien Kirk
- Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James Sneyd
- Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
36
|
Bueno Bergantin L. Novel Challenges for the Therapeutics of Depression: Pharmacological Modulation of Interaction between the Intracellular Signaling Pathways Mediated by Ca2+ and cAMP. JOURNAL OF ADDICTION THERAPY AND RESEARCH 2017; 1:001-006. [DOI: 10.29328/journal.jatr.1001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
|
37
|
LB B. The “Calcium Paradox” Due To Ca2+/Camp Interaction: New Insights for the Neuroscience Field. JOURNAL OF NEUROSCIENCE AND NEUROLOGICAL DISORDERS 2017; 1:012-015. [DOI: 10.29328/journal.jnnd.1001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
|
38
|
Pedersen MG, Tagliavini A, Cortese G, Riz M, Montefusco F. Recent advances in mathematical modeling and statistical analysis of exocytosis in endocrine cells. Math Biosci 2016; 283:60-70. [PMID: 27838280 DOI: 10.1016/j.mbs.2016.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 12/15/2022]
Abstract
Most endocrine cells secrete hormones as a result of Ca2+-regulated exocytosis, i.e., fusion of the membranes of hormone-containing secretory granules with the cell membrane, which allows the hormone molecules to escape to the extracellular space. As in neurons, electrical activity and cell depolarization open voltage-sensitive Ca2+ channels, and the resulting Ca2+ influx elevate the intracellular Ca2+ concentration, which in turn causes exocytosis. Whereas the main molecular components involved in exocytosis are increasingly well understood, quantitative understanding of the dynamical aspects of exocytosis is still lacking. Due to the nontrivial spatiotemporal Ca2+ dynamics, which depends on the particular pattern of electrical activity as well as Ca2+ channel kinetics, exocytosis is dependent on the spatial arrangement of Ca2+ channels and secretory granules. For example, the creation of local Ca2+ microdomains, where the Ca2+ concentration reaches tens of µM, are believed to be important for triggering exocytosis. Spatiotemporal simulations of buffered Ca2+ diffusion have provided important insight into the interplay between electrical activity, Ca2+ channel kinetics, and the location of granules and Ca2+ channels. By confronting simulations with statistical time-to-event (or survival) regression analysis of single granule exocytosis monitored with TIRF microscopy, a direct connection between location and rate of exocytosis can be obtained at the local, single-granule level. To get insight into whole-cell secretion, simplifications of the full spatiotemporal dynamics have shown to be highly helpful. Here, we provide an overview of recent approaches and results for quantitative analysis of Ca2+ regulated exocytosis of hormone-containing granules.
Collapse
Affiliation(s)
- Morten Gram Pedersen
- Department of Information Engineering, University of Padua, Via Gradenigo 6/B, 35131 Padova, Italy.
| | - Alessia Tagliavini
- Department of Information Engineering, University of Padua, Via Gradenigo 6/B, 35131 Padova, Italy
| | - Giuliana Cortese
- Department of Statistical Sciences, University of Padua, Via Cesare Battisti 141, 35121 Padova, Italy
| | - Michela Riz
- Department of Information Engineering, University of Padua, Via Gradenigo 6/B, 35131 Padova, Italy; Sanofi, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Francesco Montefusco
- Department of Information Engineering, University of Padua, Via Gradenigo 6/B, 35131 Padova, Italy
| |
Collapse
|
39
|
Regulation by L channels of Ca(2+)-evoked secretory responses in ouabain-treated chromaffin cells. Pflugers Arch 2016; 468:1779-92. [PMID: 27558258 DOI: 10.1007/s00424-016-1866-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/21/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
