1
|
Identification, Expression, and Roles of the Cystine/Glutamate Antiporter in Ocular Tissues. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4594606. [PMID: 32655769 PMCID: PMC7320271 DOI: 10.1155/2020/4594606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 01/21/2023]
Abstract
The cystine/glutamate antiporter (system x c -) is composed of a heavy chain subunit 4F2hc linked by a disulphide bond to a light chain xCT, which exchanges extracellular cystine, the disulphide form of the amino acid cysteine, for intracellular glutamate. In vitro research in the brain, kidney, and liver have shown this antiporter to play a role in minimising oxidative stress by providing a source of intracellular cysteine for the synthesis of the antioxidant glutathione. In vivo studies using the xCT knockout mouse revealed that the plasma cystine/cysteine redox couple was tilted to a more oxidative state demonstrating system xc - to also play a role in maintaining extracellular redox balance by driving a cystine/cysteine redox cycle. In addition, through import of cystine, system xc - also serves to export glutamate into the extracellular space which may influence neurotransmission and glutamate signalling in neural tissues. While changes to system xc - function has been linked to cancer and neurodegenerative disease, there is limited research on the roles of system xc - in the different tissues of the eye, and links between the antiporter, aging, and ocular disease. Hence, this review seeks to consolidate research on system xc - in the cornea, lens, retina, and ocular humours conducted across several species to shed light on the in vitro and in vivo roles of xCT in the eye and highlight the utility of the xCT knockout mouse as a tool to investigate the contribution of xCT to age-related ocular diseases.
Collapse
|
2
|
Hu RG, Lim J, Donaldson PJ, Kalloniatis M. Characterization of the cystine/glutamate transporter in the outer plexiform layer of the vertebrate retina. Eur J Neurosci 2008; 28:1491-502. [DOI: 10.1111/j.1460-9568.2008.06435.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Zimov S, Yazulla S. Novel processes invaginate the pre-synaptic terminal of retinal bipolar cells. Cell Tissue Res 2008; 333:1-16. [PMID: 18449566 DOI: 10.1007/s00441-008-0611-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
Mixed-rod cone bipolar (Mb) cells of goldfish retina have large synaptic terminals (10 microm in diameter) that make 60-90 ribbon synapses mostly onto amacrine cells and rarely onto ganglion cells and, in return, receive 300-400 synapses from gamma-aminobutyric acid (GABA)-ergic amacrine cells. Tissue viewed by electron microscopy revealed the presence of double-membrane-bound processes deep within Mb terminals. No membrane specializations were apparent on these invaginating processes, although rare vesicular fusion was observed. These invaginating dendrites were termed "InDents". Mb bipolar cells were identified by their immunoreactivity for protein kinase C. Double-label immunofluorescence with other cell-type-specific labels eliminated Müller cells, efferent fibers, other Mb bipolar cells, dopaminergic interplexiform cells, and somatostatin amacrine cells as a source of the InDents. Confocal analysis of double-labeled tissue clearly showed dendrites of GABA amacrine cells, backfilled ganglion cells, and dendrites containing PanNa immunoreactivity extending into and passing through Mb terminals. Nearly all Mb terminals showed evidence for the presence of InDents, indicating their common presence in goldfish retina. No PanNa immunoreactivity was found on GABA or ganglion cell InDents, suggesting that a subtype of glycine amacrine cell contained voltage-gated Na channels. Thus, potassium and calcium voltage-gated channels might be present on the InDents and on the Mb terminal membrane opposed to the InDents. In addition to synaptic signaling at ribbon and conventional synapses, Mb bipolar cells may exchange information with InDents by an alternative signaling mechanism.
Collapse
Affiliation(s)
- Sarah Zimov
- Graduate Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
4
|
Johnson J, Fremeau RT, Duncan JL, Rentería RC, Yang H, Hua Z, Liu X, LaVail MM, Edwards RH, Copenhagen DR. Vesicular glutamate transporter 1 is required for photoreceptor synaptic signaling but not for intrinsic visual functions. J Neurosci 2007; 27:7245-55. [PMID: 17611277 PMCID: PMC2443709 DOI: 10.1523/jneurosci.0815-07.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamatergic neurotransmission requires vesicular glutamate transporters (VGLUTs) to sequester glutamate into synaptic vesicles. Generally, VGLUT1 and VGLUT2 isoforms show complementary expression in the CNS and retina. However, little is known about whether isoform-specific expression serves distinct pathways and physiological functions. Here, by examining visual functions in VGLUT1-null mice, we demonstrate that visual signaling from photoreceptors to retinal output neurons requires VGLUT1. However, photoentrainment and pupillary light responses are preserved. We provide evidence that melanopsin-containing, intrinsically photosensitive retinal ganglion cells (RGCs), signaling via VGLUT2 pathways, support these non-image-forming functions. We conclude that VGLUT1 is essential for transmitting visual signals from photoreceptors to second- and third-order neurons, but VGLUT1 is not necessary for intrinsic visual functions. Furthermore, melanopsin and VGLUT2 expression in a subset of RGCs immediately after birth strongly supports the idea that intrinsic vision can function well before rod- and cone-mediated signaling has matured.
Collapse
Affiliation(s)
- Juliette Johnson
- Department of Ophthalmology, University of California School of Medicine, San Francisco, California 94143, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Suryanarayanan A, Slaughter MM. Synaptic transmission mediated by internal calcium stores in rod photoreceptors. J Neurosci 2006; 26:1759-66. [PMID: 16467524 PMCID: PMC6793629 DOI: 10.1523/jneurosci.3895-05.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinal rod photoreceptors are depolarized in darkness to approximately -40 mV, a state in which they maintain sustained glutamate release despite low levels of calcium channel activation. Blocking voltage-gated calcium channels or ryanodine receptors (RyRs) at the rod presynaptic terminal suppressed synaptic communication to bipolar cells. Spontaneous synaptic events were also inhibited when either of these pathways was blocked. This indicates that both calcium influx and calcium release from internal stores are required for the normal release of transmitter of the rod. RyR-independent release can be evoked by depolarization of a rod to a supraphysiological potential (-20 mV) that activates a large fraction of voltage-gated channels. However, this calcium channel-mediated release depletes rapidly if RyRs are blocked, indicating that RyRs support prolonged glutamate release. Thus, the rod synapse couples a small transmembrane calcium influx with a RyR-dependent amplification mechanism to support continuous vesicle release.
Collapse
|
6
|
Abstract
The molecular organization of ribbon synapses in photoreceptors and ON bipolar cells is reviewed in relation to the process of neurotransmitter release. The interactions between ribbon synapse-associated proteins, synaptic vesicle fusion machinery and the voltage-gated calcium channels that gate transmitter release at ribbon synapses are discussed in relation to the process of synaptic vesicle exocytosis. We describe structural and mechanistic specializations that permit the ON bipolar cell to release transmitter at a much higher rate than the photoreceptor does, under in vivo conditions. We also consider the modulation of exocytosis at photoreceptor synapses, with an emphasis on the regulation of calcium channels.
Collapse
Affiliation(s)
- Ruth Heidelberger
- Department of Neurobiology & Anatomy, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Wallace B. Thoreson
- Department of Ophthalmology & Visual Sciences and Department of Pharmacology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul Witkovsky
- Department of Ophthalmology and Department of Physiology & Neuroscience, New York University School of Medicine, New York, NY 10016, USA
- *Corresponding author. Tel: +1 212 263 6488; fax: +1 212 263 7602. E-mail address: (P. Witkovsky)
| |
Collapse
|
7
|
Steele EC, Chen X, Iuvone PM, MacLeish PR. Imaging of Ca2+ dynamics within the presynaptic terminals of salamander rod photoreceptors. J Neurophysiol 2005; 94:4544-53. [PMID: 16107525 DOI: 10.1152/jn.01193.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the overall importance of Ca(2+) as a mediator of cell signaling and neurotransmitter release has long been appreciated, the details of Ca(2+) dynamics within the inner segments of vertebrate rod photoreceptors are just beginning to be elucidated. Even less is known regarding Ca(2+) dynamics within the rod presynaptic terminal compartment. Using fura-2 to report changes in intracellular Ca(2+), we imaged the responses of enzymatically dissociated salamander rod photoreceptors retaining intact axons and presynaptic terminals stimulated with a brief depolarizing puff of KCl (30 mM pipette concentration). In the vast majority of cells, the response was a large increase in Ca(2+) levels in the terminal compartment, but not in the soma. In contrast, rods exhibited a substantial elevation in somatic Ca(2+) levels when depolarized with a brief puff of 100 mM KCl (pipette concentration). These data are consistent with previously reported differences in Ca(2+) buffering mechanisms within the somatic and terminal compartments. Additionally, they may reflect the presence of Ca(2+) channels having distinct properties within the membranes of the two compartments. Consistent with this hypothesis, fluorescent immunocytochemistry using an antibody against the L-type Ca(2+) channel Ca(v)1.2 (alpha1C) subunit and semiquantitative confocal microscopy revealed a high concentration of immunoreactivity in the membranes of terminals of intact rods compared with the somata. Further investigations using enzymatically dissociated preparations of intact rod photoreceptors retaining their presynaptic terminals will allow further testing of these and other hypotheses regarding the compartmentalized regulation of Ca(2+) dynamics within rod photoreceptors.
