1
|
Mehdinejadiani S, Goudarzi N, Masjedi F, Govahi A, Mirani M, Mehdinejadiani K, Azad N. Clinical Applications of Assisted Oocyte Activation in Couples with Various Reproductive Problems: A Systematic Review. Reprod Sci 2024; 31:2916-2942. [PMID: 39168919 DOI: 10.1007/s43032-024-01671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
ICSI may face fertilization failure, prompting the use of assisted oocyte activation (AOA) techniques. While AOA is implemented in infertility clinics, its target patients and definitive application remain uncertain. This systematic review adheres to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to assess reproductive outcomes in ICSI-AOA cycles compared to conventional ICSI and evaluate AOA effectiveness in various infertility disorders. A literature search encompassed PubMed, Web of Science, EMBASE, and Scopus databases until December 2023 for relevant English studies. Included studies compared ICSI-AOA with conventional ICSI in couples with prior fertilization failure, utilizing diverse AOA methods. Control groups consisted of sibling oocytes, previous cycles of the same couples, or couples undergoing conventional ICSI. Evaluated outcomes included fertilization, cleavage, embryo quality, implantation, pregnancy, and live birth rates. Article screening and data extraction were performed by two authors, with risk of bias assessed by another investigator. Out of 3088 initially identified articles, 30 studies were included, focusing on fertilization failure (n = 10), female infertility (n = 3), PLCζ defects (n = 4), poor sperm quality (n = 4), Globozoospermia (n = 4), and surgically retrieved sperm (n = 8). Most studies concluded that AOA could overcome fertilization failure, but success rates varied based on sperm-related or oocyte-related factors in ICSI-AOA cycles. Due to differences in patient inclusion criteria and sample sizes, most studies were not sufficiently similar for pooled analysis, limiting robust conclusions. There is insufficient evidence, particularly from randomized controlled trials (RCTs), to determine the efficacy or safety of ICSI-AOA as a treatment strategy. Registration number is PROSPERO, CRD42024551221.
Collapse
Affiliation(s)
- Shayesteh Mehdinejadiani
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Goudarzi
- Department of Anatomical Sciences, Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirani
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kobra Mehdinejadiani
- Department of Microbiology, Immunology and Infectious Diseases, Calgary Univercity, Calgary, Canada
| | - Nahid Azad
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Mostafa Khomeini Blvd, Semnan, Iran.
| |
Collapse
|
2
|
Chen W, Motsinger MM, Li J, Bohannon KP, Hanson PI. Ca 2+ -sensor ALG-2 engages ESCRTs to enhance lysosomal membrane resilience to osmotic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578682. [PMID: 38352356 PMCID: PMC10862787 DOI: 10.1101/2024.02.04.578682] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Lysosomes are central players in cellular catabolism, signaling, and metabolic regulation. Cellular and environmental stresses that damage lysosomal membranes can compromise their function and release toxic content into the cytoplasm. Here, we examine how cells respond to osmotic stress within lysosomes. Using sensitive assays of lysosomal leakage and rupture, we examine acute effects of the cathepsin C-metabolized osmotic disruptant glycyl-L-phenylalanine 2-naphthylamide (GPN). Our findings reveal that widely used concentrations of GPN rupture only a small fraction of lysosomes, but surprisingly trigger Ca 2+ release from nearly all. Chelating cytoplasmic Ca 2+ using BAPTA makes lysosomes more likely to rupture under GPN-induced stress, suggesting that Ca 2+ plays a role in protecting or rapidly repairing lysosomal membranes. Mechanistically, we establish that GPN causes the Ca 2+ -sensitive protein Apoptosis Linked Gene-2 (ALG-2) and interacting ESCRT proteins to redistribute onto lysosomes, improving their resistance to membrane stress created by GPN as well as the lysosomotropic drug chlorpromazine. Furthermore, we show that activating the cation channel TRPML1, with or without blocking the endoplasmic reticulum Ca 2+ pump, creates local Ca 2+ signals that protect lysosomes from rupture by recruiting ALG-2 and ESCRTs without any membrane damage. These findings reveal that Ca 2+ , through ALG-2, helps bring ESCRTs to lysosomes to enhance their resilience and maintain organelle integrity in the face of osmotic stress. SIGNIFICANCE As the degradative hub of the cell, lysosomes are full of toxic content that can spill into the cytoplasm. There has been much recent interest in how cells sense and repair lysosomal membrane damage using ESCRTs and cholesterol to rapidly fix "nanoscale damage". Here, we extend understanding of how ESCRTs contribute by uncovering a preventative role of the ESCRT machinery. We show that ESCRTs, when recruited by the Ca 2+ -sensor ALG-2, play a critical role in stabilizing the lysosomal membrane against osmotically-induced rupture. This finding suggests that cells have mechanisms not just for repairing but also for actively protecting lysosomes from stress-induced membrane damage.
Collapse
|
3
|
Ames S, Adams K, Geisen ME, Stirling DP. Ca 2+-induced myelin pathology precedes axonal spheroid formation and is mediated in part by store-operated Ca 2+ entry after spinal cord injury. Neural Regen Res 2023; 18:2720-2726. [PMID: 37449636 DOI: 10.4103/1673-5374.373656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The formation of axonal spheroid is a common feature following spinal cord injury. To further understand the source of Ca2+ that mediates axonal spheroid formation, we used our previously characterized ex vivo mouse spinal cord model that allows precise perturbation of extracellular Ca2+. We performed two-photon excitation imaging of spinal cords isolated from Thy1YFP+ transgenic mice and applied the lipophilic dye, Nile red, to record dynamic changes in dorsal column axons and their myelin sheaths respectively. We selectively released Ca2+ from internal stores using the Ca2+ ionophore ionomycin in the presence or absence of external Ca2+. We reported that ionomycin dose-dependently induces pathological changes in myelin and pronounced axonal spheroid formation in the presence of normal 2 mM Ca2+ artificial cerebrospinal fluid. In contrast, removal of external Ca2+ significantly decreased ionomycin-induced myelin and axonal spheroid formation at 2 hours but not at 1 hour after treatment. Using mice that express a neuron-specific Ca2+ indicator in spinal cord axons, we confirmed that ionomycin induced significant increases in intra-axonal Ca2+, but not in the absence of external Ca2+. Periaxonal swelling and the resultant disruption in the axo-myelinic interface often precedes and is negatively correlated with axonal spheroid formation. Pretreatment with YM58483 (500 nM), a well-established blocker of store-operated Ca2+ entry, significantly decreased myelin injury and axonal spheroid formation. Collectively, these data reveal that ionomycin-induced depletion of internal Ca2+ stores and subsequent external Ca2+ entry through store-operated Ca2+ entry contributes to pathological changes in myelin and axonal spheroid formation, providing new targets to protect central myelinated fibers.