It is known that the sustained depolarisation of adrenal medullary bovine chromaffin cells (BCCs) with high K(+) concentrations produces an initial sharp catecholamine release that subsequently fades off in spite depolarisation persists. Here, we have recreated a sustained depolarisation condition of BCCs by treating them with the Na(+)/K(+) ATPase blocker ouabain; in doing so, we searched experimental conditions that permitted the development of a sustained long-term catecholamine release response that could be relevant during prolonged stress. BCCs were perifused with nominal 0Ca(2+) solution, and secretion responses were elicited by intermittent application of short 2Ca(2+) pulses (Krebs-HEPES containing 2 mM Ca(2+)). These pulses elicited a biphasic secretory pattern with an initial 30-min period with secretory responses of increasing amplitude and a second 30-min period with steady-state, non-inactivating responses. The initial phase was not due to gradual depolarisation neither to gradual increases of the cytosolic calcium transients ([Ca(2+)]c) elicited by 2Ca(2+) pulses in BBCs exposed to ouabain; both parameters increased soon after ouabain addition. Νifedipine blocked these responses, and FPL64176 potentiated them, suggesting that they were triggered by Ca(2+) entry through non-inactivating L-type calcium channels. This was corroborated by nifedipine-evoked blockade of the L-type Ca(2+) channel current and the [Ca(2+)]c transients elicited by 2Ca(2+) pulses. Furthermore, the plasmalemmal Na(+)/Ca(2+) exchanger (NCX) blocker SEA0400 caused a mild inhibition followed by a large rebound increase of the steady-state secretory responses. We conclude that these two phases of secretion are mostly contributed by Ca(2+) entry through L calcium channels, with a minor contribution of Ca(2+) entry through the reverse mode of the NCX.
Collapse
|
40
|
Bergantin LB, Caricati-Neto A. Challenges for the pharmacological treatment of neurological and psychiatric disorders: Implications of the Ca(2+)/cAMP intracellular signalling interaction. Eur J Pharmacol 2016; 788:255-260. [PMID: 27349146 DOI: 10.1016/j.ejphar.2016.06.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 11/15/2022]
Abstract
In 2013, we discovered that the entitled "calcium paradox" phenomenon, which means a paradoxical sympathetic hyperactivity produced by l-type Ca(2+) channel blockers (CCBs), used in antihypertensive therapy, is due to interaction between the intracellular signalling pathways mediated by Ca(2+) and cAMP (Ca(2+)/cAMP interaction). In 2015, we proposed that the pharmacological manipulation of this interaction could be a new therapeutic strategy for increasing neurotransmission in psychiatric disorders, and producing neuroprotection in the neurodegenerative diseases. Besides the paradoxical sympathetic hyperactivity produced by CCBs, several clinical studies have been demonstrating pleiotropic effects of CCBs, including neuroprotective effects. CCBs genuinely exhibit cognitive-enhancing abilities and reduce the risk of dementia, including Alzheimer's, Parkinson´s disease and others. The molecular mechanisms involved in these pleiotropic effects remain under debate. Our recent discovery that the "calcium paradox" phenomenon is due to Ca(2+)/cAMP interaction may provide new insights for the pharmacological treatment of neurological and psychiatric disorders, including enhancement of current therapies mainly by reducing adverse effects, and improving effectiveness of modern medicines. Whether Ca(2+)/cAMP interaction is involved in CCBs pleiotropic effects also deserves special attention. Then, the pharmacological manipulation of the Ca(2+)/cAMP interaction could be a more efficient therapeutic strategy for increasing neurotransmission in psychiatric disorders, and producing neuroprotection in the neurodegenerative diseases. Thus, in this review we summarize the current knowledge of this field, making new directions and future perspectives.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Autonomic and Cardiovascular Pharmacology, 55 11 5576-4973, Rua Pedro de Toledo, 669, Vila Clementino, São Paulo, SP CEP 04039-032, Brazil.