Collapse
Affiliation(s)
- Ernest C Steele
- Department of Anatomy and Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA.
| | | | | | | |
Collapse
|
8
|
CADETTI L, THORESON WB, PICCOLINO M. Pre- and post-synaptic effects of manipulating surface charge with divalent cations at the photoreceptor synapse. Neuroscience 2005; 129:791-801. [PMID: 15541900 PMCID: PMC1383428 DOI: 10.1016/j.neuroscience.2004.08.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2004] [Indexed: 11/25/2022]
Abstract
Persistence of horizontal cell (HC) light responses in extracellular solutions containing low Ca2+ plus divalent cations to block Ca2+ currents (ICa) has been attributed to Ca2+-independent neurotransmission. Using a retinal slice preparation to record both ICa and light responses, we demonstrate that persistence of HC responses in low [Ca2+]o can instead be explained by a paradoxical increase of Ca2+ influx into photoreceptor terminals arising from surface charge-mediated shifts in ICa activation. Consistent with this explanation, application of Zn2+ or Ni2+ caused a hyperpolarizing block of HC light responses that was relieved by lowering [Ca2+]o. The same concentrations of Zn2+ and Ni2+ reduced the amplitude of ICa at the rod dark potential and this reduction was relieved by a hyperpolarizing shift in voltage dependence induced by lowering [Ca2+]o. Block of ICa by Mg2+, which has weak surface charge effects, was not relieved by low [Ca2+]o. Recovery of HC responses in low [Ca2+]o was assisted by enhancement of rod light responses. To bypass light stimulation, OFF bipolar cells were stimulated by steps to -40 mV applied to presynaptic rods during simultaneous paired recordings. Consistent with surface charge theory, the post-synaptic current was inhibited by Zn2+ and this inhibition was relieved by lowering [Ca2+]o. Nominally divalent-free media produced inversion of HC light responses even though rod light responses remained hyperpolarizing; HC response inversion can be explained by surface charge-mediated shifts in ICa. In summary, HC light responses modifications induced by low divalent cation solutions can be explained by effects on photoreceptor light responses and membrane surface charge without necessitating Ca2+-independent neurotransmission. Furthermore, these results suggest that surface charge effects accompanying physiological changing divalent cation levels in the synaptic cleft may provide a means for modulating synaptic output from photoreceptors.
Collapse
Affiliation(s)
- L. CADETTI
- Departments of Ophthalmology, University of Nebraska Medical Center, 985540 Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biology, University of Ferrara, 44100 Ferrara, Italy
| | - W. B. THORESON
- Departments of Ophthalmology, University of Nebraska Medical Center, 985540 Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- *Correspondence to: W. B. Thoreson, Ophthalmology Department, University of Nebraska Medical Center, 985540 Nebraska Medical Center, Omaha, NE 68198–5540, USA. Tel: +1-402-559-2019; fax: +1-402-559-5514. E-mail address: (W. B. Thoreson)
| | - M. PICCOLINO
- Department of Biology, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
9
|
Abstract
Most synapses rely on regulated exocytosis for determining the concentration of transmitter in the synaptic cleft. However, this mechanism may not be universal. Several synapses in the retina appear to use a synaptic machinery in which transmitter transporters play an essential role. Two types of transport-mediated synapses have been proposed. These synapses have been best observed in horizontal cells and cones of nonmammalian retinas. Horizontal cells use a transporter to mediate a bidirectional shuttle, whose balance point is set by ion concentrations and voltage. Nonmammalian cones combine exocytosis and the activity of a transporter. Because exocytosis is voltage independent over most of a cone's physiological voltage range, a voltage-dependent transporter determines the concentration of transmitter in the synaptic cleft. These two synapses may be models for transport-mediated synapses that operate in other parts of the brain.
Collapse
Affiliation(s)
- E A Schwartz
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
10
|
Piccolino M, Vellani V, Rakotobe LA, Pignatelli A, Barnes S, McNaughton P. Manipulation of synaptic sign and strength with divalent cations in the vertebrate retina: pushing the limits of tonic, chemical neurotransmission. Eur J Neurosci 1999; 11:4134-8. [PMID: 10583501 DOI: 10.1046/j.1460-9568.1999.00842.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At the first synaptic level of the vertebrate retina, photoreceptor light responses are transmitted to second order neurones through a chemical synapse based on a tonic release of neurotransmitter modulated by graded changes of presynaptic potential. The possibility that such synapses could work through a Ca2+-independent process had been proposed by previous authors, based on the persistence of transmission process in low Ca2+ media containing Co2+ or Ni2+ ions. Recently, we were able to explain these results within the framework of the classical calcium-hypothesis of synaptic transmission by taking into account the modifications of presynaptic surface potential brought about by changes of divalent cation concentrations. Here we report data showing how a surface-charge hypothesis could account for several apparently paradoxical effects of divalent cation manipulations such as: the enhancement of neurotransmitter release induced by low Ca2+ media; the transmission "unblocking" effect of Zn2+, Co2+ and Ni2+; and the reversal of transmission polarity induced by application of low Ca2+ media containing Cd2+ or Mg2+ ions.
Collapse
Affiliation(s)
- M Piccolino
- Dipartimento di Biologie, Sezione di Fisiologie Generale, Università di Ferrara, Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Dmitriev A, Pignatelli A, Piccolino M. Resistance of retinal extracellular space to Ca2+ level decrease: implications for the synaptic effects of divalent cations. J Neurophysiol 1999; 82:283-9. [PMID: 10400957 DOI: 10.1152/jn.1999.82.1.283] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ion-sensitive microelectrodes were used to measure the variations of [Ca2+]o induced by application of low Ca2+ media in the superfused eyecup preparation of the Pseudemys turtle. The aim of the experiments was to evaluate the possibility, suggested by previous studies, that in the deep, sclerad, layers of the retina [Ca2+]o may remain high enough to sustain chemical synaptic transmission even after prolonged application of low-Ca2+ saline. It was found that, at depths of 100-200 micron from the vitreal surface, [Ca2+ ]o did not fall below 1 mM even after application for periods of 30-60 min of nominally Ca2+-free media, and it was >0.3 mM after 30-min application of media containing EGTA and with a Ca2+ concentration of 1 nM. Previous studies in isolated salamander photoreceptors have shown that a reduction of [Ca2+ ]o to 0.3-1.0 mM may result in a paradoxical increase of Ca2+ influx into synaptic terminals due to the reduced screening of negative charge on the external face of the plasma membrane. On the basis of these results, the persistence or enhancement of synaptic transmission from photoreceptors to horizontal cells observed in various retinas treated with low-Ca2+ media may be accounted for within the classical Ca2+-dependent theory of synaptic transmission without invoking a Ca2+-independent mechanism.
Collapse
Affiliation(s)
- A Dmitriev
- Dipartimento di Biologia, Sezione di Fisiologia Generale, Università di Ferrara, 44100 Ferrara, Italy
| | | | | |
Collapse
|
12
|
Kamermans M, Spekreijse H. The feedback pathway from horizontal cells to cones. A mini review with a look ahead. Vision Res 1999; 39:2449-68. [PMID: 10396615 DOI: 10.1016/s0042-6989(99)00043-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The feedback pathway from HCs to cones forms the basis of the surround responses of the bipolar cells and is essential for the spectral opponency of horizontal cells. The nature of this feedback pathway is an issue of debate. Three hypothesis are presented in literature: (1) a GABAA-ergic feedback pathway; (2) a GABA-independent feedback pathway that modulates the Ca-current in cones; and (3) an electrical feedback pathway. In this review the evidence for the various pathways will be discussed. The conclusion is that the available evidence favors the hypothesis that feedback modulates the Ca-current in the cones in a GABA independent way. An alternative role of GABA in the outer plexiform layer is discussed and finally the functional consequences of the negative feedback pathway from horizontal cells to cones are presented.
