1
|
Deng B, Li W, Chen Z, Zeng J, Zhao F. Temporal bright light at low frequency retards lens-induced myopia in guinea pigs. PeerJ 2023; 11:e16425. [PMID: 38025747 PMCID: PMC10655705 DOI: 10.7717/peerj.16425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Bright light conditions are supposed to curb eye growth in animals with experimental myopia. Here we investigated the effects of temporal bright light at very low frequencies exposures on lens-induced myopia (LIM) progression. Methods Myopia was induced by application of -6.00 D lenses over the right eye of guinea pigs. They were randomly divided into four groups based on exposure to different lighting conditions: constant low illumination (CLI; 300 lux), constant high illumination (CHI; 8,000 lux), very low frequency light (vLFL; 300/8,000 lux, 10 min/c), and low frequency light (LFL; 300/8,000 lux, 20 s/c). Refraction and ocular dimensions were measured per week. Changes in ocular dimensions and refractions were analyzed by paired t-tests, and differences among the groups were analyzed by one-way ANOVA. Results Significant myopic shifts in refractive error were induced in lens-treated eyes compared with contralateral eyes in all groups after 3 weeks (all P < 0.05). Both CHI and LFL conditions exhibited a significantly less refractive shift of LIM eyes than CLI and vLFL conditions (P < 0.05). However, only LFL conditions showed significantly less overall myopic shift and axial elongation than CLI and vLFL conditions (both P < 0.05). The decrease in refractive error of both eyes correlated significantly with axial elongation in all groups (P < 0.001), except contralateral eyes in the CHI group (P = 0.231). LFL condition significantly slacked lens thickening in the contralateral eyes. Conclusions Temporal bright light at low temporal frequency (0.05 Hz) appears to effectively inhibit LIM progression. Further research is needed to determine the safety and the potential mechanism of temporal bright light in myopic progression.
Collapse
Affiliation(s)
- Baodi Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wentao Li
- Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Ziping Chen
- Guangdong Light Visual Health Research Institute, Guangzhou, China
| | - Junwen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Feng Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
2
|
Kovács-Öller T, Szarka G, Hoffmann G, Péntek L, Valentin G, Ross L, Völgyi B. Extrinsic and Intrinsic Factors Determine Expression Levels of Gap Junction-Forming Connexins in the Mammalian Retina. Biomolecules 2023; 13:1119. [PMID: 37509155 PMCID: PMC10377540 DOI: 10.3390/biom13071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Gap junctions (GJs) are not static bridges; instead, GJs as well as the molecular building block connexin (Cx) proteins undergo major expression changes in the degenerating retinal tissue. Various progressive diseases, including retinitis pigmentosa, glaucoma, age-related retinal degeneration, etc., affect neurons of the retina and thus their neuronal connections endure irreversible changes as well. Although Cx expression changes might be the hallmarks of tissue deterioration, GJs are not static bridges and as such they undergo adaptive changes even in healthy tissue to respond to the ever-changing environment. It is, therefore, imperative to determine these latter adaptive changes in GJ functionality as well as in their morphology and Cx makeup to identify and distinguish them from alterations following tissue deterioration. In this review, we summarize GJ alterations that take place in healthy retinal tissue and occur on three different time scales: throughout the entire lifespan, during daily changes and as a result of quick changes of light adaptation.
Collapse
Affiliation(s)
- Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Gergely Szarka
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Gyula Hoffmann
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Loretta Péntek
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
| | - Gréta Valentin
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
| | - Liliana Ross
- Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
3
|
Myles WE, McFadden SA. Analytical methods for assessing retinal cell coupling using cut-loading. PLoS One 2022; 17:e0271744. [PMID: 35853039 PMCID: PMC9295955 DOI: 10.1371/journal.pone.0271744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Electrical coupling between retinal neurons contributes to the functional complexity of visual circuits. “Cut-loading” methods allow simultaneous assessment of cell-coupling between multiple retinal cell-types, but existing analysis methods impede direct comparison with gold standard direct dye injection techniques. In the current study, we both improved an existing method and developed two new approaches to address observed limitations. Each method of analysis was applied to cut-loaded dark-adapted Guinea pig retinae (n = 29) to assess coupling strength in the axonless horizontal cell type (‘a-type’, aHCs). Method 1 was an improved version of the standard protocol and described the distance of dye-diffusion (space constant). Method 2 adjusted for the geometric path of dye-transfer through cut-loaded cells and extracted the rate of dye-transfer across gap-junctions in terms of the coupling coefficient (kj). Method 3 measured the diffusion coefficient (De) perpendicular to the cut-axis. Dye transfer was measured after one of five diffusion times (1–20 mins), or with a coupling inhibitor, meclofenamic acid (MFA) (50–500μM after 20 mins diffusion). The standard protocol fits an exponential decay function to the fluorescence profile of a specified retina layer but includes non-specific background fluorescence. This was improved by measuring the fluorescence of individual cell soma and excluding from the fit non-horizontal cells located at the cut-edge (p<0.001) (Method 1). The space constant (Method 1) increased with diffusion time (p<0.01), whereas Methods 2 (p = 0.54) and 3 (p = 0.63) produced consistent results across all diffusion times. Adjusting distance by the mean cell-cell spacing within each tissue reduced the incidence of outliers across all three methods. Method 1 was less sensitive to detecting changes induced by MFA than Methods 2 (p<0.01) and 3 (p<0.01). Although the standard protocol was easily improved (Method 1), Methods 2 and 3 proved more sensitive and generalisable; allowing for detailed assessment of the tracer kinetics between different populations of gap-junction linked cell networks and direct comparison to dye-injection techniques.
Collapse
Affiliation(s)
- William E. Myles
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- * E-mail:
| | - Sally A. McFadden
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
4
|
Antunes DF, Soares MC, Taborsky M. Dopamine modulates social behaviour in cooperatively breeding fish. Mol Cell Endocrinol 2022; 550:111649. [PMID: 35436519 DOI: 10.1016/j.mce.2022.111649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Dopamine is part of the reward system triggering the social decision-making network in the brain. It has hence great potential importance in the regulation of social behaviour, but its significance in the control of behaviour in highly social animals is currently limited. We studied the role of the dopaminergic system in social decision-making in the cooperatively breeding cichlid fish, Neolamprologus pulcher, by blocking or stimulating the dopaminergic D1-like and D2-like receptors. We first tested the effects of different dosages and timing of administration on subordinate group members' social behaviour within the group in an unchallenging environment. In a second experiment we pharmacologically manipulated D1-like and D2-like receptors while experimentally challenging N. pulcher groups by presenting an egg predator, and by increasing the need for territory maintenance through digging out sand from the shelter. Our results show that the D1-like and D2-like receptor pathways are differently involved in the modulation of aggressive, submissive and affiliative behaviours. Interestingly, the environmental context seems particularly crucial regarding the role of the D2-like receptors in behavioural regulation of social encounters among group members, indicating a potential pathway in agonistic and cooperative interactions in a pay-to-stay scenario. We discuss the importance of environmental information in mediating the role of dopamine for the modulation of social behaviour.
Collapse
Affiliation(s)
- Diogo F Antunes
- Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032, Hinterkappelen, Switzerland; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Marta C Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Michael Taborsky
- Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032, Hinterkappelen, Switzerland
| |
Collapse
|
5
|
The effects of reduced ambient lighting on lens compensation in infant rhesus monkeys. Vision Res 2021; 187:14-26. [PMID: 34144362 DOI: 10.1016/j.visres.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
Although reduced ambient lighting (~50 lx) does not increase the degree of form-deprivation myopia (FDM) in chickens or infant monkeys, it does reduce the probability that monkeys will recover from FDM and that the normal age-dependent reduction in hyperopia will occur in monkeys reared with unrestricted vision. These findings suggest that low ambient lighting levels affect the regulatory mechanism responsible for emmetropization. To study this issue, infant rhesus monkeys (age ~ 24 days) were reared under dim light (55 ± 9 lx) with monocular -3D (dim-light lens-induced myopia, DL-LIM, n = 8) or +3D spectacle lenses (dim-light lens-induced hyperopia, DL-LIH, n = 7) until approximately 150 days of age. Refractive errors, ocular parameters and sub-foveal choroidal thickness were measured periodically and compared with normal-light-reared, lens-control monkeys (NL-LIM, n = 16; NL-LIH, n = 7). Dim light rearing significantly attenuated the degree of compensatory anisometropias in both the DL-LIM (-0.63 ± 0.77D vs. -2.11 ± 1.10D in NL-LIM) and DL-LIH treatment groups (-0.18 ± 1.93D vs. +1.71 ± 0.39D in NL-LIH). These effects came about because the treated and fellow control eyes had a lower probability of responding appropriately to the eye's effective refractive state. Vision-induced interocular differences in choroidal thickness were only observed in monkeys that exhibited compensating refractive changes, suggesting that failures in detecting the relative magnitude of optical errors underlay the abnormal refractive responses. Our findings suggest that low ambient lighting levels reduce the efficacy of the vision-dependent mechanisms that regulate refractive development.
