1
|
Kostritskaia Y, Pervaiz S, Klemmer A, Klüssendorf M, Stauber T. Sphingosine-1-phosphate activates LRRC8 volume-regulated anion channels through Gβγ signalling. J Physiol 2024. [PMID: 39496493 DOI: 10.1113/jp286665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Volume-regulated anion channels (VRACs) formed by leucin-rich repeat containing 8 (LRRC8) proteins play a pivotal role in regulatory volume decrease by mediating the release of chloride and organic osmolytes. Apart from the regulation of cell volume, LRRC8/VRAC function underlies numerous physiological processes in vertebrate cells including membrane potential regulation, glutamate release and apoptosis. LRRC8/VRACs are also permeable to antibiotics and anti-cancer drugs, representing therefore important therapeutic targets. The activation mechanisms for LRRC8/VRACs are still unclear. Besides through osmotic cell swelling, LRRC8/VRACs can be activated by various stimuli under isovolumetric conditions. Sphingosine-1-phosphate (S1P), an important signalling lipid, which signals through a family of G protein-coupled receptors (GPCRs), has been reported to activate LRRC8/VRACs in several cell lines. Here, we measured inter-subunit Förster resonance energy transfer (FRET) and used whole-cell patch clamp electrophysiology to investigate S1P-induced LRRC8/VRAC activation. We systematically assessed the involvement of GPCRs and G protein-mediated signal transduction in channel activation. We found that S1P-induced channel activation is mediated by S1PR1 in HeLa cells. Following the downstream signalling pathway of S1PR1 and using toxin-mediated inhibition of the associated G proteins, we showed that Gβγ dimers rather than Gαi or Gαq play a critical role in S1P-induced VRAC activation. We could also show that S1P causes protein kinase D (PKD) phosphorylation, suggesting that Gβγ recruits phospholipase Cβ (PLCβ) with the consequent PKD activation by diacylglycerol. Notably, S1P did not activate LRRC8/VRAC in HEK293 cells, but overexpression of Gβγ-responsive PLCβ isoform could facilitate S1P-induced LRRC8/VRAC currents. We thus identified S1PR1-mediated Gβγ-PLCβ signalling as a key mechanism underlying isosmotic LRRC8/VRAC activation. KEY POINTS: Leucin-rich repeat containing 8 (LRRC8) anion/osmolyte channels are involved in multiple physiological processes where they can be activated as volume-regulated anion channels (VRACs) by osmotic cell swelling or isovolumetric stimuli such as sphingosine-1-phosphate (S1P). In the present study, using pharmacological modulation and gene-depleted cells in patch clamp recording and optical monitoring of LRRC8 activity, we find that LRRC8/VRAC activation by S1P is mediated by the G protein-coupled receptor S1PR1 coupled to G proteins of the Gi family. The signal transduction to LRRC8/VRAC activation specifically involves phospholipase Cβ activation by βγ subunits of pertussis toxin-insensitive heteromeric Gi proteins. S1P-mediated and hypotonicity-induced LRRC8/VRAC activation pathways converge in protein kinase D activation.
Collapse
Affiliation(s)
- Yulia Kostritskaia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Sumaira Pervaiz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anna Klemmer
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Malte Klüssendorf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Carpanese V, Festa M, Prosdocimi E, Bachmann M, Sadeghi S, Bertelli S, Stein F, Velle A, Abdel-Salam MAL, Romualdi C, Pusch M, Checchetto V. Interactomic exploration of LRRC8A in volume-regulated anion channels. Cell Death Discov 2024; 10:299. [PMID: 38909013 PMCID: PMC11193767 DOI: 10.1038/s41420-024-02032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/24/2024] Open
Abstract
Ion channels are critical in enabling ion movement into and within cells and are important targets for pharmacological interventions in different human diseases. In addition to their ion transport abilities, ion channels interact with signalling and scaffolding proteins, which affects their function, cellular positioning, and links to intracellular signalling pathways. The study of "channelosomes" within cells has the potential to uncover their involvement in human diseases, although this field of research is still emerging. LRRC8A is the gene that encodes a crucial protein involved in the formation of volume-regulated anion channels (VRACs). Some studies suggest that LRRC8A could be a valuable prognostic tool in different types of cancer, serving as a biomarker for predicting patients' outcomes. LRRC8A expression levels might be linked to tumour progression, metastasis, and treatment response, although its implications in different cancer types can be varied. Here, publicly accessible databases of cancer patients were systematically analysed to determine if a correlation between VRAC channel expression and survival rate exists across distinct cancer types. Moreover, we re-evaluated the impact of LRRC8A on cellular proliferation and migration in colon cancer via HCT116 LRRC8A-KO cells, which is a current topic of debate in the literature. In addition, to investigate the role of LRRC8A in cellular signalling, we conducted biotin proximity-dependent identification (BioID) analysis, revealing a correlation between VRAC channels and cell-cell junctions, mechanisms that govern cellular calcium homeostasis, kinases, and GTPase signalling. Overall, this dataset improves our understanding of LRRC8A/VRAC and explores new research avenues while identifying promising therapeutic targets and promoting inventive methods for disease treatment.
Collapse
Affiliation(s)
| | - Margherita Festa
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- Institute of Biophysics, CNR, Via De Marini, 6 16149, Genova, Italy
| | | | - Magdalena Bachmann
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- Daba Farber Cancer Research Institute, Boston, MA, USA
| | - Soha Sadeghi
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Sara Bertelli
- Institute of Biophysics, CNR, Via De Marini, 6, 16149, Genova, Italy
- Humboldt Universität Berlin, AG Zelluläre Biophysik, Dorotheenstr, 19-21 10099, Berlin, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Angelo Velle
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Mostafa A L Abdel-Salam
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chiara Romualdi
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- Padua Center for Network Medicine, University of Padua, Via F. Marzolo 8, 315126, Padova, Italy
| | - Michael Pusch
- Institute of Biophysics, CNR, Via De Marini, 6, 16149, Genova, Italy
- RAISE Ecosystem, Genova, Italy
| | | |
Collapse
|
3
|
Stevanović KS, Čepkenović B, Križak S, Živić MŽ, Todorović NV. Osmotically Activated Anion Current of Phycomyces Blakesleeanus-Filamentous Fungi Counterpart to Vertebrate Volume Regulated Anion Current. J Fungi (Basel) 2023; 9:637. [PMID: 37367573 DOI: 10.3390/jof9060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Studies of ion currents in filamentous fungi are a prerequisite for forming a complete understanding of their physiology. Cytoplasmic droplets (CDs), obtained from sporangiophores of Phycomyces blakesleeanus, are a model system that enables the characterization of ion currents in the native membrane, including the currents mediated by the channels not yet molecularly identified. Osmotically activated anionic current with outward rectification (ORIC) is a dominant current in the membrane of cytoplasmic droplets under the conditions of hypoosmotic stimulation. We have previously reported remarkable functional similarities of ORIC with the vertebrate volume regulated anionic current (VRAC), such as dose-dependent activation by osmotic difference, ion selectivity sequence, and time and voltage dependent profile of the current. Using the patch clamp method on the CD membrane, we further resolve VRAC-like ORIC characteristics in this paper. We examine the inhibition by extracellular ATP and carbenoxolone, the permeation of glutamate in presence of chloride, selectivity for nitrates, and activation by GTP, and we show its single channel behavior in excised membrane. We propose that ORIC is a functional counterpart of vertebrate VRAC in filamentous fungi, possibly with a similar essential role in anion efflux during cell volume regulation.
Collapse
Affiliation(s)
- Katarina S Stevanović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Bogdana Čepkenović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Strahinja Križak
- Institute of Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Miroslav Ž Živić
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Nataša V Todorović
- Institute of Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Pochynyuk O, Palygin O. Unfulfilled Expectations Open New Horizons: What Have We Learned about Volume-Regulated Anion Channels in the Kidney? J Am Soc Nephrol 2022; 33:1437-1439. [PMID: 35840173 PMCID: PMC9342627 DOI: 10.1681/asn.2022050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Oleg Palygin
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
5
|
Mecawi AS, Varanda WA, da Silva MP. Osmoregulation and the Hypothalamic Supraoptic Nucleus: From Genes to Functions. Front Physiol 2022; 13:887779. [PMID: 35685279 PMCID: PMC9171026 DOI: 10.3389/fphys.2022.887779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the relatively high permeability to water of the plasma membrane, water tends to equilibrate its chemical potential gradient between the intra and extracellular compartments. Because of this, changes in osmolality of the extracellular fluid are accompanied by changes in the cell volume. Therefore, osmoregulatory mechanisms have evolved to keep the tonicity of the extracellular compartment within strict limits. This review focuses on the following aspects of osmoregulation: 1) the general problems in adjusting the "milieu interieur" to challenges imposed by water imbalance, with emphasis on conceptual aspects of osmosis and cell volume regulation; 2) osmosensation and the hypothalamic supraoptic nucleus (SON), starting with analysis of the electrophysiological responses of the magnocellular neurosecretory cells (MNCs) involved in the osmoreception phenomenon; 3) transcriptomic plasticity of SON during sustained hyperosmolality, to pinpoint the genes coding membrane channels and transporters already shown to participate in the osmosensation and new candidates that may have their role further investigated in this process, with emphasis on those expressed in the MNCs, discussing the relationships of hydration state, gene expression, and MNCs electrical activity; and 4) somatodendritic release of neuropeptides in relation to osmoregulation. Finally, we expect that by stressing the relationship between gene expression and the electrical activity of MNCs, studies about the newly discovered plastic-regulated genes that code channels and transporters in the SON may emerge.