Collapse
Affiliation(s)
- M Kamermans
- Graduate School of Neurosciences Amsterdam, The Netherlands Ophthalmic Research Institute, Amsterdam, The Netherlands.
| | | |
Collapse
|
13
|
Maguire G. Spatial heterogeneity and function of voltage- and ligand-gated ion channels in retinal amacrine neurons. Proc Biol Sci 1999; 266:987-92. [PMID: 10380682 PMCID: PMC1689933 DOI: 10.1098/rspb.1999.0734] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The spatial distribution of ion channels within amacrine cells of the tiger salamander retina was studied using patch recording in the retinal slice preparation. By focally puffing kainate, GABA and glycine at amacrine cell processes in the inner plexiform layer, it was determined that the cell's glutamate receptors were located in a confined region of the processes near the soma, while glycine and GABA receptors were located throughout the processes. Likewise, similar techniques in conjunction with voltage steps demonstrated that voltage-gated sodium channels were located throughout the cell and were shown to generate sodium-dependent spikes, while only the processes contained voltage-gated calcium channels. These results suggest that this form of transient amacrine cell collects its excitatory synaptic inputs in a region confined to a central annular region near the soma, that the signal is actively propagated throughout its processes by voltage-gated sodium channels and that calcium-dependent neurotransmitter release of glycine from this neuron can occur throughout its processes. Thus, excitatory signals are collected in the processes near the soma, inhibitory signals throughout the processes and excitation is probably propagated throughout the processes of the amacrine cell.
Collapse
Affiliation(s)
- G Maguire
- Department of Ophthalmology, University of California, San Diego, La Jolla 92093-0946, USA.
| |
Collapse
|
14
|
Piccolino M, Pignatelli A, Rakotobe LA. Calcium-independent release of neurotransmitter in the retina: a "copernican" viewpoint change. Prog Retin Eye Res 1999; 18:1-38. [PMID: 9920497 DOI: 10.1016/s1350-9462(98)00015-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The release of synaptic transmitter in chemical synapses is brought about by Ca2+ influx through voltage-dependent Ca2+ channels opened by depolarisation of presynaptic terminals. However, in some preparations transmitter release persists or increases in low-Ca2+ media, and it has therefore been proposed that transmitter release could also occur through a Ca2+-independent, carrier mediated process. In particular it has been suggested that this may be the case for synaptic transmission between photoreceptors and second order neurones of the vertebrate retina. From our recent experiments on synaptic transmission from photoreceptors to horizontal cells of turtle and salamander retinas, it appears that lowering extracellular Ca2+ can actually promote Ca2+ influx through voltage-activated Ca2+ channels via a modification of surface potential of plasma membranes. On the basis of this apparently paradoxical effect of low Ca2+ media, it is possible to reaccommodate the so-called Ca2+-independent release within the framework of Ca2+-dependent synaptic transmission without invoking unconventional mechanisms.
Collapse
Affiliation(s)
- M Piccolino
- Dipartimento di Biologia dell'Università di Ferrara, Sezione di Fisiologia Generale, Italy. mbxpiccolino@-mailsrv.cnuce.cnr.it
| | | | | |
Collapse
|
15
|
Excitatory synaptic transmission in the inner retina: paired recordings of bipolar cells and neurons of the ganglion cell layer. J Neurosci 1998. [PMID: 9614227 DOI: 10.1523/jneurosci.18-12-04500.1998] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Properties of glutamatergic synaptic transmission were investigated by simultaneously voltage-clamping a pair of connected bipolar cells and cells in the ganglion cell layer (GLCs) in the newt retinal slice preparation. Activation of the Ca2+ current in a single bipolar cell was essential for evoking the glutamatergic postsynaptic current in the GLC. Depolarization for as short as 15 msec activated both NMDA and non-NMDA receptors. On the other hand, analysis of the spontaneous glutamatergic synaptic currents of GLCs revealed that these currents consisted of mainly non-NMDA receptor activation with little contribution from NMDA receptors. This suggests that non-NMDA receptors of GLCs are clustered in postsynaptic membrane regions immediately beneath the release sites of bipolar cells and that NMDA receptors have lower accessibility to the released transmitter than non-NMDA receptors. Glutamate that is spilled over from the release sites may activate the NMDA receptors. When a prolonged depolarizing pulse was applied to a bipolar cell, the response induced by non-NMDA receptors was limited greatly by their fast desensitization, whereas NMDA receptors were able to produce a maintained response. The relationship between the pulse duration applied to the bipolar cell and the integrated charge of the response evoked in the GLC was almost linear. Therefore, we propose that both non-NMDA and NMDA receptors cooperate to transfer the graded photoresponses of bipolar cells proportionally to GLCs.
Collapse
|
16
|
Matsui K, Hosoi N, Tachibana M. Excitatory synaptic transmission in the inner retina: paired recordings of bipolar cells and neurons of the ganglion cell layer. J Neurosci 1998; 18:4500-10. [PMID: 9614227 PMCID: PMC6792684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Properties of glutamatergic synaptic transmission were investigated by simultaneously voltage-clamping a pair of connected bipolar cells and cells in the ganglion cell layer (GLCs) in the newt retinal slice preparation. Activation of the Ca2+ current in a single bipolar cell was essential for evoking the glutamatergic postsynaptic current in the GLC. Depolarization for as short as 15 msec activated both NMDA and non-NMDA receptors. On the other hand, analysis of the spontaneous glutamatergic synaptic currents of GLCs revealed that these currents consisted of mainly non-NMDA receptor activation with little contribution from NMDA receptors. This suggests that non-NMDA receptors of GLCs are clustered in postsynaptic membrane regions immediately beneath the release sites of bipolar cells and that NMDA receptors have lower accessibility to the released transmitter than non-NMDA receptors. Glutamate that is spilled over from the release sites may activate the NMDA receptors. When a prolonged depolarizing pulse was applied to a bipolar cell, the response induced by non-NMDA receptors was limited greatly by their fast desensitization, whereas NMDA receptors were able to produce a maintained response. The relationship between the pulse duration applied to the bipolar cell and the integrated charge of the response evoked in the GLC was almost linear. Therefore, we propose that both non-NMDA and NMDA receptors cooperate to transfer the graded photoresponses of bipolar cells proportionally to GLCs.
Collapse
Affiliation(s)
- K Matsui
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
17
|
Gaal L, Roska B, Picaud SA, Wu SM, Marc R, Werblin FS. Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors. J Neurophysiol 1998; 79:190-6. [PMID: 9425190 DOI: 10.1152/jn.1998.79.1.190] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We evaluated the role of the sodium/glutamate transporter at the synaptic terminals of cone photoreceptors in controlling postsynaptic response kinetics. The strategy was to measure the changes in horizontal cell response rate induced by blocking transporter uptake in cones with dihydrokainate (DHK). DHK was chosen as the uptake blocker because, as we show through autoradiographic uptake measurements, DHK specifically blocked uptake in cones without affecting uptake in Mueller cells. Horizontal cells depolarized from about -70 to -20 mV as the exogenous glutamate concentration was increased from approximately 1 to 40 microM, so horizontal cells can serve as "glutamate electrodes" during the light response. DHK slowed the rate of hyperpolarization of the horizontal cells in a dose-dependent way, but didn't affect the kinetics of the cone responses. At 300 microM DHK, the rate of the horizontal cell hyperpolarization was slowed to only 17 +/- 8.5% (mean +/- SD) of control. Translating this to changes in glutamate concentration using the slice dose response curve as calibration in Fig. 2, DHK reduced the rate of removal of glutamate from approximately 0.12 to 0.031 microM/s. The voltage dependence of uptake rate in the transporter alone was capable of modulating glutamate concentration: we blocked vesicular released glutamate with bathed 20 mM Mg2+ and then added 30 microM glutamate to the bath to reestablish a physiological glutamate concentration level at the synapse and thereby depolarize the horizontal cells. Under these conditions, a light flash elicited a 17-mV hyperpolarization in the horizontal cells. When we substituted kainate, which is not transported, for glutamate, horizontal cells were depolarized but light did not elicit any response, indicating that the transporter alone was responsible for the removal of glutamate under these conditions. This suggests that the transporter was both voltage dependent and robust enough to modulate glutamate concentration. The transporter must be at least as effective as diffusion in removing glutamate from the synapse because there is only a very small light response once the transporter is blocked. The transporter, via its voltage dependence on cone membrane potential, appears to contribute significantly to the control of postsynaptic response kinetics.
