1
|
Jiang B, Wang W, Yao Y, Zhang H, Zhang Y, Sun Y. Behavioral and Transcriptomic Analyses in the Indoxacarb Response of a Non-Target Damselfly Species. INSECTS 2024; 15:367. [PMID: 38786923 PMCID: PMC11121952 DOI: 10.3390/insects15050367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Ischnura senegalensis, which widely spreads in paddy fields, has the potential to be used as a natural predator of insect pests. However, the application of insecticides in the field could pose a threat to the survival of I. senegalensis. Among these pesticides, indoxacarb, an oxadiazine insecticide, is renowned for its broad-spectrum efficacy against numerous insect pests. In this study, we examined the toxicity of indoxacarb towards the larvae of I. senegalensis. Behavioral experiments and transcriptome analyses were conducted under indoxacarb treatments. Results revealed that indoxacarb induced abnormal body gestures and significant locomotory impairments, which could ultimately reduce the survival rate of the larvae in their natural habitat. Moreover, transcriptome analyses indicated that genes related to muscle function were significantly affected. Interestingly, at lower concentrations of indoxacarb (0.004 mg/L), the larvae seem to detoxify the indoxacarb with the aid of the cytochrome P450 gene. However, under higher concentrations (0.4 mg/L), the sensory abilities of the larvae were significantly diminished, and they were unable to degrade the toxicity of indoxacarb. Our study underscores the importance of carefully evaluating the impact of insecticides on non-target predatory insects before their widespread application.
Collapse
Affiliation(s)
- Bin Jiang
- Provincial Key Laboratory for Conservation and Utilization of Important Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.W.); (Y.Y.); (H.Z.); (Y.Z.)
| | | | | | | | | | - Yang Sun
- Provincial Key Laboratory for Conservation and Utilization of Important Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.W.); (Y.Y.); (H.Z.); (Y.Z.)
| |
Collapse
|
2
|
Catterall WA. Voltage gated sodium and calcium channels: Discovery, structure, function, and Pharmacology. Channels (Austin) 2023; 17:2281714. [PMID: 37983307 PMCID: PMC10761118 DOI: 10.1080/19336950.2023.2281714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve and muscle, and voltage-gated calcium channels couple depolarization of the plasma membrane to intracellular events such as secretion, contraction, synaptic transmission, and gene expression. In this Review and Perspective article, I summarize early work that led to identification, purification, functional reconstitution, and determination of the amino acid sequence of the protein subunits of sodium and calcium channels and showed that their pore-forming subunits are closely related. Decades of study by antibody mapping, site-directed mutagenesis, and electrophysiological recording led to detailed two-dimensional structure-function maps of the amino acid residues involved in voltage-dependent activation and inactivation, ion permeation and selectivity, and pharmacological modulation. Most recently, high-resolution three-dimensional structure determination by X-ray crystallography and cryogenic electron microscopy has revealed the structural basis for sodium and calcium channel function and pharmacological modulation at the atomic level. These studies now define the chemical basis for electrical signaling and provide templates for future development of new therapeutic agents for a range of neurological and cardiovascular diseases.
Collapse
|
3
|
Potter R, Meade A, Potter S, Cooper RL. Rapid and Direct Action of Lipopolysaccharide (LPS) on Skeletal Muscle of Larval Drosophila. BIOLOGY 2021; 10:1235. [PMID: 34943150 PMCID: PMC8698716 DOI: 10.3390/biology10121235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023]
Abstract
The endotoxin lipopolysaccharide (LPS) from Gram-negative bacteria exerts a direct and rapid effect on tissues. While most attention is given to the downstream actions of the immune system in response to LPS, this study focuses on the direct actions of LPS on skeletal muscle in Drosophila melanogaster. It was noted in earlier studies that the membrane potential rapidly hyperpolarizes in a dose-dependent manner with exposure to LPS from Pseudomonas aeruginosa and Serratia marcescens. The response is transitory while exposed to LPS, and the effect does not appear to be due to calcium-activated potassium channels, activated nitric oxide synthase (NOS), or the opening of Cl- channels. The purpose of this study was to further investigate the mechanism of the hyperpolarization of the larval Drosophila muscle due to exposure of LPS using several different experimental paradigms. It appears this response is unlikely related to activation of the Na-K pump or Ca2+ influx. The unknown activation of a K+ efflux could be responsible. This will be an important factor to consider in treatments of bacterial septicemia and cellular energy demands.
Collapse
Affiliation(s)
- Rachel Potter
- College of Medicine, University of Kentucky, 800 Rose Street MN 150, Lexington, KY 40506, USA; (R.P.); (S.P.)
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Alexis Meade
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Samuel Potter
- College of Medicine, University of Kentucky, 800 Rose Street MN 150, Lexington, KY 40506, USA; (R.P.); (S.P.)
| | - Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA;
| |
Collapse
|
4
|
Elementary calcium release events in the skeletal muscle cells of the honey bee Apis mellifera. Sci Rep 2021; 11:16731. [PMID: 34408196 PMCID: PMC8373864 DOI: 10.1038/s41598-021-96028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
Calcium sparks are involved in major physiological and pathological processes in vertebrate muscles but have never been characterized in invertebrates. Here, dynamic confocal imaging on intact skeletal muscle cells isolated enzymatically from the adult honey bee legs allowed the first spatio-temporal characterization of subcellular calcium release events (CREs) in an insect species. The frequency of CREs, measured in x–y time lapse series, was higher than frequencies usually described in vertebrates. Honey bee CREs had a larger spatial spread at half maximum than their vertebrate counterparts and a slightly ellipsoidal shape, two characteristics that may be related to ultrastructural features specific to invertebrate cells. In line-scan experiments, the histogram of CREs’ duration followed a bimodal distribution, supporting the existence of both sparks and embers. Unlike in vertebrates, embers and sparks had similar amplitudes, a difference that could be related to genomic differences and/or excitation–contraction coupling specificities in honey bee skeletal muscle fibres. The first characterization of CREs from an arthropod which shows strong genomic, ultrastructural and physiological differences with vertebrates may help in improving the research field of sparkology and more generally the knowledge in invertebrates cell Ca2+ homeostasis, eventually leading to a better understanding of their roles and regulations in muscles but also the myotoxicity of new insecticides targeting ryanodine receptors.
Collapse
|
5
|
Bayley JS, Overgaard J, Pedersen TH. Quantitative model analysis of the resting membrane potential in insect skeletal muscle: Implications for low temperature tolerance. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110970. [PMID: 33932565 DOI: 10.1016/j.cbpa.2021.110970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/05/2023]
Abstract
Abiotic stressors, such as cold exposure, can depolarize insect cells substantially causing cold coma and cell death. During cold exposure, insect skeletal muscle depolarization occurs through a 2-stage process. Firstly, short-term cold exposure reduces the activity of electrogenic ion pumps, which depolarize insect muscle markedly. Secondly, during long-term cold exposure, extracellular ion homeostasis is disrupted causing further depolarization. Consequently, many cold hardy insects improve membrane potential stability during cold exposure through adaptations that secure maintenance of ion homeostasis during cold exposure. Less is known about the adaptations permitting cold hardy insects to maintain membrane potential stability during the initial phase of cold exposure, before ion balance is disrupted. To address this problem it is critical to understand the membrane components (channels and transporters) that determine the membrane potential and to examine this question the present study constructed a mathematical "charge difference" model of the insect muscle membrane potential. This model was parameterized with known literature values for ion permeabilities, ion concentrations and membrane capacitance and the model was then further developed by comparing model predictions against empirical measurements following pharmacological inhibitors of the Na+/K+ ATPase, Cl- channels and symporters. Subsequently, we compared simulated and recorded membrane potentials at 0 and 31 °C and at 10-50 mM extracellular [K+] to examine if the model could describe membrane potentials during the perturbations occurring during cold exposure. Our results confirm the importance of both Na+/K+ ATPase activity and ion-selective Na+, K+ and Cl- channels, but the model also highlights that additional electroneutral flux of Na+ and K+ is needed to describe how membrane potentials respond to temperature and [K+] in insect muscle. While considerable further work is still needed, we argue that this "charge difference" model can be used to generate testable hypotheses of how insects can preserve membrane polarization in the face of stressful cold exposure.