| | - Afonso Caricati-Neto
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratory of Autonomic and Cardiovascular Pharmacology, 55 11 5576-4973, Rua Pedro de Toledo, 669, Vila Clementino, São Paulo, SP CEP 04039-032, Brazil
| |
Collapse
|
41
|
Caricati-Neto A, García AG, Bergantin LB. Pharmacological implications of the Ca(2+)/cAMP signaling interaction: from risk for antihypertensive therapy to potential beneficial for neurological and psychiatric disorders. Pharmacol Res Perspect 2015; 3:e00181. [PMID: 26516591 PMCID: PMC4618650 DOI: 10.1002/prp2.181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022] Open
Abstract
In this review, we discussed pharmacological implications of the Ca2+/cAMP signaling interaction in the antihypertensive and neurological/psychiatric disorders therapies. Since 1975, several clinical studies have reported that acute and chronic administration of L-type voltage-activated Ca2+ channels (VACCs) blockers, such as nifedipine, produces reduction in peripheral vascular resistance and arterial pressure associated with an increase in plasma noradrenaline levels and heart rate, typical of sympathetic hyperactivity. Despite this sympathetic hyperactivity has been initially attributed to adjust reflex of arterial pressure, the cellular and molecular mechanisms involved in this apparent sympathomimetic effect of the L-type VACCs blockers remained unclear for decades. In addition, experimental studies using isolated tissues richly innervated by sympathetic nerves (to exclude the influence of adjusting reflex) showed that neurogenic responses were completely inhibited by L-type VACCs blockers in concentrations above 1 μmol/L, but paradoxically potentiated in concentrations below 1 μmol/L. During almost four decades, these enigmatic phenomena remained unclear. In 2013, we discovered that this paradoxical increase in sympathetic activity produced by L-type VACCs blocker is due to interaction of the Ca2+/cAMP signaling pathways. Then, the pharmacological manipulation of the Ca2+/cAMP interaction produced by combination of the L-type VACCs blockers used in the antihypertensive therapy, and cAMP accumulating compounds used in the antidepressive therapy, could represent a potential cardiovascular risk for hypertensive patients due to increase in sympathetic hyperactivity. In contrast, this pharmacological manipulation could be a new therapeutic strategy for increasing neurotransmission in psychiatric disorders, and producing neuroprotection in the neurodegenerative diseases.
Collapse
Affiliation(s)
- Afonso Caricati-Neto
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, Brazil
| | - Antonio G García
- Instituto Teófilo Hernando de I+D del Medicamento, Universidad Autónoma de Madrid Madrid, Spain
| | - Leandro Bueno Bergantin
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina São Paulo, Brazil
| |
Collapse
|
42
|
Calvo-Gallardo E, de Pascual R, Fernández-Morales JC, Arranz-Tagarro JA, Maroto M, Nanclares C, Gandía L, de Diego AMG, Padín JF, García AG. Depressed excitability and ion currents linked to slow exocytotic fusion pore in chromaffin cells of the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Am J Physiol Cell Physiol 2014; 308:C1-19. [PMID: 25377090 DOI: 10.1152/ajpcell.00272.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Altered synaptic transmission with excess glutamate release has been implicated in the loss of motoneurons occurring in amyotrophic lateral sclerosis (ALS). Hyperexcitability or hypoexcitability of motoneurons from mice carrying the ALS mutation SOD1(G93A) (mSOD1) has also been reported. Here we have investigated the excitability, the ion currents, and the kinetics of the exocytotic fusion pore in chromaffin cells from postnatal day 90 to postnatal day 130 mSOD1 mice, when motor deficits are already established. With respect to wild-type (WT), mSOD1 chromaffin cells had a decrease in the following parameters: 95% in spontaneous action potentials, 70% in nicotinic current for acetylcholine (ACh), 35% in Na(+) current, 40% in Ca(2+)-dependent K(+) current, and 53% in voltage-dependent K(+) current. Ca(2+) current was increased by 37%, but the ACh-evoked elevation of cytosolic Ca(2+) was unchanged. Single exocytotic spike events triggered by ACh had the following differences (mSOD1 vs. WT): 36% lower rise rate, 60% higher decay time, 51% higher half-width, 13% lower amplitude, and 61% higher quantal size. The expression of the α3-subtype of nicotinic receptors and proteins of the exocytotic machinery was unchanged in the brain and adrenal medulla of mSOD1, with respect to WT mice. A slower fusion pore opening, expansion, and closure are likely linked to the pronounced reduction in cell excitability and in the ion currents driving action potentials in mSOD1, compared with WT chromaffin cells.