Collapse
|
6
|
Hellmer CB, Bohl JM, Hall LM, Koehler CC, Ichinose T. Dopaminergic Modulation of Signal Processing in a Subset of Retinal Bipolar Cells. Front Cell Neurosci 2020; 14:253. [PMID: 32922266 PMCID: PMC7456991 DOI: 10.3389/fncel.2020.00253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
The retina and the olfactory bulb are the gateways to the visual and olfactory systems, respectively, similarly using neural networks to initiate sensory signal processing. Sensory receptors receive signals that are transmitted to neural networks before projecting to primary cortices. These networks filter sensory signals based on their unique features and adjust their sensitivities by gain control systems. Interestingly, dopamine modulates sensory signal transduction in both systems. In the retina, dopamine adjusts the retinal network for daylight conditions (“light adaptation”). In the olfactory system, dopamine mediates lateral inhibition between the glomeruli, resulting in odorant signal decorrelation and discrimination. While dopamine is essential for signal discrimination in the olfactory system, it is not understood whether dopamine has similar roles in visual signal processing in the retina. To elucidate dopaminergic effects on visual processing, we conducted patch-clamp recording from second-order retinal bipolar cells, which exhibit multiple types that can convey different temporal features of light. We recorded excitatory postsynaptic potentials (EPSPs) evoked by various frequencies of sinusoidal light in the absence and presence of a dopamine receptor 1 (D1R) agonist or antagonist. Application of a D1R agonist, SKF-38393, shifted the peak temporal responses toward higher frequencies in a subset of bipolar cells. In contrast, a D1R antagonist, SCH-23390, reversed the effects of SKF on these types of bipolar cells. To examine the mechanism of dopaminergic modulation, we recorded voltage-gated currents, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and low-voltage activated (LVA) Ca2+ channels. SKF modulated HCN and LVA currents, suggesting that these channels are the target of D1R signaling to modulate visual signaling in these bipolar cells. Taken together, we found that dopamine modulates the temporal tuning of a subset of retinal bipolar cells. Consequently, we determined that dopamine plays a role in visual signal processing, which is similar to its role in signal decorrelation in the olfactory bulb.
Collapse
Affiliation(s)
- Chase B Hellmer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jeremy M Bohl
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Leo M Hall
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christina C Koehler
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
7
|
Inhibitory components of retinal bipolar cell receptive fields are differentially modulated by dopamine D1 receptors. Vis Neurosci 2020; 37:E01. [PMID: 32046810 DOI: 10.1017/s0952523819000129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During adaptation to an increase in environmental luminance, retinal signaling adjustments are mediated by the neuromodulator dopamine. Retinal dopamine is released with light and can affect center-surround receptive fields, the coupling state between neurons, and inhibitory pathways through inhibitory receptors and neurotransmitter release. While the inhibitory receptive field surround of bipolar cells becomes narrower and weaker during light adaptation, it is unknown how dopamine affects bipolar cell surrounds. If dopamine and light have similar effects, it would suggest that dopamine could be a mechanism for light-adapted changes. We tested the hypothesis that dopamine D1 receptor activation is sufficient to elicit the magnitude of light-adapted reductions in inhibitory bipolar cell surrounds. Surrounds were measured from OFF bipolar cells in dark-adapted mouse retinas while stimulating D1 receptors, which are located on bipolar, horizontal, and inhibitory amacrine cells. The D1 agonist SKF-38393 narrowed and weakened OFF bipolar cell inhibitory receptive fields but not to the same extent as with light adaptation. However, the receptive field surround reductions differed between the glycinergic and GABAergic components of the receptive field. GABAergic inhibitory strength was reduced only at the edges of the surround, while glycinergic inhibitory strength was reduced across the whole receptive field. These results expand the role of retinal dopamine to include modulation of bipolar cell receptive field surrounds. Additionally, our results suggest that D1 receptor pathways may be a mechanism for the light-adapted weakening of glycinergic surround inputs and the furthest wide-field GABAergic inputs to bipolar cells. However, remaining differences between light-adapted and D1 receptor-activated inhibition demonstrate that non-D1 receptor mechanisms are necessary to elicit the full effect of light adaptation on inhibitory surrounds.
Collapse
|
8
|
O'Brien J, Bloomfield SA. Plasticity of Retinal Gap Junctions: Roles in Synaptic Physiology and Disease. Annu Rev Vis Sci 2018; 4:79-100. [DOI: 10.1146/annurev-vision-091517-034133] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electrical synaptic transmission via gap junctions underlies direct and rapid neuronal communication in the central nervous system. The diversity of functional roles played by electrical synapses is perhaps best exemplified in the vertebrate retina, in which gap junctions are expressed by each of the five major neuronal types. These junctions are highly plastic; they are dynamically regulated by ambient illumination and circadian rhythms acting through light-activated neuromodulators. The networks formed by electrically coupled neurons provide plastic, reconfigurable circuits positioned to play key and diverse roles in the transmission and processing of visual information at every retinal level. Recent work indicates gap junctions also play a role in the progressive cell death and aberrant activity seen in various pathological conditions of the retina. Gap junctions thus form potential targets for novel neuroprotective therapies in the treatment of neurodegenerative retinal diseases such as glaucoma and ischemic retinopathies.
Collapse
Affiliation(s)
- John O'Brien
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Stewart A. Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY 10036, USA
| |
Collapse
|
9
|
Soares MC, Santos TP, Messias JPM. Dopamine disruption increases cleanerfish cooperative investment in novel client partners. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160609. [PMID: 28572985 PMCID: PMC5451786 DOI: 10.1098/rsos.160609] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Social familiarization is a process of gaining knowledge that results from direct or indirect participation in social events. Cooperative exchanges are thought to be conditional upon familiarity with others. Indeed, individuals seem to prefer to engage with those that have previously interacted with them, which are more accurate predictors of reward than novel partners. On the other hand, highly social animals do seek novelty. Truth is that the physiological bases underlying how familiarity and novelty may affect cooperative decision-making are still rather obscure. Here, we provide the first experimental evidence that the level of the dopaminergic influence in cooperative exchanges is constrained to mechanisms of social familiarization and novelty in a cleanerfish, Labroides dimidiatus. Cleaners were tested against familiar and novel Ctenochaetus striatus surgeonfish (a common client species) in laboratorial conditions, and were found to spend more time providing physical contact (also referred to as tactile stimulation) to familiar fish clients. Cleaners use tactile stimulation as a way to reduce the risk of a non-rewarding outcome, a behavioural response that is even more pronounced when blocking dopamine (DA) D1 receptors. We discovered that the influence of DA disruption on cleaners' provision of physical contact was dependent on the level of familiarity with its partner, being highly exacerbated whenever the client is novel, and unnoticed when dealing with a familiar one. Our findings demonstrate that DA mediation influences the valuation of partner stimuli and the enhancing investment in novel partners, mechanisms that are similar to other vertebrates, including humans.
Collapse
|
10
|
Can cleanerfish overcome temptation? A selective role for dopamine influence on cooperative-based decision making. Physiol Behav 2017; 169:124-129. [DOI: 10.1016/j.physbeh.2016.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 11/18/2022]
|
11
|
Messias JPM, Santos TP, Pinto M, Soares MC. Stimulation of dopamine D₁ receptor improves learning capacity in cooperating cleaner fish. Proc Biol Sci 2016; 283:rspb.2015.2272. [PMID: 26791613 DOI: 10.1098/rspb.2015.2272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Accurate contextual decision-making strategies are important in social environments. Specific areas in the brain are tasked to process these complex interactions and generate correct follow-up responses. The dorsolateral and dorsomedial parts of the telencephalon in the teleost fish brain are neural substrates modulated by the neurotransmitter dopamine (DA), and are part of an important neural circuitry that drives animal behaviour from the most basic actions such as learning to search for food, to properly choosing partners and managing decisions based on context. The Indo-Pacific cleaner wrasse Labroides dimidiatus is a highly social teleost fish species with a complex network of interactions with its 'client' reef fish. We asked if changes in DA signalling would affect individual learning ability by presenting cleaner fish two ecologically different tasks that simulated a natural situation requiring accurate decision-making. We demonstrate that there is an involvement of the DA system and D1 receptor pathways on cleaners' natural abilities to learn both tasks. Our results add significantly to the growing literature on the physiological mechanisms that underlie and facilitate the expression of cooperative abilities.
Collapse
Affiliation(s)
- João P M Messias
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Teresa P Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Maria Pinto
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Marta C Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
12
|
Messias JPM, Paula JR, Grutter AS, Bshary R, Soares MC. Dopamine disruption increases negotiation for cooperative interactions in a fish. Sci Rep 2016; 6:20817. [PMID: 26853241 PMCID: PMC4745044 DOI: 10.1038/srep20817] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/12/2016] [Indexed: 01/11/2023] Open
Abstract
Humans and other animals use previous experiences to make behavioural decisions, balancing the probabilities of receiving rewards or punishments with alternative actions. The dopaminergic system plays a key role in this assessment: for instance, a decrease in dopamine transmission, which is signalled by the failure of an expected reward, may elicit a distinct behavioural response. Here, we tested the effect of exogenously administered dopaminergic compounds on a cooperative vertebrate's decision-making process, in a natural setting. We show, in the Indo-Pacific bluestreak cleaner wrasse Labroides dimidiatus, that blocking dopamine receptors in the wild induces cleaners to initiate more interactions with and to provide greater amounts of physical contact to their client fish partners. This costly form of tactile stimulation using their fins is typically used to prolong interactions and to reconcile with clients after cheating. Interestingly, client jolt rate, a correlate of cheating by cleaners, remained unaffected. Thus, in low effective dopaminergic transmission conditions cleaners may renegotiate the occurrence and duration of the interaction with a costly offer. Our results provide first evidence for a prominent role of the dopaminergic system in decision-making in the context of cooperation in fish.