Collapse
Affiliation(s)
- Jeppe Seamus Bayley
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Johannes Overgaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark.
| | | |
Collapse
|
6
|
Bayley JS, Klepke MJ, Pedersen TH, Overgaard J. Cold acclimation modulates voltage gated Ca 2+ channel currents and fiber excitability in skeletal muscles of Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:116-124. [PMID: 30879976 DOI: 10.1016/j.jinsphys.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Cold exposure is known to induce stressful imbalances in chill susceptible insects, including loss of hemolymph water, hyperkalemia and cell depolarization. Cold induced depolarization induces uncontrolled Ca2+ influx and accumulation of injury through necrosis/apoptosis. Conversely cold induced Ca2+ influx has been shown to induce rapid cold hardening and therefore also play a role to reduce cold injury. Cold acclimation is known to reduce cold injury in insects and due to the involvement of depolarization and Ca2+ in the pathophysiology of hypothermia, we hypothesized that cold acclimation modulates voltage gated Ca2+ channels and fiber excitability. Using intracellular electrodes or force transducers, we measured the Ca2+ currents, fiber excitability and muscle contractility in warm (31 °C) and cold (11 °C) acclimated locusts. Experiments were performed under conditions ranging from mild conditions where the membrane potential is well regulated to stressful conditions, where the membrane potential is very depolarized and the tissue is at risk of accumulating injury. These experiments found that cold acclimation modulates Ca2+ currents and fiber excitability in a manner that depends on the cold exposure. Thus, under mild conditions, Ca2+ currents and fiber excitability was increased whilst muscle contractility was unaffected by cold acclimation. Conversely, fiber excitability and muscle contractility was decreased under stressful conditions. Further work is required to fully understand the adaptive effects of these modulations. However, we propose a model which reconciles the dualistic role of the Ca2+ ion in cold exposure and cold acclimation. Thus, increased Ca2+ currents at mild temperatures could help to enhance cold sensing capacity whereas reduced fiber excitability under stressful conditions could help to reduce catastrophic Ca2+ influx during periods of severe cold exposure.
Collapse
Affiliation(s)
- Jeppe Seamus Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| | | | | | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Findsen A, Overgaard J, Pedersen TH. Reduced L-type Ca2+ current and compromised excitability induce loss of skeletal muscle function during acute cooling in locust. J Exp Biol 2016; 219:2340-8. [DOI: 10.1242/jeb.137604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/23/2016] [Indexed: 01/10/2023]
Abstract
Low temperature causes most insects to enter a state of neuromuscular paralysis, termed chill coma. Susceptibility of insect species to enter chill coma is tightly correlated to the species distribution limits and for this reason it is important to understand the cellular processes that underlie chill coma. It is known that muscle function is markedly depressed at low temperature and this suggests that chill coma is partly caused by impairment in the muscle per se. To find the cellular mechanism(s) underlying muscle dysfunction at low temperature, we examined the effect of low temperature (5°C) on several events in the excitation-contraction-coupling in the migratory locust (Locusta migratoria). Intracellular membrane potential recordings during single nerve stimulations showed that 70% of fibers at 20°C produced an action potential (AP), while only 55% of the fibers were able to fire AP at 5°C. Reduced excitability at low temperature was caused by ∼80% drop in L-type Ca2+ current and a depolarizing shift in its activation of around 20 mV, which means that a larger endplate potential would be needed to activate the muscle AP at low temperature. In accordance we showed that intracellular Ca2+ transients were largely absent at low temperature following nerve stimulation. In contrast, maximum contractile force was unaffected by low temperature in chemically skinned muscle bundles which demonstrates that the function of the contractile filaments are preserved at low temperature. These findings demonstrate that reduced L-type Ca2+ current is likely the most important factor contributing to loss of muscle function at low temperature in locust.
Collapse
Affiliation(s)
- Anders Findsen
- Zoophysiology, Department of Bioscience, C.F Møllers Allé 3, Bldg. 1131, Aarhus University, Denmark
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, C.F Møllers Allé 3, Bldg. 1131, Aarhus University, Denmark
| | - Thomas Holm Pedersen
- Department of Biomedicine – Danish Biomembrane Research Centre, Ole Worms Allé 3, bldg. 1160, Aarhus University, Denmark
| |
Collapse
|
8
|
Hara Y, Koganezawa M, Yamamoto D. TheDmca1Dchannel mediates Ca2+inward currents inDrosophilaembryonic muscles. J Neurogenet 2015; 29:117-23. [DOI: 10.3109/01677063.2015.1054991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Peron S, Zordan MA, Magnabosco A, Reggiani C, Megighian A. From action potential to contraction: neural control and excitation-contraction coupling in larval muscles of Drosophila. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:173-83. [PMID: 19427393 DOI: 10.1016/j.cbpa.2009.04.626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/16/2009] [Accepted: 04/22/2009] [Indexed: 11/17/2022]
Abstract
The neuromuscular system of Drosophila melanogaster has been studied for many years for its relative simplicity and because of the genetic and molecular versatilities. Three main types of striated muscles are present in this dipteran: fibrillar muscles, tubular muscles and supercontractile muscles. The visceral muscles in adult flies and the body wall segmental muscles in embryos and larvae belong to the group of supercontractile muscles. Larval body wall muscles have been the object of detailed studies as a model for neuromuscular junction function but have received much less attention with respect to their mechanical properties and to the control of contraction. In this review we wish to assess available information on the physiology of the Drosophila larval muscular system. Our aim is to establish whether this system has the requisites to be considered a good model in which to perform a functional characterization of Drosophila genes, with a known muscular expression, as well as Drosophila homologs of human genes, the dysfunction of which, is known to be associated with human hereditary muscle pathologies.
Collapse
Affiliation(s)
- Samantha Peron
- Department of Anatomy and Physiology, University of Padua, Italy
| | | | | | | | | |
Collapse
|
10
|
Collet C. Excitation-contraction coupling in skeletal muscle fibers from adult domestic honeybee. Pflugers Arch 2009; 458:601-12. [DOI: 10.1007/s00424-009-0642-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/09/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
|
11
|
Collet C, Belzunces L. Excitable properties of adult skeletal muscle fibres from the honeybeeApis mellifera. J Exp Biol 2007; 210:454-64. [PMID: 17234615 DOI: 10.1242/jeb.02667] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYIn the hive, a wide range of honeybees tasks such as cell cleaning,nursing, thermogenesis, flight, foraging and inter-individual communication(waggle dance, antennal contact and trophallaxy) depend on proper muscle activity. However, whereas extensive electrophysiological studies have been undertaken over the past ten years to characterize ionic currents underlying the physiological neuronal activity in honeybee, ionic currents underlying skeletal muscle fibre activity in this insect remain, so far, unexplored. Here, we show that, in contrast to many other insect species, action potentials in muscle fibres isolated from adult honeybee metathoracic tibia,are not graded but actual all-or-none responses. Action potentials are blocked by Cd2+ and La3+ but not by tetrodotoxin (TTX) in current-clamp mode of the patch-clamp technique, and as assessed under voltage-clamp, both Ca2+ and K+ currents are involved in shaping action potentials in single muscle fibres. The activation threshold potential for the voltage-dependent Ca2+ current is close to–40 mV, its mean maximal amplitude is –8.5±1.9 A/F and the mean apparent reversal potential is near +40 mV. In honeybees, GABA does not activate any ionic membrane currents in muscle fibres from the tibia, but L-glutamate, an excitatory neurotransmitter at the neuromuscular synapse induces fast activation of an inward current when the membrane potential is voltage clamped close to its resting value. Instead of undergoing desensitization as is the case in many other preparations, a component of this glutamate-activated current has a sustained component, the reversal potential of which is close to 0 mV, as demonstrated with voltage ramps. Future investigations will allow extensive pharmacological characterization of membrane ionic currents and excitation–contraction coupling in skeletal muscle from honeybee, a useful insect that became a model to study many physiological phenomena and which plays a major role in plant pollination and in stability of environmental vegetal biodiversity.
Collapse
Affiliation(s)
- Claude Collet
- Ecologie des invertébrés, INRA, Institut National de la Recherche Agronomique, UMR406, Domaine St Paul, Site Agroparc, F-84914 Avignon cedex 9, France.
| | | |
Collapse
|
12
|
Neurotox '88- An International Symposium on Neuropharmacology and Pesticide Action. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780240405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Numata T, Yoshino M. Characterization of single L-type Ca2+ channels in myocytes isolated from the cricket lateral oviduct. J Comp Physiol B 2005; 175:257-63. [PMID: 15900506 DOI: 10.1007/s00360-005-0480-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 10/22/2004] [Accepted: 11/22/2004] [Indexed: 11/30/2022]
Abstract
The single Ca2+ channel activity was obtained from cell-attached patch recordings with the use of pipettes filled with 100 mM Ba2+ as the charge carrier in myocytes isolated from the lateral oviduct of cricket Gryllus bimaculatus. The following results were obtained. (1) The channel had a unitary conductance of 18 pS. (2) The open time histogram of the channel could be fitted with a single exponential while the closed time histogram could be fitted with the sum of two exponentials, suggesting that there are at least one open state and two closed states for this channel. (3) The open probability of the channel increased with increasing membrane depolarization. (4) The mean current reconstructed by averaging individual current trace responses inactivated slowly and the current-voltage relationship for the peak mean current showed a bell-shaped relation. (5) The dihydropyridine (DHP) Ca2+ antagonist, nifedipine, reduced the mean current by increasing the proportion of "blank" sweeps. On the other hand, the DHP Ca2+ agonist, Bay K 8644, increased the mean current by increasing the mean open-times of the channel. These results confirm a presence of DHP-sensitive L-type Ca2+ channel in myocytes isolated from the lateral oviduct of cricket G. bimaculatus.