Collapse
Affiliation(s)
- André Souza Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Wamberto Antonio Varanda
- Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Melina Pires da Silva
- Laboratory of Cellular Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Gao M, Ma MM, Lu FT, Huang CC, Sun L, Lv XF, Zhang B, Wang GL, Guan YY. Low Chloride-Regulated ClC-5 Contributes to Arterial Smooth Muscle Cell Proliferation and Cerebrovascular Remodeling. Hypertension 2022; 79:e73-e85. [PMID: 35144478 DOI: 10.1161/hypertensionaha.121.18472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Low serum chloride (Cl-) level is considered an independent predictor of cardiovascular mortality associated with chronic hypertension. However, the underlying mechanisms are unknown. ClC-5, a member of the Cl- channel family, is sensitive to changes in intracellular and extracellular Cl- concentration and conducts outwardly rectifying Cl- currents. The aims of this study were to determine if ClC-5 is regulated by low extracellular Cl-, clarify its putative roles in hypertension-induced cerebrovascular remodeling, and elucidate the associated underlying mechanisms. METHODS Whole-cell patch technique, intracellular Cl- concentration measurements, flow cytometry, Western blot, Clcn5 knockdown (Clcn5-/y), and adenovirus-mediated ClC-5 overexpression mice, 2-kidney, 2-clip, and angiotensin II infusion-induced hypertensive models were used. RESULTS We found that low extracellular Cl- evoked a ClC-5-dependent Cl- current that was abolished by ClC-5 depletion in basilar artery smooth muscle cells. ClC-5 was upregulated in the arterial tissues of rats and patients with hypertension. Low Cl--induced current and ClC-5 protein expression positively correlated with basilar artery remodeling during hypertension. ClC-5 knockdown ameliorated hypertension-induced cerebrovascular remodeling and smooth muscle cell proliferation, whereas ClC-5 overexpression mice exhibited the opposite phenotype. ClC-5-dependent Cl- efflux induced by low extracellular Cl- activated WNK1 (lysine-deficient protein kinase 1) which, in turn, activated AKT, and culminated in basilar artery smooth muscle cell proliferation and vascular remodeling. CONCLUSIONS ClC-5 mediates low Cl--induced Cl- currents in basilar artery smooth muscle cells and regulates hypertension-induced cerebrovascular remodeling by promoting basilar artery smooth muscle cell proliferation via the WNK1/AKT signaling pathway.
Collapse
Affiliation(s)
- Min Gao
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.).,Department of Pharmacy, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China. (M.G., C.-C.H.)
| | - Ming-Ming Ma
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| | - Feng-Ting Lu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| | - Cheng-Cui Huang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.).,Department of Pharmacy, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China. (M.G., C.-C.H.)
| | - Lu Sun
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.).,Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (L.S.)
| | - Xiao-Fei Lv
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| | - Bin Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, China (B.Z.)
| | - Guan-Lei Wang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| | - Yong-Yuan Guan
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine (M.G., M.-M.M., F.-T.L., C.-C.H., L.S., X.-F.L., G.-L.W., Y.-Y.G.)
| |
Collapse
|
7
|
Kolobkova Y, Pervaiz S, Stauber T. The expanding toolbox to study the LRRC8-formed volume-regulated anion channel VRAC. CURRENT TOPICS IN MEMBRANES 2021; 88:119-163. [PMID: 34862024 DOI: 10.1016/bs.ctm.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The volume-regulated anion channel (VRAC) is activated upon cell swelling and facilitates the passive movement of anions across the plasma membrane in cells. VRAC function underlies many critical homeostatic processes in vertebrate cells. Among them are the regulation of cell volume and membrane potential, glutamate release and apoptosis. VRAC is also permeable for organic osmolytes and metabolites including some anti-cancer drugs and antibiotics. Therefore, a fundamental understanding of VRAC's structure-function relationships, its physiological roles, its utility for therapy of diseases, and the development of compounds modulating its activity are important research frontiers. Here, we describe approaches that have been applied to study VRAC since it was first described more than 30 years ago, providing an overview of the recent methodological progress. The diverse applications reflecting a compromise between the physiological situation, biochemical definition, and biophysical resolution range from the study of VRAC activity using a classic electrophysiology approach, to the measurement of osmolytes transport by various means and the investigation of its activation using a novel biophysical approach based on fluorescence resonance energy transfer.
Collapse
Affiliation(s)
- Yulia Kolobkova
- Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Germany
| | - Sumaira Pervaiz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Tobias Stauber
- Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany.
| |
Collapse
|
8
|
Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y, Sabirov RZ. Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties. Pharmacol Rev 2019; 71:49-88. [PMID: 30573636 DOI: 10.1124/pr.118.015917] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There are a number of mammalian anion channel types associated with cell volume changes. These channel types are classified into two groups: volume-activated anion channels (VAACs) and volume-correlated anion channels (VCACs). VAACs can be directly activated by cell swelling and include the volume-sensitive outwardly rectifying anion channel (VSOR), which is also called the volume-regulated anion channel; the maxi-anion channel (MAC or Maxi-Cl); and the voltage-gated anion channel, chloride channel (ClC)-2. VCACs can be facultatively implicated in, although not directly activated by, cell volume changes and include the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, the Ca2+-activated Cl- channel (CaCC), and the acid-sensitive (or acid-stimulated) outwardly rectifying anion channel. This article describes the phenotypical properties and activation mechanisms of both groups of anion channels, including accumulating pieces of information on the basis of recent molecular understanding. To that end, this review also highlights the molecular identities of both anion channel groups; in addition to the molecular identities of ClC-2 and CFTR, those of CaCC, VSOR, and Maxi-Cl were recently identified by applying genome-wide approaches. In the last section of this review, the most up-to-date information on the pharmacological properties of both anion channel groups, especially their half-maximal inhibitory concentrations (IC50 values) and voltage-dependent blocking, is summarized particularly from the standpoint of pharmacological distinctions among them. Future physiologic and pharmacological studies are definitely warranted for therapeutic targeting of dysfunction of VAACs and VCACs.
Collapse
Affiliation(s)
- Yasunobu Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Toshiaki Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Kaori Sato-Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Md Rafiqul Islam
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yuhko Ando-Akatsuka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Tomohiro Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Machiko Kubo
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Takahiro Shimizu
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ranohon S Kurbannazarova
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yoshinori Marunaka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ravshan Z Sabirov
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| |
Collapse
|
9
|
Strange K, Yamada T, Denton JS. A 30-year journey from volume-regulated anion currents to molecular structure of the LRRC8 channel. J Gen Physiol 2019; 151:100-117. [PMID: 30651298 PMCID: PMC6363415 DOI: 10.1085/jgp.201812138] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
Strange et al. review recent advances in our understanding of the molecular and structural basis of volume-regulated anion channel function within the framework of classical biophysical and physiological studies. The swelling-activated anion channel VRAC has fascinated and frustrated physiologists since it was first described in 1988. Multiple laboratories have defined VRAC’s biophysical properties and have shown that it plays a central role in cell volume regulation and possibly other fundamental physiological processes. However, confusion and intense controversy surrounding the channel’s molecular identity greatly hindered progress in the field for >15 yr. A major breakthrough came in 2014 with the demonstration that VRAC is a heteromeric channel encoded by five members of the Lrrc8 gene family, Lrrc8A–E. A mere 4 yr later, four laboratories described cryo-EM structures of LRRC8A homomeric channels. As the melee of structure/function and physiology studies begins, it is critical that this work be framed by a clear understanding of VRAC biophysics, regulation, and cellular physiology as well as by the field’s past confusion and controversies. That understanding is essential for the design and interpretation of structure/function studies, studies of VRAC physiology, and studies aimed at addressing the vexing problem of how the channel detects cell volume changes. In this review we discuss key aspects of VRAC biophysics, regulation, and function and integrate these into our emerging understanding of LRRC8 protein structure/function.
Collapse
Affiliation(s)
- Kevin Strange
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN.,Novo Biosciences, Inc., Bar Harbor, ME
| | - Toshiki Yamada
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
10
|
Molecular Identities and ATP Release Activities of Two Types of Volume-Regulatory Anion Channels, VSOR and Maxi-Cl. CURRENT TOPICS IN MEMBRANES 2018; 81:125-176. [PMID: 30243431 DOI: 10.1016/bs.ctm.2018.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An elaborate volume regulation system based on interplay of ion channels and transporters was evolved to cope with constant osmotic challenges caused by intensive metabolism, transport and other physiological/pathophysiological events. In animal cells, two types of anion channels are directly activated by cell swelling and involved in the regulatory volume decrease (RVD): volume-sensitive outwardly rectifying anion channel (VSOR), also called volume-regulated anion channel (VRAC), and Maxi-Cl which is the most major type of maxi-anion channel (MAC). These two channels have very different biophysical profiles and exhibit opposite dependence on intracellular ATP. After several decades of verifying many false-positive candidates for VSOR and Maxi-Cl, LRRC8 family proteins emerged as major VSOR components, and SLCO2A1 protein as a core of Maxi-Cl. Still, neither of these proteins alone can fully reproduce the native channel phenotypes suggesting existence of missing components. Although both VSOR and Maxi-Cl have pores wide enough to accommodate bulky ATP4- and MgATP2- anions, evidence accumulated hitherto, based on pharmacological and gene silencing experiments, suggests that Maxi-Cl, but not VSOR, serves as one of the major pathways for the release of ATP from swollen and ischemic/hypoxic cells. Relations of VSOR and Maxi-Cl with diseases and their selective pharmacology are the topics promoted by recent advance in molecular identification of the two volume-activated, volume-regulatory anion channels.
Collapse
|
11
|
Orlov SN, Shiyan A, Boudreault F, Ponomarchuk O, Grygorczyk R. Search for Upstream Cell Volume Sensors: The Role of Plasma Membrane and Cytoplasmic Hydrogel. CURRENT TOPICS IN MEMBRANES 2018; 81:53-82. [PMID: 30243440 DOI: 10.1016/bs.ctm.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The plasma membrane plays a prominent role in the regulation of cell volume by mediating selective transport of extra- and intracellular osmolytes. Recent studies show that upstream sensors of cell volume changes are mainly located within the cytoplasm that displays properties of a hydrogel and not in the plasma membrane. Cell volume changes occurring in anisosmotic medium as well as in isosmotic environment affect properties of cytoplasmic hydrogel that, in turn, trigger rapid regulatory volume increase and decrease (RVI and RVD). The downstream signaling pathways include reorganization of 2D cytoskeleton and altered composition of polyphosphoinositides located on the inner surface of the plasma membrane. In addition to its action on physico-chemical properties of cytoplasmic hydrogel, cell volume changes in anisosmotic conditions affect the ionic strength of the cytoplasm and the [Na+]i/[K+]i ratio. Elevated intracellular ionic strength evoked by long term exposure of cells to hypertonic environment resulted in the activation of TonEBP and augmented expression of genes controlling intracellular organic osmolyte levels. The role of Na+i/K+i -sensitive, Ca2+i -mediated and Ca2+i-independent mechanisms of excitation-transcription coupling in cell volume-adjustment remains unknown.