Collapse
Affiliation(s)
- Spencer Ames
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Kia Adams
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Mariah E Geisen
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery; Anatomical Sciences and Neurobiology; Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
4
|
Shin S, Gombedza FC, Awuah Boadi E, Yiu AJ, Roy SK, Bandyopadhyay BC. Reduction of TRPC1/TRPC3 mediated Ca 2+-signaling protects oxidative stress-induced COPD. Cell Signal 2023; 107:110681. [PMID: 37062436 PMCID: PMC10542863 DOI: 10.1016/j.cellsig.2023.110681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Oxidative stress is a predisposing factor in Chronic Obstructive Pulmonary Disease (COPD). Specifically, pulmonary epithelial (PE) cells reduce antioxidant capacity during COPD because of the continuous production of reactive oxygen species (ROS). However, the molecular pathogenesis that governs such ROS activity is unclear. Here we show that the dysregulation of intracellular calcium concentration ([Ca2+]i) in PE cells from COPD patients, compared to the healthy PE cells, is associated with the robust functional expressions of Transient Receptor Potential Canonical (TRPC)1 and TRPC3 channels, and Ca2+ entry (SOCE) components, Stromal Interaction Molecule 1 (STIM1) and ORAI1 channels. Additionally, the elevated expression levels of fibrotic, inflammatory, oxidative, and apoptotic markers in cells from COPD patients suggest detrimental pathway activation, thereby reducing the ability of lung remodeling. To further delineate the mechanism, we used human lung epithelial cell line, A549, since the behavior of SOCE and the expression patterns of TRPC1/C3, STIM1, and ORAI1 were much like PE cells. Notably, the knockdown of TRPC1/C3 in A549 cells substantially reduced the SOCE-induced [Ca2+]i rise, and reversed the ROS-mediated oxidative, fibrotic, inflammatory, and apoptotic responses, thus confirming the role of TRPC1/C3 in SOCE driven COPD-like condition. Higher TRPC1/C3, STIM1, and ORAI1 expressions, along with a greater Ca2+ entry, via SOCE in ROS-induced A549 cells, led to the rise in oxidative, fibrotic, inflammatory, and apoptotic gene expression, specifically through the extracellular signal-regulated kinase (ERK) pathway. Abatement of TRPC1 and/or TRPC3 reduced the mobilization of [Ca2+]i and reversed apoptotic gene expression and ERK activation, signifying the involvement of TRPC1/C3. Together these data suggest that TRPC1/C3 and SOCE facilitate the COPD condition through ROS-mediated cell death, thus implicating their likely roles as potential therapeutic targets for COPD. SUMMARY: Alterations in Ca2+ signaling modalities in normal pulmonary epithelial cells exhibit COPD through oxidative stress and cellular injury, compromising repair, which was alleviated through inhibition of store-operated calcium entry. SUBJECT AREA: Calcium, ROS, Cellular signaling, lung disease.
Collapse
Affiliation(s)
- Samuel Shin
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Farai C Gombedza
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Eugenia Awuah Boadi
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Allen J Yiu
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Sanjit K Roy
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America
| | - Bidhan C Bandyopadhyay
- From Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, United States of America.
| |
Collapse
|
5
|
Uzieliene I, Bironaite D, Miksiunas R, Bagdonas E, Vaiciuleviciute R, Mobasheri A, Bernotiene E. The Effect of CaV1.2 Inhibitor Nifedipine on Chondrogenic Differentiation of Human Bone Marrow or Menstrual Blood-Derived Mesenchymal Stem Cells and Chondrocytes. Int J Mol Sci 2023; 24:ijms24076730. [PMID: 37047701 PMCID: PMC10095444 DOI: 10.3390/ijms24076730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Cartilage is an avascular tissue and sensitive to mechanical trauma and/or age-related degenerative processes leading to the development of osteoarthritis (OA). Therefore, it is important to investigate the mesenchymal cell-based chondrogenic regenerating mechanisms and possible their regulation. The aim of this study was to investigate the role of intracellular calcium (iCa2+) and its regulation through voltage-operated calcium channels (VOCC) on chondrogenic differentiation of mesenchymal stem/stromal cells derived from human bone marrow (BMMSCs) and menstrual blood (MenSCs) in comparison to OA chondrocytes. The level of iCa2+ was highest in chondrocytes, whereas iCa2+ store capacity was biggest in MenSCs and they proliferated better as compared to other cells. The level of CaV1.2 channels was also highest in OA chondrocytes than in other cells. CaV1.2 antagonist nifedipine slightly suppressed iCa2+, Cav1.2 and the proliferation of all cells and affected iCa2+ stores, particularly in BMMSCs. The expression of the CaV1.2 gene during 21 days of chondrogenic differentiation was highest in MenSCs, showing the weakest chondrogenic differentiation, which was stimulated by the nifedipine. The best chondrogenic differentiation potential showed BMMSCs (SOX9 and COL2A1 expression); however, purposeful iCa2+ and VOCC regulation by blockers can stimulate a chondrogenic response at least in MenSCs.
Collapse
Affiliation(s)
- Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Rokas Miksiunas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, B-4000 Liège, Belgium
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| |
Collapse
|
6
|
Genovese M, Buccirossi M, Guidone D, De Cegli R, Sarnataro S, di Bernardo D, Galietta LJV. Analysis of inhibitors of the anoctamin-1 chloride channel (transmembrane member 16A, TMEM16A) reveals indirect mechanisms involving alterations in calcium signalling. Br J Pharmacol 2023; 180:775-785. [PMID: 36444690 DOI: 10.1111/bph.15995] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological inhibitors of TMEM16A (ANO1), a Ca2+ -activated Cl- channel, are important tools of research and possible therapeutic agents acting on smooth muscle, airway epithelia and cancer cells. We tested a panel of TMEM16A inhibitors, including CaCCinh -A01, niclosamide, MONNA, Ani9 and niflumic acid, to evaluate their possible effect on intracellular Ca2+ . EXPERIMENTAL APPROACH We recorded cytosolic Ca2+ increase elicited with UTP, ionomycin or IP3 uncaging. KEY RESULTS Unexpectedly, we found that all compounds, except for Ani9, markedly decreased intracellular Ca2+ elevation induced by stimuli acting on intracellular Ca2+ stores. These effects were similarly observed in cells with and without TMEM16A expression. We investigated in more detail the mechanism of action of niclosamide and CaCCinh -A01. Acute addition of niclosamide directly increased intracellular Ca2+ , an activity consistent with inhibition of the SERCA pump. In contrast to niclosamide, CaCCinh -A01 did not elevate intracellular Ca2+ , thus implying a different mechanism of action, possibly a block of inositol triphosphate receptors. CONCLUSIONS AND IMPLICATIONS Most TMEM16A inhibitors are endowed with indirect effects mediated by alteration of intracellular Ca2+ handling, which may in part preclude their use as TMEM16A research tools.
Collapse
Affiliation(s)
- Michele Genovese
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Daniela Guidone
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Sergio Sarnataro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Translational Medical Sciences (DISMET), University of Naples "Federico II", Naples, Italy
| |
Collapse
|
7
|
Sabat M, Raveglia LF, Aldegheri L, Barilli A, Bianchi F, Brault L, Brodbeck D, Feriani A, Lingard I, Miura J, Myers R, Piccoli L, Tassini S, Tyhonas J, Ton-Nu T, Wang H, Virginio C. The discovery of (1R, 3R)-1-(3-chloro-5-fluorophenyl)-3-(hydroxymethyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonitrile, a potent and selective agonist of human transient receptor potential cation channel subfamily m member 5 (TRPM5) and evaluation of as a potential gastrointestinal prokinetic agent. Bioorg Med Chem 2022; 76:117084. [PMID: 36402081 DOI: 10.1016/j.bmc.2022.117084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
This publication details the discovery of a series of selective transient receptor potential cation channel subfamily M member 5 (TRPM5) agonists culminating with the identification of the lead compound (1R, 3R)-1-(3-chloro-5-fluorophenyl)-3-(hydroxymethyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonitrile (39). We describe herein our biological rationale for agonism of the target, the examination of the then current literature tool molecules, and finally the process of our discovery starting with a high throughput screening hit through lead development. We also detail the selectivity of the lead compound 39 versus related family members TRPA1, TRPV1, TRPV4, TRPM4 and TRPM8, the drug metabolism and pharmacokinetics (DMPK) profile and in vivo efficacy in a mouse model of gastrointestinal motility.