Collapse
Affiliation(s)
- T Numata
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo, 184-8501, Japan.
| | | |
Collapse
|
14
|
Monterrubio J, Ortiz G, Orkand PM, Zuazaga C. Tubular localization of silent calcium channels in crustacean skeletal muscle fibers. J Muscle Res Cell Motil 2003; 23:167-74. [PMID: 12416723 DOI: 10.1023/a:1020225231520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ca2+-induced Ca2+ release (CICR) in the superficial abdominal flexor muscle of the crustacean Atya lanipes appears to be mediated by a local control mechanism similar to that of vertebrate cardiac muscle, but with an unusually high gain. Thus, Ca2+ influx increases sufficiently the local concentration of Ca2+ in the immediate vicinity of the sarcoplasmic reticulum Ca2+ release channels to trigger the highly amplified release of Ca2+ required for contraction, but is too low to generate a macroscopic inward current (i.e., the Ca2+ channels are silent). To determine the localization of the silent Ca2+ Channels, the mechanical, electrophysiological and ultrastructural properties of the muscle were examined before and after formamide treatment, a procedure that produces the disruption of transverse tubules of striated muscle. We found that tubular disruption decreased tension generation by about 90%; reduced inward current (measured as Vmax, the maximum rate of rise of Sr2+ action potentials) by about 80%; and decreased membrane capacitance by about 77%. The results suggest that ca. 80% of the silent Ca2+ channels are located in the tubular system. Thus, these studies provide further evidence to support the local control mechanism of CICR in crustacean skeletal muscle.
Collapse
Affiliation(s)
- J Monterrubio
- Institute of Neurobiology, Department of Physiology, University of Puerto Rico, San Juan 00901, USA
| | | | | | | |
Collapse
|
15
|
Weiss T, Erxleben C, Rathmayer W. Voltage-clamp analysis of membrane currents and excitation-contraction coupling in a crustacean muscle. J Muscle Res Cell Motil 2002; 22:329-44. [PMID: 11808773 DOI: 10.1023/a:1013154612985] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A single fibre preparation from the extensor muscle of a marine isopod crustacean is described which allows the analysis of membrane currents and simultaneously recorded contractions under two-electrode voltage-clamp conditions. We show that there are three main depolarisation-gated currents, two are outward and carried by K+, the third is an inward Ca2+ current, I(Ca). Normally, the K+ currents which can be isolated by using K+ channel blockers, mask I(Ca). I(Ca) activates at potentials more positive than -40 mV, is maximal around 0 mV, and shows strong inactivation at higher depolarisation. Inactivation depends on current rather than voltage. Ba2+, Sr2+ and Mg2+ can substitute for Ca2+. Ba2+ currents are about 80% larger than Ca2+ currents and inactivate little. The properties of I(Ca) characterise it as a high threshold L-type current. The outward current consists primarily of a fast, transient A current, I(K(A)) and a maintained, delayed rectifier current, I(K(V)). In some fibres, a small Ca2+-dependent K+ current is also present. I(K(A)) activates fast at depolarisation above -45 mV, shows pronounced inactivation and is almost completely inactivated at holding potentials more positive than -40 mV. I(K(A)) is half-maximally blocked by 70 microM 4-aminopyridine (4-AP), and 70 mM tetraethylammonium (TEA). I(K(V)) activates more slowly, at about -30 mV, and shows no inactivation. It is half-maximally blocked by 2 mM TEA but rather insensitive to 4-AP. Physiologically, the two K+ currents prevent all-or-nothing action potentials and determine the graded amplitude of active electrical responses and associated contractions. Tension development depends on and is correlated with depolarisation-induced Ca2+ influx mediated by I(Ca). The voltage dependence of peak tension corresponds directly to the voltage dependence of the integrated I(Ca). The threshold potential for contraction is at about -38 mV. Peak tension increases with increasing voltage steps, reaches maximum at around 0 mV, and declines with further depolarisation.
Collapse
Affiliation(s)
- T Weiss
- Department of Biology, University of Konstanz, Germany
| | | | | |
Collapse
|
16
|
Rodriguez-Contreras A, Nonner W, Yamoah EN. Ca2+ transport properties and determinants of anomalous mole fraction effects of single voltage-gated Ca2+ channels in hair cells from bullfrog saccule. J Physiol 2002; 538:729-45. [PMID: 11826161 PMCID: PMC2290095 DOI: 10.1113/jphysiol.2001.013312] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2001] [Accepted: 10/30/2001] [Indexed: 11/08/2022] Open
Abstract
We studied the permeation properties of two distinct single voltage-gated Ca2+ channels in bullfrog saccular hair cells to assess the roles of the channels as physiological Ca2+ transporters and multi-ion pores. By varying the permeant ions (Ba2+, Ca2+) and concentrations (2-70 mM), we estimated the affinity constant (K(D)) of the two channels as follows (mM): L-type channel, K(D,Ba) = 7.4 +/- 1.0, K(D,Ca) = 7.1 +/- 2.2 (n = 7); non-L-type channel, K(D,Ba) = 5.3 +/- 3.2, K(D,Ca) = 2.0 +/- 1.0 (n = 8). Using ionic concentrations close to physiological conditions (2 mM Ca2+ and 1.0 mM Mg2+), the conductance of the L-type channel was approximately 2 pS. We determined the mechanisms by which ions traverse the pore of these single Ca2+ channels, using mixtures of Ba2+ and Ca2+ at total concentrations above (70 mM) or close to (5 mM) the K(D) of the channels. We found evidence for an anomalous mole fraction effect (AMFE) only when the total divalent ion concentration was 5 mM, consistent with a multi-ion pore. We show that AMFE arises from the boundaries between the pore and bulk solution in the atria of the channel, which is derived from the presence of depletion zones that become apparent at low divalent cation concentrations. The present findings provide an explanation as to why previous whole-cell Ca2+ currents that were recorded in quasi-physiological Ca2+ concentrations (approximately 2-5 mM) showed clear AMFE, whereas single Ca2+ channel currents that were recorded routinely at high Ca2+ concentrations (20-110 mM) did not.
Collapse
Affiliation(s)
- Adrian Rodriguez-Contreras
- Department of Otolaryngology, Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95616, USA
| | | | | |
Collapse
|
17
|
Rose U, Ferber M, Hustert R. Maturation of muscle properties and its hormonal control in an adult insect. J Exp Biol 2001; 204:3531-45. [PMID: 11707502 DOI: 10.1242/jeb.204.20.3531] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The oviposition of female locusts requires longitudinal muscles to tolerate remarkable lengthening. Whether this ability together with concomitant properties develops during maturation or is present throughout life was investigated. The properties of the locust abdominal muscles involved in oviposition behaviour were investigated with respect to their maturation, segment- and gender-specificity and regulation by juvenile hormone (JH). Muscles from the sixth abdominal segment (an oviposition segment) of mature females (>18 days old) were able to tolerate large extensions (>8 mm). At this length, muscles were still able to generate considerable neurally evoked twitch tension. In contrast, muscle fibres from females less than 5 days old did not tolerate extension of more than 4 mm. At this length, tension generation was negligible. The maximum tension generated at different stimulus frequencies was significantly higher in muscles of females more than 18 days old than in females less than 5 days old. Furthermore, the cross-sectional area of muscle fibres increased significantly during reproductive development. Current-clamp recordings from denervated muscle fibres of females more than 18 days old revealed their ability to generate overshooting action potentials. The potentials were tetrodotoxin (TTX)-insensitive (0.5 μmol l–1 TTX), but were blocked by Cd2+ (50 μmol l–1) or nifedipine (50 μmol l–1), which suggests the involvement of L-type Ca2+ channels. Action potentials recorded from females less than 5 days old differed considerably in amplitude and shape from those recorded from females more than 18 days old, suggesting their maturation during the first 2 weeks of adult life. Inactivation of the corpora allata (CA) by precocene inhibited the maturation of these muscle properties, whereas injection of JH into precocene-treated females reversed this effect. Homologous muscles from the third abdominal segment (a non-oviposition segment, M169) and muscles from males (M214) revealed no comparable changes, although some minor changes occurred during reproductive development. The results suggest a gender- and segment-specific maturation of muscle properties that is related to reproductive behaviour and controlled by JH.
Collapse
Affiliation(s)
- U Rose
- Abteilung Neurobiologie, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany.
| | | | | |
Collapse
|
18
|
Wicher D, Walther C, Wicher C. Non-synaptic ion channels in insects--basic properties of currents and their modulation in neurons and skeletal muscles. Prog Neurobiol 2001; 64:431-525. [PMID: 11301158 DOI: 10.1016/s0301-0082(00)00066-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insects are favoured objects for studying information processing in restricted neuronal networks, e.g. motor pattern generation or sensory perception. The analysis of the underlying processes requires knowledge of the electrical properties of the cells involved. These properties are determined by the expression pattern of ionic channels and by the regulation of their function, e.g. by neuromodulators. We here review the presently available knowledge on insect non-synaptic ion channels and ionic currents in neurons and skeletal muscles. The first part of this article covers genetic and structural informations, the localization of channels, their electrophysiological and pharmacological properties, and known effects of second messengers and modulators such as neuropeptides or biogenic amines. In a second part we describe in detail modulation of ionic currents in three particularly well investigated preparations, i.e. Drosophila photoreceptor, cockroach DUM (dorsal unpaired median) neuron and locust jumping muscle. Ion channel structures are almost exclusively known for the fruitfly Drosophila, and most of the information on their function has also been obtained in this animal, mainly based on mutational analysis and investigation of heterologously expressed channels. Now the entire genome of Drosophila has been sequenced, it seems almost completely known which types of channel genes--and how many of them--exist in this animal. There is much knowledge of the various types of channels formed by 6-transmembrane--spanning segments (6TM channels) including those where four 6TM domains are joined within one large protein (e.g. classical Na+ channel). In comparison, two TM channels and 4TM (or tandem) channels so far have hardly been explored. There are, however, various well characterized ionic conductances, e.g. for Ca2+, Cl- or K+, in other insect preparations for which the channels are not yet known. In some of the larger insects, i.e. bee, cockroach, locust and moth, rather detailed information has been established on the role of ionic currents in certain physiological or behavioural contexts. On the whole, however, knowledge of non-synaptic ion channels in such insects is still fragmentary. Modulation of ion currents usually involves activation of more or less elaborate signal transduction cascades. The three detailed examples for modulation presented in the second part indicate, amongst other things, that one type of modulator usually leads to concerted changes of several ion currents and that the effects of different modulators in one type of cell may overlap. Modulators participate in the adaptive changes of the various cells responsible for different physiological or behavioural states. Further study of their effects on the single cell level should help to understand how small sets of cells cooperate in order to produce the appropriate output.