Collapse
Affiliation(s)
- L Gaal
- Department of Molecular and Cell Biology, Division of Neurobiology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
18
|
Schmitz Y, Witkovsky P. Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel. Neuroscience 1997; 78:1209-16. [PMID: 9174087 DOI: 10.1016/s0306-4522(96)00678-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A "reduced retina" preparation, consisting of the photoreceptor layer attached to the pigment epithelium in the eyecup, was used to study the pharmacology of the calcium channels controlling glutamate release by photoreceptors in Xenopus. Glutamate release was evoked either by dark adaptation or by superfusion with elevated (20 mM) potassium medium. Both darkness- and potassium-induced release were blocked by cadmium (200 microM). The N-type calcium channel blocker, omega-conotoxin GVIA (500 nM), the P-type calcium channel blocker, omega-agatoxin IVA (20 nM), and the P- and Q-type channel blocker omega-conotoxin MVIIC (1 microM) had no effect on glutamate release. In contrast, the dihydropyridines, nifedipine (10 microM) and nitrendipine (10 microM), which affect L-type calcium channels, blocked both darkness- and potassium-induced release. Bay K 8644 (10 microM), which promotes the open state of L-type calcium channels, enhanced glutamate release. These results indicate that photoreceptor glutamate release is controlled mainly by dihydropyridine-sensitive calcium channels. A dependence of glutamate release on L-type calcium channels also has been reported for depolarizing bipolar cells of a fish retina. Thus, it appears that non-inactivating L-type calcium channels are appropriate to mediate transmitter release in neurons whose physiological responses are sustained, graded potentials.
Collapse
Affiliation(s)
- Y Schmitz
- Department of Ophthalmology, New York University Medical Center, New York 10016, USA
| | | |
Collapse
|
19
|
Fan SF, Yazulla S. Electrogenic hyperpolarization-elicited chloride transporter current in blue cones of zebrafish retinal slices. J Neurophysiol 1997; 77:1447-59. [PMID: 9084610 DOI: 10.1152/jn.1997.77.3.1447] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Voltage-activated currents in blue cones of the retinal slice of zebrafish were characterized using whole cell recording techniques. Depolarizing-elicited currents were recorded: an outward tetraethylammonium (TEA)-sensitive K+ current (IKx), an outward Ca(2+)-activated Cl- current (ICl(Ca)), from which we inferred an inward Ca2+ current (ICa) as well as a hyperpolarizing-elicited nonselective inward cation current (Ih). In addition, hyperpolarizing steps elicited an outward current (Iout-h) in about one-third of the blue cones. Iout-h seems to be carried by inward transported Cl- because it was abolished by equimolar substitution of bath Cl- with acetate; equimolar substitution of Na+ with choline or TEA had no effect; it was not affected by Cl- channel blockers, anthracene-9-carboxylic acid, 4,4'-diisothiocyanostilbene-2.2'-disulfonic acid, N-phenylanthranilic acid (DPC), niflumic acid, and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid but was suppressed by Cl- transporter blockers acetalzolamide, bumetanide, N-ethylmaleimide, furosemide, and vanadate, and no reversal potential was found. In addition, this current was suppressed by ouabains but unrelated to their Na(+)-K(+)-ATPase inhibitory effect, was not suppressed by Co2+ or nifedipine, was not affected by the gap junction decoupler, 2-octanol, was increased by bath application of Cs+, presumably due to suppression of Ih, which was masked by Iout-h, and was suppressed by intensive light. Similar current also was found in the short cones and double cones. As Iout-h operates over the same voltage range, and with similar magnitude and time course as Ih, we suggest that Iout-h contributes to the modulation of the photoresponse of cones.
Collapse
Affiliation(s)
- S F Fan
- Department of Neurobiology and Behavior, State University of New York at Stony Brook 11794-5230, USA
| | | |
Collapse
|
20
|
Schmitz Y, Witkovsky P. Glutamate release by the intact light-responsive photoreceptor layer of the Xenopus retina. J Neurosci Methods 1996; 68:55-60. [PMID: 8884613 DOI: 10.1016/0165-0270(96)00070-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to study glutamate release from light responsive photoreceptors, we used an eyecup preparation treated with detergent and distilled water, which permitted removal of the inner retina. The remaining 'reduced' retina consists mainly of photoreceptors attached to the pigment epithelium. The viability of the preparation was established by exclusion of trypan blue, light and electron microscopic examination of the photoreceptor layer and by intracellular recordings from rods. The 'reduced' retina was superfused at 1 ml/h and overflow samples were analyzed for their glutamate content by a fluorimetric enzyme assay. We tested the response to dark and light adaptation and to treatment with 100 microM CdCl2. We found a baseline glutamate level in light-adapted preparation which was not affected by cadmium. Dark adaptation induced a 2-fold increase of glutamate release, which was completely blocked by cadmium.
Collapse
Affiliation(s)
- Y Schmitz
- Dept. of Ophthalmology, New York University Medical Center, NY 10016, USA
| | | |
Collapse
|
21
|
Duarte CB, Santos PF, Sánchez-Prieto J, Carvalho AP. On-line detection of glutamate release from cultured chick retinospheroids. Vision Res 1996; 36:1867-72. [PMID: 8759425 DOI: 10.1016/0042-6989(95)00309-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A continuous fluorometric assay was adapted to measure the release of endogenous glutamate from cultured chick retinospheroids. The results obtained with this technique are compared with the release of [3H]D-aspartate from monolayer cultures of chick retina cells. It is shown that although excitatory amino acids may be released in a Ca(2+)-dependent manner, most of the neurotransmitter release from cultured retina cells occurs by reversal of the glutamate transporter. The presence of extracellular Ca2+ may actually inhibit glutamate release by the cells present in the retinospheroids, or the [3H]D-aspartate release by cells in monolayers, when veratridine is the depolarizing agent.
Collapse
Affiliation(s)
- C B Duarte
- Center for Neuroscience of Coimbra, Department of Zoology, University of Coimbra, Portugal.
| | | | | | | |
Collapse
|
22
|
Abstract
The release of neurotransmitters at classical chemical synapses occurs via Ca2+ influx through voltage-dependent Ca2+ channels, which are opened following depolarization of presynaptic terminals. However, owing to a persistence or increase in the amount of transmitter released in preparations containing low concentrations of Ca2+, it has been proposed that transmitter release could also occur through a Ca(2+)-independent, carrier-mediated process. On the other hand, lowering extracellular [Ca2+] can actually promote Ca2+ influx through voltage-activated Ca2+ channels via a modification of the surface potential of plasma membranes. Therefore, the proposed Ca(2+)-independent transmitter release could be re-accommodated within the framework of the Ca2+ hypothesis of synaptic transmission by taking into account the surface-charge effects.
Collapse
Affiliation(s)
- M Piccolino
- Dipartimento di Biologia, Università di Ferrara, Italy
| | | |
Collapse
|
23
|
Piccolino M, Byzov AL, Kurennyi DE, Pignatelli A, Sappia F, Wilkinson M, Barnes S. Low-calcium-induced enhancement of chemical synaptic transmission from photoreceptors to horizontal cells in the vertebrate retina. Proc Natl Acad Sci U S A 1996; 93:2302-6. [PMID: 8637867 PMCID: PMC39790 DOI: 10.1073/pnas.93.6.2302] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
According to the classical calcium hypothesis of synaptic transmission, the release of neurotransmitter from presynaptic terminals occurs through an exocytotic process triggered by depolarization-induced presynaptic calcium influx. However, evidence has been accumulating in the last two decades indicating that, in many preparations, synaptic transmitter release can persist or even increase when calcium is omitted from the perfusing saline, leading to the notion of a "calcium-independent release" mechanism. Our study shows that the enhancement of synaptic transmission between photoreceptors and horizontal cells of the vertebrate retina induced by low-calcium media is caused by an increase of calcium influx into presynaptic terminals. This paradoxical effect is accounted for by modifications of surface potential on the photoreceptor membrane. Since lowering extracellular calcium concentration may likewise enhance calcium influx into other nerve cells, other experimental observations of "calcium-independent" release may be reaccommodated within the framework of the classical calcium hypothesis without invoking unconventional processes.
Collapse
Affiliation(s)
- M Piccolino
- Dipartimento di Biologia, Università di Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Schmitz Y, Kohler K, Zrenner E. Evidence for calcium/calmodulin dependence of spinule retraction in retinal horizontal cells. Vis Neurosci 1995; 12:413-24. [PMID: 7654601 DOI: 10.1017/s0952523800008324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Horizontal cells of the carp retina alter their synaptic connections with cones during dark and light adaptation. At light onset, dendrites of horizontal cells, which are positioned laterally at the ribbon synapse, form "spinules," little processes with membrane densities. Spinules are retracted again during dark adaptation. Spinule retraction is also elicited upon glutamate application to the retina. In the present study, we address the question whether calcium/calmodulin-dependent pathways are involved in dark- and glutamate-evoked spinule retraction. Light-adapted retinas were isolated and subsequently dark adapted during incubation in media of different calcium concentrations. Spinule retraction was clearly blocked in low-calcium solutions (5 microM and 50 nM CaCl2). Incubation in medium containing cobalt chloride (2 mM) had the same effect. Both treatments blocked the glutamate-induced spinule retraction as well. These results indicate that spinule retraction is induced by a calcium influx into horizontal cells. To investigate whether calmodulin, the primary calcium receptor in eukaryotic cells, is present at the site of spinule formation, light- and dark-adapted retinas, embedded in LR White resin, were labelled with an antibody against calmodulin and gold-conjugated secondary antibodies. Horizontal cell dendrites at the ribbon synapse revealed strong calmodulin immunoreactivity, which was more than twice as high in light- as in dark-adapted retinas. The incubation of isolated retinas with the calmodulin antagonists W5 and W13 inhibited spinule retraction. In summary, these results suggest that spinule retraction may be regulated by calcium influx into horizontal cells and subsequent calcium/calmodulin-dependent pathways.