Collapse
Affiliation(s)
- Sergei N Orlov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Siberian State Medical University, Tomsk, Russia; National Research Tomsk State University, Tomsk, Russia
| | - Aleksandra Shiyan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Francis Boudreault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Olga Ponomarchuk
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Ryszard Grygorczyk
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
12
|
Ponomarchuk OO, Boudreault F, Shiyan AA, Maksimov GV, Grygorczyk R, Orlov SN. A Method to Simultaneously Detect Changes in Intracellular Ca2+ Concentration and Cell Volume. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s000635091803020x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Ponomarchuk O, Boudreault F, Orlov SN, Grygorczyk R. Calcium is not required for triggering volume restoration in hypotonically challenged A549 epithelial cells. Pflugers Arch 2016; 468:2075-2085. [PMID: 27796579 DOI: 10.1007/s00424-016-1896-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/11/2016] [Accepted: 10/14/2016] [Indexed: 11/26/2022]
Abstract
Maintenance of cell volume is a fundamental housekeeping function in eukaryotic cells. Acute cell swelling activates a regulatory volume decrease (RVD) process with poorly defined volume sensing and intermediate signaling mechanisms. Here, we analyzed the putative role of Ca2+ signaling in RVD in single substrate-adherent human lung epithelial A549 cells. Acute cell swelling was induced by perfusion of the flow-through imaging chamber with 50 % hypotonic solution at a defined fluid turnover rate. Changes in cytosolic Ca2+ concentration ([Ca2+]i) and cell volume were monitored simultaneously with ratiometric Fura-2 fluorescence and 3D reconstruction of stereoscopic single-cell images, respectively. Hypotonic challenge caused a progressive swelling peaking at ∼20 min and followed, during the next 20 min, by RVD of 60 ± 7 % of the peak volume increase. However, at the rate of swelling used in our experiments, these processes were not accompanied by a measurable increment of [Ca2+]i. Loading with intracellular Ca2+ chelator BAPTA slightly delayed peak of swelling but did not prevent RVD in 82 % of cells. Further, electrophysiology whole-cell patch-clamp experiments showed that BAPTA did not block activation of volume-regulated anion channel (VRAC) measured as swelling-induced outwardly rectifying 5-nitro-2-(3-phenylpropyl-amino) benzoic acid sensitive current. Together, our data suggest that intracellular Ca2+-mediated signaling is not essential for VRAC activation and subsequent volume restoration in A549 cells.
Collapse
Affiliation(s)
- Olga Ponomarchuk
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Francis Boudreault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada.
| | - Sergei N Orlov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ryszard Grygorczyk
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger 900 rue St-Denis, Montreal, Quebec, H2X 0A9, Canada.
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Pedersen SF, Okada Y, Nilius B. Biophysics and Physiology of the Volume-Regulated Anion Channel (VRAC)/Volume-Sensitive Outwardly Rectifying Anion Channel (VSOR). Pflugers Arch 2016; 468:371-83. [DOI: 10.1007/s00424-015-1781-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 01/25/2023]
|
15
|
Hoffmann EK, Sørensen BH, Sauter DPR, Lambert IH. Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance. Channels (Austin) 2015; 9:380-96. [PMID: 26569161 DOI: 10.1080/19336950.2015.1089007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Volume-regulated channels for anions (VRAC) / organic osmolytes (VSOAC) play essential roles in cell volume regulation and other cellular functions, e.g. proliferation, cell migration and apoptosis. LRRC8A, which belongs to the leucine rich-repeat containing protein family, was recently shown to be an essential component of both VRAC and VSOAC. Reduced VRAC and VSOAC activities are seen in drug resistant cancer cells. ANO1 is a calcium-activated chloride channel expressed on the plasma membrane of e.g., secretory epithelia. ANO1 is amplified and highly expressed in a large number of carcinomas. The gene, encoding for ANO1, maps to a region on chromosome 11 (11q13) that is frequently amplified in cancer cells. Knockdown of ANO1 impairs cell proliferation and cell migration in several cancer cells. Below we summarize the basic biophysical properties of VRAC, VSOAC and ANO1 and their most important cellular functions as well as their role in cancer and drug resistance.
Collapse
Affiliation(s)
- Else K Hoffmann
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| | - Belinda H Sørensen
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| | - Daniel P R Sauter
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| | - Ian H Lambert
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| |
Collapse
|
16
|
Pedersen SF, Klausen TK, Nilius B. The identification of a volume-regulated anion channel: an amazing Odyssey. Acta Physiol (Oxf) 2015; 213:868-81. [PMID: 25565132 DOI: 10.1111/apha.12450] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/05/2014] [Accepted: 01/05/2015] [Indexed: 01/03/2023]
Abstract
The volume-regulated anion channel (VRAC) plays a pivotal role in cell volume regulation in essentially all cell types studied. Additionally, VRAC appears to contribute importantly to a wide range of other cellular functions and pathological events, including cell motility, cell proliferation, apoptosis and excitotoxic glutamate release in stroke. Although biophysically, pharmacologically and functionally thoroughly described, VRAC has until very recently remained a genetic orphan. The search for the molecular identity of VRAC has been long and has yielded multiple potential candidates, all of which eventually turned out to have properties not fully compatible with those of VRAC. Recently, two groups have independently identified the protein leucine-rich repeats containing 8A (LRRC8A), belonging to family of proteins (LRRC8A-E) distantly related to pannexins, as the likely pore-forming subunit of VRAC. In this brief review, we summarize the history of the discovery of VRAC, outline its basic biophysical and pharmacological properties, link these to several cellular functions in which VRAC appears to play important roles, and sketch the amazing search for the molecular identity of this channel. Finally, we describe properties of the LRRC8 proteins, highlight some features of the LRRC8A knockout mouse and discuss the impact of the discovery of LRRC8 as VRAC on future research.
Collapse
Affiliation(s)
- S. F. Pedersen
- Section for Cell and Developmental Biology; Department of Biology; Faculty of Science; University of Copenhagen; Copenhagen Denmark
| | - T. K. Klausen
- Section for Cell and Developmental Biology; Department of Biology; Faculty of Science; University of Copenhagen; Copenhagen Denmark
| | - B. Nilius
- Laboratory of Ion Channel Research; Department of Cellular and Molecular Medicine; KU Leuven, Campus Gasthuisberg; Leuven Belgium
| |
Collapse
|
17
|
Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, Reinhardt J, Orth AP, Patapoutian A. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 2014; 157:447-458. [PMID: 24725410 DOI: 10.1016/j.cell.2014.03.024] [Citation(s) in RCA: 437] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/24/2014] [Accepted: 03/18/2014] [Indexed: 12/23/2022]
Abstract
Maintenance of a constant cell volume in response to extracellular or intracellular osmotic changes is critical for cellular homeostasis. Activation of a ubiquitous volume-regulated anion channel (VRAC) plays a key role in this process; however, its molecular identity in vertebrates remains unknown. Here, we used a cell-based fluorescence assay and performed a genome-wide RNAi screen to find components of VRAC. We identified SWELL1 (LRRC8A), a member of a four-transmembrane protein family with unknown function, as essential for hypotonicity-induced iodide influx. SWELL1 is localized to the plasma membrane, and its knockdown dramatically reduces endogenous VRAC currents and regulatory cell volume decrease in various cell types. Furthermore, point mutations in SWELL1 cause a significant change in VRAC anion selectivity, demonstrating that SWELL1 is an essential VRAC component. These findings enable further molecular characterization of the VRAC channel complex and genetic studies for understanding the function of VRAC in normal physiology and disease.
Collapse
Affiliation(s)
- Zhaozhu Qiu
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA; Department of Molecular and Cellular Neuroscience, Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adrienne E Dubin
- Department of Molecular and Cellular Neuroscience, Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jayanti Mathur
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Buu Tu
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Kritika Reddy
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Loren J Miraglia
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Jürgen Reinhardt
- Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Anthony P Orth
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Ardem Patapoutian
- Department of Molecular and Cellular Neuroscience, Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1046] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
19
|
Abstract
Cell volume perturbation initiates a wide array of intracellular signalling cascades, leading to protective and adaptive events and, in most cases, activation of volume-regulatory osmolyte transport, water loss, and hence restoration of cell volume and cellular function. Cell volume is challenged not only under physiological conditions, e.g. following accumulation of nutrients, during epithelial absorption/secretion processes, following hormonal/autocrine stimulation, and during induction of apoptosis, but also under pathophysiological conditions, e.g. hypoxia, ischaemia and hyponatremia/hypernatremia. On the other hand, it has recently become clear that an increase or reduction in cell volume can also serve as a specific signal in the regulation of physiological processes such as transepithelial transport, cell migration, proliferation and death. Although the mechanisms by which cell volume perturbations are sensed are still far from clear, significant progress has been made with respect to the nature of the sensors, transducers and effectors that convert a change in cell volume into a physiological response. In the present review, we summarize recent major developments in the field, and emphasize the relationship between cell volume regulation and organism physiology/pathophysiology.
Collapse
Affiliation(s)
- I H Lambert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
20
|
Matulef K, Howery AE, Tan L, Kobertz WR, Du Bois J, Maduke M. Discovery of potent CLC chloride channel inhibitors. ACS Chem Biol 2008; 3:419-28. [PMID: 18642799 DOI: 10.1021/cb800083a] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anion-transport proteins are central to all of physiology, for processes ranging from regulating bone-density, muscle excitability, and blood pressure, to facilitating extreme-acid survival of pathogenic bacteria. 4,4-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) has been used as an anion-transport inhibitor for decades. In this study, we demonstrate that polythiourea products derived from DIDS hydrolysis inhibit three different CLC chloride-transport proteins, ClC-ec1, ClC-0, and ClC-Ka, more effectively than DIDS itself. The structures of the five major products were determined by NMR spectroscopy, mass spectrometry, and chemical synthesis. These compounds bind directly to the CLC proteins, as evidenced by the fact that inhibition of ClC-0 occurs only from the intracellular side and inhibition of ClC-Ka is prevented by the point mutation N68D. These polythioureas are the highest affinity inhibitors known for the CLCs and provide a new class of chemical probes for dissecting the molecular mechanisms of chloride transport.
Collapse
Affiliation(s)
- Kimberly Matulef
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - Andrew E. Howery
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Li Tan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - William R. Kobertz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - J. Du Bois
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
21
|
Hartzell HC, Qu Z, Yu K, Xiao Q, Chien LT. Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev 2008; 88:639-72. [PMID: 18391176 DOI: 10.1152/physrev.00022.2007] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article reviews the current state of knowledge about the bestrophins, a newly identified family of proteins that can function both as Cl(-) channels and as regulators of voltage-gated Ca(2+) channels. The founding member, human bestrophin-1 (hBest1), was identified as the gene responsible for a dominantly inherited, juvenile-onset form of macular degeneration called Best vitelliform macular dystrophy. Mutations in hBest1 have also been associated with a small fraction of adult-onset macular dystrophies. It is proposed that dysfunction of bestrophin results in abnormal fluid and ion transport by the retinal pigment epithelium, resulting in a weakened interface between the retinal pigment epithelium and photoreceptors. There is compelling evidence that bestrophins are Cl(-) channels, but bestrophins remain enigmatic because it is not clear that the Cl(-) channel function can explain Best disease. In addition to functioning as a Cl(-) channel, hBest1 also is able to regulate voltage-gated Ca(2+) channels. Some bestrophins are activated by increases in intracellular Ca(2+) concentration, but whether bestrophins are the molecular counterpart of Ca(2+)-activated Cl(-) channels remains in doubt. Bestrophins are also regulated by cell volume and may be a member of the volume-regulated anion channel family.