Collapse
Affiliation(s)
- D Wicher
- Sächsische Akademie der Wissenschaften zu Leipzig, Arbeitsgruppe Neurohormonale Wirkungsmechanismen, Erbertstr. 1, 07743, Jena, Germany.
| | | | | |
Collapse
|
19
|
Yeoman MS, Brezden BL, Benjamin PR. LVA and HVA Ca(2+) currents in ventricular muscle cells of the Lymnaea heart. J Neurophysiol 1999; 82:2428-40. [PMID: 10561416 DOI: 10.1152/jn.1999.82.5.2428] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The single-electrode voltage-clamp technique was used to characterize voltage-gated Ca(2+) currents in dissociated Lymnaea heart ventricular cells. In the presence of 30 mM tetraethylammonium (TEA), two distinct Ca(2+) currents could be identified. The first current activated between -70 and -60 mV. It was fully available for activation at potentials more negative than -80 mV. The current was fast to activate and inactivate. The inactivation of the current was voltage dependent. The current was larger when it was carried by Ca(2+) compared with Ba(2+), although changing the permeant ion had no observable effect on the kinetics of the evoked currents. The current was blocked by Co(2+) and La(3+) (1 mM) but was particularly sensitive to Ni(2+) ions ( approximately 50% block with 100 microM Ni(2+)) and insensitive to low doses of the dihydropyridine Ca(2+) channel antagonist, nifedipine. All these properties classify this current as a member of the low-voltage-activated (LVA) T-type family of Ca(2+) currents. The activation threshold of the current (-70 mV) suggests that it has a role in pacemaking and action potential generation. Muscle contractions were first seen at -50 mV, indicating that this current might supply some of the Ca(2+) necessary for excitation-contraction coupling. The second, a high-voltage-activated (HVA) current, activated at potentials between -40 and -30 mV and was fully available for activation at potentials more negative than -60 mV. This current was also fast to activate and with Ca(2+) as the permeant ion, inactivated completely during the 200-ms voltage step. Substitution of Ba(2+) for Ca(2+) increased the amplitude of the current and significantly slowed the rate of inactivation. The inactivation of this current appeared to be current rather than voltage dependent. This current was blocked by Co(2+) and La(3+) ions (1 mM) but was sensitive to micromolar concentrations of nifedipine ( approximately 50% block 10 microM nifedipine) that were ineffective at blocking the LVA current. These properties characterize this current as a L-type Ca(2+) current. The voltage sensitivity of this current suggests that it is also important in generating the spontaneous action potentials, and in providing some of the Ca(2+) necessary for excitation-contraction coupling. These data provide the first detailed description of the voltage-dependent Ca(2+) currents present in the heart muscle cells of an invertebrate and indicate that pacemaking in the molluscan heart has some similarities with that of the mammalian heart.
Collapse
Affiliation(s)
- M S Yeoman
- Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | |
Collapse
|
20
|
Church PJ, Stanley EF. Single L-type calcium channel conductance with physiological levels of calcium in chick ciliary ganglion neurons. J Physiol 1996; 496 ( Pt 1):59-68. [PMID: 8910196 PMCID: PMC1160824 DOI: 10.1113/jphysiol.1996.sp021665] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Single L-type calcium channels in chick ciliary ganglion neurons were studied at high current resolution in cell-attached patch recordings using quartz-glass micropipettes. 2. A single open-channel current amplitude was observed when Ba2+ was the charge carrier with a conductance of 26 pS at 110 mM barium. However, with 110 mM calcium two current fluctuation amplitudes were observed. These were termed low and high fluctuation amplitudes, CaL and CaH, and had conductances of 8.8 and 12 pS, respectively. These two levels probably reflect two different channel species. CaL was identified as an L-type calcium channel on the basis of resistance to inactivation, conductance, and dihydropyridine sensitivity. 3. Single-channel current fluctuations could be detected with calcium concentrations as low as 1.0 mM. Although the unitary conductance (gamma) was much greater with barium than calcium at every concentration tested, the concentration dependence of conductance was similar for gamma Ba, gamma CaH and gamma CaL. Fitting the concentration dependencies of these conductances with a Langmuir isotherm gave KD estimates of 4.7, 5.6 and 5.0 mM for barium, CaL and CaH, respectively 4. The single-channel conductance of the L-type channel (gamma L) can be described by the relation: conductance (in pS) = 9.2/(1 + 5.6/[Ca]) where [Ca] is the external calcium concentration in the 1.0-110 mM range. Thus, at a physiological external calcium concentration of 2 mM the conductance is 2.4 pS. 5. Ca2+ transport through the L-type calcium channel is particularly sensitive to changes in external calcium concentration in the physiological range but approaches saturation at about 10 mM. this characteristic may optimize the responsiveness of the cell to small changes in ambient calcium concentrations while limiting excess entry in the presence of abnormally high calcium levels.
Collapse
Affiliation(s)
- P J Church
- Snyaptic Mechanisms Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
21
|
Kits KS, Mansvelder HD. Voltage gated calcium channels in molluscs: classification, Ca2+ dependent inactivation, modulation and functional roles. INVERTEBRATE NEUROSCIENCE : IN 1996; 2:9-34. [PMID: 9372153 DOI: 10.1007/bf02336657] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Molluscan neurons and muscle cells express transient (T-type like) and sustained LVA calcium channels, as well as transient and sustained HVA channels. In addition weakly voltage sensitive calcium channels are observed. In a number of cases toxin or dihydropyridine sensitivity justifies classification of the HVA currents in L, N or P-type categories. In many cases, however, pharmacological characterization is still preliminary. Characterization of novel toxins from molluscivorous Conus snails may facilitate classification of molluscan calcium channels. Molluscan preparations have been very useful to study calcium dependent inactivation of calcium channels. Proposed mechanisms explain calcium dependent inactivation through direct interaction of Ca2+ with the channel, through dephosphorylation by calcium dependent phosphatases or through calcium dependent disruption of connections with the cytoskeleton. Transmitter modulation operating through various second messenger mediated pathways is well documented. In general, phosphorylation through PKA, cGMP dependent PK or PKC facilitates the calcium channels, while putative direct G-protein action inhibits the channels. Ca2+ and cGMP may inhibit the channels through activation of phosphodiesterases or phosphatases. Detailed evidence has been provided on the role of sustained LVA channels in pacemaking and the generation of firing patterns, and on the role of HVA channels in the dynamic changes in action potentials during spiking, the regulation of the release of transmitters and hormones, and the regulation of growth cone behavior and neurite outgrowth. The accessibility of molluscan preparations (e.g. the squid giant synapse for excitation release studies, Helisoma B5 neuron for neurite and synapse formation) and the large body of knowledge on electrophysiological properties and functional connections of identified molluscan neurons (e.g. sensory neurons, R15, egg laying hormone producing cells, etc.) creates valuable opportunities to increase the insight into the functional roles of calcium channels.
Collapse
Affiliation(s)
- K S Kits
- Research Institute Neurosciences, Faculty of Biology, Vrije Universiteit, Amsterdam, Netherlands
| | | |
Collapse
|
22
|
Grabner M, Bachmann A, Rosenthal F, Striessnig J, Schultz C, Tautz D, Glossmann H. Insect calcium channels. Molecular cloning of an alpha 1-subunit from housefly (Musca domestica) muscle. FEBS Lett 1994; 339:189-94. [PMID: 8313972 DOI: 10.1016/0014-5793(94)80413-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The complete amino acid sequence of an invertebrate calcium channel alpha 1-subunit from housefly (Musca domestica) larvae (designated Mdl alpha 1) has been deduced by cDNA cloning and sequence analysis. Mdl alpha 1 shares higher percent sequence identity with 1,4-dihydropyridine (DHP)-sensitive L-type than with DHP-insensitive calcium channels. As shown by whole mount in situ hybridization and immunostaining Mdl alpha 1 is predominantly expressed in the larval body wall musculature.