Collapse
Affiliation(s)
- João P. M. Messias
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - José R. Paula
- MARE - Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Alexandra S. Grutter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Redouan Bshary
- Université de Neuchâtel, Institut de Biologie, Eco-Ethologie, Neuchâtel, Switzerland
| | - Marta C. Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
13
|
Qiao M, Sanes JR. Genetic Method for Labeling Electrically Coupled Cells: Application to Retina. Front Mol Neurosci 2016; 8:81. [PMID: 26778956 PMCID: PMC4703850 DOI: 10.3389/fnmol.2015.00081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/11/2015] [Indexed: 01/08/2023] Open
Abstract
Understanding how the nervous system functions requires mapping synaptic connections between neurons. Several methods are available for imaging neurons connected by chemical synapses, but few enable marking neurons connected by electrical synapses. Here, we demonstrate that a peptide transporter, Pept2, can be used for this purpose. Pept2 transports a gap junction-permeable fluorophore-coupled dipeptide, beta-alanine-lysine-N-7-amino-4-methyl coumarin-3-acid (βALA). Cre-dependent expression of pept2 in specific neurons followed by incubation in βALA labeled electrically coupled synaptic partners. Using this method, we analyze light-dependent modulation of electrical connectivity among retinal horizontal cells.
Collapse
Affiliation(s)
- Mu Qiao
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA
| |
Collapse
|
14
|
Farshi P, Fyk-Kolodziej B, Krolewski DM, Walker PD, Ichinose T. Dopamine D1 receptor expression is bipolar cell type-specific in the mouse retina. J Comp Neurol 2015; 524:2059-79. [PMID: 26587737 DOI: 10.1002/cne.23932] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/25/2023]
Abstract
In the retina, dopamine is a key molecule for daytime vision. Dopamine is released by retinal dopaminergic amacrine cells and transmits signaling either by conventional synaptic or by volume transmission. By means of volume transmission, dopamine modulates all layers of retinal neurons; however, it is not well understood how dopamine modulates visual signaling pathways in bipolar cells. Here we analyzed Drd1a-tdTomato BAC transgenic mice and found that the dopamine D1 receptor (D1R) is expressed in retinal bipolar cells in a type-dependent manner. Strong tdTomato fluorescence was detected in the inner nuclear layer and localized to type 1, 3b, and 4 OFF bipolar cells and type 5-2, XBC, 6, and 7 ON bipolar cells. In contrast, type 2, 3a, 5-1, 9, and rod bipolar cells did not express Drd1a-tdTomato. Other interneurons were also found to express tdTomato including horizontal cells and a subset (25%) of AII amacrine cells. Diverse visual processing pathways, such as color or motion-coded pathways, are thought to be initiated in retinal bipolar cells. Our results indicate that dopamine sculpts bipolar cell performance in a type-dependent manner to facilitate daytime vision. J. Comp. Neurol. 524:2059-2079, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pershang Farshi
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bozena Fyk-Kolodziej
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - David M Krolewski
- Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Paul D Walker
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tomomi Ichinose
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
15
|
Lan W, Feldkaemper M, Schaeffel F. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light. PLoS One 2014; 9:e110906. [PMID: 25360635 PMCID: PMC4216005 DOI: 10.1371/journal.pone.0110906] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/19/2014] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Bright light has been shown a powerful inhibitor of myopia development in animal models. We studied which temporal patterns of bright light are the most potent in suppressing deprivation myopia in chickens. METHODS Eight-day-old chickens wore diffusers over one eye to induce deprivation myopia. A reference group (n = 8) was kept under office-like illuminance (500 lux) at a 10:14 light:dark cycle. Episodes of bright light (15 000 lux) were super-imposed on this background as follows. Paradigm I: exposure to constant bright light for either 1 hour (n = 5), 2 hours (n = 5), 5 hours (n = 4) or 10 hours (n = 4). Paradigm II: exposure to repeated cycles of bright light with 50% duty cycle and either 60 minutes (n = 7), 30 minutes (n = 8), 15 minutes (n = 6), 7 minutes (n = 7) or 1 minute (n = 7) periods, provided for 10 hours. Refraction and axial length were measured prior to and immediately after the 5-day experiment. Relative changes were analyzed by paired t-tests, and differences among groups were tested by one-way ANOVA. RESULTS Compared with the reference group, exposure to continuous bright light for 1 or 2 hours every day had no significant protective effect against deprivation myopia. Inhibition of myopia became significant after 5 hours of bright light exposure but extending the duration to 10 hours did not offer an additional benefit. In comparison, repeated cycles of 1:1 or 7:7 minutes of bright light enhanced the protective effect against myopia and could fully suppress its development. CONCLUSIONS The protective effect of bright light depends on the exposure duration and, to the intermittent form, the frequency cycle. Compared to the saturation effect of continuous bright light, low frequency cycles of bright light (1:1 min) provided the strongest inhibition effect. However, our quantitative results probably might not be directly translated into humans, but rather need further amendments in clinical studies.
Collapse
Affiliation(s)
- Weizhong Lan
- Section of Neurobiology of the Eye, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
- Graduate School of Cellular & Molecular Neuroscience, University of Tuebingen, Tuebingen, Germany
- * E-mail:
| | - Marita Feldkaemper
- Section of Neurobiology of the Eye, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
16
|
Popova E. Role of dopamine in distal retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:333-58. [PMID: 24728309 DOI: 10.1007/s00359-014-0906-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
17
|
Effects of dopamine receptor blockade on the intensity-response function of electroretinographic b- and d-waves in light-adapted eyes. J Neural Transm (Vienna) 2013; 121:233-44. [PMID: 24150276 DOI: 10.1007/s00702-013-1103-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 10/11/2013] [Indexed: 01/11/2023]
Abstract
The effects of dopamine receptor blockade by sulpiride (D2-class antagonist) and sulpiride plus SCH 23390 (D1-class antagonist) on the V - log I function of the electroretinographic (ERG) b- and d-waves were investigated in light-adapted frog eyes. Sulpiride significantly decreased the absolute sensitivity of the b- and d-waves. The amplitude of the both waves was diminished over the whole intensity range studied. A similar effect on the b-, but not d-wave amplitude was seen during the perfusion with sulpiride plus SCH 23390. The effect on the d-wave amplitude depended on stimulus intensity. The threshold of the d-wave was not significantly altered. The suprathreshold d-wave amplitude was enhanced at the lower stimulus intensities and remained unchanged at the higher ones. The results obtained indicate that the action of endogenous dopamine on the photopic ERG shows clear ON-OFF asymmetry. Participation of different classes of dopamine receptors is probably responsible for this difference.
Collapse
|
18
|
Lavoie J, Rosolen SG, Chalier C, Hébert M. Negative impact of melatonin ingestion on the photopic electroretinogram of dogs. Neurosci Lett 2013; 543:78-83. [PMID: 23562505 DOI: 10.1016/j.neulet.2013.02.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/22/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Melatonin follows a circadian rhythm entrained by the light/dark cycle and plays a role in promoting light sensitivity at night. It has been suggested that melatonin and dopamine reciprocal inhibition may contribute to the switch between day and night vision. The purpose of this study was to investigate the impact of a high dose of melatonin administration on the photopic and scotopic electroretinogram (ERG) of dogs in the daytime, when it is not thought to be present. Photopic and scotopic ERG luminance response functions were obtained from 7 anaesthetized beagle dogs (3 males and 4 females), once without melatonin (control) and once after oral administration of melatonin (90 mg/dog). Vmax (maximal b-wave amplitude achieved) and logK (retinal sensitivity) were calculated from the derived luminance response function. Photopic flicker ERG was also recorded. In photopic condition, a-wave amplitude (control: -126.90 μV; with melatonin: -49.64 μV; p<0.001) and Vmax (control: 252.50 μV; with melatonin: 115.40 μV; p<0.001) were decreased. A significant reduction of the photopic flicker ERG amplitude was observed after melatonin ingestion. In scotopic condition, an overall difference was reported before and after melatonin ingestion for the a- and b-wave amplitude, but no change was significant for Vmax. Melatonin ingestion at a high dose during the day decreases the photopic amplitude of a- and b-wave, but has no impact on implicit time. This negative impact of melatonin on photopic system may serve to promote night vision.
Collapse
Affiliation(s)
- Joëlle Lavoie
- Centre de recherche de l'Institut Universitaire en santé mentale de Québec, Quebec City, Canada
| | | | | | | |
Collapse
|
19
|
Li H, Liu WZ, Liang PJ. Adaptation-dependent synchronous activity contributes to receptive field size change of bullfrog retinal ganglion cell. PLoS One 2012; 7:e34336. [PMID: 22479604 PMCID: PMC3313981 DOI: 10.1371/journal.pone.0034336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/01/2012] [Indexed: 11/18/2022] Open
Abstract
Nearby retinal ganglion cells of similar functional subtype have a tendency to discharge spikes in synchrony. The synchronized activity is involved in encoding some aspects of visual input. On the other hand, neurons always continuously adjust their activities in adaptation to some features of visual stimulation, including mean ambient light, contrast level, etc. Previous studies on adaptation were primarily focused on single neuronal activity, however, it is also intriguing to investigate the adaptation process in population neuronal activities. In the present study, by using multi-electrode recording system, we simultaneously recorded spike discharges from a group of dimming detectors (OFF-sustained type ganglion cells) in bullfrog retina. The changes in receptive field properties and synchronization strength during contrast adaptation were analyzed. It was found that, when perfused using normal Ringer's solution, single neuronal receptive field size was reduced during contrast adaptation, which was accompanied by weakening in synchronization strength between adjacent neurons' activities. When dopamine (1 µM) was applied, the adaptation-related receptive field area shrinkage and synchronization weakening were both eliminated. The activation of D1 receptor was involved in the adaptation-related modulation of synchronization and receptive field. Our results thus suggest that the size of single neuron's receptive field is positively related to the strength of its synchronized activity with its neighboring neurons, and the dopaminergic pathway is responsible for the modulation of receptive field property and synchronous activity of the ganglion cells during the adaptation process.