Collapse
Affiliation(s)
| | - Ricardo de Pascual
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Marcos Maroto
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Nanclares
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Gandía
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Juan-Fernando Padín
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G García
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Servicio de Farmacología Clínica, Hospital Universitario de La Princesa, Madrid, Spain; and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
43
|
Petersen OH. Calcium signalling and secretory epithelia. Cell Calcium 2014; 55:282-9. [PMID: 24508392 DOI: 10.1016/j.ceca.2014.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/10/2014] [Indexed: 12/15/2022]
Abstract
Ca(2+) is now firmly established as the most important intracellular regulator of physiological and pathological events in a vast number of different cell types, including secretory epithelia. In these tissues, Ca(2+) signalling is crucially important for the control of both fluid secretion and electrolyte secretion as well as the regulation of macromolecule secretion. In this overview article, I shall attempt to give some general background to the concepts underlying our current thinking about Ca(2+) signalling in epithelia and its roles in regulating secretion. It is outside the scope of this review to provide a comprehensive account of Ca(2+) signalling and the many different processes in the many different secretory epithelia that are controlled by Ca(2+) signals. It is my aim to draw attention to some general features of Ca(2+) signalling processes in secretory epithelia, which are rather different from those in, for example, endocrine glands. The principal examples will be taken from studies of exocrine cells and, in particular, pancreatic acinar cells, as they are the pioneer cells with regard to investigations of Ca(2+) signalling due to primary intracellular Ca(2+) release. They also represent the cell type which has been characterized in most detail with regard to Ca(2+) transport events and mechanisms.
Collapse
Affiliation(s)
- O H Petersen
- MRC Secretory Control Research Group, Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK.
| |
Collapse
|
44
|
Lukewich MK, Lomax AE. Endotoxemia enhances catecholamine secretion from male mouse adrenal chromaffin cells through an increase in Ca(2+) release from the endoplasmic reticulum. Endocrinology 2014; 155:180-92. [PMID: 24169560 DOI: 10.1210/en.2013-1623] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Enhanced epinephrine secretion from adrenal chromaffin cells (ACCs) is an important homeostatic response to severe systemic inflammation during sepsis. Evidence suggests that increased activation of ACCs by preganglionic sympathetic neurons and direct alterations in ACC function contribute to this response. However, the direct effects of sepsis on ACC function have yet to be characterized. We hypothesized that sepsis enhances epinephrine secretion from ACCs by increasing intracellular Ca(2+) signaling. Plasma epinephrine concentration was increased 5-fold in the lipopolysaccharide-induced endotoxemia model of sepsis compared with saline-treated control mice. Endotoxemia significantly enhanced stimulus-evoked epinephrine secretion from isolated ACCs in vitro. Carbon fiber amperometry revealed an increase in the number of secretory events during endotoxemia, without significant changes in spike amplitude, half-width, or quantal content. ACCs isolated up to 12 hours after the induction of endotoxemia exhibited larger stimulus-evoked Ca(2+) transients compared with controls. Similarly, ACCs from cecal ligation and puncture mice also exhibited enhanced Ca(2+) signaling. Although sepsis did not significantly affect ACC excitability or voltage-gated Ca(2+) currents, a 2-fold increase in caffeine (10 mM)-stimulated Ca(2+) transients was observed during endotoxemia. Depletion of endoplasmic reticulum Ca(2+) stores using cyclopiazonic acid (10 μM) abolished the effects of endotoxemia on catecholamine secretion from ACCs. These findings suggest that sepsis directly enhances catecholamine secretion from ACCs through an increase in Ca(2+) release from the endoplasmic reticulum. These alterations in ACC function are likely to amplify the effects of increased preganglionic sympathetic neuron activity to further enhance epinephrine levels during sepsis.