Collapse
Affiliation(s)
- M Grabner
- Institut für Biochemische Pharmakologie, Universität Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhong Y, Wu CF. Differential modulation of potassium currents by cAMP and its long-term and short-term effects: dunce and rutabaga mutants of Drosophila. J Neurogenet 1993; 9:15-27. [PMID: 8295075 DOI: 10.3109/01677069309167273] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cAMP concentration in Drosophila is increased by mutations of the dunce (dnc) gene and decreased by mutations of the rutabaga (rut) gene. Such mutants provide a unique means for exploring the role of cAMP in functional and developmental regulation of membrane currents. Four distinct K+ currents have been identified in Drosophila larval muscle fibers, i.e. the voltage-activated transient IA and delayed IK and the Ca(2+)-activated fast ICF and slow ICS. Results from our voltage-clamp studies indicated that both IA and IK were increased in dnc alleles. Normal muscle fibers treated with dibutyryl-cAMP showed a similar increase of IA, but no significant effect on IK. In contrast to the dnc alleles, the rut mutations appeared to enhance ICS greatly while leaving the amplitude of other currents largely unchanged. In addition, the dibutyryl-cAMP-induced increase in IA was not observed in rut fibers. Caffeine and W7, which are known to interfere with several second messenger pathways, also modulated K+ currents in larval muscle fibers. The currents in dnc and rut fibers showed strikingly altered responses to caffeine and W7. The results demonstrate that the various K+ currents in Drosophila muscles are affected by altered cAMP cascades in the mutants. The fact that not all dnc and rut mutant defects can be mimicked or reversed by acute application of cAMP suggests that long-term modulation of K+ currents by cAMP may involve mechanisms distinct from the short-term effect of cAMP.
Collapse
Affiliation(s)
- Y Zhong
- Department of Biology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
24
|
Gilly WF, Scheuer T. Voltage-dependent calcium and potassium conductances in striated muscle fibers from the scorpion, Centruroides sculpturatus. J Membr Biol 1993; 134:155-67. [PMID: 8411118 DOI: 10.1007/bf00232751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ionic currents responsible for the action potential in scorpion muscle fibers were characterized using a three-intracellular microelectrode voltage clamp applied at the fiber ends (8-12 degrees C). Large calcium currents (ICa) trigger contractile activation in physiological saline (5 mM Ca) but can be studied in the absence of contractile activation in a low Ca saline (< or = 2.5 mM). Barium (Ba) ions (1.5-3 mM) support inward current but not contractile activation. Ca conductance kinetics are fast (time constant of 3 msec at 0 mV) and very voltage dependent, with steady-state conductance increasing e-fold in approximately 4 mV. Half-activation occurs at -25 mV. Neither ICa nor IBa show rapid inactivation, but a slow, voltage-dependent inactivation eliminates ICa at voltages positive to -40 mV. Kinetically, scorpion channels are more similar to L-type Ca channels in vertebrate cardiac muscle than to those in skeletal muscle. Outward K currents turn on more slowly and with a longer delay than do Ca currents, and K conductance rises less steeply with voltage (e-fold change in 10 mV; half-maximal level at 0 mV). K channels are blocked by externally applied tetraethylammonium and 3,4 diaminopyridine.
Collapse
Affiliation(s)
- W F Gilly
- Hopkins Marine Station, Stanford University, Pacific Grove, California 93950
| | | |
Collapse
|
25
|
Smith PA, Aschroft FM, Fewtrell CM. Permeation and gating properties of the L-type calcium channel in mouse pancreatic beta cells. J Gen Physiol 1993; 101:767-97. [PMID: 7687645 PMCID: PMC2216780 DOI: 10.1085/jgp.101.5.767] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ba2+ currents through L-type Ca2+ channels were recorded from cell-attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single-channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single-channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+).
Collapse
Affiliation(s)
- P A Smith
- University Laboratory of Physiology, Oxford, United Kingdom
| | | | | |
Collapse
|
26
|
Lizardi L, Garcia MC, Sanchez JA, Zuazaga C. Sulfhydryl alkylating agents induce calcium current in skeletal muscle fibers of a crustacean (Atya lanipes). J Membr Biol 1992; 129:167-78. [PMID: 1331464 DOI: 10.1007/bf00219512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Voltage-clamp experiments using the three-microelectrode voltage clamp technique were performed on ventroabdominal flexor muscles of the crustacean Atya lanipes. Potassium and chloride currents were found to underlie the normal, passive response of the muscle. Blocking potassium currents with tetraethylammonium and replacing chloride ions with methanesulfonate did not unmask an inward current. By treating the muscle with the sulfhydryl-alkylating agent 4-cyclopentene-1,3-dione an inward current was detected. The current induced by the agent is carried by Ca2+, since it is abolished in Ca(2+)-free solutions. The induced Ca2+ current is detected at about -40 mV and reaches a mean maximum value of -78 microA/cm2 at ca. -10 mV. At this potential the time to peak is close to 15 msec. The induced Ca2+ current inactivated with 1-sec prepulses which did not elicit detectable Ca2+ current; the fitted hx curve had a midpoint of -38 mV and a steepness of 5.0 mV. Measurements of isometric tension were performed in small bundles of fibers, and the effects of the sulfhydryl-alkylating agents 4-cyclopentene-1,3-dione and N-ethylmaleimide were investigated. Tetanic tension was enhanced in a strictly Ca(2+)-dependent manner by 4-cyclopentene-1,3-dione. The amplitude of K+ contractures increased after treatment with N-ethylmaleimide. It is concluded that Ca2+ channels are made functional by the sulfhydryl-specific reagents and that the increase in tension is probably mediated by an increase in Ca2+ influx through the chemically induced Ca2+ channels.
Collapse
Affiliation(s)
- L Lizardi
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan
| | | | | | | |
Collapse
|
27
|
Lux HD, Carbone E, Zucker H. Na+ currents through low-voltage-activated Ca2+ channels of chick sensory neurones: block by external Ca2+ and Mg2+. J Physiol 1990; 430:159-88. [PMID: 1964965 PMCID: PMC1181733 DOI: 10.1113/jphysiol.1990.sp018287] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1. Whole-cell currents through low-voltage-activated (LVA) Ca2+ channels carried by monovalent cations were studied in chick dorsal root ganglion (DRG) cells. 2. With 120 mM [Na+] on both sides of the membrane and [Ca2+]o less than or equal to 100 microM, the currents reversed at 0 mV. Their half-times of activation and inactivation were strictly voltage-dependent and decreased to near-constant values of 0.6-0.85 and 40 ms, respectively, at positive membrane potentials. The longer activation times were observed with [Ca2+]o greater than or equal to 50 microM. 3. The selectivity of the Ca2+ channel for monovalent ions with reference to internal Na+ was evaluated from the reversal potential. The Li+ and Na+ permeabilities were similar. The permeability ratios of K+ and Rb+ were 0.45, and 0.33 for Cs+. 4. Micromolar increases in [Ca2+]o produced small voltage shifts of half-times of activation (less than or equal to +3 mV at 10 microM and +10 mV at 500 microM), but strongly depressed the Na+ current. The Ca2(+)-induced block of Na+ current satisfied a 1:1 stoichiometry with an apparent KD of 1.8 microM at -20 mV. The block was, however, relieved with more positive and negative potentials, with KDs of 55 and 8.5 microM at +90 and -110 mV, respectively. 5. Relaxation time constants of block and unblock of Na+ currents through the LVA Ca2+ channel were measured on step changes to and from membrane potentials at which pronounced Ca2(+)-induced block occurred. 6. At -20 mV, the time constants of block decreased with micromolar increase in [Ca2+]o in line with a blocking rate coefficient of 1.9 x 10(8) M-1 s-1, but settled to values of 0.18 ms at [Ca2+]o beyond 50 microM. The Na+ currents were unblocked with time constant (tau u) of around 0.25 ms at strongly positive and negative membrane potentials at 22 degrees C. 7. Tau u failed to show any obvious dependence on [Ca2+]o up to the millimolar range. This finding contradicts suggestions that removal of the block occurs in a [Ca2+]o-dependent manner as a result of an increased probability of Ca2+ ion mobilization by repulsive forces with increased Ca2+ occupation of the channel. 8. The time course of unblock of Na+ currents was strongly temperature-dependent showing a Q10 of 2.5 for tau u. 9. The voltage dependence of the Na+ current block by Ca2+ ions is best accounted for by a single, centrally located Ca2+ binding site.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H D Lux
- Department of Neurophysiology, Max-Planck-Institute for Psychiatry, Planegg, FRG
| | | | | |
Collapse
|
28
|
Dwivedy AK. Density of sodium channels in insect synaptic nerve endings. Neurochem Int 1990; 17:467-74. [PMID: 20504647 DOI: 10.1016/0197-0186(90)90029-s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/1989] [Accepted: 02/07/1990] [Indexed: 12/01/2022]
Abstract
Specific binding of [11-(3)H]saxitoxin (STX) and activity of ouabain sensitive adenosine-triphosphatase (Na(+), K(+)-ATPase) were determined in neuronal membrane fractions using a subcellular preparation from the central nervous system of the cockroach Periplaneta americana. The nerve ending fractions (synaptosomes) contained 90-95% of the total specific activity of ouabain sensitive Na(+), K(+)-ATPase, and 60-70% of specific STX binding of the crude nerve homogenate. Sodium influx induced by veratridine in synaptosomes was inhibited by saxitoxin at a half-maximal concentration of 4 nM, and kinetics were consistent with reversible binding of one molecule of saxitoxin to each sodium channel receptor site, with an equilibrium dissociation constant (K(D)) of approx. 3 nM. The density of saturable binding sites was 2 pmol/mg protein which was estimated to correspond to about 95 binding sites per ?m(2) of synaptic membrane. The results of transport and binding data show that insect synaptosomes possess the capability to conduct inward sodium currents at least comparable to those found in other neuronal membranes, and thus provide a physiologically viable preparation to assess the effect of cation fluxes on the synaptic transmitter release process.