Collapse
Affiliation(s)
- H Criss Hartzell
- Department of Cell Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
22
|
Chien LT, Hartzell HC. Drosophila bestrophin-1 chloride current is dually regulated by calcium and cell volume. ACTA ACUST UNITED AC 2008; 130:513-24. [PMID: 17968025 PMCID: PMC2151665 DOI: 10.1085/jgp.200709795] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the human bestrophin-1 (hBest1) gene are responsible for Best vitelliform macular dystrophy, however the mechanisms leading to retinal degeneration have not yet been determined because the function of the bestrophin protein is not fully understood. Bestrophins have been proposed to comprise a new family of Cl(-) channels that are activated by Ca(2+). While the regulation of bestrophin currents has focused on intracellular Ca(2+), little is known about other pathways/mechanisms that may also regulate bestrophin currents. Here we show that Cl(-) currents in Drosophila S2 cells, that we have previously shown are mediated by bestrophins, are dually regulated by Ca(2+) and cell volume. The bestrophin Cl(-) currents were activated in a dose-dependent manner by osmotic pressure differences between the internal and external solutions. The increase in the current was accompanied by cell swelling. The volume-regulated Cl(-) current was abolished by treating cells with each of four different RNAi constructs that reduced dBest1 expression. The volume-regulated current was rescued by transfecting with dBest1. Furthermore, cells not expressing dBest1 were severely depressed in their ability to regulate their cell volume. Volume regulation and Ca(2+) regulation can occur independently of one another: the volume-regulated current was activated in the complete absence of Ca(2+) and the Ca(2+)-activated current was activated independently of alterations in cell volume. These two pathways of bestrophin channel activation can interact; intracellular Ca(2+) potentiates the magnitude of the current activated by changes in cell volume. We conclude that in addition to being regulated by intracellular Ca(2+), Drosophila bestrophins are also novel members of the volume-regulated anion channel (VRAC) family that are necessary for cell volume homeostasis.
Collapse
Affiliation(s)
- Li-Ting Chien
- Department of Cell Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
23
|
Vázquez-Juárez E, Ramos-Mandujano G, Hernández-Benítez R, Pasantes-Morales H. On the role of G-protein coupled receptors in cell volume regulation. Cell Physiol Biochem 2008; 21:1-14. [PMID: 18209467 DOI: 10.1159/000113742] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2008] [Indexed: 01/14/2023] Open
Abstract
Cell volume is determined genetically for each cell lineage, but it is not a static feature of the cell. Intracellular volume is continuously challenged by metabolic reactions, uptake of nutrients, intracellular displacement of molecules and organelles and generation of ionic gradients. Moreover, recent evidence raises the intriguing possibility that changes in cell volume act as signals for basic cell functions such as proliferation, migration, secretion and apoptosis. Cells adapt to volume increase by a complex, dynamic process resulting from the concerted action of volume sensing mechanisms and intricate signaling chains, directed to initiate the multiple adaptations demanded by a change in cell volume, among others adhesion reactions, membrane and cytoskeleton remodeling, and activation of the osmolyte pathways leading to reestablish the water balance between extracellular/intracellular or intracellular/intracellular compartments. In multicellular organisms, a continuous interaction with the external milieu is fundamental for the dynamics of the cell. It is in this sense that the recent surge of interest about the influence on cell volume control by the most extended family of signaling elements, the G proteins, acquires particular importance. As here reviewed, a large variety of G-protein coupled receptors (GPCRs) are involved in this interplay with cell volume regulatory mechanisms, which amplifies and diversifies the volume-elicited signaling chains, providing a variety of routes towards the multiple effectors related to cell volume changes.
Collapse
Affiliation(s)
- Erika Vázquez-Juárez
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, Mexico
| | | | | | | |
Collapse
|
24
|
Takahashi A, Miyoshi SI, Takata N, Nakano M, Hamamoto A, Mawatari K, Harada N, Shinoda S, Nakaya Y. Haemolysin produced by Vibrio mimicus activates two Cl- secretory pathways in cultured intestinal-like Caco-2 cells. Cell Microbiol 2006; 9:583-95. [PMID: 17026482 DOI: 10.1111/j.1462-5822.2006.00809.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Haemolysin (VMH) is a virulent factor produced by Vibrio mimicus, a human pathogen that causes diarrhoea. As intestinal epithelial cells are the primary targets of haemolysin, we investigated its effects on ion transport in human colonic epithelial Caco-2 cells. VMH increased the cellular short circuit current (Isc), used to estimated ion fluxes, and 125I efflux of the cells. The VMH-induced increases in Isc and 125I efflux were suppressed by depleting Ca2+ from the medium or by pretreating the cells with BAPTA-AM or by Rp-adenosin 3',5'-cyclic monophosphorothioate triethylammonium salt (Rp-cAMPS). The Cl- channel inhibitors 4,4'-disothiocyanatostibene-2,2'-disulfonic acid (DIDS), glybenclamide, and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) suppressed the VMH-induced increases in Isc and 125I efflux. Moreover, VMH increased the intracellular concentrations of Ca2+ and cAMP. Thus, VMH stimulates Caco-2 cells to secrete Cl- by activating both Ca2+ -dependent and cAMP-dependent Cl- secretion mechanisms. VMH forms ion-permeable pores in the lipid bilayer that are non-selectively permeable to small ions. However, the ion permeability of these pores was not inhibited by glybenclamide and DIDS, and VMH did not change the cell membrane potential. These observations indicate that the pores formed on the cell membrane by VMH are unlikely to be involved in VMH-induced Cl- secretion. Notably, VMH stimulated fluid accumulation in the iliac loop test that was fully suppressed by a combination of DIDS and glybenclamide. Thus, Ca2+-dependent and cAMP-dependent Cl- secretion may be important therapeutic targets with regard to the diarrhoea that is induced by Vibrio mimicus.
Collapse
Affiliation(s)
- Akira Takahashi
- Department of Nutrition, School of Medicine, Tokushima University, 3-18-5 Kuramoto-cho, Tokushima City, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dupré-Aucouturier S, Penhoat A, Rougier O, Bilbaut A. Volume-sensitive Cl- current in bovine adrenocortical cells: comparison with the ACTH-induced Cl- current. J Membr Biol 2004; 199:99-111. [PMID: 15383920 DOI: 10.1007/s00232-004-0680-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/26/2004] [Indexed: 11/29/2022]
Abstract
In a previous study performed on zona fasciculata (ZF) cells isolated from calf adrenal glands, we identified an ACTH-induced Cl- current involved in cell membrane depolarization. In the present work, we describe a volume-sensitive Cl- current and compare it with the ACTH-activated Cl- current. Experiments were performed using the whole-cell patch-clamp recording method, video microscopy and cortisol-secretion measurements. In current-clamp experiments, hypotonic solutions induced a membrane depolarization to -22 mV. This depolarization, correlated with an increase in the membrane conductance, was sensitive to different Cl- channel inhibitors. In voltage-clamp experiments, hypotonic solution induced a membrane current that slowly decayed and reversed at -21 mV. This ionic current displayed no time dependence and showed a slight outward rectification. It was blocked to variable extent by different conventional Cl- channel inhibitors. Under hypotonic conditions, membrane depolarizations were preceded by an increase in cell volume that was not detected under ACTH stimulation. It was concluded that hypotonic solution induced cell swelling, which activated a Cl- current involved in membrane depolarization. Although cell volume change was not observed in the presence of ACTH, biophysical properties and pharmacological profile of the volume-sensitive Cl- current present obvious similarities with the ACTH-activated Cl- current. As compared to ACTH, hypotonic solutions failed to trigger cortisol production that was weakly stimulated in the presence of high-K+ solution. This shows that in ZF cells, membrane depolarization is not a sufficient condition to fully activate secretory activities.
Collapse
Affiliation(s)
- S Dupré-Aucouturier
- Université Claude Bernard Lyon I, UMR-CNRS 5123, Physiologie des Eléments Excitables, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | | | | | | |
Collapse
|
26
|
d'Anglemont de Tassigny A, Souktani R, Ghaleh B, Henry P, Berdeaux A. Structure and pharmacology of swelling-sensitive chloride channels, I(Cl,swell). Fundam Clin Pharmacol 2004; 17:539-53. [PMID: 14703715 DOI: 10.1046/j.1472-8206.2003.00197.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Since several years, the interest for chloride channels and more particularly for the enigmatic swelling-activated chloride channel (I(Cl,swell)) is increasing. Despite its well-characterized electrophysiological properties, the I(Cl,swell) structure and pharmacology are not totally elucidated. These channels are involved in a variety of cell functions, such as cardiac rhythm, cell proliferation and differentiation, cell volume regulation and cell death through apoptosis. This review will consider different aspects regarding structure, electrophysiological properties, pharmacology, modulation and functions of these swelling-activated chloride channels.
Collapse
|
27
|
Wehner F, Olsen H, Tinel H, Kinne-Saffran E, Kinne RKH. Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev Physiol Biochem Pharmacol 2004; 148:1-80. [PMID: 12687402 DOI: 10.1007/s10254-003-0009-x] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In recent years, it has become evident that the volume of a given cell is an important factor not only in defining its intracellular osmolality and its shape, but also in defining other cellular functions, such as transepithelial transport, cell migration, cell growth, cell death, and the regulation of intracellular metabolism. In addition, besides inorganic osmolytes, the existence of organic osmolytes in cells has been discovered. Osmolyte transport systems-channels and carriers alike-have been identified and characterized at a molecular level and also, to a certain extent, the intracellular signals regulating osmolyte movements across the plasma membrane. The current review reflects these developments and focuses on the contributions of inorganic and organic osmolytes and their transport systems in regulatory volume increase (RVI) and regulatory volume decrease (RVD) in a variety of cells. Furthermore, the current knowledge on signal transduction in volume regulation is compiled, revealing an astonishing diversity in transport systems, as well as of regulatory signals. The information available indicates the existence of intricate spatial and temporal networks that control cell volume and that we are just beginning to be able to investigate and to understand.