Collapse
Affiliation(s)
- M Sabat
- Turning Point Therapeutics, 10628 Science Center Drive, Suite 200, San Diego, CA 92121, United States.
| | - L F Raveglia
- Aptuit (Verona) Srl, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - L Aldegheri
- Aptuit (Verona) Srl, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - A Barilli
- Aptuit (Verona) Srl, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy.
| | - F Bianchi
- Aptuit (Verona) Srl, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - L Brault
- Aptuit (Verona) Srl, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - D Brodbeck
- Aptuit (Verona) Srl, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - A Feriani
- Aptuit (Verona) Srl, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - I Lingard
- Aptuit (Verona) Srl, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - J Miura
- Takeda California, 9625 Towne Centre Dr, San Diego, CA 92121, United States
| | - R Myers
- Takeda California, 9625 Towne Centre Dr, San Diego, CA 92121, United States
| | - L Piccoli
- Aptuit (Verona) Srl, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - S Tassini
- Aptuit (Verona) Srl, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - J Tyhonas
- Kinnate Biopharma Inc, 3611 Valley Centre Drive, Suite 175, San Diego, CA 92130, United States
| | - T Ton-Nu
- Takeda California, 9625 Towne Centre Dr, San Diego, CA 92121, United States
| | - H Wang
- Takeda California, 9625 Towne Centre Dr, San Diego, CA 92121, United States
| | - C Virginio
- Aptuit (Verona) Srl, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| |
Collapse
|
8
|
Gao R, Li X, Gao H, Zhao K, Liu X, Liu J, Wang Q, Zhu Y, Chen H, Xiang S, Zhan Y, Yin R, Yu M, Ning H, Yang X, Li C. Protein phosphatase 2A catalytic subunit β suppresses PMA/ionomycin-induced T-cell activation by negatively regulating PI3K/Akt signaling. FEBS J 2022; 289:4518-4535. [PMID: 35068054 DOI: 10.1111/febs.16370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
The precise regulation of the T-cell activation process is critical for overall immune homeostasis. Although protein phosphatase 2A (PP2A) is required for T-cell development and function, the role of PPP2CB, which is the catalytic subunit β isoform of PP2A, remains unknown. In the present study, using a T cell-specific knockout mouse of PPP2CB (PPP2CBfl/fl Lck-Cre+ ), we demonstrated that PPP2CB was dispensable for T-cell development in the thymus and peripheral lymphoid organs. Furthermore, PPP2CB deletion did not affect T-cell receptor (TCR)-induced T-cell activation or cytokine-induced T-cell responses; however, it specifically enhanced phorbol myristate acetate (PMA) plus ionomycin-induced T-cell activation with increased cellular proliferation, elevated CD69 and CD25 expression, and enhanced cytokine production (inteferon-γ, interleukin-2 and tumor necrosis factor). Mechanistic analyses suggested that the PPP2CB deletion enhanced activation of the phosphoinositide 3-kinase/Akt signaling pathway and Ca2+ flux following stimulation with PMA plus ionomycin. Moreover, the specific PI3K inhibitor rescued the augmented cell activation in PPP2CB-deficient T cells. Using mass spectrometry-based phospho-peptide analysis, we identified potential substrates of PPP2CB during PMA plus ionomycin-induced T-cell activation. Collectively, our study provides evidence of the specific role of PPP2CB in controlling PMA plus ionomycin-induced T-cell activation.
Collapse
Affiliation(s)
- Rui Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Xin Li
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Ke Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Jinfang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Qi Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yaxin Zhu
- School of Life Sciences, Hebei University, Baoding, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Shensi Xiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Yiqun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Hongmei Ning
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, China
| |
Collapse
|
9
|
Sanchez-Trincado JL, Pelaez-Prestel HF, Lafuente EM, Reche PA. Human Oral Epithelial Cells Suppress T Cell Function via Prostaglandin E2 Secretion. Front Immunol 2022; 12:740613. [PMID: 35126344 PMCID: PMC8807503 DOI: 10.3389/fimmu.2021.740613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The oral mucosa is constantly exposed to a plethora of stimuli including food antigens, commensal microbiota and pathogens, requiring distinct immune responses. We previously reported that human oral epithelial cells (OECs) suppress immune responses to bacteria, using H413 and TR146 OEC lines and primary OECs in co-culture with dendritic cells (DCs) and T cells (OEC-conditioned cells). OECs reduced DCs expression of CD80/CD86 and IL-12/TNFα release and impaired T cell activation. Here, we further evaluated the immunosuppression by these OECs and investigated the underlying mechanisms. OEC-conditioned DCs did not induce CD4 T cell polarization towards Treg, judging by the absence of FoxP3 expression. OECs also repressed T-bet/IFNγ expression in CD4 and CD8 T cells activated by DCs or anti-CD3/CD28 antibodies. This inhibition depended on OEC:T cell ratio and IFNγ repression occurred at the transcriptional level. Time-lapse experiments showed that OECs inhibited early steps of T cell activation, consistent with OECs inability to suppress T cells stimulated with PMA/ionomycin. Blocking CD40/CD40L, CD58/CD2 and PD-L1/PD-1 interactions with specific antibodies did not disrupt T cell suppression by OECs. However, preventing prostaglandin E2 (PGE2) synthesis or blocking PGE2 binding to the cognate EP2/EP4 receptors, restored IFNγ and TNFα production in OEC-conditioned T cells. Finally, treating OECs with poly(I:C), which simulates viral infections, limited T cell suppression. Overall, these results point to an inherent ability of OECs to suppress immune responses, which can nonetheless be eluded when OECs are under direct assault.
Collapse
|
10
|
Kashir J, Ganesh D, Jones C, Coward K. OUP accepted manuscript. Hum Reprod Open 2022; 2022:hoac003. [PMID: 35261925 PMCID: PMC8894871 DOI: 10.1093/hropen/hoac003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Oocyte activation deficiency (OAD) is attributed to the majority of cases underlying failure of ICSI cycles, the standard treatment for male factor infertility. Oocyte activation encompasses a series of concerted events, triggered by sperm-specific phospholipase C zeta (PLCζ), which elicits increases in free cytoplasmic calcium (Ca2+) in spatially and temporally specific oscillations. Defects in this specific pattern of Ca2+ release are directly attributable to most cases of OAD. Ca2+ release can be clinically mediated via assisted oocyte activation (AOA), a combination of mechanical, electrical and/or chemical stimuli which artificially promote an increase in the levels of intra-cytoplasmic Ca2+. However, concerns regarding safety and efficacy underlie potential risks that must be addressed before such methods can be safely widely used. OBJECTIVE AND RATIONALE Recent advances in current AOA techniques warrant a review of the safety and efficacy of these practices, to determine the extent to which AOA may be implemented in the clinic. Importantly, the primary challenges to obtaining data on the safety and efficacy of AOA must be determined. Such questions require urgent attention before widespread clinical utilization of such protocols can be advocated. SEARCH METHODS A literature review was performed using databases including PubMed, Web of Science, Medline, etc. using AOA, OAD, calcium ionophores, ICSI, PLCζ, oocyte activation, failed fertilization and fertilization failure as keywords. Relevant articles published until June 2019 were analysed and included in the review, with an emphasis on studies assessing large-scale efficacy and safety. OUTCOMES Contradictory studies on the safety and efficacy of AOA do not yet allow for the establishment of AOA as standard practice in the clinic. Heterogeneity in study methodology, inconsistent sample inclusion criteria, non-standardized outcome assessments, restricted sample size and animal model limitations render AOA strictly experimental. The main scientific concern impeding AOA utilization in the clinic is the non-physiological method of Ca2+ release mediated by most AOA agents, coupled with a lack of holistic understanding regarding the physiological mechanism(s) underlying Ca2+ release at oocyte activation. LIMITATIONS, REASONS FOR CAUTION The number of studies with clinical relevance using AOA remains significantly low. A much wider range of studies examining outcomes using multiple AOA agents are required. WIDER IMPLICATIONS In addition to addressing the five main challenges of studies assessing AOA safety and efficacy, more standardized, large-scale, multi-centre studies of AOA, as well as long-term follow-up studies of children born from AOA, would provide evidence for establishing AOA as a treatment for infertility. The delivery of an activating agent that can more accurately recapitulate physiological fertilization, such as recombinant PLCζ, is a promising prospect for the future of AOA. Further to PLCζ, many other avenues of physiological oocyte activation also require urgent investigation to assess other potential physiological avenues of AOA. STUDY FUNDING/COMPETING INTERESTS D.G. was supported by Stanford University’s Bing Overseas Study Program. J.K. was supported by a Healthcare Research Fellowship Award (HF-14-16) made by Health and Care Research Wales (HCRW), alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST). The authors have no competing interests to declare.
