1
|
Zholos AV, Greenwood IA, Lang RJ, Benham CD, Aaronson PI, Garland CJ, Weston AH, Prestwich SA, Gordienko DV, Povstyan OV, Zhang H, Clapp LH, Pucovsky V, Tare M, Fenech CJ, Unno T, Muraki K, Shi J, Hughes AD, Halstead TK, Beech DJ. Thomas (Tom) B. Bolton - a major force in smooth muscle research. J Physiol 2024; 602:3601-3604. [PMID: 38941137 DOI: 10.1113/jp287062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Affiliation(s)
| | | | - Rick J Lang
- Monash University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | - Marianne Tare
- Monash University Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Jackson WF. K V channels and the regulation of vascular smooth muscle tone. Microcirculation 2018; 25. [PMID: 28985443 DOI: 10.1111/micc.12421] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/01/2017] [Indexed: 12/31/2022]
Abstract
VSMCs in resistance arteries and arterioles express a diverse array of KV channels with members of the KV 1, KV 2 and KV 7 families being particularly important. Members of the KV channel family: (i) are highly expressed in VSMCs; (ii) are active at the resting membrane potential of VSMCs in vivo (-45 to -30 mV); (iii) contribute to the negative feedback regulation of VSMC membrane potential and myogenic tone; (iv) are activated by cAMP-related vasodilators, hydrogen sulfide and hydrogen peroxide; (v) are inhibited by increases in intracellular Ca2+ and vasoconstrictors that signal through Gq -coupled receptors; (vi) are involved in the proliferative phenotype of VSMCs; and (vii) are modulated by diseases such as hypertension, obesity, the metabolic syndrome and diabetes. Thus, KV channels participate in every aspect of the regulation of VSMC function in both health and disease.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Bae H, Choi J, Kim YW, Lee D, Kim JH, Ko JH, Bang H, Kim T, Lim I. Effects of Nitric Oxide on Voltage-Gated K⁺ Currents in Human Cardiac Fibroblasts through the Protein Kinase G and Protein Kinase A Pathways but Not through S-Nitrosylation. Int J Mol Sci 2018. [PMID: 29534509 PMCID: PMC5877675 DOI: 10.3390/ijms19030814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study investigated the expression of voltage-gated K+ (KV) channels in human cardiac fibroblasts (HCFs), and the effect of nitric oxide (NO) on the KV currents, and the underlying phosphorylation mechanisms. In reverse transcription polymerase chain reaction, two types of KV channels were detected in HCFs: delayed rectifier K+ channel and transient outward K+ channel. In whole-cell patch-clamp technique, delayed rectifier K+ current (IK) exhibited fast activation and slow inactivation, while transient outward K+ current (Ito) showed fast activation and inactivation kinetics. Both currents were blocked by 4-aminopyridine. An NO donor, S-nitroso-N-acetylpenicillamine (SNAP), increased the amplitude of IK in a concentration-dependent manner with an EC50 value of 26.4 µM, but did not affect Ito. The stimulating effect of SNAP on IK was blocked by pretreatment with 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or by KT5823. 8-bromo-cyclic GMP stimulated the IK. The stimulating effect of SNAP on IK was also blocked by pretreatment with KT5720 or by SQ22536. Forskolin and 8-bromo-cyclic AMP each stimulated IK. On the other hand, the stimulating effect of SNAP on IK was not blocked by pretreatment of N-ethylmaleimide or by DL-dithiothreitol. Our data suggest that NO enhances IK, but not Ito, among KV currents of HCFs, and the stimulating effect of NO on IK is through the PKG and PKA pathways, not through S-nitrosylation.
Collapse
Affiliation(s)
- Hyemi Bae
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Jeongyoon Choi
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Young-Won Kim
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Donghee Lee
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Jung-Ha Kim
- Department of Family Medicine, College of Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Seoul 06973, Korea.
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Taeho Kim
- Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Seoul 06973, Korea.
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| |
Collapse
|
4
|
Multiple Actions of Phencyclidine and (+)MK-801 on Isolated Bovine Cerebral Arteries. J Neurosurg Anesthesiol 2017; 30:359-367. [PMID: 29076977 DOI: 10.1097/ana.0000000000000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study examines the direct effects of 3 noncompetitive N-methyl-D-aspartate receptor antagonists, phencyclidine (PCP), (+)MK-801, and (-)MK-801, on bovine middle cerebral arteries (BMCA). Rings of BMCA were mounted in isolated tissue chambers equipped with isometric tension transducers to obtain pharmacologic dose-response curves. In the absence of endogenous vasoconstrictors, the 3 N-methyl-D-aspartate antagonists each produced direct constriction of BMCA. The thromboxane A2 receptor antagonist SQ-29,548, the TxA2 synthase inhibitor furegrelate, the calcium antagonist nimodipine, and calcium-deficient media all inhibited maximal phencyclidine or (+)MK-801-induced constriction. Direct constriction by PCP or (+)MK-801 was independent of the presence of endothelium. When BMCA were preconstricted with potassium-depolarizing solution, PCP, (+)MK-801, and (-)MK-801 each produced only concentration-dependent relaxation. When BMCA were preconstricted with the stable TxA2 analog U-46,619 and exposed to increasing concentrations of PCP, (+)MK-801, or (-)MK-801, tension increased. Thromboxane A2 may contract BMCA by acting as a potassium channel blocker; iberiotoxin and tetraethylammonium both constrict BMCA. In Ca-deficient media containing either potassium or U-46,619, phencyclidine and (+)MK-801 each produced competitive inhibition of subsequent Ca-induced constriction. In additional experiments, arterial strips were mounted in isolated tissue chambers to directly measure calcium uptake, using Calcium as a radioactive tracer. Both phencyclidine and (+)MK-801 blocked potassium-stimulated or U-46,619-stimulated Ca uptake into arterial strips. These results suggest that phencyclidine and (+)MK-801 have 2 separate actions on BMCA. They may constrict arterial rings by releasing TxA2 from cerebrovascular smooth muscle, and relax arterial rings by acting as calcium antagonists.
Collapse
|
5
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Brereton MF, Wareing M, Jones RL, Greenwood SL. Characterisation of K+ channels in human fetoplacental vascular smooth muscle cells. PLoS One 2013; 8:e57451. [PMID: 23437391 PMCID: PMC3578819 DOI: 10.1371/journal.pone.0057451] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/24/2013] [Indexed: 11/18/2022] Open
Abstract
Adequate blood flow through placental chorionic plate resistance arteries (CPAs) is necessary for oxygen and nutrient transfer to the fetus and a successful pregnancy. In non-placental vascular smooth muscle cells (SMCs), K(+) channels regulate contraction, vascular tone and blood flow. Previous studies showed that K(+) channel modulators alter CPA tone, but did not distinguish between effects on K(+) channels in endothelial cells and SMCs. In this study, we developed a preparation of freshly isolated CPASMCs of normal pregnancy and investigated K(+) channel expression and function. CPASMCs were isolated from normal human term placentas using enzymatic digestion. Purity and phenotype was confirmed with immunocytochemistry. Whole-cell patch clamp was used to assess K(+) channel currents, and mRNA and protein expression was determined in intact CPAs and isolated SMCs with RT-PCR and immunostaining. Isolated SMCs expressed α-actin but not CD31, a marker of endothelial cells. CPASMCs and intact CPAs expressed h-caldesmon and non-muscle myosin heavy chain-2; phenotypic markers of contractile and synthetic SMCs respectively. Whole-cell currents were inhibited by 4-AP, TEA, charybdotoxin and iberiotoxin implicating functional K(v) and BK(Ca) channels. 1-EBIO enhanced whole cell currents which were abolished by TRAM-34 and reduced by apamin indicating activation of IK(Ca) and SK(Ca) respectively. BK(Ca), IK(Ca) and SK(Ca)3 mRNA and/or protein were expressed in CPASMCs and intact CPAs. This study provides the first direct evidence for functional K(v), BK(Ca,) IK(Ca) and SK(Ca) channels in CPASMCs. These cells display a mixed phenotype implicating a dual role for CPASMCs in controlling both fetoplacental vascular resistance and vasculogenesis.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Calcium/metabolism
- Calmodulin-Binding Proteins/genetics
- Calmodulin-Binding Proteins/metabolism
- Chorion/blood supply
- Chorion/cytology
- Chorion/drug effects
- Chorion/metabolism
- Female
- Fetus
- Gene Expression/drug effects
- Humans
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Patch-Clamp Techniques
- Placenta/blood supply
- Placenta/cytology
- Placenta/drug effects
- Placenta/metabolism
- Potassium/metabolism
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Calcium-Activated/antagonists & inhibitors
- Potassium Channels, Calcium-Activated/classification
- Potassium Channels, Calcium-Activated/genetics
- Potassium Channels, Calcium-Activated/metabolism
- Potassium Channels, Voltage-Gated/antagonists & inhibitors
- Potassium Channels, Voltage-Gated/classification
- Potassium Channels, Voltage-Gated/genetics
- Potassium Channels, Voltage-Gated/metabolism
- Pregnancy
Collapse
Affiliation(s)
- Melissa F Brereton
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Manchester, United Kingdom.
| | | | | | | |
Collapse
|
7
|
The contribution of d-tubocurarine-sensitive and apamin-sensitive K-channels to EDHF-mediated relaxation of mesenteric arteries from eNOS-/- mice. J Cardiovasc Pharmacol 2012; 59:413-25. [PMID: 22217882 DOI: 10.1097/fjc.0b013e318248acd9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The nature of the potassium channels involved in determining endothelium-derived hyperpolarizing factor-mediated relaxation was investigated in first-order small mesenteric arteries from male endothelial nitric oxide synthase (eNOS-/-)-knockout and control (+/+) mice. Acetylcholine-induced endothelium-dependent relaxation of small mesenteric arteries of eNOS-/- was resistant to N-nitro-L-arginine and indomethacin and the guanylyl cyclase inhibitor, 1H-(1,2,4) oxadiazolo (4,3-a) quinoxalin-1-one. Apamin and the combination of apamin and iberiotoxin or apamin and charybdotoxin induced a transient endothelium-dependent contraction of small mesenteric arteries from both eNOS-/- and +/+ mice. Acetylcholine-induced relaxation in eNOS-/- mice was unaffected by charybdotoxin or apamin alone but significantly inhibited by the combination of these agents. However, the combination of scyllatoxin and iberiotoxin did not mimic the inhibitory effect of the apamin/charybdotoxin combination. Tubocurarine alone completely blocked acetylcholine-induced relaxation in eNOS-/- mice. Single channel analysis of myocytes from small mesenteric arterioles revealed a large conductance calcium-activated potassium channel that was sensitive to iberiotoxin, charybdotoxin, and tetraethylammonium. Tubocurarine blocked this channel from the cytosolic side but not when applied extracellularly. Solutions of nitric oxide (NO) gas also relaxed small mesenteric arteries that had been contracted with cirazoline in a concentration-dependent manner, and the sensitivity to NO was reduced by iberiotoxin and the combination of apamin, scyllatoxin, or tubocurarine with charybdotoxin but not by apamin, charybdotoxin, scyllatoxin, or tubocurarine alone. These data indicate that acetylcholine-induced endothelium-derived hyperpolarizing factor-mediated relaxation in small mesenteric arteries from eNOS-/- involved the activation of tubocurarine and apamin-/charybdotoxin-sensitive K-channels. In eNOS+/+ mice, the acetylcholine-induced response was primarily mediated by NO and was sensitive to iberiotoxin and the combination of apamin and charybdotoxin.