Collapse
Affiliation(s)
- A K Dwivedy
- AFRC Unit of Insect Neurophysiology and Pharmacology, Department of Zoology, Downing Street, Cambridge CB2 3EJ, England
| |
Collapse
|
29
|
Hescheler J, Delpiano MA, Acker H, Pietruschka F. Ionic currents on type-I cells of the rabbit carotid body measured by voltage-clamp experiments and the effect of hypoxia. Brain Res 1989; 486:79-88. [PMID: 2720436 DOI: 10.1016/0006-8993(89)91280-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type-I cells (from rabbit embryos) in primary culture were studied in voltage-clamp experiments using the whole cell arrangement of the patch-clamp technique. With a pipette solution containing 130 mM K+ and 3 mM Mg-ATP, large outward currents were obtained positive to a threshold of about -30 mV by clamping cells from -50 mV to different test pulses (-80 to 50 mV). Negative to -30 mV, the slope conductance was low (outward rectification). The outward currents were blocked by external Cs+ (5 mM) and partially blocked by TEA (5 mM) and Co2+ (1 mM). The initial part of the outward currents during depolarizing voltage pulses exhibited a transient Ca2+ inward component partially superimposed to a Ca2+-dependent outward current. Inward currents were further characterized by replacing K+ with Cs+ in the intra- and extracellular solution in order to minimize the outward component and by using 1.8 mM Ca2+, 10.8 mM Ca2+ or 10.8 mM Ba2+ as charge carrier. Slow-inactivating inward currents were recorded at test potentials ranging from -50 to 40 mV (holding potential -80 mV). The maximal amplitude, measured at 10 mV in the U-shaped I-V curve, amounted to 247 +/- 103 pA (n = 3). This inward current was insensitive to 3 microM TTX, but blocked by 1 mM Co2+ and partially reduced by 10 microM D600 and 3 microM PN 200-100. In contrast to outward currents, the inward currents exhibited a 'run-down' within about 10 min. Lowering the pO2 from the control of 150 Torr (air-gassed medium) to 28 Torr had no apparent effect on inward currents, but depressed reversibly outward currents by 28%. In conclusion, it is suggested that type-I cells possess voltage-activated K+ and Ca2+ channels which might be essential for chemoreception in the carotid body.
Collapse
Affiliation(s)
- J Hescheler
- Max-Planck-Institut für Systemphysiologie, Dortmund, F.R.G
| | | | | | | |
Collapse
|
30
|
Abstract
A number of voltage-activated and Ca2+ activated K+ currents are known to coexist and play a major role in a wide variety of cellular processes including neuromuscular phenomena. Separation of these currents is important for analyzing their individual functional roles and for understanding whether or not they are mediated by entirely different channels. In Drosophila, we have now been able to manipulate four different K+ currents, individually and in combination with one another, by a combined use of mutations and pharmacological agents. This allows analysis of the physiological and molecular properties of different K+ channels and of the role of individual currents in membrane excitability.
Collapse
Affiliation(s)
- S Singh
- Department of Biology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
31
|
Sugawara Y. Two Ca current components of the receptor current in the electroreceptors of the marine catfish Plotosus. J Gen Physiol 1989; 93:365-80. [PMID: 2564882 PMCID: PMC2216205 DOI: 10.1085/jgp.93.2.365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the isolated sensory epithelium of the Plotosus electroreceptor, the receptor current has been dissected into inward Ca current, ICa, and superimposed outward transient of Ca-gated K current, IK(Ca). In control saline (170 mM/liter Na), with IK(Ca) abolished by K blockers, ICa declined in two successive exponential phases with voltage-dependent time constants. Double-pulse experiments revealed that the test ICa was partially depressed by prepulses, maximally near voltage levels for the control ICa maximum, which suggests current-dependent inactivation. In low Na saline (80 mM/liter), ICa declined in a single phase with time constants similar to those of the slower phase in control saline. The test ICa was then unaffected by prepulses. The implied presence of two Ca current components, the fast and slow ICa's, were further examined. In control saline, the PSP externally recorded from the afferent nerve showed a fast peak and a slow tonic phase. The double-pulse experiments revealed that IK(Ca) and the peak PSP were similarly depressed, i.e., secondarily to inactivation of the peak current. The steady inward current, however, was unaffected by prolonged prepulses that were stepped to 0 mV, the in situ DC level. Therefore, the fast ICa seems to initiate IK(Ca) and phasic release of transmitter, which serves for phasic receptor responses. The slow ICa may provide persistent active current, which has been shown to maintain tonic receptor operation.
Collapse
Affiliation(s)
- Y Sugawara
- Department of Physiology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Siri LN, Dubrovsky AL, Uchitel OD. Ca-dependent slow action potentials in human skeletal muscle. J Cell Physiol 1988; 137:448-54. [PMID: 3192625 DOI: 10.1002/jcp.1041370308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Slow Ca-action potentials (CaAP) were studied in normal human skeletal muscle fibers obtained during surgery (fibers with both ends cut). Control studies also were carried out with intact as well as cut rat skeletal muscle fibers. Experiments were performed in hypertonic Cl-free saline with 10 or 84 mM Ca and K-channel blockers; muscles were preincubated in a saline containing Cs and tetraethylammonium. A current-clamp technique with two intracellular microelectrodes was used. In human muscle, 14.5% of the fibers showed fully developed CaAPs, 21% displayed nonregenerative Ca responses, and 64.5% showed only passive responses; CaAPs were never observed in 10 mM Ca. In rat muscle, nearly 90% of the fibers showed CaAPs, which were not affected by the cut-end condition. Human and rat muscle fibers had similar membrane potential and conductance in the resting state. In human muscle (22-32 degrees C, 84 mM Ca), the threshold and peak potential during a CaAP were +26 +/- 6 mV and +70 +/- 3 mV, respectively, and the duration measured at threshold level was 1.7 +/- 0.5 sec. In rat muscle, the duration was four times longer. During a CaAP, membrane conductance was assumed to be a leak conductance in parallel with a Ca and a K conductance. In human muscle (22-32 degrees C, 84 mM Ca, 40 micron fiber diameter), values were 0.4 +/- 0.1 microS, 1.1 +/- 0.7 microS, and 0.9 +/- 0.4 microS, respectively. Rat muscle (22-24 degrees C, 84 mM Ca) showed leak and K conductances similar to those found in human fibers. Ca-conductance in rat muscle was double the values obtained in human muscle fibers.
Collapse
Affiliation(s)
- L N Siri
- Instituto de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires Paraguay, Argentina
| | | | | |
Collapse
|
33
|
Samuels R, Reynolds S, Charnley A. Calcium channel activation of insect muscle by destruxins, insecticidal compounds produced by the entomopathogenic fungus Metarhizium anisopliae. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/0742-8413(88)90018-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
|
35
|
Elkins T, Ganetzky B, Wu CF. A Drosophila mutation that eliminates a calcium-dependent potassium current. Proc Natl Acad Sci U S A 1986; 83:8415-9. [PMID: 2430288 PMCID: PMC386939 DOI: 10.1073/pnas.83.21.8415] [Citation(s) in RCA: 173] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A mutation of Drosophila, slowpoke (slo), specifically abolishes a Ca2+-dependent K+ current, IC, from dorsal longitudinal flight muscles of adult flies. Other K+ currents remain normal, providing evidence that IC is mediated by a molecularly distinguishable set of channels. The pharmacological properties of IC are similar to those of Ca2+-dependent currents in some vertebrate cells. The muscle action potential was significantly lengthened in slo flies, indicating that IC plays the major role in its repolarization.
Collapse
|
36
|
Bruner J, Czternasty G, Shimahara T, Stinnakre J. Arsenazo III transients and calcium current in a normally non-spiking neuronal soma of crayfish. J Physiol 1986; 374:571-83. [PMID: 2427708 PMCID: PMC1182739 DOI: 10.1113/jphysiol.1986.sp016098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arsenazo III was used to investigate Ca2+ transients in the normally non-excitable soma of the motor giant neurones of the crayfish Procambarus clarkii. Two kinds of regenerative potentials could be obtained depending on membrane potential conditioning: a fast spike after a pre-hyperpolarization to -90 mV and a slow action potential after a pre-depolarization to -50 mV. Only the second of these was accompanied by an Arsenazo III transient. In voltage-clamped, somata injected, with tetraethylammonium chloride, an absorbance change could be obtained by pulsing the membrane potential above -44 mV. The relationship between absorbance change and potential peaked between 0 and +10 mV then fell off to zero at ca. +150 mV. Changes in light absorbance studied using double-pulse protocols suggested that the inactivation of Ca2+ entry was predominantly mediated by the intracellular free Ca2+ concentration. External application of 1 mM-CdCl2 abolished both the absorbance changes and the (Ca2+) inward current. The voltage dependence of this current was similar to that of the absorbance change. For positive membrane potential the current-voltage relationship showed a voltage-dependent conductance property, the origin of which is discussed.