Collapse
Affiliation(s)
| | | | - Celine Jones
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Oxford, UK
| | - Kevin Coward
- Correspondence address. Nuffield Department of Women’s & Reproductive Health, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Oxford, OS3 9DU, UK. E-mail: https://orcid.org/0000-0003-3577-4041
| |
Collapse
|
11
|
Krones D, Rühling M, Becker KA, Kunz TC, Sehl C, Paprotka K, Gulbins E, Fraunholz M. Staphylococcus aureus α-Toxin Induces Acid Sphingomyelinase Release From a Human Endothelial Cell Line. Front Microbiol 2021; 12:694489. [PMID: 34394034 PMCID: PMC8358437 DOI: 10.3389/fmicb.2021.694489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is well known to express a plethora of toxins of which the pore-forming hemolysin A (α-toxin) is the best-studied cytolysin. Pore-forming toxins (PFT) permeabilize host membranes during infection thereby causing concentration-dependent effects in host cell membranes ranging from disordered ion fluxes to cytolysis. Host cells possess defense mechanisms against PFT attack, resulting in endocytosis of the breached membrane area and delivery of repair vesicles to the insulted plasma membrane as well as a concurrent release of membrane repair enzymes. Since PFTs from several pathogens have been shown to recruit membrane repair components, we here investigated whether staphylococcal α-toxin is able to induce these mechanisms in endothelial cells. We show that S. aureus α-toxin induced increase in cytosolic Ca2+ in endothelial cells, which was accompanied by p38 MAPK phosphorylation. Toxin challenge led to increased endocytosis of an extracellular fluid phase marker as well as increased externalization of LAMP1-positive membranes suggesting that peripheral lysosomes are recruited to the insulted plasma membrane. We further observed that thereby the lysosomal protein acid sphingomyelinase (ASM) was released into the cell culture medium. Thus, our results show that staphylococcal α-toxin triggers mechanisms in endothelial cells, which have been implicated in membrane repair after damage of other cell types by different toxins.
Collapse
Affiliation(s)
- David Krones
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Marcel Rühling
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katrin Anne Becker
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Tobias C Kunz
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Carolin Sehl
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Kerstin Paprotka
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Martin Fraunholz
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Huang W, Ke Y, Zhu J, Liu S, Cong J, Ye H, Guo Y, Wang K, Zhang Z, Meng W, Gao TM, Luhmann HJ, Kilb W, Chen R. TRESK channel contributes to depolarization-induced shunting inhibition and modulates epileptic seizures. Cell Rep 2021; 36:109404. [PMID: 34289346 DOI: 10.1016/j.celrep.2021.109404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022] Open
Abstract
Glutamatergic and GABAergic synaptic transmission controls excitation and inhibition of postsynaptic neurons, whereas activity of ion channels modulates neuronal intrinsic excitability. However, it is unclear how excessive neuronal excitation affects intrinsic inhibition to regain homeostatic stability under physiological or pathophysiological conditions. Here, we report that a seizure-like sustained depolarization can induce short-term inhibition of hippocampal CA3 neurons via a mechanism of membrane shunting. This depolarization-induced shunting inhibition (DShI) mediates a non-synaptic, but neuronal intrinsic, short-term plasticity that is able to suppress action potential generation and postsynaptic responses by activated ionotropic receptors. We demonstrate that the TRESK channel significantly contributes to DShI. Disruption of DShI by genetic knockout of TRESK exacerbates the sensitivity and severity of epileptic seizures of mice, whereas overexpression of TRESK attenuates seizures. In summary, these results uncover a type of homeostatic intrinsic plasticity and its underlying mechanism. TRESK might represent a therapeutic target for antiepileptic drugs.
Collapse
Affiliation(s)
- Weiyuan Huang
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Ke
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianping Zhu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuai Liu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin Cong
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hailin Ye
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kewan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Center for Precision Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tian-Ming Gao
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Collaborative Innovation Center for Brain Science, Southern Medical University, Guangzhou 510515, China
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz 55120, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz 55120, Germany.
| | - Rongqing Chen
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
13
|
Pavinato L, Nematian-Ardestani E, Zonta A, De Rubeis S, Buxbaum J, Mancini C, Bruselles A, Tartaglia M, Pessia M, Tucker SJ, D’Adamo MC, Brusco A. KCNK18 Biallelic Variants Associated with Intellectual Disability and Neurodevelopmental Disorders Alter TRESK Channel Activity. Int J Mol Sci 2021; 22:ijms22116064. [PMID: 34199759 PMCID: PMC8200030 DOI: 10.3390/ijms22116064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
The TWIK-related spinal cord potassium channel (TRESK) is encoded by KCNK18, and variants in this gene have previously been associated with susceptibility to familial migraine with aura (MIM #613656). A single amino acid substitution in the same protein, p.Trp101Arg, has also been associated with intellectual disability (ID), opening the possibility that variants in this gene might be involved in different disorders. Here, we report the identification of KCNK18 biallelic missense variants (p.Tyr163Asp and p.Ser252Leu) in a family characterized by three siblings affected by mild-to-moderate ID, autism spectrum disorder (ASD) and other neurodevelopment-related features. Functional characterization of the variants alone or in combination showed impaired channel activity. Interestingly, Ser252 is an important regulatory site of TRESK, suggesting that alteration of this residue could lead to additive downstream effects. The functional relevance of these mutations and the observed co-segregation in all the affected members of the family expand the clinical variability associated with altered TRESK function and provide further insight into the relationship between altered function of this ion channel and human disease.
Collapse
Affiliation(s)
- Lisa Pavinato
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
- Center for Molecular Medicine Cologne, Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Ehsan Nematian-Ardestani
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD-2080 Msida, Malta; (E.N.-A.); (M.P.)
| | - Andrea Zonta
- Unit of Medical Genetics, “Città della Salute e della Scienza” University Hospital, 10126 Turin, Italy;
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.D.R.); (J.B.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.D.R.); (J.B.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cecilia Mancini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (C.M.); (M.T.)
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (C.M.); (M.T.)
| | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD-2080 Msida, Malta; (E.N.-A.); (M.P.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 4BH, UK;
| | - Maria Cristina D’Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD-2080 Msida, Malta; (E.N.-A.); (M.P.)
- Correspondence: (M.C.D.); (A.B.)
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
- Unit of Medical Genetics, “Città della Salute e della Scienza” University Hospital, 10126 Turin, Italy;
- Correspondence: (M.C.D.); (A.B.)
| |
Collapse
|
14
|
Zhang F, Hu W, Qu L, Cang C. Sphingosine kinase 2 inhibitor ABC294640 suppresses neuronal excitability and inhibits multiple endogenously and exogenously expressed voltage-gated ion channels in cultured cells. Channels (Austin) 2020; 14:216-230. [PMID: 32615066 PMCID: PMC7515484 DOI: 10.1080/19336950.2020.1788364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sphingolipids regulate multiple cellular processes, including proliferation, autophagy, and apoptosis. Sphingosine kinases, the key enzymes in the metabolism of sphingolipids, are overexpressed in many cancers, making them important targets for the development of antitumor drugs. ABC294640 is a selective sphingosine kinase 2 (SK2) inhibitor that shows good antitumor activity in vitro. One phase I clinical study of ABC294640 reported that ABC294640 caused a variety of neurological disorders. The mechanism of these phenomena, however, remains unclear. In the present study, we used in vitro cell experiments to test the effects of ABC294640 on the nervous system. We found that ABC294640 suppressed the firing of action potentials in cultured hippocampal neurons from neonatal mice and inhibited endogenous sodium, potassium, and calcium currents in both cultured neurons and SH-SY5Y cells. In addition, we tested four types of human voltage-gated potassium channels transiently expressed in HEK293T cells. All were inhibited by ABC294640, of which KV4.2 and KV1.4 were more sensitive than BK and K2P2.1. The effect of ABC294640 on ion channels was different from another SK2 inhibitor K145 and was not affected by S1P. The fast onset and recovery of the inhibition indicated that ABC294640 was likely to inhibit ion channels by acting directly on channel proteins, rather than by inhibiting SK2. These results revealed the mechanism by which ABC294640 interferes with the nervous system. To develop future antitumor drugs, researchers should modify the structure of ABC294640 to avoid its effects on ion channels or should develop compounds that target SK2 or downstream molecules.