Collapse
|
8
|
Hristov KL, Chen M, Soder RP, Parajuli SP, Cheng Q, Kellett WF, Petkov GV. KV2.1 and electrically silent KV channel subunits control excitability and contractility of guinea pig detrusor smooth muscle. Am J Physiol Cell Physiol 2011; 302:C360-72. [PMID: 21998137 DOI: 10.1152/ajpcell.00303.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-gated K(+) (K(V)) channels are implicated in detrusor smooth muscle (DSM) function. However, little is known about the functional role of the heterotetrameric K(V) channels in DSM. In this report, we provide molecular, electrophysiological, and functional evidence for the presence of K(V)2.1 and electrically silent K(V) channel subunits in guinea pig DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of the homotetrameric K(V)2.1, K(V)2.2, and K(V)4.2 as well as the heterotetrameric K(V)2.1/6.3 and K(V)2.1/9.3 channels, was used to examine the role of these K(V) channels in DSM function. RT-PCR indicated mRNA expression of K(V)2.1, K(V)6.2-6.3, K(V)8.2, and K(V)9.1-9.3 subunits in isolated DSM cells. K(V)2.1 protein expression was confirmed by Western blot and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the K(V) current in freshly isolated DSM cells. ScTx1 (100 nM) did not significantly change the steady-state activation and inactivation curves for K(V) current. However, ScTx1 (100 nM) decreased the activation time-constant of the K(V) current at positive voltages. Although our patch-clamp data could not exclude the presence of the homotetrameric K(V)2.1 channels, the biophysical characteristics of the ScTx1-sensitive current were consistent with the presence of heterotetrameric K(V)2.1/silent K(V) channels. Current-clamp recordings showed that ScTx1 (100 nM) did not change the DSM cell resting membrane potential. ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude, muscle force, and muscle tone as well as the amplitude of the electrical field stimulation-induced contractions of isolated DSM strips. Collectively, our data revealed that K(V)2.1-containing channels are important physiological regulators of guinea pig DSM excitability and contractility.
Collapse
Affiliation(s)
- Kiril L Hristov
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Firth AL, Remillard CV, Platoshyn O, Fantozzi I, Ko EA, Yuan JXJ. Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels. Pulm Circ 2011; 1:48-71. [PMID: 21927714 PMCID: PMC3173772 DOI: 10.4103/2045-8932.78103] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The activity of voltage-gated ion channels is critical for the maintenance of cellular membrane potential and generation of action potentials. In turn, membrane potential regulates cellular ion homeostasis, triggering the opening and closing of ion channels in the plasma membrane and, thus, enabling ion transport across the membrane. Such transmembrane ion fluxes are important for excitation–contraction coupling in pulmonary artery smooth muscle cells (PASMC). Families of voltage-dependent cation channels known to be present in PASMC include voltage-gated K+ (Kv) channels, voltage-dependent Ca2+-activated K+ (Kca) channels, L- and T- type voltage-dependent Ca2+ channels, voltage-gated Na+ channels and voltage-gated proton channels. When cells are dialyzed with Ca2+-free K+- solutions, depolarization elicits four components of 4-aminopyridine (4-AP)-sensitive Kvcurrents based on the kinetics of current activation and inactivation. In cell-attached membrane patches, depolarization elicits a wide range of single-channel K+ currents, with conductances ranging between 6 and 290 pS. Macroscopic 4-AP-sensitive Kv currents and iberiotoxin-sensitive Kca currents are also observed. Transcripts of (a) two Na+ channel α-subunit genes (SCN5A and SCN6A), (b) six Ca2+ channel α–subunit genes (α1A, α1B, α1X, α1D, α1Eand α1G) and many regulatory subunits (α2δ1, β1-4, and γ6), (c) 22 Kv channel α–subunit genes (Kv1.1 - Kv1.7, Kv1.10, Kv2.1, Kv3.1, Kv3.3, Kv3.4, Kv4.1, Kv4.2, Kv5.1, Kv 6.1-Kv6.3, Kv9.1, Kv9.3, Kv10.1 and Kv11.1) and three Kv channel β-subunit genes (Kvβ1-3) and (d) four Kca channel α–subunit genes (Sloα1 and SK2-SK4) and four Kca channel β-subunit genes (Kcaβ1-4) have been detected in PASMC. Tetrodotoxin-sensitive and rapidly inactivating Na+ currents have been recorded with properties similar to those in cardiac myocytes. In the presence of 20 mM external Ca2+, membrane depolarization from a holding potential of -100 mV elicits a rapidly inactivating T-type Ca2+ current, while depolarization from a holding potential of -70 mV elicits a slowly inactivating dihydropyridine-sensitive L-type Ca2+ current. This review will focus on describing the electrophysiological properties and molecular identities of these voltage-dependent cation channels in PASMC and their contribution to the regulation of pulmonary vascular function and its potential role in the pathogenesis of pulmonary vascular disease.
Collapse
Affiliation(s)
- Amy L Firth
- The Salk Institute for Biological Studies, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
10
|
Park WS, Ko JH, Ko EA, Son YK, Hong DH, Jung ID, Park YM, Choi TH, Kim N, Han J. The guanylyl cyclase activator YC-1 directly inhibits the voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. J Pharmacol Sci 2010; 112:64-72. [PMID: 20093789 DOI: 10.1254/jphs.09228fp] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We investigated the effects of YC-1, an activator of soluble guanylyl cyclase (sGC), on voltage-dependent K+ (Kv) channels in smooth muscle cells from freshly isolated rabbit coronary arteries by using the whole-cell patch clamp technique. YC-1 inhibited the Kv current in a dose-dependent fashion with an apparent K(d) of 9.67 microM. It accelerated the decay rate of Kv channel inactivation without altering the kinetics of current activation. The rate constants of association and dissociation for YC-1 were 0.36 +/- 0.01 microM(-1) x s(-1) and 3.44 +/- 0.22 s(-1), respectively. YC-1 did not have a significant effect on the steady-state activation and inactivation curves. The recovery time constant from inactivation was decreased in the presence of YC-1, and application of train pulses (1 or 2 Hz) caused a progressive increase in the YC-1 blockade, indicating that YC-1-induced inhibition of Kv currents is use-dependent. Pretreatment with Bay 41-2272 (also a sGC activator), ODQ (a sGC inhibitor), or Rp-8-Br-PET-cGMPs (a protein kinase G inhibitor) did not affect the basal Kv current and also did not significantly alter the inhibitory effect of YC-1. From these results, we suggest that YC-1 directly inhibits the Kv current independently of sGC activation and in a state-, time-, and use-dependent fashion.
Collapse
Affiliation(s)
- Won Sun Park
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, FIRST Mitochondrial Research Group, Biomarker Medical Research Center, Inje University, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ko EA, Park WS, Firth AL, Kim N, Yuan JXJ, Han J. Pathophysiology of voltage-gated K+ channels in vascular smooth muscle cells: Modulation by protein kinases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 103:95-101. [DOI: 10.1016/j.pbiomolbio.2009.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
|
12
|
Ko EA, Park WS, Son YK, Ko JH, Choi TH, Jung ID, Park YM, Hong DH, Kim N, Han J. Calcium Channel Inhibitor, Verapamil, Inhibits the Voltage-Dependent K+ Channels in Rabbit Coronary Smooth Muscle Cells. Biol Pharm Bull 2010; 33:47-52. [DOI: 10.1248/bpb.33.47] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Eun A Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Biomarker Medical Research Center, FIRST Mitochondrial Research Group, Inje University
| | - Won Sun Park
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Biomarker Medical Research Center, FIRST Mitochondrial Research Group, Inje University
| | | | - Jae-Hong Ko
- Department of Physiology, Chung-Ang University
| | - Tae-Hoon Choi
- Department of Physical Education, Andong Science College
| | - In Duk Jung
- Department of Microbiology and Immunology and National Research Laboratory of Dendritic Cell Differentiation & Regulation, Medical Research Institute, Pusan National University, College of Medicine
| | - Yeong-Min Park
- Department of Microbiology and Immunology and National Research Laboratory of Dendritic Cell Differentiation & Regulation, Medical Research Institute, Pusan National University, College of Medicine
| | - Da Hye Hong
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Biomarker Medical Research Center, FIRST Mitochondrial Research Group, Inje University
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Biomarker Medical Research Center, FIRST Mitochondrial Research Group, Inje University
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Biomarker Medical Research Center, FIRST Mitochondrial Research Group, Inje University
| |
Collapse
|
13
|
Li L, Ma KT, Zhao L, Si JQ, Zhang ZS, Zhu H, Li J. Niflumic acid hyperpolarizes smooth muscle cells via calcium-activated potassium channel in spiral modiolar artery of guinea pigs. Acta Pharmacol Sin 2008; 29:789-99. [PMID: 18565276 DOI: 10.1111/j.1745-7254.2008.00803.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM The influence of niflumic acid (NFA), a Cl(-)channel antagonist, on the membrane potentials in smooth muscle cells (SMC) of the cochlear spiral modiolar artery (SMA) in guinea pigs was examined. METHODS The intracellular recording and whole-cell recording technique were used to record the NFA-induced response on the acutely-isolated SMA preparation. RESULTS The SMC had 2 stable but mutually convertible levels of resting potentials (RP), that is, one was near -45 mV and the other was approximately -75 mV, termed as low and high RP, respectively. The bath application of NFA could cause a hyperpolarization in all the low RP cells, but had little effect on high RP cells. The induced responses were concentration-dependent. Large concentrations of NFA (>or=100 micromol/L) often induced a shift of a low RP to high RP in cells with an initial RP at low level, and NFA (up to 100 micromol/L) had little effect on the membrane potentials of the high RP cells. However, when the high RP cells were depolarized to a level beyond -45 mV by barium and ouabain, NFA hyperpolarized these cells with the similar effect on those cells initially being the low RP. The NFA-induced response was almost completely blocked by charybdotoxin, iberiotoxin, tetraethylammonium, 1,2-bis(2- aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester, but not by 4-aminopyridine, barium, glipizide, apamin, ouabain, and CdCl2. CONCLUSION NFA induces a concentration-dependent reversible hyperpolarization in SMC in the cochlear SMA via activation of the Ca2+-activated potassium channels.