Collapse
Affiliation(s)
| | | | - Pei-Ji Liang
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
20
|
Popova E, Kupenova P. Effects of dopamine D1 receptor blockade on the intensity-response function of ERG b- and d-waves under different conditions of light adaptation. Vision Res 2011; 51:1627-36. [DOI: 10.1016/j.visres.2011.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 11/29/2022]
|
21
|
The light-induced reduction of horizontal cell receptive field size in the goldfish retina involves nitric oxide. Vis Neurosci 2011; 28:137-44. [PMID: 21324227 DOI: 10.1017/s0952523810000490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Horizontal cells of the vertebrate retina have large receptive fields as a result of extensive gap junction coupling. Increased ambient illumination reduces horizontal cell receptive field size. Using the isolated goldfish retina, we have assessed the contribution of nitric oxide to the light-dependent reduction of horizontal cell receptive field size. Horizontal cell receptive field size was assessed by comparing the responses to centered spot and annulus stimuli and from the responses to translated slit stimuli. A period of steady illumination decreased the receptive field size of horizontal cells, as did treatment with the nitric oxide donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (100 μM). Blocking the endogenous production of nitric oxide with the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (1 mM), decreased the light-induced reduction of horizontal cell receptive field size. These findings suggest that nitric oxide is involved in light-induced reduction of horizontal cell receptive field size.
Collapse
|
22
|
Abstract
Gap junctions are frequently observed in the adult vertebrate retina. It has been shown that gap junctions function as passive electrotonic pathways and play various roles, such as noise reduction, synchronization of electrical activities, regulation of the receptive field size, and transmission of rod signals to cone pathways. The presence of gap junctions between bipolar cells has been reported in various species but their functions are not known. In the present study, we applied dual whole-cell clamp techniques to the adult goldfish retina to elucidate the functions of gap junctions between ON-type bipolar cells with a giant axon terminal (Mb1-BCs). Electrophysiological and immunohistochemical experiments revealed that Mb1-BCs were coupled with each other through gap junctions that were located at the distal dendrites. The coupling conductance between Mb1-BCs under light-adapted conditions was larger than that under dark-adapted conditions. The gap junctions showed neither rectification nor voltage dependence, and behaved as a low-pass filter. Mb1-BCs could generate Ca(2+) spikes in response to depolarization, especially under dark-adapted conditions. The Ca(2+) spike evoked electrotonic depolarization through gap junctions in neighboring Mb1-BCs, and the depolarization in turn could trigger Ca(2+) spikes with a time lag. A brief depolarizing pulse applied to an Mb1-BC evoked a long-lasting EPSC in the postsynaptic ganglion cell. The EPSC was shortened in duration when gap junctions were pharmacologically or mechanically impaired. These results suggest that the spread of Ca(2+) spikes through gap junctions between bipolar cells may play a key role in lateral interactions in the adult retina.
Collapse
|
23
|
Pandarinath C, Bomash I, Victor JD, Prusky GT, Tschetter WW, Nirenberg S. A novel mechanism for switching a neural system from one state to another. Front Comput Neurosci 2010; 4:2. [PMID: 20407612 PMCID: PMC2856633 DOI: 10.3389/fncom.2010.00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 02/27/2010] [Indexed: 11/30/2022] Open
Abstract
An animal's ability to rapidly adjust to new conditions is essential to its survival. The nervous system, then, must be built with the flexibility to adjust, or shift, its processing capabilities on the fly. To understand how this flexibility comes about, we tracked a well-known behavioral shift, a visual integration shift, down to its underlying circuitry, and found that it is produced by a novel mechanism – a change in gap junction coupling that can turn a cell class on and off. The results showed that the turning on and off of a cell class shifted the circuit's behavior from one state to another, and, likewise, the animal's behavior. The widespread presence of similar gap junction-coupled networks in the brain suggests that this mechanism may underlie other behavioral shifts as well.
Collapse
Affiliation(s)
- Chethan Pandarinath
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University New York, NY, USA
| | | | | | | | | | | |
Collapse
|
24
|
Gagné AM, Danilenko KV, Rosolen SG, Hébert M. Impact of oral melatonin on the electroretinogram cone response. J Circadian Rhythms 2009; 7:14. [PMID: 19922677 PMCID: PMC2785757 DOI: 10.1186/1740-3391-7-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/19/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the eye, melatonin plays a role in promoting light sensitivity at night and modulating many aspects of circadian retinal physiology. It is also an inhibitor of retinal dopamine, which is a promoter of day vision through the cone system. Consequently, it is possible that oral melatonin (an inhibitor of retinal dopamine) taken to alleviate circadian disorders may affect cone functioning. Our aim was to assess the impact of melatonin on the cone response of the human retina using electroretinography (ERG). METHODS Twelve healthy participants aged between 18 to 52 years old were submitted to a placebo-controlled, double-blind, crossover, and counterbalanced-order design. The subjects were tested on 2 sessions beginning first with a baseline ERG, followed by the administration of the placebo or melatonin condition and then, 30 min later, a second ERG to test the effect. RESULTS Following oral melatonin administration, a significant decrease of about 8% of the cone maximal response was observed (mean 6.9 muV +/- SEM 2.0; P = 0.0065) along with a prolonged b-wave implicit time of 0.4 ms +/- 0.1, 50 minutes after ingestion. CONCLUSION Oral melatonin appears to reach the eye through the circulation. When it is administered at a time of day when it is not usually present, melatonin appears to reduce input to retinal cones. We believe that the impact of melatonin on retinal function should be taken into consideration when used without supervision in chronic self-medication for sleep or circadian disorder treatment.
Collapse
Affiliation(s)
- Anne-Marie Gagné
- Centre de Recherche Université Laval Robert-Giffard, Faculty of Medicine, Université Laval, Québec, Canada.
| | | | | | | |
Collapse
|
25
|
Ul-Hussain M, Dermietzel R, Zoidl G. Characterization of the internal IRES element of the zebrafish connexin55.5 reveals functional implication of the polypyrimidine tract binding protein. BMC Mol Biol 2008; 9:92. [PMID: 18947383 PMCID: PMC2579433 DOI: 10.1186/1471-2199-9-92] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/23/2008] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Connexin55.5 (Cx55.5) is a gap junction protein with horizontal cell-restricted expression in zebrafish accumulating at dendritic sites within the receptor-horizontal cell complex in form of hemichannels where light-dependent plasticity occurs. This connexin is the first example of a gap junction protein processed to form two protein isoforms from a monocistronic message by an IRES mediated process. The nuclear occurrence of a carboxy-terminal fragment of this protein provides evidence that this gap junction protein may participate in a putative cytoplasmic to nuclear signal transfer. RESULTS We characterized the IRES element of Cx55.5 in terms of sequence elements necessary for its activity and protein factor(s), which may play a role for its function. Two stretches of polypyrimidine tracts designated PPT1 and PPT2 which influence the IRES activity of this neuronal gap junction protein were identified. Selective deletion of PPT1 results in an appreciable decrease of the IRES activity, while the deletion of PPT2 results in a complete loss. RNA-EMSA and UV-cross linking experiments showed that protein complexes bind to this IRES element, of which the polypyrimidine tract binding protein (PTB) was identified as one of the interacting partners with influence on IRES activity. These results indicate that PTB conveys a role in the regulation of the IRES activity of Cx55.5. CONCLUSION Our findings indicate that the activity of the IRES element of the neuronal gap junction protein Cx55.5 is subject of regulation through flanking polypyrimidine tracts, and that the non-canonical trans-activation factor PTB plays an essential role in this process. This observation is of considerable importance and may provide initial insight into molecular-functional relationships of electrical coupling in horizontal cells.
Collapse
Affiliation(s)
- Mahboob Ul-Hussain
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany.
| | | | | |
Collapse
|
26
|
Bruzzone R, Dermietzel R. Structure and function of gap junctions in the developing brain. Cell Tissue Res 2006; 326:239-48. [PMID: 16896946 DOI: 10.1007/s00441-006-0287-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 12/01/2022]
Abstract
Gap-junction-dependent neuronal communication is widespread in the developing brain, and the prevalence of gap-junctional coupling is well correlated with specific developmental events. We summarize here our current knowledge of the contribution of gap junctions to brain development and propose that they carry out this role by taking advantage of the full complement of their functional properties. Thus, hemichannel activation may represent a key step in the initiation of Ca(2+) waves that coordinate cell cycle events during early prenatal neurogenesis, whereas both hemichannels and/or gap junctions may control the division and migration of cohorts of precursor cells during late prenatal neurogenesis. Finally, the recent discovery that pannexins, a novel group of proteins prominently expressed in the brain, are able to form both hemichannels and gap-junction channels suggests that we need to seek more than just connexins with respect to these junctions.