Collapse
Affiliation(s)
- Fei Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui, China
| | - Wenqi Hu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui, China
| | - Lili Qu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui, China
| | - Chunlei Cang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui, China
| |
Collapse
|
15
|
Imbrici P, Nematian-Ardestani E, Hasan S, Pessia M, Tucker SJ, D'Adamo MC. Altered functional properties of a missense variant in the TRESK K + channel (KCNK18) associated with migraine and intellectual disability. Pflugers Arch 2020; 472:923-930. [PMID: 32394190 DOI: 10.1007/s00424-020-02382-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
Abstract
Mutations in the KCNK18 gene that encodes the TRESK K2P potassium channel have previously been linked with typical familial migraine with aura. Recently, an atypical clinical case has been reported in which a male individual carrying the p.Trp101Arg (W101R) missense mutation in the KCNK18 gene was diagnosed with intellectual disability and migraine with brainstem aura. Here we report the functional characterization of this new missense variant. This mutation is located in a highly conserved residue close to the selectivity filter, and our results show although these mutant channels retain their K+ selectivity and calcineurin-dependent regulation, the variant causes an overall dramatic loss of TRESK channel function as well as an initial dominant-negative effect when co-expressed with wild-type channels in Xenopus laevis oocytes. The dramatic functional consequences of this mutation thereby support a potentially pathogenic role for this variant and provide further insight into the relationship between the structure and function of this ion channel.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Ehsan Nematian-Ardestani
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD, Msida, 2080, Malta
| | - Sonia Hasan
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mauro Pessia
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD, Msida, 2080, Malta.,Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Maria Cristina D'Adamo
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD, Msida, 2080, Malta.
| |
Collapse
|
16
|
Ponce A, Ogazon del Toro A, Jimenez L, Eligio‐Garcia L, Jimenez‐Cardoso E. Injection of mRNA isolated from trophozoites of Giardia intestinalis induces expression of three types of chloride currents in Xenopus laevis oocytes. Physiol Rep 2019; 7:e14029. [PMID: 31187589 PMCID: PMC6560338 DOI: 10.14814/phy2.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 11/24/2022] Open
Abstract
Giardia lamblia is one of the most important worldwide causes of intestinal infections, yet little is known about its cellular physiology, especially the diversity of ionic channels that this parasite expresses. In this work, we show that injection of mRNA isolated from trophozoites of Giardia, into Xenopus laevis oocytes, induces expression of three types of chloride currents (here referred to as ICl-G1, ICl-G2, and ICl-G3), which have different biophysical and pharmacological properties. ICl-G1 currents show inward rectification and voltage dependence are enhanced by hypotonicity, show a selectivity sequence of (I > Br > Cl > F), and are inhibited by NPPB, DIDS, SITS, 9AC, DPC, and Zinc. These findings suggest that ICl-G1 is the result of expression of chloride channels related to ClC2. ICl-G2 currents show outward rectification and are dependent of intracellular calcium, its selectivity sequence is (Cl > Br > I > F) and are inhibited by NPPB, DIDS, SITS, 9AC, DPC, niflumic acid, tannic acid, and benzbromarone. These findings suggest that they are produced by calcium dependent chloride channels (CaCC). The third type of currents (ICl-G3) appears only after a hypoosmotic challenge, and has similar properties to those described for ICl-swell, such as outward rectification, instant activation, and slow inactivation at large depolarizing voltages. They were blocked by NPPB, DIDS, 9AC, NIf, DCPIB, and tamoxifen. Our results indicate that Giardia intestinalis has at least three types of anion conductances.
Collapse
Affiliation(s)
- Arturo Ponce
- Department of PhysiologyBiophysics and Neurosciences. Center for Research and Advanced StudiesMexico CityMexico
| | - Alejandro Ogazon del Toro
- Department of PhysiologyBiophysics and Neurosciences. Center for Research and Advanced StudiesMexico CityMexico
| | - Lidia Jimenez
- Department of PhysiologyBiophysics and Neurosciences. Center for Research and Advanced StudiesMexico CityMexico
| | - Leticia Eligio‐Garcia
- Parasitology Research LaboratoryChildren Hospital of México “Federico Gomez”Mexico CityMéxico
| | - Enedina Jimenez‐Cardoso
- Parasitology Research LaboratoryChildren Hospital of México “Federico Gomez”Mexico CityMéxico
| |
Collapse
|
17
|
Chatterjee B, Lin MH, Chen CC, Peng KL, Wu MS, Tseng MC, Chen YJ, Shen CKJ. DNA Demethylation by DNMT3A and DNMT3B in vitro and of Methylated Episomal DNA in Transiently Transfected Cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:1048-1061. [PMID: 30300721 DOI: 10.1016/j.bbagrm.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/03/2018] [Accepted: 09/25/2018] [Indexed: 12/24/2022]
Abstract
The DNA methylation program in vertebrates is an essential part of the epigenetic regulatory cascade of development, cell differentiation, and progression of diseases including cancer. While the DNA methyltransferases (DNMTs) are responsible for the in vivo conversion of cytosine (C) to methylated cytosine (5mC), demethylation of 5mC on cellular DNA could be accomplished by the combined action of the ten-eleven translocation (TET) enzymes and DNA repair. Surprisingly, the mammalian DNMTs also possess active DNA demethylation activity in vitro in a Ca2+- and redox conditions-dependent manner, although little is known about its molecular mechanisms and occurrence in a cellular context. In this study, we have used LC-MS/MS to track down the fate of the methyl group removed from 5mC on DNA by mouse DNMT3B in vitro and found that it becomes covalently linked to the DNA methylation catalytic cysteine of the enzyme. We also show that Ca2+ homeostasis-dependent but TET1/TET2/TET3/TDG-independent demethylation of methylated episomal DNA by mouse DNMT3A or DNMT3B can occur in transfected human HEK 293 and mouse embryonic stem (ES) cells. Based on these results, we present a tentative working model of Ca2+ and redox conditions-dependent active DNA demethylation by DNMTs. Our study substantiates the potential roles of the vertebrate DNMTs as double-edged swords in DNA methylation-demethylation during Ca2+-dependent physiological processes.
Collapse
Affiliation(s)
| | - Miao-Hsia Lin
- Institute of Chemistry, Academia Sinica, Taipei City 115, Taiwan
| | - Chun-Chang Chen
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan
| | - Kai-Lin Peng
- Genomics Research Center, Academia Sinica, Taipei City 115, Taiwan
| | - Mu-Sheng Wu
- Genomics Research Center, Academia Sinica, Taipei City 115, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei City 112, Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei City 115, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei City 115, Taiwan.