Collapse
Affiliation(s)
- Li Li
- Departmeng of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Ko EA, Burg ED, Platoshyn O, Msefya J, Firth AL, Yuan JXJ. Functional characterization of voltage-gated K+ channels in mouse pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 2007; 293:C928-37. [PMID: 17581857 DOI: 10.1152/ajpcell.00101.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice are useful animal models to study pathogenic mechanisms involved in pulmonary vascular disease. Altered expression and function of voltage-gated K(+) (K(V)) channels in pulmonary artery smooth muscle cells (PASMCs) have been implicated in the development of pulmonary arterial hypertension. K(V) currents (I(K(V))) in mouse PASMCs have not been comprehensively characterized. The main focus of this study was to determine the biophysical and pharmacological properties of I(K(V)) in freshly dissociated mouse PASMCs with the patch-clamp technique. Three distinct whole cell I(K(V)) were identified based on the kinetics of activation and inactivation: rapidly activating and noninactivating currents (in 58% of the cells tested), rapidly activating and slowly inactivating currents (23%), and slowly activating and noninactivating currents (17%). Of the cells that demonstrated the rapidly activating noninactivating current, 69% showed I(K(V)) inhibition with 4-aminopyridine (4-AP), while 31% were unaffected. Whole cell I(K(V)) were very sensitive to tetraethylammonium (TEA), as 1 mM TEA decreased the current amplitude by 32% while it took 10 mM 4-AP to decrease I(K(V)) by a similar amount (37%). Contribution of Ca(2+)-activated K(+) (K(Ca)) channels to whole cell I(K(V)) was minimal, as neither pharmacological inhibition with charybdotoxin or iberiotoxin nor perfusion with Ca(2+)-free solution had an effect on the whole cell I(K(V)). Steady-state activation and inactivation curves revealed a window K(+) current between -40 and -10 mV with a peak at -31.5 mV. Single-channel recordings revealed large-, intermediate-, and small-amplitude currents, with an averaged slope conductance of 119.4 +/- 2.7, 79.8 +/- 2.8, 46.0 +/- 2.2, and 23.6 +/- 0.6 pS, respectively. These studies provide detailed electrophysiological and pharmacological profiles of the native K(V) currents in mouse PASMCs.
Collapse
Affiliation(s)
- Eun A Ko
- Div. of Pulmonary and Critical Care Medicine, Dept. of Medicine, Univ. of California, San Diego, 9500 Gilman Dr., MC 0725, La Jolla, CA 92093-0725, USA
| | | | | | | | | | | |
Collapse
|
15
|
Thorneloe KS, Nelson MT. Ion channels in smooth muscle: regulators of intracellular calcium and contractility. Can J Physiol Pharmacol 2005; 83:215-42. [PMID: 15870837 DOI: 10.1139/y05-016] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Smooth muscle (SM) is essential to all aspects of human physiology and, therefore, key to the maintenance of life. Ion channels expressed within SM cells regulate the membrane potential, intracellular Ca2+ concentration, and contractility of SM. Excitatory ion channels function to depolarize the membrane potential. These include nonselective cation channels that allow Na+ and Ca2+ to permeate into SM cells. The nonselective cation channel family includes tonically active channels (Icat), as well as channels activated by agonists, pressure-stretch, and intracellular Ca2+ store depletion. Cl--selective channels, activated by intracellular Ca2+ or stretch, also mediate SM depolarization. Plasma membrane depolarization in SM activates voltage-dependent Ca2+ channels that demonstrate a high Ca2+ selectivity and provide influx of contractile Ca2+. Ca2+ is also released from SM intracellular Ca2+ stores of the sarcoplasmic reticulum (SR) through ryanodine and inositol trisphosphate receptor Ca2+ channels. This is part of a negative feedback mechanism limiting contraction that occurs by the Ca2+-dependent activation of large-conductance K+ channels, which hyper polarize the plasma membrane. Unlike the well-defined contractile role of SR-released Ca2+ in skeletal and cardiac muscle, the literature suggests that in SM Ca2+ released from the SR functions to limit contractility. Depolarization-activated K+ chan nels, ATP-sensitive K+ channels, and inward rectifier K+ channels also hyperpolarize SM, favouring relaxation. The expression pattern, density, and biophysical properties of ion channels vary among SM types and are key determinants of electrical activity, contractility, and SM function.
Collapse
Affiliation(s)
- Kevin S Thorneloe
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington 05405, USA.
| | | |
Collapse
|
16
|
Hristov KL, Gagov HS, Itzev D, Duridanova DB. Heme oxygenase-2 products activate IKCa: role of CO and iron in guinea pig portal vein smooth muscle cells. J Muscle Res Cell Motil 2005; 25:411-21. [PMID: 15548871 DOI: 10.1007/s10947-004-2771-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hemin (10 microM) and carbon monoxide (CO) increased iberiotoxin-blockable IKCa in portal vein smooth muscle cells. CO-induced IKCa activation was abolished by 10 microM ODQ, 10 microM cyclopiazonic acid and 1 microM KT5823. The hemin-induced effect on IKCa was abolished by pretreatment with Sn-protoporphyrin IX, a heme oxygenase inhibitor and Fe2+ chelator but was insensitive to inhibitors of soluble guanylate cyclase (GC) and cGMP-dependent protein kinase (PKG). There was no effect of hemin on IKCa in the presence of 3 microM dithiotreitol into the bath or 3 mM glutathione into the pipette solution. Superoxide dismutase (1000 U/ml) or catalase (3000 U/ml) added into the pipette solution also abolished the effect of hemin on IKCa in this tissue. Additionally, 10 microM hemin could not influence IKCa in Ca2+-free external solution or in the presence of 30 microM SKF 95356. It was concluded that CO increases IKCa via its "conventional" signaling pathway, which involves soluble GC and PKG activation and subsequent stimulation of sarcoplasmic reticulum Ca2+ pump activity resulting in Ca2+-dependent activation of IKCa due to the accumulation of Ca2+ into the space near the plasma membrane. On the other hand, internally produced CO could not yield the same IKCa increase, while Fe2+ derived from heme oxygenase 2-dependent degradation of hemin in portal vein smooth muscle cells gives rise to reactive oxygen species namely hydroxyl and superoxide radicals. Both radicals are responsible for the SKF 95356-sensitive non-selective cation channel activation, the Ca2+ influx and the subsequent increase of Ca2+ concentration near the plasma membrane that augments the KCa channel activity.
Collapse
Affiliation(s)
- Kiril L Hristov
- Institute of Biophysics, Bulgarian Academy of Sciences, Department of Membrane Ion Channels, Sofia, Bulgaria
| | | | | | | |
Collapse
|
17
|
El-Hajj H, Chandrasekhar B, Kadavil EA, Oriowo MA. Interaction of BKCa channel modulators with adrenergic agonists in the rat aorta is influenced by receptor reserve. Vascul Pharmacol 2005; 41:119-24. [PMID: 15607494 DOI: 10.1016/j.vph.2004.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our main objective was to study the interaction of BKCa channel modulators with adrenergic agonists UK 14304 and noradrenaline (NA), acting on alpha1-adrenoceptors, in the rat aorta and how this is affected by receptor reserve. NA and UK 14304 evoked concentration-dependent contractions of the rat aorta. UK 14304 was a partial agonist relative to NA in this preparation. The BK(Ca) channel blocker tetraethylammonium (TEA, 1 mM) and opener NS 1619 (3 x 10(-5) M) modulated NA- and UK 14304-induced contractions, and were more effective on UK 14304-induced contractions. TEA (1 mM) increased the maximum response to NA and UK 14304 by about 13% and 300%, respectively, while NS 1619 (3 x 10(-5) M) reduced the maximum response to UK 14304 by about 81% compared to 31% for noradrenaline. The effect of TEA on the noradrenaline concentration-response curve was increased after treatment of the aorta with phenoxybenzamine (PBZ), an irreversible alpha1-adrenoceptor antagonist, to reduce receptor reserve. We concluded that the interaction of BKCa channel modulators with alpha1-adrenergic agonists in the rat aorta was influenced by receptor reserve.
Collapse
Affiliation(s)
- Hanadi El-Hajj
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | | | | | | |
Collapse
|
18
|
Platoshyn O, Remillard CV, Fantozzi I, Mandegar M, Sison TT, Zhang S, Burg E, Yuan JXJ. Diversity of voltage-dependent K+ channels in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2004; 287:L226-38. [PMID: 15047570 DOI: 10.1152/ajplung.00438.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical excitability, which plays an important role in excitation-contraction coupling in the pulmonary vasculature, is regulated by transmembrane ion flux in pulmonary artery smooth muscle cells (PASMC). This study examined the heterogeneous nature of native voltage-dependent K(+) channels in human PASMC. Both voltage-gated K(+) (K(V)) currents and Ca(2+)-activated K(+) (K(Ca)) currents were observed and characterized. In cell-attached patches of PASMC bathed in Ca(2+)-containing solutions, depolarization elicited a wide range of K(+) unitary conductances (6-290 pS). When cells were dialyzed with Ca(2+)-free and K(+)-containing solutions, depolarization elicited four components of K(V) currents in PASMC based on the kinetics of current activation and inactivation. Using RT-PCR, we detected transcripts of 1) 22 K(V) channel alpha-subunits (K(V)1.1-1.7, K(V)1.10, K(V)2.1, K(V)3.1, K(V)3.3-3.4, K(V)4.1-4.2, K(V)5.1, K(V) 6.1-6.3, K(V)9.1, K(V)9.3, K(V)10.1, and K(V)11.1), 2) three K(V) channel beta-subunits (K(V)beta 1-3), 3) four K(Ca) channel alpha-subunits (Slo-alpha 1 and SK2-SK4), and 4) four K(Ca) channel beta-subunits (K(Ca)beta 1-4). Our results show that human PASMC exhibit a variety of voltage-dependent K(+) currents with variable kinetics and conductances, which may result from various unique combinations of alpha- and beta-subunits forming the native channels. Functional expression of these channels plays a critical role in the regulation of membrane potential, cytoplasmic Ca(2+), and pulmonary vasomotor tone.