Collapse
Affiliation(s)
- F Wehner
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
| | | | | | | | | |
Collapse
|
28
|
Kilic G. Exocytosis in bovine chromaffin cells: studies with patch-clamp capacitance and FM1-43 fluorescence. Biophys J 2002; 83:849-57. [PMID: 12124269 PMCID: PMC1302191 DOI: 10.1016/s0006-3495(02)75213-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In response to physiological stimuli, neuroendocrine cells secrete neurotransmitters through a Ca(2+)-dependent fusion of secretory granules with the plasma membrane. We studied insertion of granules in bovine chromaffin cells using capacitance as a measure of plasma membrane area and fluorescence of a membrane marker FM1-43 as a measure of exocytosis. Intracellular dialysis with [Ca(2+)] (1.5-100 microM) evoked massive exocytosis that was sufficient to double plasma membrane area but did not swell cells. In principle, in the absence of endocytosis, the addition of granule membrane would be anticipated to produce similar increases in the capacitance and FM1-43 fluorescence responses. However, when endocytosis was minimal, the changes in capacitance were markedly larger than the corresponding changes in FM1-43 fluorescence. Moreover, the apparent differences between capacitance and FM1-43 fluorescence changes increased with larger exocytic responses, as more granules fused with the plasma membrane. In experiments in which exocytosis was suppressed, increasing membrane tension by osmotically induced cell swelling increased FM1-43 fluorescence, suggesting that FM1-43 fluorescence is sensitive to changes in the membrane tension. Thus, increasing membrane area through exocytosis does not swell chromaffin cells but may decrease membrane tension.
Collapse
Affiliation(s)
- Gordan Kilic
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| |
Collapse
|
29
|
Kilic G, Fitz JG. Heterotrimeric G-proteins activate Cl- channels through stimulation of a cyclooxygenase-dependent pathway in a model liver cell line. J Biol Chem 2002; 277:11721-7. [PMID: 11812774 DOI: 10.1074/jbc.m108631200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Circulating hormones produce rapid changes in the Cl(-) permeability of liver cells through activation of plasma membrane receptors coupled to heterotrimeric G-proteins. The resulting effects on intracellular pH, membrane potential, and Cl(-) content are important contributors to the overall metabolic response. Consequently, the purpose of these studies was to evaluate the mechanisms responsible for G-protein-mediated changes in membrane Cl(-) permeability using HTC hepatoma cells as a model. Using patch clamp techniques, intracellular dialysis with 0.3 mm guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) increased membrane conductance from 10 to 260 picosiemens/picofarads due to activation of Ca(2+)-dependent Cl(-) currents that were outwardly rectifying and exhibited slow activation at depolarizing potentials. These effects were mimicked by intracellular AlF(4)(-) (0.03 mm) and inhibited by pertussis toxin (PTX), consistent with current activation through Galpha(i). Studies using defined agonists and inhibitors indicate that Cl(-) channel activation by GTPgammaS occurs through an indomethacin-sensitive pathway involving sequential activation of phospholipase C, mobilization of Ca(2+) from inositol 1,4,5-trisphosphate-sensitive stores, and stimulation of phospholipase A(2) and cyclooxygenase (COX). Accordingly, the conductance responses to GTPgammaS or to intracellular Ca(2+) were inhibited by COX inhibitors. These results indicate that PTX-sensitive G-proteins regulate the Cl(-) permeability of HTC cells through Ca(2+)-dependent stimulation of COX activity. Thus, receptor-mediated activation of Galpha(i) may be essential for hormonal regulation of liver transport and metabolism through COX-dependent opening of a distinct population of plasma membrane Cl(-) channels.
Collapse
Affiliation(s)
- Gordan Kilic
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | |
Collapse
|
30
|
Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev 2002; 82:503-68. [PMID: 11917096 DOI: 10.1152/physrev.00029.2001] [Citation(s) in RCA: 945] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cl- channels reside both in the plasma membrane and in intracellular organelles. Their functions range from ion homeostasis to cell volume regulation, transepithelial transport, and regulation of electrical excitability. Their physiological roles are impressively illustrated by various inherited diseases and knock-out mouse models. Thus the loss of distinct Cl- channels leads to an impairment of transepithelial transport in cystic fibrosis and Bartter's syndrome, to increased muscle excitability in myotonia congenita, to reduced endosomal acidification and impaired endocytosis in Dent's disease, and to impaired extracellular acidification by osteoclasts and osteopetrosis. The disruption of several Cl- channels in mice results in blindness. Several classes of Cl- channels have not yet been identified at the molecular level. Three molecularly distinct Cl- channel families (CLC, CFTR, and ligand-gated GABA and glycine receptors) are well established. Mutagenesis and functional studies have yielded considerable insights into their structure and function. Recently, the detailed structure of bacterial CLC proteins was determined by X-ray analysis of three-dimensional crystals. Nonetheless, they are less well understood than cation channels and show remarkably different biophysical and structural properties. Other gene families (CLIC or CLCA) were also reported to encode Cl- channels but are less well characterized. This review focuses on molecularly identified Cl- channels and their physiological roles.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
31
|
Fan HT, Morishima S, Kida H, Okada Y. Phloretin differentially inhibits volume-sensitive and cyclic AMP-activated, but not Ca-activated, Cl(-) channels. Br J Pharmacol 2001; 133:1096-106. [PMID: 11487521 PMCID: PMC1572865 DOI: 10.1038/sj.bjp.0704159] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Some phenol derivatives are known to block volume-sensitive Cl(-) channels. However, effects on the channel of the bisphenol phloretin, which is a known blocker of glucose uniport and anion antiport, have not been examined. In the present study, we investigated the effects of phloretin on volume-sensitive Cl(-) channels in comparison with cyclic AMP-activated CFTR Cl(-) channels and Ca(2+)-activated Cl(-) channels using the whole-cell patch-clamp technique. Extracellular application of phloretin (over 10 microM) voltage-independently, and in a concentration-dependent manner (IC(50) approximately 30 microM), inhibited the Cl(-) current activated by a hypotonic challenge in human epithelial T84, Intestine 407 cells and mouse mammary C127/CFTR cells. In contrast, at 30 microM phloretin failed to inhibit cyclic AMP-activated Cl(-) currents in T84 and C127/CFTR cells. Higher concentrations (over 100 microM) of phloretin, however, partially inhibited the CFTR Cl(-) currents in a voltage-dependent manner. At 30 and 300 microM, phloretin showed no inhibitory effect on Ca(2+)-dependent Cl(-) currents induced by ionomycin in T84 cells. It is concluded that phloretin preferentially blocks volume-sensitive Cl(-) channels at low concentrations (below 100 microM) and also inhibits cyclic AMP-activated Cl(-) channels at higher concentrations, whereas phloretin does not inhibit Ca(2+)-activated Cl(-) channels in epithelial cells.
Collapse
Affiliation(s)
- Hai-Tian Fan
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Faculty of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Shigeru Morishima
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- CREST, Japan Science and Technology Corporation, Okazaki 444-8585, Japan
| | - Hajime Kida
- Department of Gastroenterological Endoscopy, Faculty of Medicine, Kyoto 606-8507, Japan
| | - Yasunobu Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- CREST, Japan Science and Technology Corporation, Okazaki 444-8585, Japan
- Faculty of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
- Author for correspondence:
| |
Collapse
|
32
|
Sheader EA, Brown PD, Best L. Swelling-induced changes in cytosolic [Ca2++] in insulin-secreting cells: a role in regulatory volume decrease? Mol Cell Endocrinol 2001; 181:179-87. [PMID: 11476951 DOI: 10.1016/s0303-7207(01)00509-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exposure of insulin-secreting cells to hypotonic solutions causes cell swelling followed by regulatory volume decrease (RVD). We have previously demonstrated that RVD is due to activation of a Cl(-) conductance. The present study investigates whether changes in cytosolic [Ca(2+)] play a role in these responses. Hypotonic swelling of RINm5F insulinoma cells caused a marked increase in cytosolic [Ca(2+)]. This effect was abolished by omission of extracellular Ca(2+), by the Ca(2+) channel blockers D600 or Gd(3+)and by 4,4'-dithiocyanatostilbene-2,2'-disulphonic acid (DIDS), an inhibitor of the volume-sensitive anion. RVD was markedly impaired in the absence of extracellular Ca(2+), but not by D600 nor by Gd(3+). RVD was also inhibited by the maxi-K(+) (BK(Ca)) channel blockers tetraethylammonium (TEA) and iberiotoxin (IbTx), whereas the K(ATP) channel blocker tolbutamide was ineffective. Cell swelling was accompanied by activation of a K(+) conductance which was sensitive to TEA and IbTx but not to tolbutamide. It is concluded that cell swelling causes activation of the volume-sensitive anion channel, leading to depolarization and Ca(2+) entry via voltage-gated Ca(2+) channels. RVD is a Ca(2+)-dependent process, requiring low 'resting' levels of intracellular [Ca(2+)]. However, the swelling-induced increase in cytosolic [Ca(2+)] is not required for RVD to occur. RVD depends upon simultaneous activation of Cl(-) and K(+) channels. We suggest that the BK(Ca) channel is the major K(+) conductance involved in RVD.
Collapse
Affiliation(s)
- E A Sheader
- Department of Medicine, University of Manchester, M13 9WL, Manchester, UK
| | | | | |
Collapse
|
33
|
Estevez AY, Bond T, Strange K. Regulation of I(Cl,swell) in neuroblastoma cells by G protein signaling pathways. Am J Physiol Cell Physiol 2001; 281:C89-98. [PMID: 11401830 DOI: 10.1152/ajpcell.2001.281.1.c89] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) activated the I(Cl,swell) anion channel in N1E115 neuroblastoma cells in a swelling-independent manner. GTPgammaS-induced current was unaffected by ATP removal and broadly selective tyrosine kinase inhibitors, demonstrating that phosphorylation events do not regulate G protein-dependent channel activation. Pertussis toxin had no effect on GTPgammaS-induced current. However, cholera toxin inhibited the current approximately 70%. Exposure of cells to 8-bromoadenosine 3',5'-cyclic monophosphate did not mimic the effect of cholera toxin, and its inhibitory action was not prevented by treatment of cells with an inhibitor of adenylyl cyclase. These results demonstrate that GTPgammaS does not act through Galpha(i/o) GTPases and that Galpha(s)/Gbetagamma G proteins inhibit the channel and/or channel regulatory mechanisms through cAMP-independent mechanisms. Swelling-induced activation of I(Cl,swell) was stimulated two- to threefold by GTPgammaS and inhibited by 10 mM guanosine 5'-O-(2-thiodiphosphate). The Rho GTPase inhibitor Clostridium difficile toxin B inhibited both GTPgammaS- and swelling-induced activation of I(Cl,swell). Taken together, these findings indicate that Rho GTPase signaling pathways regulate the I(Cl,swell) channel via phosphorylation-independent mechanisms.