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan.
| |
Collapse
|
18
|
Huang PH, Chan CY, Li P, Wang Y, Nama N, Bachman H, Huang TJ. A sharp-edge-based acoustofluidic chemical signal generator. LAB ON A CHIP 2018; 18:1411-1421. [PMID: 29668002 PMCID: PMC6064650 DOI: 10.1039/c8lc00193f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Resolving the temporal dynamics of cell signaling pathways is essential for regulating numerous downstream functions, from gene expression to cellular responses. Mapping these signaling pathways requires the exposure of cells to time-varying chemical signals; these are difficult to generate and control over a wide temporal range. Herein, we present an acoustofluidic chemical signal generator based on a sharp-edge-based micromixing strategy. The device, simply by modulating the driving signals of an acoustic transducer including the ON/OFF switching frequency, actuation time and duty cycle, is capable of generating both single-pulse and periodic chemical signals that are temporally controllable in terms of stimulation period, stimulation duration and duty cycle. We also demonstrate the device's applicability and versatility for cell signaling studies by probing the calcium (Ca2+) release dynamics of three different types of cells stimulated by ionomycin signals of different shapes. Upon short single-pulse ionomycin stimulation (∼100 ms) generated by our device, we discover that cells tend to dynamically adjust the intracellular level of Ca2+ through constantly releasing and accepting Ca2+ to the cytoplasm and from the extracellular environment, respectively. With advantages such as simple fabrication and operation, compact device design, and reliability and versatility, our device will enable decoding of the temporal characteristics of signaling dynamics for various physiological processes.
Collapse
Affiliation(s)
- Po-Hsun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Lu Y, Bonte D, Ferrer-Buitrago M, Popovic M, Neupane J, Van der Jeught M, Leybaert L, De Sutter P, Heindryckx B. Culture conditions affect Ca2+ release in artificially activated mouse and human oocytes. Reprod Fertil Dev 2018; 30:991-1001. [DOI: 10.1071/rd17145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/17/2017] [Indexed: 11/23/2022] Open
Abstract
Inconsistent fertilisation and pregnancy rates have been reported by different laboratories after application of ionomycin as a clinical method of assisted oocyte activation (AOA) to overcome fertilisation failure. Using both mouse and human oocytes, in the present study we investigated the effects of ionomycin and Ca2+ concentrations on the pattern of Ca2+ release and embryonic developmental potential. In the mouse, application of 5 μM ionomycin in potassium simplex optimisation medium (KSOM) or 10 µM ionomycin in Ca2+-free KSOM significantly reduced the Ca2+ flux and resulted in failure of blastocyst formation compared with 10 μM ionomycin in KSOM. Increasing the Ca2+ concentration up to three- or sixfold did not benefit mouse embryonic developmental potential. Similarly, 10 μM ionomycin-induced rise in Ca2+ in human oocytes increased with increasing total calcium concentrations in the commercial medium. Remarkably, we observed significantly reduced mouse embryo development when performing AOA over a period of 10 min in Quinn’s AdvantageTM Fertilisation medium (Cooper Surgical) and IVFTM medium (Vitrolife) compared with Sydney IVF COOK cleavage medium (Cook Ireland), using the same sequential culture system from the post-activation stage to blastocyst formation stage in different AOA groups. In conclusion, concentrations of both ionomycin and Ca2+ in culture media used during AOA can have significant effects on Ca2+ release and further embryonic developmental potential.
Collapse
|
20
|
Yan Q, Yang C, Fu Q, Chen Z, Liu S, Fu D, Rahman RN, Nakazato R, Yoshioka K, Kung SKP, Ding G, Wang H. Scaffold protein JLP mediates TCR-initiated CD4 +T cell activation and CD154 expression. Mol Immunol 2017; 87:258-266. [PMID: 28521278 DOI: 10.1016/j.molimm.2017.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/27/2017] [Accepted: 05/06/2017] [Indexed: 11/16/2022]
Abstract
CD4+ T-cell activation and its subsequent induction of CD154 (CD40 ligand, CD40L) expression are pivotal in shaping both the humoral and cellular immune responses. Scaffold protein JLP regulates signal transduction pathways and molecular trafficking inside cells, thus represents a critical component in maintaining cellular functions. Its role in regulating CD4+ T-cell activation and CD154 expression, however, is unclear. Here, we demonstrated expression of JLP in mouse tissues of lymph nodes, thymus, spleen, and also CD4+ T cells. Using CD4+ T cells from jlp-deficient and jlp-wild-type mice, we demonstrated that JLP-deficiency impaired T-cell proliferation, IL-2 production, and CD154 induction upon TCR stimulations, but had no impacts on the expression of other surface molecules such as CD25, CD69, and TCR. These observed impaired T-cell functions in the jlp-/- CD4+ T cells were associated with defective NF-AT activation and Ca2+ influx, but not the MAPK, NF-κB, as well as AP-1 signaling pathways. Our findings indicated that, for the first time, JLP plays a critical role in regulating CD4+ T cells response to TCR stimulation partly by mediating the activation of TCR-initiated Ca2+/NF-AT.
Collapse
Affiliation(s)
- Qi Yan
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Cheng Yang
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Qiang Fu
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Zhaowei Chen
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Shan Liu
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Dou Fu
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Rahmat N Rahman
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Canada
| | - Ryota Nakazato
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Katsuji Yoshioka
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Sam K P Kung
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Canada
| | - Guohua Ding
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China.
| | - Huiming Wang
- Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
Marques-Carvalho MJ, Oppermann J, Muñoz E, Fernandes AS, Gabant G, Cadene M, Heinemann SH, Schönherr R, Morais-Cabral JH. Molecular Insights into the Mechanism of Calmodulin Inhibition of the EAG1 Potassium Channel. Structure 2016; 24:1742-1754. [PMID: 27618660 DOI: 10.1016/j.str.2016.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 12/26/2022]
Abstract
The human EAG1 potassium channel belongs to the superfamily of KCNH voltage-gated potassium channels that have roles in cardiac repolarization and neuronal excitability. EAG1 is strongly inhibited by Ca2+/calmodulin (CaM) through a mechanism that is not understood. We determined the binding properties of CaM with each one of three previously identified binding sites (BDN, BDC1, and BDC2), analyzed binding to protein stretches that include more than one site, and determined the effect of neighboring globular domains on the binding properties. The determination of the crystal structure of CaM bound to BDC2 shows the channel fragment interacting with only the C lobe of calmodulin and adopting an unusual bent conformation. Based on this structure and on a functional and biochemical analysis of mutants, we propose a model for the mechanism of inhibition whereby the local conformational change induced by CaM binding at BDC2 lies at the basis of channel modulation.