Collapse
MESH Headings
- Calcium/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- Electric Conductivity
- Electrophysiology
- Gene Expression
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Osmolar Concentration
- Potassium Channels, Calcium-Activated/metabolism
- Potassium Channels, Voltage-Gated/classification
- Potassium Channels, Voltage-Gated/genetics
- Potassium Channels, Voltage-Gated/metabolism
- Potassium Channels, Voltage-Gated/physiology
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiology
Collapse
Affiliation(s)
- Oleksandr Platoshyn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, 92103, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fountain SJ, Cheong A, Flemming R, Mair L, Sivaprasadarao A, Beech DJ. Functional up-regulation of KCNA gene family expression in murine mesenteric resistance artery smooth muscle. J Physiol 2004; 556:29-42. [PMID: 14742730 PMCID: PMC1664901 DOI: 10.1113/jphysiol.2003.058594] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study focused on the hypothesis that KCNA genes (which encode K(V)alpha1 voltage-gated K(+) channels) have enhanced functional expression in smooth muscle cells of a primary determinant of peripheral resistance - the small mesenteric artery. Real-time PCR methodology was developed to measure cell type-specific in situ gene expression. Profiles were determined for arterial myocyte expression of RNA species encoding K(V)alpha1 subunits as well as K(V)beta1, K(V)alpha2.1, K(V)gamma9.3, BK(Ca)alpha1 and BK(Ca)beta1. The seven major KCNA genes were expressed and more readily detected in endothelium-denuded mesenteric resistance artery compared with thoracic aorta; quantification revealed dramatic differential expression of one to two orders of magnitude. There was also four times more RNA encoding K(V)alpha2.1 but less or similar amounts encoding K(V)beta1, K(V)gamma9.3, BK(Ca)alpha1 and BK(Cabeta)1. Patch-clamp recordings from freshly isolated smooth muscle cells revealed dominant K(V)alpha1 K(+) current and current density twice as large in mesenteric cells. Therefore, we suggest the increased RNA production of the resistance artery impacts on physiological function, although there is quantitatively less K(+) current than might be expected. The mechanism conferring up-regulated expression of KCNA genes may be common to all the gene family and play a functional role in the physiological control of blood pressure.
Collapse
Affiliation(s)
- S J Fountain
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
20
|
Pucovský V, Moss RF, Bolton TB. Non-contractile cells with thin processes resembling interstitial cells of Cajal found in the wall of guinea-pig mesenteric arteries. J Physiol 2003; 552:119-33. [PMID: 12897177 PMCID: PMC2343325 DOI: 10.1113/jphysiol.2003.046243] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Arterial interstitial cells of Cajal (ICC)-like cells (AIL cells) with a multipolar, irregular, elongated shape and with numerous thin (often less than 1 microm), sometimes branching, processes with lengths up to approximately 60 microm were isolated enzymatically from 1st to 7th order branches of guinea-pig mesenteric artery. Some of the processes of AIL cells were growing (average speed approximately 0.15 microm min-1) and their growth was blocked by 10 microM latrunculin B, an inhibitor of actin polymerisation. Staining with BODIPY phalloidin, a fluorescent dye selective for F-actin, showed the presence of F-actin in the processes of AIL cells. Voltage clamp of single AIL cells revealed an inward current that was four times more dense than in myocytes and was abolished by 10 microM nicardipine, and an outward current carried exclusively by potassium ions that was reduced by 1 mM 4-aminopyridine and/or 100 nM iberiotoxin but unaffected by 10 nM dendrotoxin-K. Imaging of intracellular ionised calcium with fluo-4 using a laser scanning confocal microscope showed local or global calcium transients lasting several seconds in approximately 28 % of AIL cells. When membrane current was recorded simultaneously, the calcium transients were found to correspond to long-lasting transient outward currents, which occurred at potentials positive to -40 mV. Unlike myocytes, AIL cells did not contract in response to 1 mM caffeine or 5 microM noradrenaline, although they responded with a [Ca2+]i increase. The segments of intact arteries did not stain for c-kit, a marker of ICCs. Single AIL cells stained positive for vimentin, desmin and smooth muscle myosin. The presence of ICC-like cells is demonstrated for the first time in the media of resistance arteries.
Collapse
Affiliation(s)
- Vladimír Pucovský
- Pharmacology and Clinical Pharmacology, Department of Basic Medical Sciences, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, U.K.
| | | | | |
Collapse
|
21
|
Ohya S, Sergeant GP, Greenwood IA, Horowitz B. Molecular variants of KCNQ channels expressed in murine portal vein myocytes: a role in delayed rectifier current. Circ Res 2003; 92:1016-23. [PMID: 12690036 DOI: 10.1161/01.res.0000070880.20955.f4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have analyzed the expression of KCNQ genes in murine portal vein myocytes and determined that of the 5 known KCNQ channels, only KCNQ1 was expressed. In addition to the full-length KCNQ1 transcript, a novel spliced form (termed KCNQ1b) was detected that had a 63 amino acid truncation at the C-terminus. KCNQ1b was not detected in heart or brain but represented approximately half the KCNQ1 transcripts expressed in PV. Antibodies specific for KCNQ1a stained cell membranes from portal vein myocytes and HEK cells expressing the channel. However, because the antibodies were generated against an epitope in the deleted, C-terminal portion of the protein, these antibodies did not stain HEK cells expressing KCNQ1b. In murine portal vein myocytes, in the presence of 5 mmol/L 4-aminopyridine, an outwardly rectifying K+ current was recorded that was sensitive to linopirdine, a specific blocker of KCNQ channels. Currents produced by the heterologous expression of KCNQ1a or KCNQ1b were inhibited by similar concentrations of linopirdine, and linopirdine prolonged the time-course of the action potential in isolated portal vein myocytes. Our data suggest that these two KCNQ1 splice forms are expressed in murine portal vein and contribute to the delayed rectifier current in these myocytes.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Cells, Cultured
- Cloning, Molecular
- Electric Conductivity
- Indoles/pharmacology
- KCNQ Potassium Channels
- KCNQ1 Potassium Channel
- Kinetics
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Portal Vein/cytology
- Potassium Channel Blockers/pharmacology
- Potassium Channels/genetics
- Potassium Channels/metabolism
- Potassium Channels/physiology
- Potassium Channels, Voltage-Gated
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Pyridines/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Transcription, Genetic
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nev 89557-0046, USA
| | | | | | | |
Collapse
|
22
|
Thorneloe KS, Nelson MT. Properties and molecular basis of the mouse urinary bladder voltage-gated K+ current. J Physiol 2003; 549:65-74. [PMID: 12679374 PMCID: PMC2342925 DOI: 10.1113/jphysiol.2003.039859] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Potassium channels play an important role in controlling the excitability of urinary bladder smooth muscle (UBSM). Here we describe the biophysical, pharmacological and molecular properties of the mouse UBSM voltage-gated K+ current (IK(V)). The IK(V) activated, deactivated and inactivated slowly with time constants of 29.9 ms at +30 mV, 131 ms at -40 mV and 3.4 s at +20 mV. The midpoints of steady-state activation and inactivation curves were 1.1 mV and -61.4 mV, respectively. These properties suggest that IK(V) plays a role in regulating the resting membrane potential and contributes to the repolarization and after-hyperpolarization phases of action potentials. The IK(V) was blocked by tetraethylammonium ions with an IC50 of 5.2 mM and was unaffected by 1 mM 4-aminopyridine. RT-PCR for voltage-gated K+ channel (KV) subunits revealed the expression of Kv2.1, Kv5.1, Kv6.1, Kv6.2 and Kv6.3 in isolated UBSM myocytes. A comparison of the biophysical properties of UBSM IK(V) with those reported for Kv2.1 and Kv5.1 and/or Kv6 heteromultimeric channels demonstrated a marked similarity. We propose that heteromultimeric channel complexes composed of Kv2.1 and Kv5.1 and/or Kv6 subunits form the molecular basis of the mouse UBSM IK(V).
Collapse
Affiliation(s)
- Kevin S Thorneloe
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington 05405, USA
| | | |
Collapse
|
23
|
Povstyan OV, Gordienko DV, Harhun MI, Bolton TB. Identification of interstitial cells of Cajal in the rabbit portal vein. Cell Calcium 2003; 33:223-39. [PMID: 12618143 DOI: 10.1016/s0143-4160(02)00197-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two layers of interstitial cells (ICs) of Cajal were detected by c-kit and methylene blue staining in the media of the rabbit portal vein in subendothelial intramuscular and deeper intramuscular positions, displaced radially from each other by about 40-70 microm. Two morphologically distinct types of ICs were found among enzymatically dispersed cells from this vessel: small multipolar cells with stellate-shaped bodies not exceeding 20 microm, and spindle-shaped cells from 40 to 300 microm in length with numerous branching processes. Relaxed smooth muscle cells (SMCs) had a more constant length (90-150 microm). The cell membrane capacitance was 46.5+/-2.2 pF in SMCs, 39.7+/-2.4 pF in spindle-shaped ICs and 27.8+/-0.7 pF in multipolar ICs. Although darker under phase contrast, after loading with fluo-4 AM, single isolated ICs of both types usually had brighter fluorescence than SMCs and displayed various spontaneous calcium events, including Ca(2+) sparks and Ca(2+) waves. Ca(2+) waves were usually followed by contraction of SMCs but no change in shape of ICs. In some ICs spontaneous [Ca(2+)](i) transients (lasting about 2s) which propagated towards the end of the processes were observed. Physical contacts between the processes of ICs and the body of one or more SMCs survived the isolation procedure. Application of noradrenaline (1-10 microM), caffeine (1-10 mM) or high-K(+) solution (60mM) led to a rise of [Ca(2+)](i) in both SMCs and ICs evoking contraction of SMCs but not ICs. No differences in electrophysiological characteristics between single enzymatically isolated IC and SMC were detected; thus, the resting membrane potential estimated under current-clamp conditions was -46.5+/-2.0 mV in spindle-shaped ICs and -45.6+/-2.7 mV in SMCs. Under voltage-clamp, both ICs and SMCs revealed a well-developed voltage-gated nifedipine-sensitive L-type Ca(2+) current, a set of K(+) currents, including spontaneous transient outward currents (STOCs) but no Na(+) current. This study for the first time directly demonstrated the presence in vascular tissue of ICs. Possible roles for ICs including their involvement in spontaneous activity of the vessel were discussed.
Collapse
Affiliation(s)
- O V Povstyan
- Department of Pharmacology and Clinical Pharmacology, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | | | | | | |
Collapse
|
24
|
Lin RJ, Wu BN, Shen KP, Huang CH, Liu ZI, Lin CY, Cheng CJ, Chen IJ. Xanthine-analog, KMUP-2, enhances cyclic GMP and K+ channel activities in rabbit aorta and corpus cavernosum with associated penile erection. Drug Dev Res 2002. [DOI: 10.1002/ddr.10048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Greenwood IA, Prestwich SA. Characteristics of hyperpolarization-activated cation currents in portal vein smooth muscle cells. Am J Physiol Cell Physiol 2002; 282:C744-53. [PMID: 11880262 DOI: 10.1152/ajpcell.00393.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-clamp studies of freshly isolated smooth muscle cells from rabbit portal vein revealed the existence of a time-dependent cation current evoked by membrane hyperpolarization (termed I(h)). Both the rate of activation and the amplitude of I(h) were enhanced by membrane hyperpolarization. Half-maximal activation of I(h) was about -105 mV with conventional whole cell and -80 mV when the perforated patch technique was used. In current clamp, injection of hyperpolarizing current produced a marked depolarizing "sag" followed by rebound depolarization. Activation of I(h) was augmented by an increase in the extracellular K(+) concentration and was blocked rapidly by externally applied Cs(+) (1-5 mM). The bradycardic agent ZD-7288 (10 microM), a selective inhibitor of I(h), produced a characteristically slow inhibition of the portal vein I(h). The depolarizing sag recorded in current clamp was also abolished by application of 5 mM Cs(+). Cs(+) significantly decreased the frequency of spontaneous contractions in both whole rat portal vein and rabbit portal vein segments. Multiplex RT-PCR of rabbit portal vein myocytes using primers derived from existing genes for hyperpolarization-activated cation channels (HCN1-4) revealed the existence of cDNA clones corresponding to HCN2, 3, and 4. The present study shows that portal vein myocytes contain genes shown to encode for hyperpolarization-activated channels and exhibit an endogenous current with characteristics similar to I(h) in other cell types. This conductance appears to determine, in part, the rhythmicity of this vessel.