Collapse
Affiliation(s)
- A Y Estevez
- Department of Anesthesiology, Anesthesiology Research Division, Laboratories of Cellular and Molecular Physiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
34
|
Kinard TA, Goforth PB, Tao Q, Abood ME, Teague J, Satin LS. Chloride channels regulate HIT cell volume but cannot fully account for swelling-induced insulin secretion. Diabetes 2001; 50:992-1003. [PMID: 11334443 DOI: 10.2337/diabetes.50.5.992] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin-secreting pancreatic islet beta-cells possess anion-permeable Cl- channels (I(Cl,islet)) that are swelling-activated, but the role of these channels in the cells is unclear. The Cl- channel blockers 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and niflumic acid were evaluated for their ability to inhibit I(Cl,islet) in clonal beta-cells (HIT cells). Both drugs blocked the channel, but the blockade due to niflumic acid was less voltage-dependent than the blockade due to DIDS. HIT cell volume initially increased in hypotonic solution and was followed by a regulatory volume decrease (RVD). The addition of niflumic acid and, to a lesser extent, DIDS to the hypotonic solution potentiated swelling and blocked the RVD. In isotonic solution, niflumic acid produced swelling, suggesting that islet Cl- channels are activated under basal conditions. The channel blockers glyburide, gadolinium, or tetraethylammonium-Cl did not alter hypotonic-induced swelling or volume regulation. The Na/K/2Cl transport blocker furosemide produced cell shrinkage in isotonic solution and blocked cell swelling normally induced by hypotonic solution. Perifused HIT cells secreted insulin when challenged with hypotonic solutions. However, this could not be completely attributed to I(Cl,islet)-mediated depolarization, because secretion persisted even when Cl- channels were fully blocked. To test whether blocker-resistant secretion occurred via a distal pathway, distal secretion was isolated using 50 mmol/l potassium and diazoxide. Under these conditions, glucose-dependent secretion was blunted, but hypotonically induced secretion persisted, even with Cl- channel blockers present. These results suggest that beta-cell swelling stimulates insulin secretion primarily via a distal I(Cl,islet)-independent mechanism, as has been proposed for K(ATP)-independent glucose- and sulfonylurea-stimulated insulin secretion. Reverse transcriptase-polymerase chain reaction of HIT cell mRNA identified a CLC-3 transcript in HIT cells. In other systems, CLC-3 is believed to mediate swelling-induced outwardly rectifying Cl- channels. This suggests that the proximal effects of swelling to regulate cell volume may be mediated by CLC-3 or a closely related Cl- channel.
Collapse
Affiliation(s)
- T A Kinard
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0524, USA
| | | | | | | | | | | |
Collapse
|
35
|
Doroshenko P, Sabanov V, Doroshenko N. Cell cycle-related changes in regulatory volume decrease and volume-sensitive chloride conductance in mouse fibroblasts. J Cell Physiol 2001; 187:65-72. [PMID: 11241350 DOI: 10.1002/1097-4652(200104)187:1<65::aid-jcp1052>3.0.co;2-a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell cycle-related changes in the ability to regulate cell volume following hyposmotic swelling were studied in mouse fibroblasts using videomicroscopy and the whole-cell patch clamp technique. Regulatory volume decrease (RVD) and volume-sensitive Cl- conductance (G(Cl,vol)) were measured: (1) in proliferating cells of different sizes; (2) in cells arrested in defined phases of the cell cycle (G1, G1/S, S, and M phases) using mevastatin, mimosine, hydroxyurea, aphidicolin, cytosine beta-D-arabinofuranoside, and taxol; and (3) in serum-starved cells (G(0) state). Cells in all groups were able to undergo RVD, although the cells approaching mitosis (i.e., the largest cells in proliferating cultures and the taxol-treated cells) had the lowest rates of shrinkage during RVD. In agreement with this finding, the density of G(Cl,vol) was stable in proliferating and cell cycle-arrested cells for most of the cell cycle, with the exception of the cells approaching mitosis and the new daughter cells where the density was decreased to half. The impairment of RVD was greatest in serum-starved cells which also had the lowest density of G(Cl,vol). We conclude that proliferating cells maintain an ability to recover from osmotic swelling as they progress through the cell cycle, although this ability may be compromised during mitosis.
Collapse
Affiliation(s)
- P Doroshenko
- Loeb Health Research Institute, Ottawa Hospital, University of Ottawa, 75 Parkdale Avenue, Ottawa, Ontario, Canada K1Y 4E9.
| | | | | |
Collapse
|
36
|
Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 2001; 532:3-16. [PMID: 11283221 PMCID: PMC2278524 DOI: 10.1111/j.1469-7793.2001.0003g.x] [Citation(s) in RCA: 402] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2001] [Accepted: 01/30/2001] [Indexed: 01/31/2023] Open
Abstract
A fundamental property of animal cells is the ability to regulate their own cell volume. Even under hypotonic stress imposed by either decreased extracellular or increased intracellular osmolarity, the cells can re-adjust their volume after transient osmotic swelling by a mechanism known as regulatory volume decrease (RVD). In most cell types, RVD is accomplished mainly by KCl efflux induced by parallel activation of K+ and Cl- channels. We have studied the molecular mechanism of RVD in a human epithelial cell line (Intestine 407). Osmotic swelling results in a significant increase in the cytosolic Ca2+ concentration and thereby activates intermediate-conductance Ca2+-dependent K+ (IK) channels. Osmotic swelling also induces ATP release from the cells to the extracellular compartment. Released ATP stimulates purinergic ATP (P2Y2) receptors, thereby inducing phospholipase C-mediated Ca2+ mobilization. Thus, RVD is facilitated by stimulation of P2Y2 receptors due to augmentation of IK channels. In contrast, stimulation of another G protein-coupled Ca2+-sensing receptor (CaR) enhances the activity of volume-sensitive outwardly rectifying Cl- channels, thereby facilitating RVD. Therefore, it is possible that Ca2+ efflux stimulated by swelling-induced and P2Y2 receptor-mediated intracellular Ca2+ mobilization activates the CaR, thereby secondarily upregulating the volume-regulatory Cl- conductance. On the other hand, the initial process towards apoptotic cell death is coupled to normotonic cell shrinkage, called apoptotic volume decrease (AVD). Stimulation of death receptors, such as TNF receptor and Fas, induces AVD and thereafter biochemical apoptotic events in human lymphoid (U937), human epithelial (HeLa), mouse neuroblastoma x rat glioma hybrid (NG108-15) and rat phaeochromocytoma (PC12) cells. In those cells exhibiting AVD, facilitation of RVD is always observed. Both AVD induction and RVD facilitation as well as succeeding apoptotic events can be abolished by prior treatment with a blocker of volume-regulatory K+ or Cl- channels, suggesting that AVD is caused by normotonic activation of ion channels that are normally involved in RVD under hypotonic conditions. Therefore, it is likely that G protein-coupled receptors involved in RVD regulation and death receptors triggering AVD may share common downstream signals which should give us key clues to the detailed mechanisms of volume regulation and survival of animal cells. In this Topical Review, we look at the physiological ionic mechanisms of cell volume regulation and cell death-associated volume changes from the facet of receptor-mediated cellular processes.
Collapse
Affiliation(s)
- Y Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Shimizu T, Morishima S, Okada Y. Ca2+-sensing receptor-mediated regulation of volume-sensitive Cl- channels in human epithelial cells. J Physiol 2000; 528:457-72. [PMID: 11060124 PMCID: PMC2270157 DOI: 10.1111/j.1469-7793.2000.00457.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Since extracellular Ca2+ or Mg2+ has been reported to modulate swelling-activated Cl- currents, we examined the expression of the G protein-coupled Ca2+-sensing receptor (CaR) and its involvement in the regulation of volume-sensitive Cl- channels in a human epithelial cell line (Intestine 407). Reverse transcriptase-polymerase chain reaction and immunoblotting analysis showed that Intestine 407 cells express CaR mRNA and protein. The swelling-activated whole-cell Cl- current was voltage-independently augmented by extracellular Ca2+ or Mg2+. In addition, Ca2+ or Mg2+ voltage-dependently accelerated the inactivation kinetics of the Cl- current. Neomycin, spermine and La3+ augmented volume-sensitive Cl- currents. However, these CaR agonists failed to affect depolarization-induced inactivation. Intracellular application of GTPgammaS, but not GDPbeta]S, increased the amplitude of the swelling-induced Cl- current without affecting the basal current. The upregulating effect of Ca2+ on the Cl- current amplitude was abolished by either GTPgammaS or GDPbetaS. In contrast, GTPgammaS and GDPbetaS failed to affect the inactivation kinetics of the Cl- current and the accelerating effect of Ca2+ thereon. The Cl- current amplitude was enlarged by stimulation with forskolin, dibutyryl cAMP and IBMX. During the cAMP stimulation, extracellular Ca2+ failed to increase the Cl- current but did accelerate depolarization-induced inactivation. It is concluded that stimulation of the CaR induces upregulation of volume-sensitive Cl- channels via a G protein-mediated increase in intracellular cAMP in the human epithelial cell. However, the accelerating effect of extracellular divalent cations on the inactivation kinetics of the Cl- current is induced by a mechanism independent of the CaR and cAMP.