Collapse
Affiliation(s)
- Maria João Marques-Carvalho
- Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Johannes Oppermann
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, 07745 Jena, Germany
| | - Eva Muñoz
- Software 4 Science Developments, 15782 Santiago de Compostela, Spain
| | - Andreia S Fernandes
- Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Guillaume Gabant
- Centre de Biophysique Moléculaire, CNRS UPR430, 45071 Orléans, France
| | - Martine Cadene
- Centre de Biophysique Moléculaire, CNRS UPR430, 45071 Orléans, France
| | - Stefan H Heinemann
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, 07745 Jena, Germany
| | - Roland Schönherr
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, 07745 Jena, Germany
| | - João Henrique Morais-Cabral
- Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
22
|
Nikiforaki D, Vanden Meerschaut F, de Roo C, Lu Y, Ferrer-Buitrago M, de Sutter P, Heindryckx B. Effect of two assisted oocyte activation protocols used to overcome fertilization failure on the activation potential and calcium releasing pattern. Fertil Steril 2016; 105:798-806.e2. [DOI: 10.1016/j.fertnstert.2015.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/21/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022]
|
23
|
Figueroa JAL, Vignesh KS, Deepe GS, Caruso J. Selectivity and specificity of small molecule fluorescent dyes/probes used for the detection of Zn2+ and Ca2+ in cells. Metallomics 2014; 6:301-15. [PMID: 24356796 DOI: 10.1039/c3mt00283g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fluorescent dyes are widely used in the detection of labile (free or exchangeable) Zn(2+) and Ca(2+) in living cells. However, their specificity over other cations and selectivity for detection of labile vs. protein-bound metal in cells remains unclear. We characterized these important properties for commonly used Zn(2+) and Ca(2+) dyes in a cellular environment. By tracing the fluorescence emission signal along with UV-Vis and size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS) in tandem, we demonstrated that among the dyes used for Zn(2+), Zinpyr-1 fluoresces in the low molecular mass (LMM) region containing labile Zn(2+), but also fluoresces in different molecular mass regions where zinc ion is detected. However, FluoZin™-3 AM, Newport Green™ DCF and Zinquin ethyl ester display weak fluorescence, lack of metal specificity and respond strongly in the high molecular mass (HMM) region. Four Ca(2+) dyes were studied in an unperturbed cellular environment, and two of these were tested for binding behavior under an intracellular Ca(2+) release stimulus. A majority of Ca(2+) was in the labile form as tested by SEC-ICP-MS, but the fluorescence from Calcium Green-1™ AM, Oregon Green® 488 BAPTA-1, Fura red™ AM and Fluo-4 NW dyes in cells did not correspond to free Ca(2+) detection. Instead, the dyes showed non-specific fluorescence in the mid- and high-molecular mass regions containing Zn, Fe and Cu. Proteomic analysis of one of the commonly seen fluorescing regions showed the possibility for some dyes to recognize Zn and Cu bound to metallothionein 2. These studies indicate that Zn(2+) and Ca(2+) binding dyes manifest fluorescence responses that are not unique to recognition of labile metals and bind other metals, leading to suboptimal specificity and selectivity.
Collapse
Affiliation(s)
- Julio A Landero Figueroa
- Metallomics Research Center, Department of Chemistry, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | | | | | | |
Collapse
|
24
|
Czirják G, Enyedi P. The LQLP calcineurin docking site is a major determinant of the calcium-dependent activation of human TRESK background K+ channel. J Biol Chem 2014; 289:29506-18. [PMID: 25202008 DOI: 10.1074/jbc.m114.577684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium-dependent activation of human TRESK (TWIK-related spinal cord K(+) channel, K2P18.1) depends on direct targeting of calcineurin to the PQIIIS motif. In the present study we demonstrate that TRESK also contains another functionally relevant docking site for the phosphatase, the LQLP amino acid sequence. Combined mutations of the PQIIIS and LQLP motifs were required to eliminate the calcium-dependent regulation of the channel. In contrast to the alanine substitutions of PQIIIS, the mutation of LQLP to AQAP alone did not significantly change the amplitude of TRESK activation evoked by the substantial elevation of cytoplasmic calcium concentration. However, the AQAP mutation slowed down the response to high calcium. In addition, modest elevation of [Ca(2+)], which effectively regulated the wild type channel, failed to activate TRESK-AQAP. This indicates that the AQAP mutation diminished the sensitivity of TRESK to calcium. Even if PQIIIS was replaced by the PVIVIT sequence of high calcineurin binding affinity, the effect of the AQAP mutation was clearly detected in this TRESK-PVIVIT context. Substitution of the LQLP region with the corresponding fragment of NFAT transcription factor, perfectly matching the previously described LXVP calcineurin-binding consensus sequence, increased the calcium-sensitivity of TRESK-PVIVIT. Thus the enhancement of the affinity of TRESK for calcineurin by the incorporation of PVIVIT could not compensate for or prevent the effects of LQLP sequence modifications, suggesting that the two calcineurin-binding regions play distinct roles in the regulation. Our results indicate that the LQLP site is a fundamental determinant of the calcium-sensitivity of human TRESK.
Collapse
Affiliation(s)
- Gábor Czirják
- From the Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Péter Enyedi
- From the Department of Physiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
Vanden Meerschaut F, Nikiforaki D, Heindryckx B, De Sutter P. Assisted oocyte activation following ICSI fertilization failure. Reprod Biomed Online 2014; 28:560-71. [PMID: 24656559 DOI: 10.1016/j.rbmo.2014.01.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 01/12/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
The capacity of intracytoplasmic sperm injection (ICSI) to permit almost any type of spermatozoa to fertilize oocytes has made it the most successful treatment for male factor infertility. Despite its high success rates, fertilization failure following ICSI still occurs in 1-3% of couples. Assisted oocyte activation (AOA) is being increasingly applied in human assisted reproduction to restore fertilization and pregnancy rates in couples with a history of ICSI fertilization failure. However, controversy still exists mainly because the artificial activating agents do not mimic precisely the initial physiological processes of mammalian oocyte activation, which has led to safety concerns. This review addresses the mechanism of human oocyte activation and the relatively rare phenomenon of fertilization failure after ICSI. Next, it describes the current diagnostic approaches and focuses on the application, efficiency and safety of AOA in human assisted reproduction.
Collapse
Affiliation(s)
- Frauke Vanden Meerschaut
- Department for Reproductive Medicine, University Hospital Ghent, De Pintelaan 185 - 1P4, 9000 Ghent, Belgium
| | - Dimitra Nikiforaki
- Department for Reproductive Medicine, University Hospital Ghent, De Pintelaan 185 - 1P4, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, University Hospital Ghent, De Pintelaan 185 - 1P4, 9000 Ghent, Belgium.
| | - Petra De Sutter
- Department for Reproductive Medicine, University Hospital Ghent, De Pintelaan 185 - 1P4, 9000 Ghent, Belgium
| |
Collapse
|
26
|
Ignatious Raja JS, Katanayeva N, Katanaev VL, Galizia CG. Role of Go/i subgroup of G proteins in olfactory signaling of Drosophila melanogaster. Eur J Neurosci 2014; 39:1245-55. [PMID: 24443946 PMCID: PMC4324130 DOI: 10.1111/ejn.12481] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 01/01/2023]
Abstract
Intracellular signaling in insect olfactory receptor neurons remains unclear, with both metabotropic and ionotropic components being discussed. Here, we investigated the role of heterotrimeric Go and Gi proteins using a combined behavioral, in vivo and in vitro approach. Specifically, we show that inhibiting Go in sensory neurons by pertussis toxin leads to behavioral deficits. We heterologously expressed the olfactory receptor dOr22a in human embryonic kidney cells (HEK293T). Stimulation with an odor led to calcium influx, which was amplified via calcium release from intracellular stores. Subsequent experiments indicated that the signaling was mediated by the Gβγ subunits of the heterotrimeric Go/i proteins. Finally, using in vivo calcium imaging, we show that Go and Gi contribute to odor responses both for the fast (phasic) as for the slow (tonic) response component. We propose a transduction cascade model involving several parallel processes, in which the metabotropic component is activated by Go and Gi, and uses Gβγ.
Collapse
|
27
|
Schott MB, Grove B. Receptor-mediated Ca2+ and PKC signaling triggers the loss of cortical PKA compartmentalization through the redistribution of gravin. Cell Signal 2013; 25:2125-35. [PMID: 23838009 DOI: 10.1016/j.cellsig.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
A-Kinase Anchoring Proteins (AKAPs) direct the flow of cellular information by positioning multiprotein signaling complexes into proximity with effector proteins. However, certain AKAPs are not stationary but can undergo spatiotemporal redistribution in response to stimuli. Gravin, a 300kD AKAP that intersects with a diverse signaling array, is localized to the plasma membrane but has been shown to translocate to the cytosol following the elevation of intracellular calcium ([Ca(2+)]i). Despite the potential for gravin redistribution to impact multiple signaling pathways, the dynamics of this event remain poorly understood. In this study, quantitative microscopy of cells expressing gravin-EGFP revealed that Ca(2+) elevation caused the complete translocation of gravin from the cell cortex to the cytosol in as little as 60s of treatment with ionomycin or thapsigargin. In addition, receptor mediated signaling was also shown to cause gravin redistribution following ATP treatment, and this event required both [Ca(2+)]i elevation and PKC activation. To understand the mechanism for Ca(2+) mediated gravin dynamics, deletion of calmodulin-binding domains revealed that a fourth putative calmodulin binding domain called CB4 (a.a. 670-694) is critical for targeting gravin to the cell cortex despite its location downstream of gravin's membrane-targeting domains, which include an N-terminal myristoylation site and three polybasic domains. Finally, confocal microscopy of cells co-transfected with gravin-EYFP and PKA RII-ECFP revealed that gravin redistribution mediated by ionomycin, thapsigargin, and ATP each triggered the gravin-dependent loss of PKA localized at the cell cortex. Our results support the hypothesis that gravin redistribution regulates cross-talk between PKA-dependent signaling and receptor-mediated events involving Ca(2+) and PKC.