Collapse
Affiliation(s)
- Roberto Bruzzone
- Department of Neuroscience, Institut Pasteur, 75015 Paris, France
| | | |
Collapse
|
27
|
Kihara AH, de Castro LM, Moriscot AS, Hamassaki DE. Prolonged dark adaptation changes connexin expression in the mouse retina. J Neurosci Res 2006; 83:1331-41. [PMID: 16496335 DOI: 10.1002/jnr.20815] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the retina, ambient light levels influence the cell coupling provided by gap junction (GJ) channels, to compensate the visual function for various lighting conditions. However, the effects of ambient light levels on expression of connexins (Cx), the proteins that form the GJ channels, are poorly understood. In the present study, we first determined whether gene expression of specific Cx (Cx26, Cx31.1, Cx36, Cx37, Cx40, Cx43, Cx45, Cx50, and Cx57) was affected by prolonged dark adaptation. Cx mRNA relative levels were determined in mouse retinas dark adapted for 3 hr, 1 day, and 7 days by using quantitative real-time PCR. Transcript levels of some Cx were repressed after 3 hr (Cx57), 1 day (Cx45), or 7 days (Cx36 and Cx43) of dark adaptation; others were increased after 1 day (Cx50) or 7 days (Cx31.1 and Cx37); and two of them (Cx26 and Cx40) were not significantly altered. The second aim was to determine whether prolonged dark adaptation affects protein expression of two important Cx in retina: neuronal Cx36 and glial Cx43. We were able to demonstrate that important changes in protein distribution and expression also took place in retina during long-term dark adaptation. Given their localization, the specific alterations in Cx expression may reflect their distinct response to ambient light levels.
Collapse
Affiliation(s)
- Alexandre Hiroaki Kihara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences,University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
28
|
Sekaran S, Cunningham J, Neal MJ, Hartell NA, Djamgoz MBA. Nitric oxide release is induced by dopamine during illumination of the carp retina: serial neurochemical control of light adaptation. Eur J Neurosci 2005; 21:2199-208. [PMID: 15869516 DOI: 10.1111/j.1460-9568.2005.04051.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several lines of indirect evidence have suggested that nitric oxide may play an important role during light adaptation of the vertebrate retina. We aimed to verify directly the effect of light on nitric oxide release in the isolated carp retina and to investigate the relationship between nitric oxide and dopamine, an established neuromodulator of retinal light adaptation. Using a biochemical nitric oxide assay, we found that steady or flicker light stimulation enhanced retinal nitric oxide production from a basal level. The metabotropic glutamate receptor agonist L-amino-4-phosphonobutyric acid, inhibited the light adaptation-induced nitric oxide production suggesting that the underlying cellular pathway involved centre-depolarizing bipolar cell activity. Application of exogenous dopamine to retinas in the dark significantly enhanced the basal production of nitric oxide and importantly, inhibition of endogenous dopaminergic activity completely suppressed the light-evoked nitric oxide release. The effect of dopamine was mediated through the D1 receptor subtype. Imaging of the nitric oxide-sensitive fluorescent indicator 4,5-diaminofluorescein di-acetate in retinal slices revealed that activation of D1 receptors resulted in nitric oxide production from two main spatial sources corresponding to the photoreceptor inner segment region and the inner nuclear layer. The results taken together would suggest that during the progression of retinal light adaptation there is a switch from dopaminergic to nitrergic control, probably to induce further neuromodulatory effects at higher levels of illumination and to enable more efficient spreading of the light adaptive signal.
Collapse
Affiliation(s)
- S Sekaran
- Department of Visual Neuroscience, Faculty of Medicine, Imperial College London, Charing Cross Campus, W6 8RF, UK.
| | | | | | | | | |
Collapse
|
29
|
Yang XL, Wu SM. Signal transmission from cones to amacrine cells in dark- and light-adapted tiger salamander retina. Brain Res 2005; 1029:155-61. [PMID: 15542069 DOI: 10.1016/j.brainres.2004.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2004] [Indexed: 11/29/2022]
Abstract
Amacrine cells (ACs) are third-order interneurons in the retina that mediate antagonistic surround inputs to retinal ganglion cells and motion-related signals in the inner retina. Previous studies have revealed that rod-to-AC signals in dark-adapted retina are mediated by a nonlinear high-gain synaptic pathway. In this study, we investigated how cone signals are transmitted to ACs under dark- and light-adapted conditions. By using the spectral subtraction method, we found that the voltage gain of the cone-AC synaptic pathway in dark-adapted salamander retina (GD) is between 28 and 72, which is about one order of magnitude lower than the voltage gain of the rod-AC pathway. This suggests that, in darkness, rod signals are more efficiently transmitted to the ACs than cone signals. The voltage gain of the cone-AC synaptic pathway in the presence of 500 nm/-2.4 background light, GL, ranges between 28 and 56. Linear regression analysis indicates that GD and GL are strongly, positively, and linearly correlated. The average GL/GD ratio is 0.73, suggesting that, on average, GL in any given AC is about 73% of GD. This adaptation-induced change in cone-AC voltage gain exemplifies use-dependent modulations of synaptic transmission in the retina, and possible mechanisms underlying light-mediated alterations of retinal synaptic function are discussed.
Collapse
Affiliation(s)
- Xiong-Li Yang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
30
|
Kao YH, Lassová L, Bar-Yehuda T, Edwards RH, Sterling P, Vardi N. Evidence that certain retinal bipolar cells use both glutamate and GABA. J Comp Neurol 2004; 478:207-18. [PMID: 15368537 DOI: 10.1002/cne.20221] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Retinal bipolar neurons release the excitatory transmitter, glutamate. However, certain bipolar cells contain GABA, raising the question whether a neuron might release both transmitters and, if so, what function might the inhibitory transmitter play in a particular circuit? Here we identify a subset of cone bipolar cells in cat retina that contain glutamate, plus its vesicular transporter (VGLUT1), and GABA, plus its synthetic enzyme (GAD(65)) and its vesicular transporter (VGAT). These cells are negative for a marker of ON bipolar cells and restrict their axons to the OFF strata of the inner synaptic layer. They do not colocalize with the neurokinin 3 receptor that stains a type (or two) of OFF bipolar cells. By "targeted injection," we identified two types of OFF bipolar cell with the machinery to make and package both transmitters. One of these types costratifies with a dopamine plexus.
Collapse
Affiliation(s)
- Yen-Hong Kao
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA
| | | | | | | | | | | |
Collapse
|
31
|
Wong KY, Adolph AR, Dowling JE. Retinal bipolar cell input mechanisms in giant danio. I. Electroretinographic analysis. J Neurophysiol 2004; 93:84-93. [PMID: 15229213 DOI: 10.1152/jn.00259.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UNLABELLED Electroretinograms (ERGs) were recorded from the giant danio (Danio aequipinnatus) to study glutamatergic input mechanisms onto bipolar cells. Glutamate analogs were applied to determine which receptor types mediate synaptic transmission from rods and cones to on and off bipolar cells. Picrotoxin, strychnine, and tetrodotoxin were used to isolate the effects of the glutamate analogs to the photoreceptor-bipolar cell synapse. Under photopic conditions, the group III metabotropic glutamate receptor (mGluR) antagonist (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG) only slightly reduced the b-wave, whereas the excitatory amino acid transporter (EAAT) blocker dl-threo-beta-benzyl-oxyaspartate (TBOA) removed most of it. Complete elimination of the b-wave required both antagonists. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) blocked the d-wave. Under scotopic conditions, rod and cone inputs onto on bipolar cells were studied by comparing the sensitivities of the b-wave to photopically matched green and red stimuli. The b-wave was >1 log unit more sensitive to the green than to the red stimulus under control conditions. In CPPG or l-AP4 (l-(+)-2-amino-4-phosphonobutyric acid, a group III mGluR agonist), the sensitivity of the b-wave to the green stimulus was dramatically reduced and the b-waves elicited by the 2 stimuli became nearly matched. The d-wave elicited by dim green stimuli, which presumably could be detected only by the rods, was eliminated by NBQX. IN CONCLUSION 1) cone signals onto on bipolar cells involve mainly EAATs but also mGluRs (presumably mGluR6) to a lesser extent; 2) rods signal onto on bipolars by mainly mGluR6; 3) off bipolar cells receive signals from both photoreceptor types by AMPA/kainate receptors.
Collapse
Affiliation(s)
- Kwoon Y Wong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | | | | |
Collapse
|
32
|
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R. Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:113-37. [PMID: 15033583 DOI: 10.1016/j.bbamem.2003.10.023] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 10/14/2003] [Accepted: 10/14/2003] [Indexed: 01/25/2023]
Abstract
Gap junctions consist of intercellular channels dedicated to providing a direct pathway for ionic and biochemical communication between contacting cells. After an initial burst of publications describing electrical coupling in the brain, gap junctions progressively became less fashionable among neurobiologists, as the consensus was that this form of synaptic transmission would play a minimal role in shaping neuronal activity in higher vertebrates. Several new findings over the last decade (e.g. the implication of connexins in genetic diseases of the nervous system, in processing sensory information and in synchronizing the activity of neuronal networks) have brought gap junctions back into the spotlight. The appearance of gap junctional coupling in the nervous system is developmentally regulated, restricted to distinct cell types and persists after the establishment of chemical synapses, thus suggesting that this form of cell-cell signaling may be functionally interrelated with, rather than alternative to chemical transmission. This review focuses on gap junctions between neurons and summarizes the available data, derived from molecular, biological, electrophysiological, and genetic approaches, that are contributing to a new appreciation of their role in brain function.