Collapse
Affiliation(s)
- T Shimizu
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | |
Collapse
|
38
|
Shuba YM, Prevarskaya N, Lemonnier L, Van Coppenolle F, Kostyuk PG, Mauroy B, Skryma R. Volume-regulated chloride conductance in the LNCaP human prostate cancer cell line. Am J Physiol Cell Physiol 2000; 279:C1144-54. [PMID: 11003595 DOI: 10.1152/ajpcell.2000.279.4.c1144] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patch-clamp recordings were used to study ion currents induced by cell swelling caused by hypotonicity in human prostate cancer epithelial cells, LNCaP. The reversal potential of the swelling-evoked current suggested that Cl(-) was the primary charge carrier (termed I(Cl,swell)). The selectivity sequence of the underlying volume-regulated anion channels (VRACs) for different anions was Br(-) approximately I(-) > Cl(-) > F(-) > methanesulfonate >> glutamate, with relative permeability numbers of 1.26, 1.20, 1.0, 0.77, 0.49, and 0.036, respectively. The current-voltage patterns of the whole cell currents as well as single-channel currents showed moderate outward rectification. Unitary VRAC conductance was determined at 9.6 +/- 1.8 pS. Conventional Cl(-) channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid (100 microM) and DIDS (100 microM) inhibited whole cell I(Cl,swell) in a voltage-dependent manner, with the block decreasing from 39.6 +/- 9.7% and 71.0 +/- 11. 0% at +50 mV to 26.2 +/- 7.2% and 14.5 +/- 6.6% at -100 mV, respectively. Verapamil (50 microM), a standard Ca(2+) antagonist and P-glycoprotein function inhibitor, depressed the current by a maximum of 15%. Protein tyrosine kinase inhibitors downregulated I(Cl,swell) (genistein with an IC(50) of 2.6 microM and lavendustin A by 60 +/- 14% at 1 microM). The protein tyrosine phosphatase inhibitor sodium orthovanadate (500 microM) stimulated I(Cl,swell) by 54 +/- 11%. We conclude that VRACs in human prostate cancer epithelial cells are modulated via protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- Y M Shuba
- Laboratoire de Physiologie Cellulaire, Institut National de la Santé et de la Recherche Médicale EPI 9938, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Shuba LM, McDonald TF. External anions and volume-sensitive anion current in guinea-pig ventricular myocytes. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to determine the effects of anion replacement on volume-sensitive anion current in guinea-pig ventricular myocytes. Myocytes in the conventional whole-cell voltage-clamp configuration were superfused and dialysed with Na+-, K+-, and Ca2+-free solution, and exposed to external 75 mM Cl- solution of one-half normal osmolality. Prolonged exposures to hyposmotic solution promoted the development of outwardly-rectifying currents that were inactivated at high positive potentials and reversed in a Cl--dependent manner (50 mV per decade pipette Cl- concentration). Replacement of external Cl- by iodide and aspartate affected the reversal potential (Erev) and slope conductance of the volume-sensitive current. Relative permeabilities calculated from changes in Erev were 1.49 ± 0.09, 1.00, and 0.29 ± 0.04 for iodide, Cl-, and aspartate, respectively; relative slope conductances between Erev and Erev + 40 mV were 1.21 ± 0.09, 1.00, and 0.43 ± 0.07, respectively. Replacement of Cl- also affected the time dependence of the volume-sensitive current; replacement by iodide reversibly enhanced the decay of outward current at positive potentials, whereas replacement by aspartate reduced it. These results are compared with earlier findings on non-cardiac time- and voltage-dependent anion current activated by hyposmotic solution.Key words: hyposmotic solution, Cl- current, iodide, aspartate, permeability, conductance.
Collapse
|
40
|
Szabò I, Negro A, Downey PM, Zoratti M, Lo Schiavo F, Giacometti GM. Temperature-dependent functional expression of a plant K(+) channel in mammalian cells. Biochem Biophys Res Commun 2000; 274:130-5. [PMID: 10903907 DOI: 10.1006/bbrc.2000.3095] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Arabidopsis thaliana potassium channel KAT1 was expressed and characterized in Chinese hamster ovary cells. KAT1-GFP fusion protein was successfully targeted to the plasma membrane and electrophysiological analysis revealed functional expression of KAT1 only in cells cultured at 30 degrees C. The main biophysical characteristics of KAT1 are similar to those described for the channel expressed in other systems. CHO cells represent an advantageous expression system and may be the system of choice to study the expression, assembly, function, and regulation of plant potassium channels in general.
Collapse
Affiliation(s)
- I Szabò
- Department of Biology, CRIBI, CNR Unit for Biomembranes, University of Padua, Via G. Colombo 3, Padua, 35121, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Anion transport proteins in mammalian cells participate in a wide variety of cell and intracellular organelle functions, including regulation of electrical activity, pH, volume, and the transport of osmolites and metabolites, and may even play a role in the control of immunological responses, cell migration, cell proliferation, and differentiation. Although significant progress over the past decade has been achieved in understanding electrogenic and electroneutral anion transport proteins in sarcolemmal and intracellular membranes, information on the molecular nature and physiological significance of many of these proteins, especially in the heart, is incomplete. Functional and molecular studies presently suggest that four primary types of sarcolemmal anion channels are expressed in cardiac cells: channels regulated by protein kinase A (PKA), protein kinase C, and purinergic receptors (I(Cl.PKA)); channels regulated by changes in cell volume (I(Cl.vol)); channels activated by intracellular Ca(2+) (I(Cl.Ca)); and inwardly rectifying anion channels (I(Cl.ir)). In most animal species, I(Cl.PKA) is due to expression of a cardiac isoform of the epithelial cystic fibrosis transmembrane conductance regulator Cl(-) channel. New molecular candidates responsible for I(Cl.vol), I(Cl.Ca), and I(Cl.ir) (ClC-3, CLCA1, and ClC-2, respectively) have recently been identified and are presently being evaluated. Two isoforms of the band 3 anion exchange protein, originally characterized in erythrocytes, are responsible for Cl(-)/HCO(3)(-) exchange, and at least two members of a large vertebrate family of electroneutral cotransporters (ENCC1 and ENCC3) are responsible for Na(+)-dependent Cl(-) cotransport in heart. A 223-amino acid protein in the outer mitochondrial membrane of most eukaryotic cells comprises a voltage-dependent anion channel. The molecular entities responsible for other types of electroneutral anion exchange or Cl(-) conductances in intracellular membranes of the sarcoplasmic reticulum or nucleus are unknown. Evidence of cardiac expression of up to five additional members of the ClC gene family suggest a rich new variety of molecular candidates that may underlie existing or novel Cl(-) channel subtypes in sarcolemmal and intracellular membranes. The application of modern molecular biological and genetic approaches to the study of anion transport proteins during the next decade holds exciting promise for eventually revealing the actual physiological, pathophysiological, and clinical significance of these unique transport processes in cardiac and other mammalian cells.
Collapse
Affiliation(s)
- J R Hume
- Department of Physiology, University of Nevada School of Medicine, Reno, Nevada, USA.
| | | | | | | | | |
Collapse
|
42
|
Voets T, Droogmans G, Raskin G, Eggermont J, Nilius B. Reduced intracellular ionic strength as the initial trigger for activation of endothelial volume-regulated anion channels. Proc Natl Acad Sci U S A 1999; 96:5298-303. [PMID: 10220460 PMCID: PMC21858 DOI: 10.1073/pnas.96.9.5298] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most mammalian cell types, including endothelial cells, respond to cell swelling by activating a Cl- current termed ICl,swell, but it is not known how the physical stimulus of cell swelling is transferred to the channels underlying ICl,swell. We have investigated the precise relation between cell volume and ICl,swell in endothelial cells by performing whole-cell current recordings while continuously monitoring cell thickness (Tc) as a measure for cell volume. The time course of Tc was accurately predicted by a theoretical model that describes volume changes of patch-clamped cells in response to changes in the extracellular osmolality (OSMo). This model also predicts significant changes in intracellular ionic strength (Gammai) when OSMo is altered. Under all experimental conditions ICl,swell closely followed the changes in Gammai, whereas ICl,swell and cell volume were often found to change independently. These results do not support the hypothesis that Gammai regulates the volume set point for activation of ICl,swell. Instead, they are in complete agreement with a model in which a decrease of Gammai rather than an increase in cell volume is the initial trigger for activation of ICl,swell.
Collapse
Affiliation(s)
- T Voets
- Department of Physiology, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
43
|
Nilius B, Voets T, Prenen J, Barth H, Aktories K, Kaibuchi K, Droogmans G, Eggermont J. Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. J Physiol 1999; 516 ( Pt 1):67-74. [PMID: 10066923 PMCID: PMC2269225 DOI: 10.1111/j.1469-7793.1999.067aa.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. We have studied the modulation of volume-regulated anion channels (VRACs) by the small GTPase Rho and by one of its targets, Rho kinase, in calf pulmonary artery endothelial (CPAE) cells. 2. RT-PCR and immunoblot analysis showed that both RhoA and Rho kinase are expressed in CPAE cells. 3. ICl,swell, the chloride current through VRACs, was activated by challenging CPAE cells with a 25 % hypotonic extracellular solution (HTS) or by intracellular perfusion with a pipette solution containing 100 microM GTPgammaS. 4. Pretreatment of CPAE cells with the Clostridium C2IN-C3 fusion toxin, which inactivates Rho by ADP ribosylation, significantly impaired the activation of ICl,swell in response to the HTS. The current density at +100 mV was 49 +/- 13 pA pF-1 (n = 17) in pretreated cells compared with 172 +/- 17 pA pF-1 (n = 21) in control cells. 5. The volume-independent activation of ICl,swell by intracellular perfusion with GTPgammaS was also impaired in C2IN-C3-pretreated cells (31 +/- 7 pA pF-1, n = 11) compared with non-treated cells (132 +/- 21 pA pF-1, n = 15). 6. Activation of ICl,swell was pertussis toxin (PTX) insensitive. 7. Y-27632, a blocker of Rho kinase, inhibited ICl,swell and delayed its activation. 8. Inhibition of Rho and of Rho kinase by the above-described treatments did not affect the extent of cell swelling in response to HTS. 9. These experiments provide strong evidence that the Rho-Rho kinase pathway is involved in the VRAC activation cascade.
Collapse
Affiliation(s)
- B Nilius
- Katholieke Universiteit Leuven, Laboratorium voor Fysiologie, Campus Gasthuisberg, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Doroshenko P. High intracellular chloride delays the activation of the volume-sensitive chloride conductance in mouse L-fibroblasts. J Physiol 1999; 514 ( Pt 2):437-46. [PMID: 9852325 PMCID: PMC2269082 DOI: 10.1111/j.1469-7793.1999.437ae.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. The relationship between cell volume and volume-sensitive Cl- conductance during hyposmotic cell swelling of patched cells and the effects of intracellular chloride on the conductance have been studied in mouse L-fibroblasts. To this end, swelling-activated current and cell volume were measured simultaneously in cells dialysed with low-Cl- (16 mM) or high-Cl- (130 mM) solutions using the whole-cell patch-clamp technique and videomicroscopy. 2. The increase in cell volume of patched cells and the volume-sensitive conductance saturated during a 4-5 min exposure to mildly hyposmotic solutions (15-20 % less than isosmotic). The swelling of patched cells varied considerably and was greater than the swelling of intact cells. No correlation between the maximal values of the volume-sensitive conductance and the maximal volumes of swollen cells was evident for cells dialysed with the low-Cl- solutions. 3. The amplitude of the volume-sensitive conductance decreased with a reduction in either extracellular or intracellular Cl- concentration; the size of the maximal conductance was not modulated by intracellular Cl- ions. 4. The activation of the volume-sensitive conductance was slower in high-Cl- cells than in low-Cl- cells whether it was induced by hypotonic cell swelling or by cell inflation; in low-Cl- cells the conductance saturated before the cell volume had reached its maximal value. 5. It is concluded that in patched cells an increase in cell volume triggers activation of the volume-sensitive Cl- conductance but does not determine its amplitude and that the rate of activation of the conductance is affected by the intracellular Cl- concentration.