Collapse
|
37
|
Yamamoto D, Yeh JZ, Narahashi T. Interactions of permeant cations with sodium channels of squid axon membranes. Biophys J 1985; 48:361-8. [PMID: 2412601 PMCID: PMC1329350 DOI: 10.1016/s0006-3495(85)83792-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To determine how the permeant cations interact with the sodium channel, the instantaneous current-voltage (I-V) relationship, conductance-ion concentration relationship, and cation selectivity of sodium channels were studied with internally perfused, voltage clamped squid giant axons in the presence of different permeant cations in the external solution. In Na-containing media, the instantaneous I-V curve was almost linear between +60 and -20 mV, but deviated from the linearity in the direction to decrease the current at more negative potentials. The linearity of instantaneous I-V curve extended to more negative potentials with lowering the external Ca concentration. The I-V curve in Li solution was almost the same as that in Na solution. The linearity of the I-V curve improved in NH4 solution exhibiting only saturation at -100 mV with no sign of further decrease in current at more negative potentials. Guanidine and formamidine further linearized the instantaneous I-V curve. The conductance of the sodium channels as measured from the tail current saturated at high concentrations of permeant cations. The apparent dissociation constants determined from the conductance-ion concentration curve at -60 mV were as follows: Na, 378 mM; Li, 247 mM; NH4, 174 mM; guanidine, 111 mM; formamidine, 103 mM. The ratio of the test cation permeability to the sodium permeability as measured from the reversal potentials of tail currents varied with the test cation concentration and/or the membrane potential. These observations are incompatible with the independence principle, and can be explained on the basis of the Eyring's rate theory. It is suggested that the slope of the instantaneous I-V curve is determined by the relative affinity of permeant cations and blocking ions (Ca) for the binding site in the sodium channel. The ionic selectivity of the channel depends on the energy barrier profile of the channel.
Collapse
|
38
|
Ferry DR, Goll A, Rombusch M, Glossmann H. The molecular pharmacology and structural features of calcium channels. Br J Clin Pharmacol 1985; 20 Suppl 2:233S-246S. [PMID: 2413875 PMCID: PMC1400655 DOI: 10.1111/j.1365-2125.1985.tb02809.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
39
|
Caillé J, Ildefonse M, Rougier O. Excitation-contraction coupling in skeletal muscle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1985; 46:185-239. [PMID: 2418459 DOI: 10.1016/0079-6107(85)90009-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Abstract
Striated skeletal muscles from the planktonic arrowworm Sagitta elegans (phylum Chaetognatha) were voltage-clamped. The muscles displayed classical voltage-dependent sodium channels that (i) showed peak transient currents when the membrane was depolarized 90 millivolts from rest, (ii) opened rapidly with peak currents flowing within 0.4 milliseconds at 4 degrees C, (iii) showed voltage-dependent inactivation with 50 percent inactivation at +25 millivolts from rest, and (iv) were blocked by 500 nanomolar tetrodotoxin.
Collapse
|
41
|
Cota G, Stefani E. Saturation of calcium channels and surface charge effects in skeletal muscle fibres of the frog. J Physiol 1984; 351:135-54. [PMID: 6086902 PMCID: PMC1193110 DOI: 10.1113/jphysiol.1984.sp015238] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Voltage-clamp and current-clamp experiments were performed to study Ca2+ and Ba2+ permeation through Ca channels in intact twitch skeletal muscle fibres of the frog. Surface charge effects were taken into consideration. Ca2+ (ICa) or Ba2+ (IBa) currents, or Ca2+ and Ba2+ action potentials were recorded in the presence of external tetraethylammonium (TEA+) ions and by replacing C1- for CH3SO3-. To further block K+ outward currents, muscles were incubated in a K+-free, TEA+ and Cs+-containing solution prior to experiments. When 10 mM-Ca2+ was replaced by 10 mM-Ba2+, the I/V curve for the peak inward current shifted by 15-20 mV to more negative potentials and the maximal peak inward current increased from -39 +/- 2 mA cm-3 (5) to -51 +/- 3 mA cm-3 (7). The decay of ICa and IBa followed a simple exponential time course and became faster for large depolarizations. The overshoot of the action potentials changed 29 +/- 3 mV or 32 +/- 3 mV for a 10-fold change in the Ca2+ or Ba2+ concentrations respectively. Ca2+ action potentials were 15-20 mV larger than Ba2+ action potentials. The maximum rate of rise Vmax and the Ca2+ or Ba2+ conductance GC2+ during the plateau tend to saturate as divalent cation concentration was increased. The Michaelis constant (Km) values obtained were respectively: 5.6 and 6.0 mM for Ca2+ and 12.5 and 8.0 mM for Ba2+. When Ca2+ or Ba2+ concentrations were increased, the effective threshold of the inward current Theff and the membrane potential E* at Vmax shifted to more positive potentials along the voltage axis. These shifts were similar for Theff and E* and were more pronounced for Ca2+ than for Ba2+. Voltage shifts could be adequately quantified by the Gouy-Chapman theory with a density of surface charges near Ca channels of 0.20 e nm-2 and including a specific binding constant for Ca2+ of 45 +/- 4 m-1. The fractional increase of the Ca2+ and Ba2+ calculated concentrations at the membrane surface near the channel was smaller than the corresponding one in the bulk solution. This partially explained the reported saturation. Saturation was still present in the Vmax of GC2+ curves corrected for surface concentration. The corrected Km values for the Vmax data were 60 mM for Ca2+ and 350 mM for Ba2+.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
42
|
Abstract
Calcium channels carry out vital functions in a wide variety of excitable cells but they also face special challenges. In the medium outside the channel, Ca2+ ions are vastly outnumbered by other ions. Thus, the calcium channel must be extremely selective if it is to allow Ca2+ influx rather than a general cation influx. In fact, calcium channels show a much greater selectivity for Ca2+ than sodium channels do for Na+ despite the high flux that open Ca channels can support. Relatively little is known about the mechanism of ion permeation through Ca channels. Earlier models assumed ion independence or single-ion occupancy. Here we present evidence for a novel hypothesis of ion movement through Ca channels, based on measurements of Ca channel activity at the level of single cells or single channels. Our results indicate that under physiological conditions, the channel is occupied almost continually by one or more Ca2+ ions which, by electrostatic repulsion, guard the channel against permeation by other ions. On the other hand, repulsion between Ca2+ ions allows high throughput rates and tends to prevent saturation with calcium.
Collapse
|
43
|
Hirano T, Takahashi K. Comparison of properties of calcium channels between the differentiated 1-cell embryo and the egg cell of ascidians. J Physiol 1984; 347:327-44. [PMID: 6323698 PMCID: PMC1199449 DOI: 10.1113/jphysiol.1984.sp015068] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the ascidians Halocynthia roretzi and H. aurantium the Ca channels in the differentiated embryo whose cleavage was arrested with cytochalasin B at the 1-cell stage and in the unfertilized egg were studied using the voltage-clamp technique. In the cleavage-arrested 1-cell embryo, which differentiates into a cell of epidermal type after culturing until the time of hatching of the control larvae, Ca channel and Ca-induced K channel currents were observed upon depolarization of the membrane. Inward current through Ca channels in the embryo was analysed after suppressing Ca-induced K current by intracellular injection of EGTA. Sr or Ba ions could substitute for Ca ions as the charge carrier through Ca channels both in the cleavage-arrested embryo and in the egg. The selectivity ratios among these cations at their respective maximum inward currents were 1.0 (Ca):2.0 (Sr):4.5 (Ba) for the Ca channel in the embryo and 1.0 (Ca):1.9 (Sr):1.1 (Ba) for that in the egg. The time course of inactivation of Ca channels in Ca artificial sea water (ASW) was different from that in Sr or Ba ASW in the cleavage-arrested embryo. Fast inactivation was observed only in Ca ASW, and slight and slow inactivation was seen in Ba or Sr solution. In the egg, Ca, Sr and Ba currents through Ca channels all showed a similar time course of inactivation. The time course and voltage dependence of inactivation in Ca ASW were studied by measuring Ca tail current at a constant potential level of -28 mV. In the cleavage-arrested embryo the inactivation became slower and smaller in accordance with the decrease in inward Ca current when the potential level of the command pulse was increased in the positive direction from 10 to 80 mV. In the egg the time course of inactivation became faster when the potential level was similarly increased. The experimental results in (4) and (5) above suggest that the inactivation of the Ca channel in the cleavage-arrested embryo was dependent on Ca inward current while that in the egg was potential dependent. The developmental changes of Ca channels from egg type to epidermal type were studied in the cleavage-arrested 1-cell embryo. The epidermal-type Ca channels appeared at about 40 h after fertilization at 9 degrees C. The Ca channels in those blastomeres which differentiated to a cell of muscular type in the cleavage-arrested 8- or 16-cell embryo were studied after suppressing the outward current by tetraethylammonium and by intracellular injection of both Cs ions and EGTA.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
44
|
|
45
|
Ballanyi K, Deitmer JW. Concentration-dependent effects of Ba2+ on action potential and membrane currents in the ciliate Stylonychia. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/0300-9629(84)90599-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Tillotson DL, Gorman AL. Localization of neuronal Ca2+ buffering near plasma membrane studied with different divalent cations. Cell Mol Neurobiol 1983; 3:297-310. [PMID: 6325008 DOI: 10.1007/bf00734712] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Absorbance changes associated with divalent cation binding to arsenazo III were used to measure changes in Ca2+, Sr2+, and Ba2+ concentrations under a variety of experimental conditions. The rate of the falling phase of an absorbance change signal, measured in nerve cell bodies injected with arsenazo III and under membrane potential control, was taken as an index of divalent cation buffering. With influx of ions through the membrane or with ionophoretic injection, we found the buffering, i.e., the dye-absorbance signal's falling rate, to be greatest for Ca2+ ions: the sequence was Ca2+ greater than Sr2+ much greater than Ba2+. Injecting Ca2+ or Sr2+ into the center of a nerve cell produced a significantly greater amplitude of arsenazo III signal than the same injection near the cell membrane. We did not find this to be the case for Ba2+ or Mg2+ injections. We conclude that the Ca2+ regulatory system binds Ca2+ most strongly compared to the other ions tested, and there is a variable distribution of buffering machinery within the nerve soma, with increased buffer capacity near the plasma membrane of the cell. A preliminary report of some of the results presented in this paper has appeared previously ( Tillotson and Gorman, 1980).