Collapse
Affiliation(s)
- I A Greenwood
- Department of Pharmacology and Clinical Pharmacology, St. George's Hospital Medical School, London, SW17 0RE UK.
| | | |
Collapse
|
26
|
Krick S, Platoshyn O, Sweeney M, McDaniel SS, Zhang S, Rubin LJ, Yuan JXJ. Nitric oxide induces apoptosis by activating K+ channels in pulmonary vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2002; 282:H184-93. [PMID: 11748062 DOI: 10.1152/ajpheart.2002.282.1.h184] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is an endogenous endothelium-derived relaxing factor that regulates vascular smooth muscle cell proliferation and apoptosis. This study investigated underlying mechanisms involved in NO-induced apoptosis in human and rat pulmonary artery smooth muscle cells (PASMC). Exposure of PASMC to NO, which was derived from the NO donor S-nitroso-N-acetyl-penicillamine, increased the percentage of cells undergoing apoptosis. Increasing extracellular K+ concentration to 40 mM or blocking K+ channels with 1 mM tetraethylammonia (TEA), 100 nM iberiotoxin (IBTX), and 5 mM 4-aminopyridine (4-AP) significantly inhibited the NO-induced apoptosis. In single PASMC, NO reversibly increased K+ currents through the large-conductance Ca(2+)-activated K+ (K(Ca)) channels, whereas TEA and IBTX markedly decreased the K(Ca) currents. In the presence of TEA, NO also increased K+ currents through voltage-gated K+ (K(v)) channels, whereas 4-AP significantly decreased the K(v) currents. Opening of K(Ca) channels with 0.3 mM dehydroepiandrosterone increased K(Ca) currents, induced apoptosis, and further enhanced the NO-mediated apoptosis. Furthermore, NO depolarized the mitochondrial membrane potential. These observations indicate that NO induces PASMC apoptosis by activating K(Ca) and K(v) channels in the plasma membrane. The resulting increase in K+ efflux leads to cytosolic K+ loss and eventual apoptosis volume decrease and apoptosis. NO-induced apoptosis may also be related to mitochondrial membrane depolarization in PASMC.
Collapse
Affiliation(s)
- Stefanie Krick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California School of Medicine, 200 W. Arbor Dr., San Diego, CA 92103-8382, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
McDaniel SS, Platoshyn O, Yu Y, Sweeney M, Miriel VA, Golovina VA, Krick S, Lapp BR, Wang JY, Yuan JX. Anorexic effect of K+ channel blockade in mesenteric arterial smooth muscle and intestinal epithelial cells. J Appl Physiol (1985) 2001; 91:2322-33. [PMID: 11641377 DOI: 10.1152/jappl.2001.91.5.2322] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activity of voltage-gated K+ (Kv) channels controls membrane potential (E(m)). Membrane depolarization due to blockade of K+ channels in mesenteric artery smooth muscle cells (MASMC) should increase cytoplasmic free Ca2+ concentration ([Ca2+]cyt) and cause vasoconstriction, which may subsequently reduce the mesenteric blood flow and inhibit the transportation of absorbed nutrients to the liver and adipose tissue. In this study, we characterized and compared the electrophysiological properties and molecular identities of Kv channels and examined the role of Kv channel function in regulating E(m) in MASMC and intestinal epithelial cells (IEC). MASMC and IEC functionally expressed multiple Kv channel alpha- and beta-subunits (Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5, Kv2.1, Kv4.3, and Kv9.3, as well as Kvbeta1.1, Kvbeta2.1, and Kvbeta3), but only MASMC expressed voltage-dependent Ca2+ channels. The current density and the activation and inactivation kinetics of whole cell Kv currents were similar in MASMC and IEC. Extracellular application of 4-aminopyridine (4-AP), a Kv-channel blocker, reduced whole cell Kv currents and caused E(m) depolarization in both MASMC and IEC. The 4-AP-induced E(m) depolarization increased [Ca2+]cyt in MASMC and caused mesenteric vasoconstriction. Furthermore, ingestion of 4-AP significantly reduced the weight gain in rats. These results suggest that MASMC and IEC express multiple Kv channel alpha- and beta-subunits. The function of these Kv channels plays an important role in controlling E(m). The membrane depolarization-mediated increase in [Ca2+]cyt in MASMC and mesenteric vasoconstriction may inhibit transportation of absorbed nutrients via mesenteric circulation and limit weight gain.
Collapse
Affiliation(s)
- S S McDaniel
- Department of Medicine, University of California School of Medicine, San Diego, California 92103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Krick S, Platoshyn O, McDaniel SS, Rubin LJ, Yuan JX. Augmented K(+) currents and mitochondrial membrane depolarization in pulmonary artery myocyte apoptosis. Am J Physiol Lung Cell Mol Physiol 2001; 281:L887-94. [PMID: 11557592 DOI: 10.1152/ajplung.2001.281.4.l887] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The balance between apoptosis and proliferation in pulmonary artery smooth muscle cells (PASMCs) is important in maintaining normal pulmonary vascular structure. Activity of voltage-gated K(+) (K(V)) channels has been demonstrated to regulate cell apoptosis and proliferation. Treatment of PASMCs with staurosporine (ST) induced apoptosis in PASMCs, augmented K(V) current [I(K(V))], and induced mitochondrial membrane depolarization. High K(+) (40 mM) negligibly affected the ST-induced mitochondrial membrane depolarization but inhibited the ST-induced I(K(V)) increase and apoptosis. Blockade of K(V) channels with 4-aminopyridine diminished I(K(V)) and markedly decreased the ST-mediated apoptosis. Furthermore, the ST-induced apoptosis was preceded by the increase in I(K(V)). These results indicate that ST induces PASMC apoptosis by activation of plasmalemmal K(V) channels and mitochondrial membrane depolarization. The increased I(K(V)) would result in an apoptotic volume decrease due to a loss of cytosolic K(+) and induce apoptosis. The mitochondrial membrane depolarization would cause cytochrome c release, activate the cytosolic caspases, and induce apoptosis. Inhibition of K(V) channels would thus attenuate PASMC apoptosis.
Collapse
Affiliation(s)
- S Krick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California School of Medicine, San Diego, California 92103, USA
| | | | | | | | | |
Collapse
|
29
|
Cheong A, Dedman AM, Beech DJ. Expression and function of native potassium channel [K(V)alpha1] subunits in terminal arterioles of rabbit. J Physiol 2001; 534:691-700. [PMID: 11483700 PMCID: PMC2278752 DOI: 10.1111/j.1469-7793.2001.00691.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. In this study we investigated the expression and function of the K(V)alpha1 subfamily of voltage-gated K(+) channels in terminal arterioles from rabbit cerebral circulation. 2. K(+) current was measured from smooth muscle cells within intact freshly isolated arteriolar fragments. Current activated on depolarisation positive of about -45 mV and a large fraction of this current was blocked by 3,4-diaminopyridine (3,4-DAP) or 4-aminopyridine (4-AP), inhibitors of K(V) channels. Expression of cRNA encoding K(V)1.6 in Xenopus oocytes also generated a 4-AP-sensitive K(+) current with a threshold for activation near -45 mV. 3. Immunofluorescence labelling revealed K(V)1.2 to be specifically localised to endothelial cells, and K(V)1.5 and K(V)1.6 to plasma membranes of smooth muscle cells. 4. K(V) channel current in arteriolar fragments was blocked by correolide (which is specific for the K(V)alpha1 family of K(V) channels) but was resistant to recombinant agitoxin-2 (rAgTX2; which inhibits K(V)1.6 but not K(V)1.5). Heterologously expressed K(V)2.1 was resistant to correolide, and K(V)1.6 was blocked by rAgTX2. 5. Arterioles that were mildly preconstricted and depolarised by 0.1-0.3 nM endothelin-1 constricted further in response to 3,4-DAP, 4-AP or correolide, but not to rAgTX2. 6. We suggest that K(V)alpha1 channels are expressed in smooth muscle cells of terminal arterioles, underlie a major part of the voltage-dependent K(+) current, and have a physiological function to oppose vasoconstriction. K(V)alpha1 complexes without K(V)1.5 appear to be uncommon.
Collapse
Affiliation(s)
- A Cheong
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
30
|
Zhang Y, Paterson WG. Diversity of K+ channels in circular smooth muscle of opossum lower esophageal sphincter. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y01-043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We previously demonstrated that a balance of K+ and Ca2+-activated Cl channel activity maintained the basal tone of circular smooth muscle of opossum lower esophageal sphincter (LES). In the current studies, the contribution of major K+ channels to the LES basal tone was investigated in circular smooth muscle of opossum LES in vitro. K+ channel activity was recorded in dispersed single cells at room temperature using patch-clamp recordings. Whole-cell patch-clamp recordings displayed an outward current beginning to activate at 60 mV by step test pulses lasting 400 ms (120 mV to +100 mV) with increments of 20 mV from holding potential of 80 mV ([K+]I = 150 mM, [K+]o = 2.5 mM). However, no inward rectification was observed. The outward current peaked within 50 ms and showed little or no inactivation. It was significantly decreased by bath application of nifedipine, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and iberiotoxin (IBTN). Further combination of TEA with 4-AP, nifedipine with 4-AP, and IBTN with TEA, or vice versa, blocked more than 90% of the outward current. Ca2+-sensitive single channels were recorded at asymetrical K+ gradients in cell-attached patch-clamp configurations (100.8 ± 3.2 pS, n = 8). Open probability of the single channels recorded in inside-out patch-clamp configurations were greatly decreased by bath application of IBTN (100 nM) (Vh = 14.4 ± 4.8 mV in control vs. 27.3 ± 0.1 mV, n = 3, P < 0.05). These data suggest that large conductance Ca2+-activated K+ and delayed rectifier K+ channels contribute to the membrane potential, and thereby regulate the basal tone of opossum LES circular smooth muscle.Key words: large conductance Ca2+-activated K+ channels, delayed rectifier K+ channels, patch-clamp recording, visceral smooth muscle.