Collapse
Affiliation(s)
- Y Schmitz
- Department of Pathophysiology of Vision and Neuro-Ophthalmology, University Eye Hospital Tübingen, Germany
| | | | | |
Collapse
|
25
|
Maple BR, Werblin FS, Wu SM. Miniature excitatory postsynaptic currents in bipolar cells of the tiger salamander retina. Vision Res 1994; 34:2357-62. [PMID: 7975276 DOI: 10.1016/0042-6989(94)90281-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The synapse between photoreceptor and bipolar cell is important for at least three reasons: (1) it is the first synapse in the visual pathway; (2) it is the best-known tonic chemical synapse; and (3) it has perhaps the most complex and highly organized synaptic morphology in the entire brain. Yet little is known about how neurotransmitter is released from this synapse. We present in this report evidence which suggests that the release of photoreceptor neurotransmitter, presumably glutamate, is probably mediated by clusters of synaptic vesicles which give rise to discrete miniature excitatory postsynaptic currents (MEPSCs) in bipolar cells. The MEPSCs are Ca(2+)-, osmotic- and CNQX-sensitive, and they share the same reversal potential (near -3 mV) as the glutamate-induced postsynaptic current. The frequency of MEPSCs increases upon presynaptic depolarization, and the mean peak conductance is about 54 pS. MEPSCs exhibit wide variations of amplitudes and durations, probably resulting from random variations of number of synaptic vesicles and the degree of synchronization in individual release clusters.
Collapse
|
26
|
Meissl H, Yáñez J, Ekström P, Grossmann E. Benzodiazepines influence melatonin secretion of the pineal organ of the trout in vitro. J Pineal Res 1994; 17:69-78. [PMID: 7532711 DOI: 10.1111/j.1600-079x.1994.tb00116.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effect of benzodiazepines (BZP) on melatonin release was investigated in the pineal gland of the rainbow trout, Oncorhynchus mykiss, maintained under in vitro perifusion culture conditions. Melatonin and the methoxyindoles 5-methoxytryptophol (5-MTOL), 5-methoxyindoleacetic acid (5-MIAA), and 5-methoxytryptamine (5-MT) were determined directly in samples of the superfusion medium by HPLC with electrochemical detection. Melatonin release was significantly increased by addition of diazepam and clonazepam in a dose-related and reversible manner. The effects of benzodiazepines were more pronounced in light-adapted pineal organs, when melatonin secretion is low, than under scotopic conditions. When the perifusion medium was replaced by a medium containing low calcium, high magnesium concentrations, melatonin release was considerably decreased by 70% in light-adapted and 20% in dark-adapted pineal organs. Addition of diazepam to low Ca2+, high Mg(2+)-medium reversed the decrease of melatonin release and produced a clear rise in its secretion rate. Addition of the BZP antagonist flumazenil to the perifusion medium slightly decreased melatonin release in the light- and dark-adapted state, whereas the peripheral receptor antagonist PK 11195 did not alter melatonin release. The effect of diazepam is reduced by simultaneous addition of flumazenil to the superfusion medium, suggesting that the effects of diazepam are receptor-mediated. The methoxyindoles 5-MTOL, 5-MIAA, and 5-MT showed no significant changes of their release pattern after diazepam application in light- and dark-adapted pineal organs. These results suggest that BZP can influence melatonin production and release by an intrapineal action possibly on the melatonin synthesizing photoreceptor cell.
Collapse
Affiliation(s)
- H Meissl
- Max-Planck-Institute for Physiol. and Clin. Res., W.G. Kerckhoff-Institute, Bad Nauheim, Germany
| | | | | | | |
Collapse
|
27
|
Barnes S. After transduction: response shaping and control of transmission by ion channels of the photoreceptor inner segments. Neuroscience 1994; 58:447-59. [PMID: 7513385 DOI: 10.1016/0306-4522(94)90072-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoreceptors convert the elements of the visual image into the elements of a neural image. This process involves well-studied molecular events occurring at the outer segment, but also employs important molecular events in the proximal regions of the photoreceptor, including the synaptic terminal, encompassed here as the inner segment. Integral to neural processing at this level in the visual system, the inner segment mechanisms modify the visual signal before transmission to second order cells at the photoreceptor output synapse. This commentary, emphasizing the author's own work, discusses biophysical properties of the ensemble of ion channels in the photoreceptor inner segment that shape the light response and enable its transmission. Examples that illustrate ion channels whose biophysical properties seem well suited for their roles in photoreceptor function include: h channels, cation-selective channels activated by hyperpolarization, which carry current that counteracts the strong hyperpolarizing influence of cGMP-gated channel closure accompanying bright light; Kx channels, carrying potassium current which shares the kinetic properties of the M-current found in many other cell types, which shape responses to dim light and set the dark resting potential; and Ca channels that regulate calcium influx to control Ca-gated channel activity and synaptic output, "re-transducing" the neural signal now into a chemical one. The role of chloride current, carried in Ca-activated Cl channels dependent on the unknown chloride equilibrium potential in photoreceptors, is also discussed.
Collapse
Affiliation(s)
- S Barnes
- Lions' Sight Centre, University of Calgary, Faculty of Medicine, Alberta, Canada
| |
Collapse
|
28
|
Dual role for extracellular calcium in blowfly phototransduction. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1993. [DOI: 10.1007/bf00212698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Hankins MW, Ikeda H. Consequences of transient retinal hypoxia on rod input to horizontal cells in the rat retina. Vision Res 1993; 33:429-36. [PMID: 8099245 DOI: 10.1016/0042-6989(93)90250-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of hypoxia on horizontal cells were studied by intracellular recording in the superfused rat retina. Hypoxic challenge from the photoreceptor surface resulted in horizontal cell depolarization, associated with a reduction of the light-evoked hyperpolarization (S-potential). This depolarization, though not the reduction in S-potential, was reversed by non-NMDA receptor antagonists, but not by NMDA related antagonists. Horizontal cells were also depolarized during hypoxia when calcium-dependent synaptic transmitter release was blocked by Co2+. Diazoxide, an activator of ATP-sensitive K+ channels (K+ATP), had no effect on normal cells but blocked the depolarization and the reduction in S-potential. We conclude that retinal hypoxia results in increased activation of the non-NMDA receptors of horizontal cells, whilst the activation of K+ATP channels may be protective in retinal hypoxia.
Collapse
Affiliation(s)
- M W Hankins
- Vision Research Unit (UMDS), Rayne Institute, St Thomas' Hospital, London, England
| | | |
Collapse
|
30
|
Affiliation(s)
- S H DeVries
- Department of Neurobiology, Fairchild Science Center, Stanford University School of Medicine, California 94305
| | | |
Collapse
|
31
|
Cohen AI, Todd RD, Harmon S, O'Malley KL. Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase. Proc Natl Acad Sci U S A 1992; 89:12093-7. [PMID: 1334557 PMCID: PMC50704 DOI: 10.1073/pnas.89.24.12093] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the mouse, the light-sensitive pool of cAMP can be eliminated in the dark by application of the dopamine D2-like receptor agonists LY 171555 (quinpirole), (+)-N0437 (2-[N-(n-propyl)-N-2-(thienylethylamino)-5-hydroxytetralin]) , or (+)-3-PPP [3-(3-hydroxyphenyl)-N-propylpiperidine hydrochloride]. The rank-order affinity of the ability of the D2-like antagonists to block the action of LY 171555 matched that of the rat D4 receptor. Reverse transcription of retina mRNA followed by DNA amplification using D4-specific nucleotides demonstrates the presence of D4 mRNA in retina. In situ hybridization studies using D4-specific digoxygenin-labeled oligonucleotides or 35S-labeled UTP RNA probes demonstrate the presence of D4 mRNA in the photoreceptor cell layer and in the inner nuclear and ganglion cell layers. The modulation by D4 ligands of the dark level of light-sensitive cAMP in photoreceptors demonstrates the physiological coupling of the D4 receptor subtype.