Collapse
Affiliation(s)
- P Doroshenko
- Loeb Research Institute, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
45
|
Chen L, Wang L, Jacob TJ. Association of intrinsic pICln with volume-activated Cl- current and volume regulation in a native epithelial cell. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C182-92. [PMID: 9886934 DOI: 10.1152/ajpcell.1999.276.1.c182] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the relationship between pICln, the volume-activated Cl- current, and volume regulation in native bovine nonpigmented ciliary epithelial (NPCE) cells. Immunofluorescence studies demonstrated the presence of pICln protein in the NPCE cells. Exposure to hypotonic solution activated a Cl- current and induced regulatory volume decrease (RVD) in freshly isolated bovine NPCE cells. Three antisense oligonucleotides complementary to human pICln mRNA were used in the experiments. The antisense oligonucleotides were taken up by the cells in a dose-dependent manner. The antisense oligonucleotides, designed to be complementary to the initiation codon region of the human pICln mRNA, "knocked down" the pICln protein immunofluorescence, delayed the activation of volume-activated Cl- current, diminished the value of the current, and reduced the ability of the cells to volume regulate. We conclude that pICln is involved in the activation pathway of the volume-activated Cl- current and RVD following hypotonic swelling.
Collapse
Affiliation(s)
- L Chen
- School of Biosciences, Cardiff University, Cardiff CF1 3US, United Kingdom
| | | | | |
Collapse
|
46
|
Abstract
Pharmacology of CFTR Chloride Channel Activity. Physiol. Rev. 79, Suppl.: S109-S144, 1999. - The pharmacology of cystic fibrosis transmembrane conductance regulator (CFTR) is at an early stage of development. Here we attempt to review the status of those compounds that modulate the Cl- channel activity of CFTR. Three classes of compounds, the sulfonylureas, the disulfonic stilbenes, and the arylaminobenzoates, have been shown to directly interact with CFTR to cause channel blockade. Kinetic analysis has revealed the sulfonylureas and arylaminobenzoates interact with the open state of CFTR to cause blockade. Suggestive evidence indicates the disulfonic stilbenes act by a similar mechanism but only from the intracellular side of CFTR. Site-directed mutagenesis studies indicate the involvement of specific amino acid residues in the proposed transmembrane segment 6 for disulfonic stilbene blockade and segments 6 and 12 for arylaminobenzoate blockade. Unfortunately, these compounds (sulfonylureas, disulfonic stilbenes, arylaminobenzoate) also act at a number of other cellular sites that can indirectly alter the activity of CFTR or the transepithelial secretion of Cl-. The nonspecificity of these compounds has complicated the interpretation of results from cellular-based experiments. Compounds that increase the activity of CFTR include the alkylxanthines, phosphodiesterase inhibitors, phosphatase inhibitors, isoflavones and flavones, benzimidazolones, and psoralens. Channel activation can arise from the stimulation of the cAMP signal transduction cascade, the inhibition of inactivating enzymes (phosphodiesterases, phosphatases), as well as the direct binding to CFTR. However, in contrast to the compounds that block CFTR, a detailed understanding of how the above compounds increase the activity of CFTR has not yet emerged.
Collapse
Affiliation(s)
- B D Schultz
- University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | |
Collapse
|
47
|
Schmid A, Blum R, Krause E. Characterization of cell volume-sensitive chloride currents in freshly prepared and cultured pancreatic acinar cells from early postnatal rats. J Physiol 1998; 513 ( Pt 2):453-65. [PMID: 9806995 PMCID: PMC2231287 DOI: 10.1111/j.1469-7793.1998.453bb.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. In freshly prepared and cultured exocrine pancreatic acinar cells from 5- to 7-day-old rats a chloride-selective membrane conductance could be activated by intracellular application of GTPgammaS (40-100 microM), by application of positive pressure (5 cmH2O) to the pipette interior or by challenging the cells with a hyposmolar bath solution. Hyperosmolar bath solutions inhibited the cell volume-sensitive chloride currents. 2. The anion permeability sequence of the cell volume-sensitive chloride conductance was I- > Cl- approximately Br- > F- > methanesulphonate- > glutamate-. I- had a higher permeability but lower conductance than Cl-. The permeability ratio for Pglutamate/PCl was 0.12. 3. The cell volume-sensitive chloride conductance showed outward rectification. Membrane depolarization to high positive voltages (>= +60 mV) caused a time-dependent decay in outward currents. 4. DIDS (4, 4'-diisothiocyanatostilbene-2,2'-disulphonic acid) and SITS (4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid) reversibly inhibited the cell volume-sensitive chloride current in a voltage-dependent manner. NPPB (5-nitro-2-(3-phenylpropylamino)-benzoic acid), quinidine, quinine and tamoxifen caused voltage-independent current inhibition. 5. Combined fura-2 and whole-cell current measurements showed that activation of the cell volume-sensitive chloride current does not involve cytosolic Ca2+ signals. Furthermore, there is no evidence that Ca2+-activated chloride currents play a significant role in cultured pancreatic acinar cells from 5- to 7-day-old rats. 6. Polymerase chain reaction followed by DNA sequence analysis indicated the presence of mRNA homologous to the ClC-3 chloride channel in pancreatic tissue from 5-day-old rats.
Collapse
Affiliation(s)
- A Schmid
- 2. Physiologisches Institut, Universitat des Saarlandes, D-66421 Homburg/Saar,
| | | | | |
Collapse
|
48
|
Altamirano J, Brodwick MS, Alvarez-Leefmans FJ. Regulatory volume decrease and intracellular Ca2+ in murine neuroblastoma cells studied with fluorescent probes. J Gen Physiol 1998; 112:145-60. [PMID: 9689024 PMCID: PMC2525742 DOI: 10.1085/jgp.112.2.145] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1997] [Accepted: 05/05/1998] [Indexed: 11/26/2022] Open
Abstract
The possible role of Ca2+ as a second messenger mediating regulatory volume decrease (RVD) in osmotically swollen cells was investigated in murine neural cell lines (N1E-115 and NG108-15) by means of novel microspectrofluorimetric techniques that allow simultaneous measurement of changes in cell water volume and [Ca2+]i in single cells loaded with fura-2. [Ca2+]i was measured ratiometrically, whereas the volume change was determined at the intracellular isosbestic wavelength (358 nm). Independent volume measurements were done using calcein, a fluorescent probe insensitive to intracellular ions. When challenged with approximately 40% hyposmotic solutions, the cells expanded osmometrically and then underwent RVD. Concomitant with the volume response, there was a transient increase in [Ca2+]i, whose onset preceded RVD. For hyposmotic solutions (up to approximately -40%), [Ca2+]i increased steeply with the reciprocal of the external osmotic pressure and with the cell volume. Chelation of external and internal Ca2+, with EGTA and 1,2-bis-(o -aminophenoxy) ethane-N,N,N ',N '-tetraacetic acid (BAPTA), respectively, attenuated but did not prevent RVD. This Ca2+-independent RVD proceeded even when there was a concomitant decrease in [Ca2+]i below resting levels. Similar results were obtained in cells loaded with calcein. For cells not treated with BAPTA, restoration of external Ca2+ during the relaxation of RVD elicited by Ca2+-free hyposmotic solutions produced an increase in [Ca2+]i without affecting the rate or extent of the responses. RVD and the increase in [Ca2+]i were blocked or attenuated upon the second of two approximately 40% hyposmotic challenges applied at an interval of 30-60 min. The inactivation persisted in Ca2+-free solutions. Hence, our simultaneous measurements of intracellular Ca2+ and volume in single neuroblastoma cells directly demonstrate that an increase in intracellular Ca2+ is not necessary for triggering RVD or its inactivation. The attenuation of RVD after Ca2+ chelation could occur through secondary effects or could indicate that Ca2+ is required for optimal RVD responses.
Collapse
Affiliation(s)
- J Altamirano
- Departamento de Neurobiología, Instituto Mexicano de Psiquiatría, México 14370, D.F. México
| | | | | |
Collapse
|
49
|
Chen C, Houchi H, Tamaki T, Nakaya Y. Effects of cytosolic ATP and other nucleotides on Ca2+-activated K+ channels in cultured bovine adrenal chromaffin cells. Eur J Pharmacol 1998; 350:293-9. [PMID: 9696420 DOI: 10.1016/s0014-2999(98)00239-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effects of cytosolic ATP on Ca2+-dependent K+ (K(Ca)) channel activation in cultured bovine adrenal chromaffin cells were investigated by using single-channel recording patch-clamp techniques. Application of ATP to the intracellular surface of excised inside-out patches activated K(Ca) channels in a dose-dependent manner at 30 microM to 10 mM. The K(Ca) channels also were activated by 3 mM of adenosine 5'-O-(3'-thiotriphosphate) (ATPgammaS), a non-hydrolyzable analogue of ATP, but not by 5'-adenylylimidodiphosphate (AMP-PNP) (from 300 microM to 3 mM). Furthermore, other nucleotides also activated K(Ca) channels in inside-out patches. This modulation took place without addition of exogenous protein kinase and was dependent on the presence of Mg2+ in the bathing solution. Staurosporine, a non-specific kinase inhibitor, or H-89 (N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide), a cAMP-dependent protein kinase inhibitor, was unable to alter ATP-mediated K(Ca) channel activation. Following complete removal of Mg2+, a higher concentration of ATP (10 mM) and other nucleotides was required to activate K(Ca) channels; however, Mg2+ was ineffective in altering the activation of K(Ca) channels by itself. It is concluded that intracellular ATP and other nucleotides activate K(Ca) channels directly. These nucleotides may regulate catecholamine release by changing the cell membrane potential in adrenal chromaffin cells.
Collapse
Affiliation(s)
- C Chen
- Department of Nutrition, School of Medicine, University of Tokushima, Japan
| | | | | | | |
Collapse
|
50
|
Sachs F, Morris CE. Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol 1998; 132:1-77. [PMID: 9558913 DOI: 10.1007/bfb0004985] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- F Sachs
- Biophysical Sciences, State University of New York, Buffalo 14214, USA
| | | |
Collapse
|