Collapse
|
31
|
Krick S, Platoshyn O, Sweeney M, Kim H, Yuan JX. Activation of K+ channels induces apoptosis in vascular smooth muscle cells. Am J Physiol Cell Physiol 2001; 280:C970-9. [PMID: 11245614 DOI: 10.1152/ajpcell.2001.280.4.c970] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracellular K+ plays an important role in controlling the cytoplasmic ion homeostasis for maintaining cell volume and inhibiting apoptotic enzymes in the cytosol and nucleus. Cytoplasmic K+ concentration is mainly regulated by K+ uptake via Na+-K+-ATPase and K+ efflux through K+ channels in the plasma membrane. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), a protonophore that dissipates the H+ gradient across the inner membrane of mitochondria, induces apoptosis in many cell types. In rat and human pulmonary artery smooth muscle cells (PASMC), FCCP opened the large-conductance, voltage- and Ca2+-sensitive KK+ (maxi-K) channels, increased K+ currents through maxi-K channels [I(K(Ca))], and induced apoptosis. Tetraethylammonia (1 mM) and iberiotoxin (100 nM) decreased I(K(Ca)) by blocking the sarcolemmal maxi-K channels and inhibited the FCCP-induced apoptosis in PASMC cultured in media containing serum and growth factors. Furthermore, inhibition of K+ efflux by raising extracellular K+ concentration from 5 to 40 mM also attenuated PASMC apoptosis induced by FCCP and the K+ ionophore valinomycin. These results suggest that FCCP-mediated apoptosis in PASMC is partially due to an increase of maxi-K channel activity. The resultant K+ loss through opened maxi-K channels may serve as a trigger for cell shrinkage and caspase activation, which are major characteristics of apoptosis in pulmonary vascular smooth muscle cells.
Collapse
Affiliation(s)
- S Krick
- Division of Pulmonary and Critical Care Medicine, UCSD Medical Center, 200 W. Arbor Dr., San Diego, CA 92103-8382, USA
| | | | | | | | | |
Collapse
|
32
|
Tsvilovskiy VV, Shuba MF. Inhibitory effect of nitric oxide on arterial smooth muscle cells. NEUROPHYSIOLOGY+ 2000. [DOI: 10.1007/bf02506574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Properties, regulation, and role of potassium channels of smooth muscle. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2590(00)08010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
34
|
Abstract
The effects of paxilline, a mycotoxin, on whole-cell outward currents from freshly isolated cells of the rat mesenteric artery were studied. Paxilline inhibited a component of the outward current that was also sensitive to iberiotoxin. Inhibition could be observed at a concentration of 10 nM and complete inhibition of the iberiotoxin-sensitive current was achieved at 300 nM. The inhibition could be described by a single site of interaction with a Ki of 35.7 nM. Paxilline had no effect on the component of the current that was sensitive to 4-aminopyridine. It is concluded that paxilline is a potent inhibitor of large conductance Ca2+ -activated K+ currents in vascular smooth muscle cells.
Collapse
Affiliation(s)
- G Li
- University of Ottawa Heart Institute, Canada
| | | |
Collapse
|
35
|
Clément-Chomienne O, Ishii K, Walsh MP, Cole WC. Identification, cloning and expression of rabbit vascular smooth muscle Kv1.5 and comparison with native delayed rectifier K+ current. J Physiol 1999; 515 ( Pt 3):653-67. [PMID: 10066895 PMCID: PMC2269178 DOI: 10.1111/j.1469-7793.1999.653ab.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The molecular basis of voltage-gated, delayed rectifier K+ (KDR) channels in vascular smooth muscle cells is poorly defined. In this study we employed (i) an antibody against Kv1.5 and (ii) a cDNA clone encoding Kv1.5 derived from rabbit portal vein (RPV) to demonstrate Kv1.5 expression in RPV and to compare the properties of RPVKv1.5 expressed in mammalian cells with those of native RPV KDR current. 2. Expression of Kv1.5 channel protein in RPV was demonstrated by (i) immunocytolocalization of an antibody raised against a C-terminal epitope of mouse cardiac Kv1.5 in permeabilized, freshly isolated RPV smooth muscle cells and (ii) isolation of a cDNA clone encoding RPVKv1.5 by reverse transcription-polymerase chain reaction (RT-PCR) using mRNA derived from endothelium-denuded and adventitia-free RPV. 3. RPVKv1.5 cDNA was expressed in mammalian L cells and human embryonic kidney (HEK293) cells and the properties of the expressed channels compared with those of native KDR channels of freshly dispersed myocytes under identical conditions. 4. The kinetics and voltage dependence of activation of L cell-expressed RPVKv1.5 and native KDR current were identical, as were the kinetics of recovery from inactivation and single channel conductance. In contrast, there was little similarity between HEK293 cell-expressed RPVKv1.5 and native KDR current. 5. Inactivation occurred with the same voltage for half-maximal availability, but the kinetics and slope constant for the voltage dependence of inactivation for L cell-expressed RPVKv1.5 and the native current were different: slow time constants were 6.5 +/- 0.6 and 3.5 +/- 0.4 s and slope factors were 4.7 +/- 0.2 and 7.0 +/- 0.8 mV, respectively. 6. This study provides immunofluorescence and functional evidence that Kv1.5 alpha-subunits are a component of native KDR channels of vascular smooth muscle cells of RPV. However, the differences in kinetics and voltage sensitivity of inactivation between L cell- and HEK293 cell-expressed channels and native KDR channels provide functional evidence that vascular KDR current is not due to homomultimers of RPV Kv1.5 alone. The channel structure may be more complex, involving heteromultimers and modulatory Kvbeta-subunits, and/or native KDR current may have other components involving Kvalpha-subunits of other families.
Collapse
Affiliation(s)
- O Clément-Chomienne
- Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
36
|
Chiou WF, Chen J, Chen CF. Relaxation of corpus cavernosum and raised intracavernous pressure by berberine in rabbit. Br J Pharmacol 1998; 125:1677-84. [PMID: 9886759 PMCID: PMC1565759 DOI: 10.1038/sj.bjp.0702249] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In the present study, we have investigated the effect of berberine in rabbit isolated corpus cavernosum and measured the intracavernous pressure (ICP) change after intracavernosal injection of berberine in rabbit. 2. Berberine alone suppressed the basal tone and induced a concentration (0.1-100 microM)-dependent relaxation in phenylephrine (PE)-precontracted corpus cavernosum. 3. Tetrodotoxin (0.1 and 1 microM) treatment had no significant effect on the berberine-induced relaxation. Phentolamine (1 and 10 microM), propranolol (1 and 3 microM) and atropine (1 and 3 microM) were also without effect. These results suggest that berberine might cause relaxation of the cavernosal strip by direct action on the corpus cavernosum, not by a neuronal effect. Furthermore, muscarinic- and beta-adrenoceptors were not involved. 4. Berberine-induced relaxations were significantly reduced by endothelium removal and by exposure to L-NG-nitro arginine methyl ester (0.1 and 0.3 mM), but not indomethacin (30 microM). 5. In endothelium-deprived corpus cavernosal tissues, berberine-induced relaxations were significantly reduced in high K+ medium (KCl = 60 mM), by charybdotoxin (ChTX) and 4-aminopyridine (4-AP) but not by glibenclamide and apamin. 6. After intracavernous injection of berberine (1, 2, 3 and 5 mg kg(-1)), the ICP rose from 12.7+/-3.6 to 13.2+/-5.4, 25.3+/-6.1, 46.5+/-8.2, and 63.4+/-10.2 mmHg, respectively. The duration of tumescence ranged from 11.5 - 43.7 min. 7. The results show that berberine possesses a relaxant effect on rabbit corpus cavernosal tissues which is attributable to both endothelium-dependent and-independent properties. While the former component is apparently due to the release of NO from sinusoidal endothelium, the endothelium-independent mechanism involved in berberine relaxation is probably linked to ChTX- and 4-AP-sensitive K+ channel activation in the cavernosal vasculature.
Collapse
Affiliation(s)
- W F Chiou
- National Research Institute of Chinese Medicine, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
37
|
Evans AM, Osipenko ON, Haworth SG, Gurney AM. Resting potentials and potassium currents during development of pulmonary artery smooth muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H887-99. [PMID: 9724293 DOI: 10.1152/ajpheart.1998.275.3.h887] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pulmonary circulation changes rapidly at birth to adapt to extrauterine life. The neonate is at high risk of developing pulmonary hypertension, a common cause being perinatal hypoxia. Smooth muscle K+ channels have been implicated in hypoxic pulmonary vasoconstriction in adults and O2-induced vasodilation in the fetus, channel inhibition being thought to promote Ca2+ influx and contraction. We investigated the K+ currents and membrane potentials of pulmonary artery myocytes during development, in normal pigs and pigs exposed for 3 days to hypoxia, either from birth or from 3 days after birth. The main finding is that cells were depolarized at birth and hyperpolarized to the adult level of -40 mV within 3 days. Hypoxia prevented the hyperpolarization when present from birth and reversed it when present from the third postnatal day. The mechanism of hyperpolarization is unclear but may involve a noninactivating, voltage-gated K+ channel. It is not caused by increased Ca2+-activated or delayed rectifier current. These currents were small at birth compared with adults, declined further over the next 2 wk, and were suppressed by exposure to hypoxia from birth. Hyperpolarization could contribute to the fall in pulmonary vascular resistance at birth, whereas the low K+-current density, by enhancing membrane excitability, would contribute to the hyperreactivity of neonatal vessels. Hypoxia may hinder pulmonary artery adaptation by preventing hyperpolarization and suppressing K+ current.