Collapse
Affiliation(s)
- A I Cohen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | |
Collapse
|
32
|
Gleason E, Mobbs P, Nuccitelli R, Wilson M. Development of functional calcium channels in cultured avian photoreceptors. Vis Neurosci 1992; 8:315-27. [PMID: 1314087 DOI: 10.1017/s0952523800005058] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vertebrate photoreceptors are unusual neurons in that they are capable of continuous calcium-mediated release of neurotransmitter (Trifonov, 1968; Hagins et al., 1970). In this study, we have examined the development and characteristics of calcium currents in chick cone cells placed in culture on embryonic day 8. Cone cells were identified by their lectin-binding properties, rhodopsin-like immunoreactivity, and the presence of an oil droplet. Using the whole-cell patch-clamp method, we have seen calcium currents in these cells after three days in culture, slightly before the appearance of synapses (Gleason & Wilson, 1989). Because cone calcium currents are blocked by cadmium and nifedipine but are enhanced by Bay K 8644, they most closely resemble L-type current (Nowycky et al., 1985). An unexpected feature of these currents is that their gating ranges varied widely between cells so that some cells showed the foot of their activation range at -70 mV and others as positive as -25 mV. Calcium imaging of fura-2 loaded cells was used to confirm the time course of calcium current development and describe the distribution of cytosolic calcium. As expected, depolarization of young cells failed to increase cytosolic calcium but in older cells an increase of threefold to fourfold was usually observed. Both at rest and during depolarization, most cone cells showed regional differences in internal calcium concentration. In the most mature cones, depolarization strongly elevated cytosolic calcium at the terminal end of the cell while producing a lesser change around the oil droplet and the ellipsoid region, suggesting that calcium channels are localized to the terminal.
Collapse
Affiliation(s)
- E Gleason
- Department of Zoology, University of California, Davis
| | | | | | | |
Collapse
|
33
|
Abstract
Dopamine (DA) has satisfied many of the criteria for being a major neurochemical in vertebrate retinae. It is synthesized in amacrine and/or interplexiform cells (depending on species) and released upon membrane depolarization in a calcium-dependent way. Strong evidence suggests that it is normally released within the retina during light adaptation, although flickering and not so much steady light stimuli have been found to be most effective in inducing endogenous dopamine release. DA action is not restricted to those neurones which appear to be in "direct" contact with pre-synaptic dopaminergic terminals. Neurones that are several microns away from such terminals can also be affected, presumably by short diffusion of the chemical. DA thus affects the activity of many cell types in the retina. In photoreceptors, it induces retinomotor movements, but inhibits disc shedding acting via D2 receptors, without significantly altering their electrophysiological responses. DA has two main effects upon horizontal cells: it uncouples their gap junctions and, independently, enhances the efficacy of their photoreceptor inputs, both effects involving D1 receptors. In the amphibian retina, where horizontal cells receive mixed rod and cone inputs, DA alters their balance in favour of the cone input, thus mimicking light adaptation. Light-evoked DA release also appears to be responsible for potentiating the horizontal cell-->cone negative feed-back pathway responsible for generation of multi-phasic, chromatic S-potentials. However, there is little information concerning action of DA upon bipolar and amacrine cells. DA effects upon ganglion cells have been investigated in mammalian (cat and rabbit) retinae. The results suggest that there are both synaptic and non-synaptic D1 and D2 receptors on all physiological types of ganglion cell tested. Although the available data cannot readily be integrated, the balance of evidence suggests that dopaminergic neurones are involved in the light/dark adaptation process in the mammalian retina. Studies of the DA system in vertebrate retinae have contributed greatly to our understanding of its role in vision as well as DA neurobiology generally in the central nervous system. For example, the effect of DA in uncoupling horizontal cells is one of the earliest demonstrations of the uncoupling of electrotonic junctions by a neurally released chemical. The many other, diverse actions of DA in the retina reviewed here are also likely to become model modes of neurochemical action in the nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M B Djamgoz
- Imperial College of Science, Technology and Medicine, Department of Biology, London, U.K
| | | |
Collapse
|
34
|
Meister M, Wong RO, Baylor DA, Shatz CJ. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 1991; 252:939-43. [PMID: 2035024 DOI: 10.1126/science.2035024] [Citation(s) in RCA: 740] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of orderly connections in the mammalian visual system depends on action potentials in the optic nerve fibers, even before the retina receives visual input. In particular, it has been suggested that correlated firing of retinal ganglion cells in the same eye directs the segregation of their synaptic terminals into eye-specific layers within the lateral geniculate nucleus. Such correlations in electrical activity were found by simultaneous recording of the extracellular action potentials of up to 100 ganglion cells in the isolated retina of the newborn ferret and the fetal cat. These neurons fired spikes in nearly synchronous bursts lasting a few seconds and separated by 1 to 2 minutes of silence. Individual bursts consisted of a wave of excitation, several hundred micrometers wide, sweeping across the retina at about 100 micrometers per second. These concerted firing patterns have the appropriate spatial and temporal properties to guide the refinement of connections between the retina and the lateral geniculate nucleus.
Collapse
Affiliation(s)
- M Meister
- Department of Neurobiology, Stanford University School of Medicine, CA 94305
| | | | | | | |
Collapse
|
35
|
Miyachi E, Murakami M. Synaptic inputs to turtle horizontal cells analyzed after blocking of gap junctions by intracellular injection of cyclic nucleotides. Vision Res 1991; 31:631-5. [PMID: 1668864 DOI: 10.1016/0042-6989(91)90003-n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intracellular injection of cAMP or cGMP into turtle horizontal cells significantly increased the input resistances, and the cells could thus be easily polarized by current injection, suggesting that the cyclic nucleotides blocked gap junctions between cells. Then, synaptic inputs onto triphasic chromaticity-type cells were analyzed. Hyperpolarizing and depolarizing light responses were all reduced with depolarizing current, and their polarities were reversed by further depolarization. Their reversal potentials coincided at around 0 mV. This level was the same as observed in luminosity-type and biphasic chromaticity-type cells, suggesting that the ionic mechanisms of synaptic transmission are common among horizontal cell types.
Collapse
Affiliation(s)
- E Miyachi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
36
|
|
37
|
Schwartz EA, Tachibana M. Electrophysiology of glutamate and sodium co-transport in a glial cell of the salamander retina. J Physiol 1990; 426:43-80. [PMID: 2231407 PMCID: PMC1189876 DOI: 10.1113/jphysiol.1990.sp018126] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. Müller cells were isolated from salamander retinas and their membrane voltage was controlled with a whole-cell voltage clamp. External D-aspartate, L-aspartate and L-glutamate each induced a membrane current. D-Glutamate, kainate, quisqualate and N-methyl-D-aspartate were more than 100x less effective than L-aspartate. Kynurenic acid had no effect on the current produced by L-glutamate, L-aspartate or D-aspartate. 2. The current induced by an acidic amino acid (AAA) was completely dependent on the presence of external Na+. Neither Li+, Cs+, choline nor TEA+ were able to substitute for Na+. The relationship between external Na+ concentration and current amplitude can be explained if the binding of three Na+ ions enabled transport. The apparent affinity constant for Na+ binding was 41 mM. Altering K+, H+ and Cl- concentrations demonstrated that these ions are not required for transport. 3. The shape of the current-voltage relation did not depend on the external amino acid concentration. The relationship between D-aspartate concentration and current amplitude can be described by the binding of D-aspartate to a single site with an apparent affinity constant of 20 microM. 4. Influx and efflux of AAA were not symmetric. Although influx was electrogenic, efflux did not produce a current. Moreover, influx stimulated efflux; but efflux inhibited influx. 5. Removing external Na+ demonstrated that Na+ carried a current in the absence of an AAA. Li+ was a very poor substitute for Na+. This current may be due to the uncoupled movement of Na+ through the transporter. The relationship between the external Na+ concentration and the amplitude of the uncoupled current can be explained if the binding of two or three Na+ ions enabled the translocation of Na+ in the absence of an AAA. The apparent affinity constant for Na+ binding was approximately 90 mM. 6. The temperature dependence of the AAA-induced current had a Q10 between 8 and 18 degrees C of 1.95. The Q10 is consistent with a rate constant for influx of 10(4) s-1 (at -70 mV and 20 degrees C). The maximum rate of influx was measured following a concentration jump produced by the photolysis of 'caged' L-glutamate. The onset of the observed current was limited by the 1.3 ms resolution of the recording system. Hence, the rate constant for influx must be faster than 10(3) s-1.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E A Schwartz
- Department of Pharmacological and Physiological Sciences, University of Chicago, IL 60637
| | | |
Collapse
|
38
|
Dong CJ, McReynolds JS, Qian HH. Time-dependent differential effects of cobalt ions on rod- and cone-driven responses in the isolated frog retina. Vis Neurosci 1990; 4:359-65. [PMID: 2271448 DOI: 10.1017/s0952523800004569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of cobalt ions on 502-nm rod- and 575-nm cone-driven components of the b-wave of the electroretinogram were studied in the isolated frog retina. Addition of 100-150 microM cobalt initially caused a suppression of rod-driven responses and an enhancement of cone-driven responses. In the continued presence of cobalt, however, the rod-driven responses gradually recovered and the cone-driven responses became suppressed. These concentrations of cobalt had no effect on the rod- and cone-driven mass receptor potentials which were isolated in the presence of 4 mM glutamate. At higher concentrations of cobalt (1 mM or greater), both rod- and cone-driven b-wave responses were eliminated and there was no recovery in the continued presence of cobalt. The results suggest that cobalt has markedly different, time-dependent effects on signal transmission from rods and cones to second-order cells.