Collapse
Affiliation(s)
- Mark K Lukewich
- Departments of Biomedical and Molecular Sciences (M.K.L., A.E.L.) and Medicine, Gastrointestinal Diseases Research Unit (A.E.L.) and Centre for Neuroscience Studies (A.E.L.), Queen's University, Kingston, Ontario, Canada K7L 2V7
| | | |
Collapse
|
45
|
de Pascual R, Miranda-Ferreira R, Galvão KM, Lameu C, Ulrich H, Smaili SS, Jurkiewicz A, García AG, Gandía L. Lower density of L-type and higher density of P/Q-type of calcium channels in chromaffin cells of hypertensive, compared with normotensive rats. Eur J Pharmacol 2013; 706:25-35. [PMID: 23499685 DOI: 10.1016/j.ejphar.2013.02.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 01/19/2013] [Accepted: 02/24/2013] [Indexed: 10/27/2022]
Abstract
Enhanced activity of the sympatho-adrenal axis and augmented circulating catecholamines has been implicated in the development of hypertension. Release of catecholamine from stimulated adrenal medulla chromaffin cells has been shown to be higher and longer in spontaneously hypertensive rats (SHRs), compared with normotensive Wistar rats (NWRs). Whether differences in the functional expression of voltage-dependent calcium channels (VDCCs) of the L-, N-, or P/Q subtypes may contribute to such distinct secretory behaviour, is unknown. We therefore approached here this study in voltage-clamped NWR and SHR chromaffin cells, using 10mM Ba(2+) as charge carrier (IBa) and selective blockers of each channel type. We found that compared with NWR cells, SHR chromaffin cells exhibited the following differences: (1) 30% diminution of the IBa fraction carried by L channels; (2) a doubling of the IBa fraction carried by P/Q channels; (3) more visible current modulation by ATP that could be linked to a 10-fold higher mRNA levels for purinergic receptors of the P2Y2 subtype; and (3) a higher contribution of PQ channels to the transients of the cytosolic calcium concentrations ([Ca(2+)]c) generated by K(+), compared with L channels. These results may contribute to the better understanding of the greater calcium signalling and exocytotic responses of SHR compared with NWR chromaffin cells, found in three previous reports from our laboratories.
Collapse
Affiliation(s)
- Ricardo de Pascual
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
David ANDREW R, Shivers RR. Ultrastructure of neurosecretory granule exocytosis by crayfish sinus gland induced with ionic manipulations. J Morphol 2013. [DOI: 10.1002/jmor.1051500112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
48
|
Le Tissier PR, Hodson DJ, Lafont C, Fontanaud P, Schaeffer M, Mollard P. Anterior pituitary cell networks. Front Neuroendocrinol 2012; 33:252-66. [PMID: 22981652 DOI: 10.1016/j.yfrne.2012.08.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 12/17/2022]
Abstract
Both endocrine and non-endocrine cells of the pituitary gland are organized into structural and functional networks which are formed during embryonic development but which may be modified throughout life. Structural mapping of the various endocrine cell types has highlighted the existence of distinct network motifs and relationships with the vasculature which may relate to temporal differences in their output. Functional characterization of the network activity of growth hormone and prolactin cells has revealed a role for cell organization in gene regulation, the plasticity of pituitary hormone output and remarkably the ability to memorize altered demand. As such, the description of these endocrine cell networks alters the concept of the pituitary from a gland which simply responds to external regulation to that of an oscillator which may memorize information and constantly adapt its coordinated networks' responses to the flow of hypothalamic inputs.
Collapse
Affiliation(s)
- P R Le Tissier
- Division of Molecular Neuroendocrinology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom;
| | | | | | | | | | | |
Collapse
|
49
|
Douglas WW, Sorimachi M. Colchicine inhibits adrenal medullary secretion evoked by acetylcholine without affecting that evoked by potassium. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1972.tb09585.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
50
|
Cytosolic organelles shape calcium signals and exo–endocytotic responses of chromaffin cells. Cell Calcium 2012; 51:309-20. [DOI: 10.1016/j.ceca.2011.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/09/2023]
|