Collapse
Affiliation(s)
- A M Evans
- University Department of Pharmacology, Oxford OX1 3QT, United Kingdom
| | | | | | | |
Collapse
|
38
|
Aiello EA, Malcolm AT, Walsh MP, Cole WC. Beta-adrenoceptor activation and PKA regulate delayed rectifier K+ channels of vascular smooth muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H448-59. [PMID: 9683432 DOI: 10.1152/ajpheart.1998.275.2.h448] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macroscopic 4-aminopyridine (4-AP)-sensitive, delayed rectifier K+ current of vascular smooth muscle cells is increased during beta-adrenoceptor activation with isoproterenol via a signal transduction pathway involving adenylyl cyclase and cAMP-dependent protein kinase (PKA) (Aiello, E. A., M. P. Walsh, and W. C. Cole. Am. J. Physiol. 268 (Heart Circ. Physiol. 37): H926-H934, 1995.). In this study, we identified the single delayed rectifier K+ (KDR) channel(s) of rabbit portal vein myocytes affected by treatment with isoproterenol or the catalytic subunit of PKA. 4-AP-sensitive KDR channels of 15.3 +/- 0.6 pS (n = 5) and 14.8 +/- 0.6 pS (n = 5) conductance, respectively, were observed in inside-out (I-O) and cell-attached (C-A) membrane patches in symmetrical KCl recording conditions. The kinetics of activation (time constant of 10.7 +/- 3. 02 ms) and inactivation (fast and slow time constants of 0.3 and 2.5 s, respectively) of ensemble currents produced by these channels mimicked those reported for inactivating, 4-AP-sensitive whole cell KDR current of vascular myocytes. Under control conditions, the open probability (NPo) of KDR channels of C-A membrane patches at -40 mV was 0.014 +/- 0.005 (n = 8). Treatment with 1 microM isoproterenol caused a significant, approximately threefold increase in NPo to 0. 041 +/- 0.02 (P < 0.05). KDR channels of I-O patches exhibited rundown after approximately 5 min, which was not affected by ATP (5 mM) in the bath solution. Treatment with the purified catalytic subunit of PKA (50 nM; 5 mM ATP) restored KDR channel activity and caused NPo to increase from 0.011 +/- 0.003 to 0.138 +/- 0.03 (P < 0. 05; n = 11). These data indicate that small-conductance, 15-pS KDR channels are responsible for inactivating the macroscopic delayed rectifier K+ current of rabbit portal vein myocytes and that the activity of these channels is enhanced by a signal transduction mechanism involving beta-adrenoceptors and phosphorylation by PKA at a membrane potential consistent with that observed in the myocytes in situ.
Collapse
Affiliation(s)
- E A Aiello
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | |
Collapse
|
39
|
Kuriyama H, Kitamura K, Itoh T, Inoue R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 1998; 78:811-920. [PMID: 9674696 DOI: 10.1152/physrev.1998.78.3.811] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Visceral smooth muscle cells (VSMC) play an essential role, through changes in their contraction-relaxation cycle, in the maintenance of homeostasis in biological systems. The features of these cells differ markedly by tissue and by species; moreover, there are often regional differences within a given tissue. The biophysical features used to investigate ion channels in VSMC have progressed from the original extracellular recording methods (large electrode, single or double sucrose gap methods), to the intracellular (microelectrode) recording method, and then to methods for recording from membrane fractions (patch-clamp, including cell-attached patch-clamp, methods). Remarkable advances are now being made thanks to the application of these more modern biophysical procedures and to the development of techniques in molecular biology. Even so, we still have much to learn about the physiological features of these channels and about their contribution to the activity of both cell and tissue. In this review, we take a detailed look at ion channels in VSMC and at receptor-operated ion channels in particular; we look at their interaction with the contraction-relaxation cycle in individual VSMC and especially at the way in which their activity is related to Ca2+ movements and Ca2+ homeostasis in the cell. In sections II and III, we discuss research findings mainly derived from the use of the microelectrode, although we also introduce work done using the patch-clamp procedure. These sections cover work on the electrical activity of VSMC membranes (sect. II) and on neuromuscular transmission (sect. III). In sections IV and V, we discuss work done, using the patch-clamp procedure, on individual ion channels (Na+, Ca2+, K+, and Cl-; sect. IV) and on various types of receptor-operated ion channels (with or without coupled GTP-binding proteins and voltage dependent and independent; sect. V). In sect. VI, we look at work done on the role of Ca2+ in VSMC using the patch-clamp procedure, biochemical procedures, measurements of Ca2+ transients, and Ca2+ sensitivity of contractile proteins of VSMC. We discuss the way in which Ca2+ mobilization occurs after membrane activation (Ca2+ influx and efflux through the surface membrane, Ca2+ release from and uptake into the sarcoplasmic reticulum, and dynamic changes in Ca2+ within the cytosol). In this article, we make only limited reference to vascular smooth muscle research, since we reviewed the features of ion channels in vascular tissues only recently.
Collapse
Affiliation(s)
- H Kuriyama
- Seinan Jogakuin University, Kokura-Kita, Fukuoka, Japan
| | | | | | | |
Collapse
|
40
|
Schmalz F, Kinsella J, Koh SD, Vogalis F, Schneider A, Flynn ER, Kenyon JL, Horowitz B. Molecular identification of a component of delayed rectifier current in gastrointestinal smooth muscles. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G901-11. [PMID: 9612272 DOI: 10.1152/ajpgi.1998.274.5.g901] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kv2.2, homologous to the shab family of Drosophila voltage-gated K+ channels, was isolated from human and canine colonic circular smooth muscle-derived mRNA. Northern hybridization analysis performed on RNA prepared from tissues and RT-PCR performed on RNA isolated from dispersed and selected smooth muscle cells demonstrate that Kv2.2 is expressed in smooth muscle cells found in all regions of the canine gastrointestinal (GI) tract and in several vascular tissues. Injection of Kv2.2 mRNA into Xenopus oocytes resulted in the expression of a slowly activating K+ current (time to half maximum current, 97 +/- 8.6 ms) mediated by 15 pS (symmetrical K+) single channels. The current was inhibited by tetraethylammonium (IC50 = 2.6 mM), 4-aminopyridine (IC50 = 1.5 mM at +20 mV), and quinine (IC50 = 13.7 microM) and was insensitive to charybdotoxin. Low concentrations of quinine (1 microM) were used to preferentially block the slow component of the delayed rectifier current in native colonic myocytes. These data suggest that Kv2.2 may contribute to this current in native GI smooth muscle cells.
Collapse
Affiliation(s)
- F Schmalz
- Department of Physiology, School of Medicine, University of Nevada, Reno 89557, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lovren F, Triggle CR. Involvement of nitrosothiols, nitric oxide and voltage-gated K+ channels in photorelaxation of vascular smooth muscle. Eur J Pharmacol 1998; 347:215-21. [PMID: 9653885 DOI: 10.1016/s0014-2999(98)00095-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of nitrosothiol depleting compounds (p-hydroxymercuribenzoate, iodacetamide and ethacrynic acid), a guanylyl cyclase inhibitor (1H[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, ODQ) and nitric oxide (NO) scavenger agents (xanthine/xanthine oxidase and 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide; carboxy-PTIO) on light-induced photorelaxation in rat thoracic aorta were investigated. Photorelaxation responses were decreased in the presence of nitrosothiol depleting compounds suggesting S-nitrosothiols as the tissue source of the NO, whereas reduction in photorelaxation by the guanylyl cyclase inhibitor and NO scavenger agents indicates involvement of both NO and cGMP in photorelaxation. In addition the sensitivity of photorelaxation to the voltage-gated potassium channel (KV) inhibitor, 4-aminopyridine, indicates that photorelaxation is mediated via a NO/cGMP-dependent, and, perhaps, direct light, activation of KV channels.
Collapse
Affiliation(s)
- F Lovren
- Department of Pharmacology and Therapeutics and Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
42
|
Jaggar JH, Mawe GM, Nelson MT. Voltage-dependent K+ currents in smooth muscle cells from mouse gallbladder. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G687-93. [PMID: 9575850 DOI: 10.1152/ajpgi.1998.274.4.g687] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ionic mechanisms associated with the control of gallbladder contractility are incompletely understood. One type of K+ current, the voltage-dependent K+ (KV) current, is relatively uncharacterized in gallbladder cells and may contribute to muscular excitability. The main focus of this study was therefore to determine the voltage dependence and pharmacological nature of this K+ current in isolated myocytes from mouse gallbladder, using the patch-clamp technique. Currents through Ca(2+)-activated K+ channels were minimized by buffering of intracellular Ca2+ (20 nM free Ca2+) and by inclusion of 1 mM tetraethylammonium (TEA+) in the bathing solution. With 140 mM symmetrical K+, membrane depolarization increased K+ currents, independent of driving force, as assessed by tail current analysis. Half-maximal activation of K+ currents occurred at approximately 1 mV and increased e-fold per 9 mV. Inactivation also increased on depolarization, with a midpoint of -24 mV. Single KV channels were recorded in the cell-attached configuration, exhibiting a single-channel conductance of 4.9 pS. TEA+ at 10 mM reduced KV currents by 36%. At +50 mV, 1 mM and 10 mM 4-aminopyridine inhibited currents by 18% and 35%, respectively, whereas 1 and 10 mM 3,4-diaminopyridine inhibited currents by 11% and 21%, respectively. Quinine inhibited KV currents (at +50 mV, 100 microM and 1 mM quinine inhibited current by 24% and 70%, respectively). In summary, we describe voltage-activated K+ currents from the mouse gallbladder that are likely to contribute to the control of muscular excitability.
Collapse
Affiliation(s)
- J H Jaggar
- Department of Anatomy, University of Vermont, Burlington 05401-2500, USA
| | | | | |
Collapse
|
43
|
Hayabuchi Y, Nakaya Y, Matsuoka S, Kuroda Y. Hydrogen peroxide-induced vascular relaxation in porcine coronary arteries is mediated by Ca2+-activated K+ channels. Heart Vessels 1998; 13:9-17. [PMID: 9923560 DOI: 10.1007/bf02750638] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hydrogen peroxide (H2O2) elicited concentration-dependent relaxation of endothelium-denuded rings of porcine coronary arteries. The relaxation induced by the H2O2 was markedly attenuated by 10 microM 1H-[1,2,4]oxadiazolo [4,3,a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase, or by 100 nM charybdotoxin, an inhibitor of large-conductance Ca2+-activated K+ (KCa) channels. A combination of the ODQ and charybdotoxin abolished the H2O2-induced relaxation. Pretreatment with 25 microM of an Rp stereoisomer of adenosine-3',5'-cyclic monophosphothioate (Rp-cAMPS), 20 microM glibenclamide, or 1 mM 4-aminopyridine did not affect the vascular response to H2O2. The presence of catalase at 1000 U/ml significantly attenuated the H2O2-induced relaxation. Exposure of cultured smooth muscle cells to H2O2 activated KCa channels in a concentration-dependent manner in cell-attached patches. Pretreatment with catalase significantly inhibited the activation of KCa channels. Rp-cAMPS did not inhibit the H2O2-induced activation of KCa channels. The activation of KCa channels by H2O2 was markedly decreased in the presence of ODQ. However, even in the presence of ODQ, H2O2 activated KCa channels in a concentration-dependent manner. In inside-out patches, H2O2 significantly activated KCa channels through a process independent of cyclic guanosine 3',5'-monophosphate (cGMP). In conclusion, H2O2 elicits vascular relaxation due to activation of KCa channels, which is mediated partly by a direct action on the channel and partly by activation of soluble guanylate cyclase, resulting in the generation of cGMP.