Collapse
Affiliation(s)
- C J Dong
- Department of Physiology, University of Michigan, Ann Arbor 48109-0622
| | | | | |
Collapse
|
39
|
Maguire G, Lukasiewicz P, Werblin F. Synaptic and voltage-gated currents in interplexiform cells of the tiger salamander retina. J Gen Physiol 1990; 95:755-70. [PMID: 2159975 PMCID: PMC2216332 DOI: 10.1085/jgp.95.4.755] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have correlated the membrane properties and synaptic inputs of interplexiform cells (IPCs) with their morphology using whole-cell patch-clamp and Lucifer yellow staining in retinal slices. Three morphological types were identified: (a) a bistratified IPC with descending processes ramifying in both sublaminas a and b of the inner plexiform layer (IPL), and an ascending process that branched in the outer plexiform layer (OPL) and originated from the soma, (b) another bistratified IPC with descending processes ramifying in both sublaminas a and b, and an ascending process that branched in the OPL and originated directly from IPC processes in the IPL, and (c) a monostratified IPC with a descending process ramifying over large lateral extents within the most distal stratum of the IPL, and sending an ascending process to the OPL with little branching. Similar voltage-gated currents were measured in all three types including: (a) a transient inward sodium current, (b) an outward potassium current, and (c) an L-type calcium current. All cells generated multiple spikes with frequency increasing monotonically with the magnitude of injected current. The IPCs that send their descending processes into both sublaminas of the IPL (bistratified) receive excitatory synaptic inputs at both light ON and OFF that decay with a time constant of approximately 1.3 s. Slowly decaying excitation at both ON and OFF suggests that bistratified IPCs may spike continuously in the presence of a dynamic visual environment.
Collapse
Affiliation(s)
- G Maguire
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
40
|
Guth SL, Drescher DG. Effects of divalent cations on the frequency of spontaneous action potentials from the lateral line organ of Xenopus laevis. Brain Res 1990; 508:76-84. [PMID: 2110846 DOI: 10.1016/0006-8993(90)91120-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effect of superfusion of the internal surface of the skin of Xenopus laevis with saline containing Co2+, Ca2+, Mg2+, or Ba2+, on the frequency of spontaneous action potentials of the lateral line nerve, was studied to investigate the role of extracellular Ca2+ in spontaneous neural activity. Addition of divalent cations to frog saline, either singly or as a mixture of two different ions, produced concentration-dependent suppression of spontaneous rate. The rank order of potency for suppression by each ion, perfused alone, was Co2+ greater than Ca2+ greater than Mg2+ greater than Ba2+. Suppression by combinations of Mg2+ and Co2+, or of Ca2+ and Co2+, was approximated by the sum of the suppressive effects of each cation. Ca2+ was more suppressive than Mg2+ when each of these ions was paired with the same amount of Co2+, while Ca2+ was approximately as suppressive as Co2+ when similarly paired with Mg2+. One interpretation of the suppression by Ca2+ invokes the hypothesis that divalent cations suppress spontaneous activity by charge screening of voltage-sensitive Na+ channels on afferent dendrites and that release of neurotransmitter by the influx of extracellular Ca2+ through voltage-sensitive Ca2+ channels of hair cells may not be the sole mechanism for generation of spontaneous activity in the lateral line. These results quantify the relative suppressive potency of common divalent cations in the lateral line, and serve as a caveat to investigators who interpret a blockade of action potentials by high concentrations of Co2+ or Mg2+ as sufficient evidence for dependence of neurotransmission upon extracellular Ca2+, particularly in acousticolateralis systems.
Collapse
Affiliation(s)
- S L Guth
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201
| | | |
Collapse
|
41
|
|
42
|
Cohen AI, Blazynski C. Dopamine and its agonists reduce a light-sensitive pool of cyclic AMP in mouse photoreceptors. Vis Neurosci 1990; 4:43-52. [PMID: 1702315 DOI: 10.1017/s0952523800002753] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The exposure to bright light of dark-adapted (DKA) mouse retinas incubated in the dark (DI) in IBMX-containing medium causes a marked loss of cyclic AMP. This light response also occurs if the medium contains 10 mM aspartate or cobaltous ion, agents believed to confine the effects of light to photoreceptors. Thus, the action of light in the presence of either of these agents defines a light-sensitive pool of cyclic AMP in photoreceptors. This pool could also be reduced or eliminated in DKA-DI retinas by nanomolar to micromolar levels of dopamine (if the medium contained SCH23390, a potent antagonist of D1 receptors), thus indicating an agonistic action of dopamine at D2 receptors. The D2 agonists LY171555 (EC50 10 nM) or (+)-3-PPP also reduced the cyclic AMP level in the dark. Of the D2 antagonists tested, the butyrophenone spiperone (in the presence of the 5HT-2 blocker ketanserin) countered the action of the D2 agonists but substituted benzamides were ineffective. Consistently, the D2 agonists had no effect on cyclic AMP levels of mutant retinas lacking photoreceptors (rd/rd), but reduced cyclic AMP in DKA-DI glutamate-modified retinas which exhibit a major loss of inner retinal neurons without apparent loss of photoreceptors. The D1 antagonist SCH23390 only reduced cyclic AMP levels of DKA-DI retinas when cyclic AMP levels had been elevated by adding dopamine to the incubation medium.
Collapse
Affiliation(s)
- A I Cohen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
43
|
Parnas H, Parnas I, Segel LA. On the contribution of mathematical models to the understanding of neurotransmitter release. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1990; 32:1-50. [PMID: 1981883 DOI: 10.1016/s0074-7742(08)60579-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H Parnas
- Department of Neurobiology, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
44
|
Miyachi E, Murakami M. Decoupling of horizontal cells in carp and turtle retinae by intracellular injection of cyclic AMP. J Physiol 1989; 419:213-24. [PMID: 2559975 PMCID: PMC1190005 DOI: 10.1113/jphysiol.1989.sp017870] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. Horizontal cells are electrically coupled through gap junctions. This is a disadvantage in elucidating the membrane properties of the cells. In order to block gap junctions, adenosine 3',5'-cyclic monophosphate (cyclic AMP) or its analogues, dibutyryl cyclic AMP and 8-bromo cyclic AMP, were ionophoretically injected into horizontal cells of the carp or turtle retina. 2. Before injection of the chemicals the input resistance of the cell was so low as to be unmeasurable, because the applied current leaked through gap junctions. After injection, however, the input resistance was significantly increased. 3. After the injection dye-coupling between horizontal cells was not observed when examined by intracellular injection of Lucifer Yellow dye, supporting the idea that high concentrations of intracellular cyclic AMP block gap junctions. 4. In this situation responses to light delivered to the receptive field centre were increased in amplitude, while responses to light delivered to the receptive field surround were greatly diminished. 5. After injection horizontal cells were readily polarized by conventional intracellular current injection. The hyperpolarizing light responses in carp and turtle luminosity-type cells (H1 cells) could be reversed by depolarizing the horizontal cells, and the reversal potentials were estimated to be about 0 mV. In addition, the resistance increase which accompanied the hyperpolarizing light responses could be detected. 6. In turtle biphasic chromaticity-type horizontal cells (H2 cells), hyperpolarizing light responses to shorter wavelengths and depolarizing ones to longer wavelengths could be reversed by depolarizing the horizontal cells. Both responses have almost the same reversal potential at about 0 mV. The membrane resistance changes associated with light responses were also detected; the resistance increased during the hyperpolarizing response, while it decreased during the depolarizing response. These observations suggest that the ionic mechanisms of both responses are probably the same, irrespective of their polarities.