Collapse
Affiliation(s)
- Sheriar G Hormuzdi
- Department of Clinical Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
33
|
Lee EJ, Han JW, Kim HJ, Kim IB, Lee MY, Oh SJ, Chung JW, Chun MH. The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. Eur J Neurosci 2003; 18:2925-34. [PMID: 14656288 DOI: 10.1046/j.1460-9568.2003.03049.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Connexin 36 (Cx36) is a channel-forming protein found in the membranes of apposed cells, forming the hexameric hemichannels of intercellular gap junction channels. It localizes to certain neurons in various regions of the brain including the retina. We characterized the expression pattern of neuronal Cx36 in the guinea pig retina by immunocytochemistry using specific antisera against Cx36 and green/red cone opsin or recoverin. Strong Cx36 immunoreactivity was visible in the ON sublamina of the inner plexiform layer and in the outer plexiform layer, as punctate labelling patterns. Double-labelling experiments with antibody directed against Cx36 and green/red cone opsin or recoverin showed that strong clustered Cx36 immunoreactivity localized to the axon terminals of cone or close to rod photoreceptors. By electron microscopy, Cx36 immunoreactivity was visible in the gap junctions as well as in the cytoplasmic matrices of both sides of cone photoreceptors. In the gap junctions between cone and rod photoreceptors, Cx36 immunoreactivity was only visible in the cytoplasmic matrices of cone photoreceptors. These results clearly indicate that Cx36 forms homologous gap junctions between neighbouring cone photoreceptors, and forms heterologous gap junctions between cone and rod photoreceptors in guinea pig retina. This focal location of Cx36 at the terminals of the photoreceptor suggests that rod photoreceptors can transmit rod signals to the pedicle of a neighbouring cone photoreceptor via Cx36, and that the cone in turn signals to corresponding ganglion cells via ON and OFF cone bipolar cells.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Retinal neurons are extensively coupled through gap junction intercellular channels, but few connexin subtypes have been identified in mammalian retinal neurons. Based on previous findings that retinal gap junctional coupling is modulated by both dopamine and nitric oxide, presumably through connexin phosphorylation, we examined whether the connexin phosphoprotein subtype, connexin 40 (Cx40), was expressed in mammalian retinas. Immunostaining of rat and bovine retinas using Cx40-specific antibodies from two independent sources showed punctate staining between cells in the outer nuclear layer (ONL) and a sublayer of cells within the inner nuclear layer (INL). In addition, sparse punctate staining was detected in the ganglion cell/axon fiber layers (GCL/AFL). No punctate staining was observed in the outer (OS) or inner segment (IS) layers, and rarely in the outer plexiform layer (OPL) or inner plexiform layer (IPL). Double immunostaining of bovine retinas with antibodies to G(o), which stains bipolar cells, and to Cx40, showed little overlap, suggesting these bipolar cells do not express Cx40. Western blot analysis of alkaline-extracted bovine retinal membranes revealed Cx40 immunopositive bands of about 40 kD (monomer) and 80 kD (dimer). In both locations (monomer and dimer), the bands appeared as doublets, and their immunoreactivity was abolished when the antibody was pre-adsorbed with immunogenic Cx40 peptide. The doublet at 40 kD co-migrated with an immunopositive doublet present in heart membranes. Treatment with alkaline phosphatase altered the banding pattern of Cx40. The results suggest that the connexin phosphoprotein subtype, Cx40, is expressed within the neural layers of the mammalian retina.
Collapse
Affiliation(s)
- Diane Matesic
- School of Pharmacy, Mercer University, Atlanta, GA, USA
| | | | | |
Collapse
|
35
|
Akopian A, McReynolds J, Weiler R. Activation of Protein Kinase C Modulates Light Responses in Horizontal Cells of the Turtle Retina. Eur J Neurosci 2002; 4:745-749. [PMID: 12106318 DOI: 10.1111/j.1460-9568.1992.tb00183.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of phorbol esters on the light-evoked responses of horizontal cells were studied in the turtle eyecup preparation. Phorbol esters caused a reduction in receptive field size and a significant decrease in the amplitude of responses to annular and full-field illumination; however, they caused only minor changes in responses to small spots in the receptive field centre. The dark membrane potential was not affected. The results suggest that phorbol esters may affect both coupling resistance and membrane resistance in horizontal cells. The effects of phorbol esters were blocked by the protein kinase C inhibitor staurosporine, and inactive phorbol ester had no effect, making it very likely that the phorbol ester effects were mediated through activation of protein kinase C. The above effects of the phorbol esters were considerably reduced by the dopamine antagonists haloperidol and fluphenazine, suggesting that they were in part mediated by release of dopamine.
Collapse
Affiliation(s)
- Abram Akopian
- Department of Neurobiology, University of Oldenburg, PO Box 2503, 2900 Oldenburg, FRG
| | | | | |
Collapse
|
36
|
Abstract
Retinitis pigmentosa (RP) constitutes a group of genetically mediated, degenerative retinal diseases that display a broad range of phenotypes. There is appreciable heterogeneity in the pathogenetic mechanisms that underlie the various forms of RP, but a substantial percentage of the known cases arise as a consequence of mutations in rhodopsin or other rod-specific proteins. However, despite the fact that the genetic defect is expressed solely in the rod photoreceptors, otherwise healthy cone photoreceptors invariably die, resulting in severe visual impairment. In this paper, the author proposes a mechanism that may be responsible, at least in part, for this unfortunate circumstance. The basic premise of the hypothesis is that the spread of the disease from dying rods to genetically normal cones is a form of 'bystander' effect, mediated by the gap junctions that exist between these photoreceptor subtypes. On this view, agents that trigger the apoptotic process permeate the intercellular gap-junctional channels to carry the disease from rods to neighboring cones. If permeation of noxious substances through gap junctions is a significant factor in the non-cell-autonomous spread of photoreceptor degeneration, blocking transmission through these channels may provide a means for therapeutic intervention. Many substances are known to block gap-junctional communication, but if the rod-cone channel is to be targeted, it will be essential to identify the connexins that form the gap junctions between the two types of photoreceptor, and to develop drugs that selectively affect their junctional properties. Clearly, passage of toxic agents through gap junctions may not be the only form of cell-cell interaction by which dying rods could cause cone cell death, and in this brief account, the author considers other avenues that are currently being explored to explain this phenomenon.
Collapse
Affiliation(s)
- Harris Ripps
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Chicago, IL 60612, USA.
| |
Collapse
|
37
|
Affiliation(s)
- W H Baldridge
- Retina and Optic Nerve Laboratory, Departments of Anatomy and Neurobiology and Ophthalmology, Dalhousie University, Halifax, NS, Canada B3H 4H7.
| |
Collapse
|
38
|
Ionotropic histamine receptors and H2 receptors modulate supraoptic oxytocin neuronal excitability and dye coupling. J Neurosci 2001. [PMID: 11312281 DOI: 10.1523/jneurosci.21-09-02974.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Histaminergic neurons of the tuberomammillary nucleus (TM) project monosynaptically to the supraoptic nucleus (SON). This projection remains intact in our hypothalamic slices and permits investigation of both brief synaptic responses and the effects of repetitively activating this pathway. SON oxytocin (OX) neurons respond to single TM stimuli with fast IPSPs, whose kinetics resemble those of GABA(A) or glycine receptors. IPSPs were blocked by the Cl(-) channel blocker picrotoxin, but not by bicuculline or strychnine, and by histamine H(2), but not by H(1) or H(3) receptor antagonists, suggesting the presence of an ionotropic histamine receptor and the possible nonspecificity of currently used H(2) antagonists. G-protein mediation of the IPSPs was ruled out using guanosine 5'-O-(2-thiodiphosphate) (GDP-betaS), pertussis toxin, and Rp-adenosine 3',5'-cyclic monophosphothioate triethylamine (Rp-cAMPs), none of which blocked evoked IPSPs. We also investigated the effects of synaptically released histamine on dye coupling and neuronal excitability. One hundred seventy-three OX neurons were Lucifer yellow-injected in horizontal slices. Repetitive TM stimulation (10 Hz, 5-10 min) reduced coupling, an effect blocked by H(2), but not by H(1) or H(3), receptor antagonists. Because H(2) receptors are linked to activation of adenylyl cyclase, TM-stimulated reduction in coupling was blocked by GDP-betaS, pertussis toxin, and Rp-cAMPs and was mimicked by 8-bromo-cAMP, 3-isobutyl-1-methylxanthine, and Sp-cAMP. Membrane potentials of OX and vasopressin neurons were hyperpolarized, accompanied by decreased conductances, in response to bath application of 8-bromo-cAMP but not the membrane-impermeable cAMP. These results suggest that synaptically released histamine, in addition to evoking fast IPSPs in OX cells, mediates a prolonged decrease in excitability and uncoupling of the neurons.
Collapse
|
39
|
Hatton GI, Yang QZ. Ionotropic histamine receptors and H2 receptors modulate supraoptic oxytocin neuronal excitability and dye coupling. J Neurosci 2001; 21:2974-82. [PMID: 11312281 PMCID: PMC6762574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Histaminergic neurons of the tuberomammillary nucleus (TM) project monosynaptically to the supraoptic nucleus (SON). This projection remains intact in our hypothalamic slices and permits investigation of both brief synaptic responses and the effects of repetitively activating this pathway. SON oxytocin (OX) neurons respond to single TM stimuli with fast IPSPs, whose kinetics resemble those of GABA(A) or glycine receptors. IPSPs were blocked by the Cl(-) channel blocker picrotoxin, but not by bicuculline or strychnine, and by histamine H(2), but not by H(1) or H(3) receptor antagonists, suggesting the presence of an ionotropic histamine receptor and the possible nonspecificity of currently used H(2) antagonists. G-protein mediation of the IPSPs was ruled out using guanosine 5'-O-(2-thiodiphosphate) (GDP-betaS), pertussis toxin, and Rp-adenosine 3',5'-cyclic monophosphothioate triethylamine (Rp-cAMPs), none of which blocked evoked IPSPs. We also investigated the effects of synaptically released histamine on dye coupling and neuronal excitability. One hundred seventy-three OX neurons were Lucifer yellow-injected in horizontal slices. Repetitive TM stimulation (10 Hz, 5-10 min) reduced coupling, an effect blocked by H(2), but not by H(1) or H(3), receptor antagonists. Because H(2) receptors are linked to activation of adenylyl cyclase, TM-stimulated reduction in coupling was blocked by GDP-betaS, pertussis toxin, and Rp-cAMPs and was mimicked by 8-bromo-cAMP, 3-isobutyl-1-methylxanthine, and Sp-cAMP. Membrane potentials of OX and vasopressin neurons were hyperpolarized, accompanied by decreased conductances, in response to bath application of 8-bromo-cAMP but not the membrane-impermeable cAMP. These results suggest that synaptically released histamine, in addition to evoking fast IPSPs in OX cells, mediates a prolonged decrease in excitability and uncoupling of the neurons.