Collapse
Affiliation(s)
- Y Hayabuchi
- Department of Pediatrics, University of Tokushima, Japan
| | | | | | | |
Collapse
|
44
|
Ishikawa T, Eckman DM, Keef KD. Characterization of delayed rectifier K+ currents in rabbit coronary artery cells near resting membrane potential. Can J Physiol Pharmacol 1997. [DOI: 10.1139/y97-143] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Cotton KD, Hollywood MA, McHale NG, Thornbury KD. Outward currents in smooth muscle cells isolated from sheep mesenteric lymphatics. J Physiol 1997; 503 ( Pt 1):1-11. [PMID: 9288669 PMCID: PMC1159881 DOI: 10.1111/j.1469-7793.1997.001bi.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The patch-clamp technique was used to measure membrane currents in isolated smooth muscle cells dispersed from sheep mesenteric lymphatics. Depolarizing steps positive to -30 mV evoked rapid inward currents followed by noisy outward currents. 2. Nifedipine (1 microM) markedly reduced the outward current, while Bay K 8644 (1 microM) enhanced it. Up to 90% of the outward current was also blocked by iberiotoxin (Kd = 36 nM). 3. Large conductance (304 +/- 15 pS, 7 cells), Ca(2+)- and voltage-sensitive channels were observed during single-channel recordings on inside-out patches using symmetrical 140 mM K+ solutions (at 37 degrees C). The voltage required for half-maximal activation of the channels (V1/2) shifted in the hyperpolarizing direction by 146 mV per 10-fold increase in [Ca2+]i. 4. In whole-cell experiments a voltage-dependent outward current remained when the Ca(2+)-activated current was blocked with penitrem A (100 nM). This current activated at potentials positive to -20 mV and demonstrated the phenomenon of voltage-dependent inactivation (V1/2 = -41 +/- 2 mV, slope factor = 18 +/- 2 mV, 5 cells). 6. Tetraethylammonium (TEA; 30 mM) reduced the voltage-dependent current by 75% (Kd = 3.3 mM, 5 cells) while a maximal concentration of 4-aminopyridine (4-AP; 10 mM) blocked only 40% of the current. TEA alone had as much effect as TEA and 4-AP together, suggesting that there are at least two components to the voltage-sensitive K+ current. 7. These results suggest that lymphatic smooth muscle cells generate a Ca(2+)-activated current, largely mediated by large conductance Ca(2+)-activated K+ channels, and several components of voltage-dependent outward current which resemble 'delayed rectifier' currents in other smooth muscle preparations.
Collapse
Affiliation(s)
- K D Cotton
- Department of Physiology, School of Biomedical Science, Queen's University of Belfast, UK
| | | | | | | |
Collapse
|
46
|
Rittenhouse AR, Parker C, Brugnara C, Morgan KG, Alper SL. Inhibition of maxi-K currents in ferret portal vein smooth muscle cells by the antifungal clotrimazole. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C45-56. [PMID: 9252441 DOI: 10.1152/ajpcell.1997.273.1.c45] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The antifungal agent clotrimazole (CLT) is a potent small-molecule inhibitor of Ca-activated K (KCa) currents of intermediate conductance in murine erythroleukemia cells. This study demonstrates that CLT also inhibits large-conductance KCa currents (maxi-K currents) in acutely dissociated vascular smooth muscle (VSM) cells of ferret portal vein. The magnitude of block of a component of the whole cell K current by CLT was sensitive to test potential. CLT inhibited unitary maxi-K currents in outside-out patches, apparently by decreasing the mean open time. A metabolite of CLT lacking an imidazole ring also inhibited K currents. In contrast, the antifungal drug ketoconazole increased these same currents. Thus the inhibitory action of CLT appears to be due to a direct interaction with the channel protein rather than to imidazole block of cytochrome P-450 activity. Consistent with inhibition of maxi-K currents by CLT, superfusion of strips of portal vein VSM with CLT enhanced isometric tension and spontaneous rate of contraction, suggesting that CLT modulation of maxi-K currents may alter vasomotor functioning.
Collapse
Affiliation(s)
- A R Rittenhouse
- Molecular Medicine Unit, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
47
|
Berman RS, Griffith TM. Differential actions of charybdotoxin on central and daughter branch arteries of the rabbit isolated ear. Br J Pharmacol 1997; 120:639-46. [PMID: 9051302 PMCID: PMC1564516 DOI: 10.1038/sj.bjp.0700962] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. By use of rabbit isolated perfused intact ears and isolated perfused segments of central and first generation daughter branch ear arteries, we investigated the actions of charybdotoxin (ChTX), a blocker of calcium-activated K+ channels (KCa channels), and N omega-nitro-L-arginine methyl ester (L-NAME) on pressure-flow and diameter-flow relationships. 2. ChTX (1 nM) induced an upwards shift in the pressure-flow curve in the rabbit intact isolated ear preconstricted with 5-hydroxytryptamine (5-HT; 100 nM) with subsequent administration of L-NAME (100 microM) inducing a further upwards shift. L-NAME itself induced an upwards shift in the pressure-flow curve, but subsequent administration of ChTX was without significant effect. 3. Microangiographic analysis revealed a tendency of ChTX (1 nM) to decrease vessel diameter in the central ear artery (G0) with little effect on the first two generations of daughter branch arteries (G1 and G2) in the intact ear. Subsequent addition of L-NAME (100 microM) did not significantly further decrease vessel diameter in G0, but did decrease vessel diameter in G1 and G2. L-NAME itself showed a tendency to decrease vessel diameter in G0, G1 and G2 vessels with subsequent addition of ChTX being without significant effect. 4. In an isolated G0 preparation which was preconstricted with 5-HT (100 nM), ChTX (1 nM) caused an upwards shift in the pressure-flow curve which was augmented by subsequent addition of L-NAME (100 microM). L-NAME (100 microM) itself caused an upwards shift in the pressure-flow curve but subsequent addition of ChTX (1 nM) had no significant effect. 5. In comparison, in an isolated G1 preparation which was preconstricted with 5-HT (100 nM), ChTX (1 nM) had no significant effect on the pressure-flow curve relative to control, but subsequent addition of L-NAME (100 microM) caused an upwards shift. L-NAME (100 microM) itself induced an upwards shift in the pressure-flow curve with subsequent addition of ChTX (1 nM) being without significant effect. 6. ChTX (10 pM-10 nM) caused a concentration-dependent increase in perfusion pressure in isolated G0 and G1 preparations at fixed flow rates of 2 ml min-1 and 0.5 ml min-1, respectively. These responses were enhanced in the presence of L-NAME (100 microM) in G1 but not G0 preparations. 7. We conclude that at 1 nM, ChTX exhibits differential actions on central and daughter branch arteries of the intact ear of the rabbit, which are also apparent in the corresponding arteries when studied in isolation. The action of 1 nM ChTX in G0 vessels may reflect inhibition of either the release or action of nitric oxide as it was blocked in the presence of L-NAME. At higher concentrations of ChTX, there would appear to be a direct constrictor effect on vascular smooth muscle which is apparent in both G0 and G1 vessels. This observed heterogeneity could reflect different distributions of KCa channels between central and daughter branch arteries at either the endothelial or smooth muscle levels, or both.
Collapse
Affiliation(s)
- R S Berman
- Department of Diagnostic Radiology, University of Wales College of Medicine, Cardiff
| | | |
Collapse
|
48
|
Waniishi Y, Inoue R, Ito Y. Preferential potentiation by hypotonic cell swelling of muscarinic cation current in guinea pig ileum. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C240-53. [PMID: 9038830 DOI: 10.1152/ajpcell.1997.272.1.c240] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of hypotonic cell swelling (HCS) on muscarinic receptor-activated cationic current in guinea pig ileal smooth muscle were investigated by the whole cell patch-clamp technique. With nystatin-perforated recording, reduced external tonicity from 312 to 262 mosM caused cell swelling but hardly affected the membrane currents activated by depolarization, such as outward-rectifying K and voltage-dependent Ca currents. In contrast, the inward current evoked by carbachol at -60 mV was greatly increased (approximately 50%) by the same extent of hypotonicity. This effect is likely to occur through potentiation of nonselective cation channels coupled to the muscarinic receptor (mNSCCs) and probably does not involve elevated intracellular Ca2+ concentration ([Ca2+]i), since neither removal of external Ca2+ nor [Ca2+]i buffering with 10 mM 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid significantly affected the results. Furthermore, the time course and degree of this potentiation closely matched those of video-microscopically monitored HCS. These results support the view that mechanosensitive modulation may be a powerful mechanism to regulate mNSCCs activity in gut smooth muscle, together with membrane potential and [Ca2+]i.
Collapse
Affiliation(s)
- Y Waniishi
- Second Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
49
|
Beech DJ. Actions of neurotransmitters and other messengers on Ca2+ channels and K+ channels in smooth muscle cells. Pharmacol Ther 1997; 73:91-119. [PMID: 9131720 DOI: 10.1016/s0163-7258(97)87271-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ion channels play key roles in determining smooth muscle tone by setting the membrane potential and allowing Ca2+ influx. Perhaps not surprisingly, therefore, they also provide targets for neurotransmitters and other messengers that act on smooth muscle. Application of patch-clamp and molecular biology techniques and the use of selective pharmacology has started to provide a wealth of information on the ion channel systems of smooth muscle cells, revealing complexity and functional significance. Reviewed are the actions of messengers (e.g., noradrenaline, acetylcholine, endothelin, angiotensin II, neuropeptide Y, 5-hydroxytryptamine, histamine, adenosine, calcitonin gene-related peptide, substance P, prostacyclin, nitric oxide and oxygen) on specific types of ion channel in smooth muscle, the L-type calcium channel, and the large conductance Ca(2+)-activated, ATP-sensitive, delayed rectifier and apamin-sensitive K+ channels.
Collapse
Affiliation(s)
- D J Beech
- Department of Pharmacology, University of Leeds, England
| |
Collapse
|
50
|
Abstract
1. Regulation of smooth muscle membrane potential through changes in K+ channel activity and subsequent alterations in the activity of voltage-dependent calcium channels is a major mechanism of vasodilation and vasoconstriction, both in normal and pathophysiological conditions. The contribution of a given K+ channel type to this mechanism of vascular regulation depends on the vascular bed and species examined. 2. Multiple K+ channels are present in most vascular smooth muscle cells and these different K+ channels play unique roles in regulating vascular tone. Voltage-dependent K+ (Kv) channels are activated by depolarization, may contribute to steady state resting membrane potential and are inhibited by certain vasoconstrictors. Calcium-activated K+ (K(Ca)) channels oppose the depolarization associated with intrinsic vascular tone and are activated by some endogenous vasodilators. Small-conductance, apamin-sensitive K(Ca) channels may be activated by endothelium-derived hyperpolarizing factor. ATP-sensitive K+ (K(ATP)) channels are activated by pharmacological and endogenous vasodilators. Inward rectifier K+ (K(ir)) channels are activated by slight changes in extracellular K+ and may contribute to resting membrane potential. 3. Membrane potential and diameter are determined, in part, by the integrated activity of several K+ channels, which are regulated by multiple dilator and constrictor signals in vascular smooth muscle.
Collapse
Affiliation(s)
- J E Brayden
- Department of Pharmacology, The University of Vermont, Medical Research Facility, Colchester 05446, USA
| |
Collapse
|