Collapse
Affiliation(s)
- E Miyachi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
45
|
Downing JE, Djamgoz MB. Quantitative analysis of cone photoreceptor-horizontal cell connectivity patterns in the retina of a cyprinid fish: electron microscopy of functionally identified and HRP-labelled horizontal cells. J Comp Neurol 1989; 289:537-53. [PMID: 2592596 DOI: 10.1002/cne.902890402] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Horizontal cells generating photopic luminosity and biphasic/chromaticity-type S-potentials were identified and intracellularly labelled with horseradish peroxidase in the retina of the roach. The synaptic connectivity patterns of the horizontal cell dendrites within pedicles of different spectral types of cone were then quantitatively studied by electron microscopy. Luminosity-type responses were generated by H1-like horizontal cells contacting similar numbers of red- and green-sensitive cones and very few blue-sensitive cones. Most dendritic contacts were lateral to synaptic ribbons. Central contacts with ribbons were made almost exclusively within red-sensitive cone pedicles. Biphasic/chromaticity-type S-potentials were generated by H2-like horizontal cells. The dendrites of the latter contacted green- and blue-sensitive cones, both at central and lateral sites at synaptic ribbons. An attempt was made to correlate cone ribbon connectivity patterns and spectral characteristics of the horizontal cells according to several hypotheses, some proposed in earlier studies.
Collapse
Affiliation(s)
- J E Downing
- Department of Pure and Applied Biology, Imperial College of Science, Technology and Medicine, London, England
| | | |
Collapse
|
46
|
Gleason E, Wilson M. Development of synapses between chick retinal neurons in dispersed culture. J Comp Neurol 1989; 287:213-24. [PMID: 2477404 DOI: 10.1002/cne.902870205] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Morphological criteria allow several kinds of synapse to be recognized in the vertebrate retina. It is, however, not presently known if, or how, these morphological differences reflect physiological distinctions. Since a proper investigation of synaptic physiology in the intact retina is compromised by technical difficulties, we have examined dispersed cultures to discover if they are likely to provide a more tractable physiological preparation. The chief question addressed here concerns the extent to which normal synaptic development takes place in the impoverished conditions of dispersed cell culture. Cultures were established from embryonic day 8 chick retina and fixed for microscopy on embryonic equivalent (E.E.) days 12, 14, 16, and 18. Neuronal processes appeared shortly after plating and continued to increase in number and extent through E.E. 16. Cone cells were recognizable by virtue of their distinctive oil droplets. Two classes of cone could be distinguished on the basis of the density of their cytoplasmic staining. Presynaptic ribbons could be observed in cone cells on E.E. 12, but characteristic dyad and triad postsynaptic organization was seldom present at this stage nor was it often observed at subsequent times. An increase in the number of ribbon synapses in culture was seen on E.E. 18. These synapses may represent those of bipolar cells. Conventional synapses were found at all times examined but the number of these increased greatly between E.E. 14 and 16. Of these conventional synapses, we found some whose anatomy was characteristic of synapses made by amacrine cells as well as some whose anatomy was characteristic of synapses made by bipolar cells.
Collapse
Affiliation(s)
- E Gleason
- Department of Zoology, University of California, Davis 95616
| | | |
Collapse
|
47
|
Yang XL, Wu SM. Effects of CNQX, APB, PDA, and kynurenate on horizontal cells of the tiger salamander retina. Vis Neurosci 1989; 3:207-12. [PMID: 2577265 DOI: 10.1017/s0952523800009962] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Effects of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 2-amino-4-phosphonobutyrate (APB), cis-2,3-piperidine dicarboxylic acid (PDA), and kynurenate (KYN) on the depolarizing actions of glutamate and kainate on horizontal cells (HCs) were studied in the larval tiger salamander retina. APB, PDA, and KYN hyperpolarized the HCs, but they failed to block either the actions of glutamate and kainate, or the HC light responses. APB and PDA did not cause membrane polarizations in either rods or cones, suggesting that the HC hyperpolarizations were not mediated by presynaptic actions of these compounds. CNQX, the newly synthesized non-NMDA (N-Methyl-D-Aspartate) receptor antagonist, blocked the HC light responses and the action of kainate, but not that of glutamate. These results suggest that the synaptic receptors in the tiger salamander HCs are probably non-NMDA although extra-synaptic NMDA receptors may exist in these cells.
Collapse
Affiliation(s)
- X L Yang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
48
|
Yang CY, Yazulla S. Localization of putative GABAergic neurons in the larval tiger salamander retina by immunocytochemical and autoradiographic methods. J Comp Neurol 1988; 277:96-108. [PMID: 3198798 DOI: 10.1002/cne.902770107] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Putative GABAergic neurons in the larval tiger salamander retina were localized by a comparative analysis of glutamate decarboxylase immunoreactivity (GAD-IR), GABA-like immunoreactivity (GABA-IR), and high-affinity 3H-GABA uptake at the light microscopical level. Preliminary data showed that all GAD-IR neurons were double labeled for GABA-IR. However, because the weak somatic labeling with GAD-IR, we could not determine if the converse were true. Neurons commonly labeled with GABA-IR and 3H-GABA uptake include horizontal cells, type I (outer) and type II (inner) bipolar cells, type I (inner) and type II (outer) amacrine cells, and cell bodies in the ganglion cell layer (GCL). In addition, interplexiform cells were identified with GABA-IR. The presence of GABA-IR ganglion cells was indicated by GABA-IR fibers in the optic fiber layer and optic nerve as well as by a GABA-IR cell in the GCL that included a labeled axon. The percentage of labeled somas in the inner nuclear layer (INL) compared to all cells in each layer was similar for the two methods: 30% in INL 1 (outer layer of somas), 15% in INL 2 (middle layer), 43-52% in INL 3 (inner layer), and about 21-26% in the GCL. Labeled processes were found in three bands in the inner plexiform layer, with the densest band located in the most proximal part. Postembedding labeling of 1-micron Durcupan resin sections for GABA-IR showed the same general pattern as obtained with 10-microns cryostat sections, with additional staining, however, of type II (inner) bipolar cell Landolt's clubs. Extensive colocalization of labeling was indicated, and we conclude that GABA-IR can serve as a valid and reliable marker for GABA-containing neurons in this retina and suggest that GABA serves as a transmitter for horizontal cells, several types of amacrine cell, a type of interplexiform cell, and perhaps a small percentage of type I and type II bipolar cells and ganglion cells.
Collapse
Affiliation(s)
- C Y Yang
- Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794
| | | |
Collapse
|
49
|
Maricq AV, Korenbrot JI. Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors. Neuron 1988; 1:503-15. [PMID: 2483100 DOI: 10.1016/0896-6273(88)90181-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vertebrate rod and cone photoreceptors hyperpolarize when illuminated. However, synaptic input from horizontal cells can depolarize cones and even elicit action potentials. Using the whole-cell tight-seal recording technique, we determined that, in solitary cones isolated from a lizard retina, action potentials can be generated by depolarizing current steps under conditions where only two ionic currents are activated. A dihydropyridine-sensitive, inward Ca2+ current that activates at potentials positive to -40 mV can regeneratively depolarize the cell. Subsequently, a SITS-sensitive, Ca2(+)-dependent outward Cl- current repolarizes the cell. We suggest that these ionic currents may help explain lateral inhibition in the retina.
Collapse
Affiliation(s)
- A V Maricq
- Department of Physiology School of Medicine, University of California, San Francisco 94143
| | | |
Collapse
|
50
|
Takahashi K, Murakami M. Subtype of excitatory amino acid receptor in cone horizontal cells of the carp retina as specified by reversal potential measurement technique. Neurosci Res 1988; 5:453-64. [PMID: 2840614 DOI: 10.1016/0168-0102(88)90029-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Effects of agonists of the excitatory amino acid (EAA) transmitters were examined in carp cone horizontal cells where glutamate (Glu) or aspartate (Asp) is believed to act as the transmitter released from the photoreceptors. Bath application of kainic (KA), quisqualic (QA) and N-methyl-D-aspartic (NMDA) acids produced little effect on cone cells, indicating that their effects act directly on the horizontal cells. KA and QA (100 microM for both) produced depolarizations in the horizontal cells. Their reversal potentials were measured by our novel technique which was developed to overcome a serious experimental disadvantage due to electrical coupling between horizontal cells. The retina was perfused with a modified Ringer solution which contained high-Ca2+,Ba2+, and some K+-channel blockers. A Ca2+ action potential having an overshoot was evoked in the horizontal cells when they were depolarized by application of the EAA. During the action potential, perfect potential uniformity was achieved throughout electrically coupled cells. Responses induced by KA and QA during the overshoot appeared in reversed polarities to those elicited at the resting state. Their reversal potentials were then estimated to be similar at around -6mV, and this value coincided with that of the Glu- or Asp-induced responses. On the other hand, effects of NMDA were diverse even though applied in the order of mM; some cells were hyperpolarized, but the others were little affected. These observations indicate that the EAA receptor of carp horizontal cells is KA/QA (non-NMDA) type.
Collapse
Affiliation(s)
- K Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|