Collapse
Affiliation(s)
- G I Hatton
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
40
|
Dong CJ, Hare WA. Contribution to the kinetics and amplitude of the electroretinogram b-wave by third-order retinal neurons in the rabbit retina. Vision Res 2000; 40:579-89. [PMID: 10824262 DOI: 10.1016/s0042-6989(99)00203-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ERG b-wave is widely believed to reflect mainly light-induced activity of on-center bipolar cells and Müller cells. Third-order retinal neurons are thought to contribute negligibly to generation of the b-wave. Here we show that pharmacological agents which affect predominantly third-order neurons alter significantly both the kinetics and amplitude of the b-wave. Our results support the notion that changes in the amplitude and kinetics of light-induced membrane depolarization in third-order neurons produce similar changes in the amplitude and kinetics of the b-wave. We conclude that activity in third-order neurons makes a significant contribution to b-wave generation. Our results also provide evidence that spiking activity of third-order neurons truncates the a-wave by accelerating the onset of the b-wave.
Collapse
Affiliation(s)
- C J Dong
- Department of Biological Sciences, RD-2C Allergan Inc., Irvine, CA 92612, USA.
| | | |
Collapse
|
41
|
Baldridge WH, McLure P, Pow DV. Taurine blocks spontaneous cone contraction but not horizontal cell dark suppression in isolated goldfish retina. J Neurochem 2000; 74:2614-21. [PMID: 10820225 DOI: 10.1046/j.1471-4159.2000.0742614.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of this study was to investigate the effects of taurine on cone retinomotor movements and the responses of cone-driven horizontal cells in dark-adapted teleost retina. In isolated goldfish retina preparations maintained in the dark, cones spontaneously contracted, and the responses of horizontal cells were suppressed. Addition of 5 mM taurine to the physiological solution blocked the spontaneous contraction of cones in the dark but did not block the dark-suppression of horizontal cell responses. These results indicate that the mechanism that leads to horizontal cell dark suppression is not sensitive to taurine. Although both cone retinomotor position and horizontal cell responsiveness are known to be modulated by dopamine, the present results do not support the hypothesis that taurine inhibits dopamine release in the dark because only spontaneous cone contraction was affected by taurine. These results also indicate that spontaneous cone contraction in the dark is not the cause of horizontal cell dark suppression because, in the presence of taurine, cones were elongated yet horizontal cell responses were still suppressed. Consequently, these results make it clear that horizontal cell dark suppression is not an artifact produced by incubating isolated teleost retina preparations in taurine-free physiological solution.
Collapse
Affiliation(s)
- W H Baldridge
- Laboratory for Retina and Optic Nerve Research, Departments of Anatomy and Neurobiology and of Ophthalmology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | |
Collapse
|
42
|
Weiler R, Pottek M, He S, Vaney DI. Modulation of coupling between retinal horizontal cells by retinoic acid and endogenous dopamine. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:121-9. [PMID: 10751661 DOI: 10.1016/s0165-0173(99)00071-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regulation of electrical coupling between retinal neurons appears to be an important component of the neuronal mechanism of light adaptation, which enables the retina to operate efficiently over a broad range of light intensities. The information about the ambient light conditions has to be transmitted to the neuronal network of the retina and previous evidence has indicated that dopamine is an important neurochemical signal. In addition, recent studies suggest that another important chemical signal is retinoic acid, which is a light-correlated byproduct of the phototransduction cycle. This review summarizes the latest findings about the effects of dopamine and retinoic acid on gap junctional coupling in the retinas of mouse, rabbit and fish.
Collapse
Affiliation(s)
- R Weiler
- Neurobiology, University of Oldenburg, Germany.
| | | | | | | |
Collapse
|
43
|
Al-Ubaidi MR, White TW, Ripps H, Poras I, Avner P, Gomès D, Bruzzone R. Functional properties, developmental regulation, and chromosomal localization of murine connexin36, a gap-junctional protein expressed preferentially in retina and brain. J Neurosci Res 2000; 59:813-26. [PMID: 10700019 DOI: 10.1002/(sici)1097-4547(20000315)59:6<813::aid-jnr14>3.0.co;2-#] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinal neurons of virtually every type are coupled by gap-junctional channels whose pharmacological and gating properties have been studied extensively. We have begun to identify the molecular composition and functional properties of the connexins that form these 'electrical synapses,' and have cloned several that constitute a new subclass (gamma) of the connexin family expressed predominantly in retina and brain. In this paper, we present a series of experiments characterizing connexin36 (Cx36), a member of the gamma subclass that was cloned from a mouse retinal cDNA library. Cx36 has been localized to mouse chromosome 2, in a region syntenic to human chromosome 5, and immunocytochemistry showed strong labeling in the ganglion cell and inner nuclear layers of the mouse retina. Comparison of the developmental time course of Cx36 expression in mouse retina with the genesis of the various classes of retinal cells suggests that the expression of Cx36 occurs primarily after cellular differentiation is complete. Because photic stimulation can affect the gap-junctional coupling between retinal neurons, we determined whether lighting conditions might influence the steady state levels of Cx36 transcript in the mouse retina. Steady-state levels of Cx36 transcript were significantly higher in animals reared under typical cyclic-light conditions; exposure either to constant darkness or to continuous illumination reduced the steady-state level of mRNA approximately 40%. Injection of Cx36 cRNA into pairs of Xenopus oocytes induced intercellular conductances that were relatively insensitive to transjunctional voltage, a property shared with other members of the gamma subclass of connexins. Like skate Cx35, mouse Cx36 was unable to form heterotypic gap-junctional channels when paired with two other rodent connexins. In addition, mouse Cx36 failed to form voltage-activated hemichannels, whereas both skate and perch Cx35 displayed quinine-sensitive hemichannel activity. The conservation of intercellular channel gating contrasts with the failure of Cx36 to make hemichannels, suggesting that the voltage-gating mechanisms of hemichannels may be distinct from those of intact intercellular channels.
Collapse
Affiliation(s)
- M R Al-Ubaidi
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL 6012, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
White TW, Deans MR, O'Brien J, Al-Ubaidi MR, Goodenough DA, Ripps H, Bruzzone R. Functional characteristics of skate connexin35, a member of the gamma subfamily of connexins expressed in the vertebrate retina. Eur J Neurosci 1999; 11:1883-90. [PMID: 10336656 DOI: 10.1046/j.1460-9568.1999.00607.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinal neurons are coupled by electrical synapses that have been studied extensively in situ and in isolated cell pairs. Although many unique gating properties have been identified, the connexin composition of retinal gap junctions is not well defined. We have functionally characterized connexin35 (Cx35), a recently cloned connexin belonging to the gamma subgroup expressed in the skate retina, and compared its biophysical properties with those obtained from electrically coupled retinal cells. Injection of Cx35 RNA into pairs of Xenopus oocytes induced intercellular conductances that were voltage-gated at transjunctional potentials >/= 60 mV, and that were also closed by intracellular acidification. In contrast, Cx35 was unable to functionally interact with rodent connexins from the alpha or beta subfamilies. Voltage-activated hemichannel currents were also observed in single oocytes expressing Cx35, and superfusing these oocytes with medium containing 100 microm quinine resulted in a 1.8-fold increase in the magnitude of the outward currents, but did not change the threshold of voltage activation (membrane potential = +20 mV). Cx35 intercellular channels between paired oocytes were insensitive to quinine treatment. Both hemichannel activity and its modulation by quinine were seen previously in recordings from isolated skate horizontal cells. Voltage-activated currents of Cx46 hemichannels were also enhanced 1. 6-fold following quinine treatment, whereas Cx43-injected oocytes showed no hemichannel activity in the presence, or absence, of quinine. Although the cellular localization of Cx35 is unknown, the functional characteristics of Cx35 in Xenopus oocytes are consistent with the hemichannel and intercellular channel properties of skate horizontal cells.