Collapse
|
47
|
Eckert R, Ewald D. Calcium tail currents in voltage-clamped intact nerve cell bodies of Aplysia californica. J Physiol 1983; 345:533-48. [PMID: 6663512 PMCID: PMC1193814 DOI: 10.1113/jphysiol.1983.sp014995] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Calcium tail currents were measured in axotomized Aplysia neurones L2-L6 using a two-electrode voltage clamp and micro-electrodes of specially low resistance. Measurements were made at -40 mV following depolarizing pulses of 7 or 10 ms duration in the presence of 45 microM-tetrodotoxin and 200 mM-tetraethylammonium. Symmetrical currents were eliminated by addition of digitally stored current traces produced in response to equivalent hyperpolarizations. The remaining current, identified as a tail current, was blocked by replacement of extracellular calcium with cobalt or manganese. Computer fits showed that the tail current closely approximated the sum of two exponentially decaying components. The first had a time constant, tau 1, of 0.38 +/- 0.05 ms, which may have been frequency-limited by the speed of the clamp; the second had a time constant, tau 2, of 2.0 +/- 0.8 ms. A more slowly decaying third tail current component (tau 3 = 30 ms), which developed more slowly, may be related to the non-specific current rather than the calcium current. The tau 1 and tau 2 components of the tail current lost amplitude with increasing pulse duration along an approximately bi-exponential time course that resembled the time course of relaxation of the calcium current during a prolonged depolarization. The slow third component of the tail current showed no such inactivation. The amplitudes of the first and second components of the calcium tail current both increased as sigmoidal functions of the test pulse voltage, reaching half maximum at +20 mV and plateauing above +60 mV. The voltage dependencies of the two components were similar. The rate of decay of the tau 1 component increased with increasing temperature and with increasing negative potential, whereas tau 2 showed little dependence on these parameters. The rates of decay of neither the tau 1 nor the tau 2 component were affected by large changes in the amplitude of the test depolarization or in the amplitude of the tail current or by injection of calcium ions or EGTA. Thus, the kinetics of the tail current as resolved under our conditions appear to be virtually independent of calcium-mediated inactivation. Activation time constants (tau m) predicted from tau 1 are 3 to 5 times longer than the values of tau m determined from the half-time to peak of activation. These kinetics are slower than those reported for Limnaea by factors of 2.5 to 3.5.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
48
|
Deitmer JW. Change in the activation rate of voltage-dependent Ba2+ current by conditioning pre-depolarization. ACTA ACUST UNITED AC 1983. [DOI: 10.1007/bf01990408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Glossmann H, Ferry DR. Solubilization and partial purification of putative calcium channels labelled with [3H]-nimodipine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1983; 323:279-91. [PMID: 6314149 DOI: 10.1007/bf00512465] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
High-affinity binding sites for the potent 1,4-dihydropyridine calcium channel blocker [3H]-nimodipine were solubilized from guinea-pig skeletal muscle microsomes with digitonin and CHAPS [3-(3-cholamidopropyl)-dimethyl-ammonio-l-propanesulfonate]. Detergent-solubilized binding sites could not be sedimented by centrifugation (50,000 X g, 4 h), passed freely through 0.2 micron nitrocellulose filters and were stable at 4 degrees C with half-lives of greater than 60 h. The solubilized 1,4-dihydropyridine binding sites were precipitable with polyethyleneglycol 6000 on Whatman GF/C filters. Saturation analysis of solubilized microsomes with [3H]-nimodipine revealed a single class of binding sites (Bmax = 0.5 to 1.7 pmol per mg of protein) with a KD of 2.2-3.6 nmol/l at 37 degrees C. Specific binding of the 1,4-dihydropyridine calcium channel label was fully reversible (k-1 = 1.5 min-1, at 37 degrees C). The solubilized drug receptors discriminated between the optical enantiomers of chiral 1,4-dihydropyridine calcium channel blockers, (-)- and (+)D-600 as well as between l-cis and d-cis-diltiazem. d-cis-Diltiazem stimulated the binding of [3H]-nimodipine (ED50:3.6 mumol/l), by increasing the Bmax and slowed the dissociation rate of the labelled 1,4-dihydropyridine calcium channel blocker. The solubilized binding sites were sensitive to pronase, alpha-chymotrypsin and phospholipases A and C indicating their protein nature as well as their lipid requirement. Chelation of endogeneous divalent cations by EDTA, EGTA or CDTA inhibits high-affinity [3H]-nimodipine binding, demonstrating that divalent cations are required for high affinity [3H]-nimodipine binding. Detergent-solubilized binding sites are adsorbed by several sepharose-immobilized lectins, including concanavalin A, wheat germ agglutinin and lentil-lectin but not by helix pomatia lectin. Preparative chromatography on concanavalin A sepharose was performed and the adsorbed [3H]-nimodipine binding sites were selectively eluted by alpha-methylmannoside; NaCl (1 mol/l) being completely ineffective as elutant. The purification factors by this method were 17-40-fold. The binding sites could be also purified (up to 10-fold) by sucrose density centrifugation. The S20, w value of the drug receptors is 12.9 s. It is concluded that the 1,4-dihydropyridine binding sites of the putative calcium channel are intimately associated with carbohydrate containing structures. Since the detergent-solubilized material shows allosteric regulation of 1,4-dihydropyridine binding, interaction with chemically different classes of calcium channel blockers, metalloprotein nature and a S20, w value which is indicative of structure large enough to span the membrane, we conclude that we have solubilized and partially purified the putative calcium channel.
Collapse
|
50
|
Abstract
1. The dorsal longitudinal flight muscles of Drosophila melanogaster contain three voltage-activated ion currents, two distinct potassium currents and a calcium current. The currents can be isolated from each other by exploiting the developmental properties of the system and genetic tools, as well as conventional pharmacology.2. The fast transient potassium current (I(A)) is the first channel to appear in the developing muscle membrane. It can be studied in isolation between 60 and 70 hr of pupal development. The channels can be observed to carry both outward and inward currents depending on the external potassium concentration. I(A) is blocked by both tetraethylammonium ion (TEA) and 3- or 4-aminopyridine. The inactivation and recovery properties of I(A) are responsible for a facilitating effect on membrane excitability.3. The delayed outward current (I(K)) develops after maturation of the I(A) system. I(K) can be isolated from I(A) by use of a mutation that removes I(A) from the membrane current response and can be studied before the development of Ca(2+) channels. I(K) shows no inactivation. The channels are more sensitive to blockage by TEA than I(A) channels, but are not substantially blocked by 3- or 4-aminopyridine.4. The calcium current (I(Ca)) is the last of the major currents to develop and must be isolated pharmacologically with potassium-blocking agents. I(Ca) shows inactivation when Ca(2+) is present but not when Ba(2+) is the sole current carrier. When Ca(2+) is the current carrier, the addition of Na(+) or Li(+) retards the inactivation of the net inward current. When the membrane voltage is not clamped, Ba(2+) alone, or Ca(2+) with Na(+) (or Li(+)), produces a plateau response of extended duration.5. The synaptic current (I(J)) evoked by motoneurone stimulation is the fastest and largest of the current systems. It has a reversal potential of approximately -5 mV, indicating roughly equal permeabilities of Na(+) and K(+). During a nerve-driven muscle spike, I(J) is the major inward current, causing a very rapid depolarization away from resting potential. An exceptionally large synaptic current is necessary to rapidly discharge the high membrane capacitance (0.03 muF/cell) in these large (0.05 x 0.1 x 0.8 mm) isopotential cells.
Collapse
|