Collapse
Affiliation(s)
- T W White
- Department of Cell Biology, Harvard Medical School, Boston 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Retinal horizontal cells exhibit large receptive fields derived from their extensive electrical coupling by means of gap junctions. The conductance of these gap junctions seems to be regulated by dopamine acting through a cAMP-mediated cascade. There is now abundant evidence that extracellular dopamine levels vary with changes in ambient light intensity, suggesting that changes in the dark/light adaptational state of the retina can modulate coupling between horizontal cells. We studied this question in the mammalian retina by determining the effects of ambient light levels, in the form of changing background light intensity, on the coupling profiles of A- and B-type horizontal cells in the rabbit. Changes in coupling were assessed by measurements of the space constants of the syncytium formed by horizontal cells and the intercellular spread of the biotinylated tracer Neurobiotin. Our results indicate that dark-adapted horizontal cells show relatively weak coupling. However, presentation of background lights as dim as one-quarter log unit above rod threshold resulted in increases in both the averaged extent of tracer coupling and space constants of A- and B-type horizontal cells. Coupling expanded further as background light intensities were increased by 1-1.5 log units, after which additional light adaptation brought about an uncoupling of cells. Coupling reached its minimum at light intensities about 3 log units above rod threshold, after which, with further light adaptation, it stabilized at levels close to those seen in dark-adapted retinas. Our results indicate that electrical coupling between mammalian horizontal cells is modulated dramatically by changes in the adaptational state of the retina: coupling is maximized under dim ambient light conditions and diminishes as the retina is dark or light adapted from this level.
Collapse
Affiliation(s)
- D Xin
- Department of Ophthalmology, New York University School of Medicine, New York 10016, USA
| | | |
Collapse
|
46
|
Abstract
Whole-cell voltage and current recordings were obtained from red and green cone photoreceptors in isolated retina from macaque monkey. It was demonstrated previously that the cone photovoltage is generated from two sources, phototransduction current in the cone outer segment and photocurrent from neighboring rods. Rod signals are likely transmitted to cones across the gap junctions between rods and cones. In this study, the "pure" cone and rod components of the response were extracted with rod-adapting backgrounds or by subtracting the responses to flashes of different wavelength equated in their excitation of either rods or cones. For dim flashes, the pure cone component was similar in waveform to the cone outer segment current, and the rod component was similar to the photovoltage measured directly in rods. With bright flashes, the high frequencies of the rod signal were filtered out by the rod/cone network. The two components of the cone photovoltage adapted separately to background illumination. The amplitude of the rod component was halved by backgrounds eliciting approximately 100 photoisomerizations sec-1 per rod; the cone component was halved by backgrounds of 8700 photoisomerizations sec-1 per cone. Coupling between rods and cones was not modulated by either dim backgrounds or dopamine. Voltage noise in dark-adapted cones was dominated by elementary events other than photopigment isomerizations. The dark noise was equivalent in magnitude to a steady light eliciting approximately 3800 photoisomerizations sec-1 per cone, a value significantly higher than the psychophysical estimates of cone "dark light."
Collapse
|
47
|
Schneeweis DM, Schnapf JL. The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics. J Neurosci 1999; 19:1203-16. [PMID: 9952398 PMCID: PMC6786037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Whole-cell voltage and current recordings were obtained from red and green cone photoreceptors in isolated retina from macaque monkey. It was demonstrated previously that the cone photovoltage is generated from two sources, phototransduction current in the cone outer segment and photocurrent from neighboring rods. Rod signals are likely transmitted to cones across the gap junctions between rods and cones. In this study, the "pure" cone and rod components of the response were extracted with rod-adapting backgrounds or by subtracting the responses to flashes of different wavelength equated in their excitation of either rods or cones. For dim flashes, the pure cone component was similar in waveform to the cone outer segment current, and the rod component was similar to the photovoltage measured directly in rods. With bright flashes, the high frequencies of the rod signal were filtered out by the rod/cone network. The two components of the cone photovoltage adapted separately to background illumination. The amplitude of the rod component was halved by backgrounds eliciting approximately 100 photoisomerizations sec-1 per rod; the cone component was halved by backgrounds of 8700 photoisomerizations sec-1 per cone. Coupling between rods and cones was not modulated by either dim backgrounds or dopamine. Voltage noise in dark-adapted cones was dominated by elementary events other than photopigment isomerizations. The dark noise was equivalent in magnitude to a steady light eliciting approximately 3800 photoisomerizations sec-1 per cone, a value significantly higher than the psychophysical estimates of cone "dark light."
Collapse
Affiliation(s)
- D M Schneeweis
- Departments of Ophthalmology and Physiology, University of California, San Francisco, California 94143-0730, USA
| | | |
Collapse
|
48
|
Weiler R, Schultz K, Pottek M, Tieding S, Janssen-Bienhold U. Retinoic acid has light-adaptive effects on horizontal cells in the retina. Proc Natl Acad Sci U S A 1998; 95:7139-44. [PMID: 9618552 PMCID: PMC22767 DOI: 10.1073/pnas.95.12.7139] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ambient light conditions affect the morphology of synaptic elements within the cone pedicle and modulate the spatial properties of the horizontal cell receptive field. We describe here that the effects of retinoic acid on these properties are similar to those of light adaptation. Intraorbital injection of retinoic acid into eyes of dark-adapted carp that subsequently were kept in complete darkness results in the formation of numerous spinules at the terminal dendrites of horizontal cells, a typical feature of light-adapted retinae. The formation of these spinules during light adaptation is impaired in the presence of citral, a competitive inhibitor of the dehydrogenase responsible for the generation of retinoic acid in vivo. Intracellularly recorded responses of horizontal cells from dark-adapted eyecup preparations superfused with retinoic acid reveal typical light-adapted spatial properties. Retinoic acid thus appears to act as a light-signaling modulator. Its activity appears not to be at the transcriptional level because its action was not blocked by actinomycin.
Collapse
Affiliation(s)
- R Weiler
- Neurobiology FB 7, University of Oldenburg, D-26111 Oldenburg, Germany.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Physiological studies have demonstrated the existence of direct intercellular communication, presumably mediated by gap junctions, both between neurons and between glial cells in the vertebrate retina. We localized gap junctions in the retinas of rat, goldfish, and mudpuppy by using antisera directed against proteins that make up the connexon channels in two tissues from which connexins have been isolated: liver (connexin 32; CX32) and heart (connexin 43; CX43). Although the antiserum against CX32 stained liver gap junctions, it did not reveal any staining in rat or goldfish retina. The antiserum against CX43 stained gap junctions associated with the intercalated disk in rat heart and also stained gap junctions between pigment epithelium cells in rat, goldfish, and mudpuppy retina. Anti-CX43 also stained gap junctions between Müller cells in goldfish and mudpuppy retina but not in rat retina. Intracellular injections of the tracer Neurobiotin into Müller cells in the mudpuppy retina revealed that these glial cells are extensively tracer coupled. Staining with the tracer formed a syncytium of thin processes surrounding every neuron from the outer limiting membrane to the inner limiting membrane. Confocal microscopy demonstrated that the Müller cells were in close apposition with one another at every level of the retina. However, CX43 immunoreactivity was heaviest at the outer limiting membrane, where the apical processes of Müller cells are located. Some anti-CX43 staining was observed at the level of the outer nuclear layer and the inner plexiform layer but not in the ganglion cell layer or at the Müller cell end feet forming the inner limiting membrane.
Collapse
Affiliation(s)
- A K Ball
- Department of Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
50
|
Cook PB, McReynolds JS. Modulation of sustained and transient lateral inhibitory mechanisms in the mudpuppy retina during light adaptation. J Neurophysiol 1998; 79:197-204. [PMID: 9425191 DOI: 10.1152/jn.1998.79.1.197] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two functionally and anatomically distinct types of lateral inhibition contribute to the receptive field organization of ganglion cells in the vertebrate retina: sustained lateral inhibition (SLI), which is present during steady illumination and transient lateral inhibition (TLI), evoked by changes in illumination. We studied adaptive changes in these two lateral inhibitory mechanisms in the mudpuppy retina by measuring the responses of ON-OFF ganglion cells to spots of light in the receptive field center, in the absence and presence of a concentric broken annulus (windmill) pattern, which was either stationary or rotating. SLI was measured as the percent suppression of the centered spot response by the stationary windmill and TLI was measured as the additional suppression produced when the windmill was rotating. In dark-adapted retinas SLI was elicited by windmills of 600 or 1,200 micron ID, but TLI could not be elicited by windmills of any size, over a wide range of windmill intensities and rotation rates. Exposure of dark-adapted retinas to diffuse adapting light caused an immediate decrease in the response to the spot alone, followed by slowly developing changes in both SLI and TLI: SLI produced by 1,200 micron ID windmills became weaker, whereas SLI produced by 600 micron ID windmills became stronger. After several minutes strong TLI could be elicited by both 600 and 1,200 micron ID windmills. The changes in SLI and TLI were usually complete within 5 and 15 min, respectively, and recovered to dark-adapted levels slightly more slowly after the adapting light was turned off. However the changes in sensitivity of the spot response were complete within one minute after onset and termination of the adapting light. The adaptive changes in SLI and TLI did not depend on the presence of the adapting light; after a brief (1 min) exposure to the adapting light, the changes in SLI and TLI slowly developed and then decayed back to the dark-adapted level. The effects of the adapting light on SLI were mimicked by dopamine and blocked by D1 dopamine receptor antagonists. However dopamine did not enable TLI in dark-adapted retinas and dopamine antagonists did not prevent enablement of TLI when dark-adapted retinas were exposed to light or disable TLI when applied to light-adapted retinas. The results suggest that light-adaptive changes in SLI are mediated by dopamine and are consistent with a reduction in electrical coupling between neurons that conduct the SLI signal laterally in the retina. In contrast, TLI appears to be switched off or suppressed in the dark-adapted retina and enabled in light-adapted retinas, by a relatively slow modulatory mechanism that does not involve dopamine.
Collapse
Affiliation(s)
- P B Cook
- Department of Physiology, The University of Michigan, Ann Arbor, Michigan 48109-0622, USA
| | | |
Collapse
|