Collapse
Affiliation(s)
- Micah B Schott
- Department of Basic Sciences, UND School of Medicine and Health Sciences, 501 N Columbia Rd., Grand Forks, ND 58202-9037, USA
| | | |
Collapse
|
28
|
Thornell IM, Wu J, Liu X, Bevensee MO. PIP2 hydrolysis stimulates the electrogenic Na+-bicarbonate cotransporter NBCe1-B and -C variants expressed in Xenopus laevis oocytes. J Physiol 2012; 590:5993-6011. [PMID: 22966160 DOI: 10.1113/jphysiol.2012.242479] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Electrogenic Na(+)-bicarbonate cotransporter NBCe1 variants contribute to pH(i) regulation, and promote ion reabsorption or secretion by many epithelia. Most Na(+)-coupled bicarbonate transporter (NCBT) families such as NBCe1 contain variants with differences primarily at the cytosolic N and/or C termini that are likely to impart on the transporters different modes of regulation. For example, N-terminal regions of NBCe1 autoregulate activity. Our group previously reported that cytosolic phosphatidylinositol 4,5-bisphosphate (PIP(2)) stimulates heterologously expressed rat NBCe1-A in inside-out macropatches excised from Xenopus laevis oocytes. In the current study on whole oocytes, we used the two-electrode voltage-clamp technique, as well as pH- and voltage-sensitive microelectrodes, to characterize the effect of injecting PIP(2) on the activity of heterologously expressed NBCe1-A, -B, or -C. Injecting PIP(2) (10 μM estimated final) into voltage-clamped oocytes stimulated NBC-mediated, HCO(3)(-)-induced outward currents by >100% for the B and C variants, but not for the A variant. The majority of this stimulation involved PIP(2) hydrolysis and endoplasmic reticulum (ER) Ca(2+) release. Stimulation by PIP(2) injection was mimicked by injecting IP(3), but inhibited by either applying the phospholipase C (PLC) inhibitor U73112 or depleting ER Ca(2+) with prolonged thapsigargin/EGTA treatment. Stimulating the activity of store-operated Ca(2+) channels (SOCCs) to trigger a Ca(2+) influx mimicked the PIP(2)/IP(3) stimulation of the B and C variants. Activating the endogenous G(q) protein-coupled receptor in oocytes with lysophosphatidic acid (LPA) also stimulated the B and C variants in a Ca(2+)-dependent manner, although via an increase in surface expression for the B variant. In simultaneous voltage-clamp and pH(i) studies on NBCe1-C-expressing oocytes, LPA increased the NBC-mediated pH(i)-recovery rate from a CO(2)-induced acid load by ∼80%. Finally, the general kinase inhibitor staurosporine completely inhibited the IP(3)-induced stimulation of NBCe1-C. In summary, injecting PIP(2) stimulates the activity of NBCe1-B and -C expressed in oocytes through an increase in IP(3)/Ca(2+) that involves a staurosporine-sensitive kinase. In conjunction with our previous macropatch findings, PIP(2) regulates NBCe1 through a dual pathway involving both a direct stimulatory effect of PIP(2) on at least NBCe1-A, as well as an indirect stimulatory effect of IP(3)/Ca(2+) on the B and C variants.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294-0005, USA
| | | | | | | |
Collapse
|
29
|
Yin P, Knolhoff AM, Rosenberg HJ, Millet LJ, Gillette MU, Sweedler JV. Peptidomic analyses of mouse astrocytic cell lines and rat primary cultured astrocytes. J Proteome Res 2012; 11:3965-73. [PMID: 22742998 DOI: 10.1021/pr201066t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes play an active role in the modulation of synaptic transmission by releasing cell-cell signaling molecules in response to various stimuli that evoke a Ca2+ increase. We expand on recent studies of astrocyte intracellular and secreted proteins by examining the astrocyte peptidome in mouse astrocytic cell lines and rat primary cultured astrocytes, as well as those peptides secreted from mouse astrocytic cell lines in response to Ca2+-dependent stimulations. We identified 57 peptides derived from 24 proteins with LC-MS/MS and CE-MS/MS in the astrocytes. Among the secreted peptides, four peptides derived from elongation factor 1, macrophage migration inhibitory factor, peroxiredoxin-5, and galectin-1 were putatively identified by mass-matching to peptides confirmed to be found in astrocytes. Other peptides in the secretion study were mass-matched to those found in prior peptidomics analyses on mouse brain tissue. Complex peptide profiles were observed after stimulation, suggesting that astrocytes are actively involved in peptide secretion. Twenty-six peptides were observed in multiple stimulation experiments but not in controls and thus appear to be released in a Ca2+-dependent manner. These results can be used in future investigations to better understand stimulus-dependent mechanisms of astrocyte peptide secretion.
Collapse
Affiliation(s)
- Ping Yin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | | | | | | | | |
Collapse
|
30
|
Vasilev F, Chun JT, Gragnaniello G, Garante E, Santella L. Effects of ionomycin on egg activation and early development in starfish. PLoS One 2012; 7:e39231. [PMID: 22723970 PMCID: PMC3377674 DOI: 10.1371/journal.pone.0039231] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/21/2012] [Indexed: 11/21/2022] Open
Abstract
Ionomycin is a Ca2+-selective ionophore that is widely used to increase intracellular Ca2+ levels in cell biology laboratories. It is also occasionally used to activate eggs in the clinics practicing in vitro fertilization. However, neither the precise molecular action of ionomycin nor its secondary effects on the eggs' structure and function is well known. In this communication we have studied the effects of ionomycin on starfish oocytes and zygotes. By use of confocal microscopy, calcium imaging, as well as light and transmission electron microscopy, we have demonstrated that immature oocytes exposed to ionomycin instantly increase intracellular Ca2+ levels and undergo structural changes in the cortex. Surprisingly, when microinjected into the cells, ionomycin produced no Ca2+ increase. The ionomycin-induced Ca2+ rise was followed by fast alteration of the actin cytoskeleton displaying conspicuous depolymerization at the oocyte surface and in microvilli with concomitant polymerization in the cytoplasm. In addition, cortical granules were disrupted or fused with white vesicles few minutes after the addition of ionomycin. These structural changes prevented cortical maturation of the eggs despite the normal progression of nuclear envelope breakdown. At fertilization, the ionomycin-pretreated eggs displayed reduced Ca2+ response, no elevation of the fertilization envelope, and the lack of orderly centripetal translocation of actin fibers. These alterations led to difficulties in cell cleavage in the monospermic zygotes and eventually to a higher rate of abnormal development. In conclusion, ionomycin has various deleterious impacts on egg activation and the subsequent embryonic development in starfish. Although direct comparison is difficult to make between our findings and the use of the ionophore in the in vitro fertilization clinics, our results call for more defining investigations on the issue of a potential risk in artificial egg activation.
Collapse
Affiliation(s)
- Filip Vasilev
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Jong T. Chun
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Giovanni Gragnaniello
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Ezio Garante
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Luigia Santella
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
- * E-mail:
| |
Collapse
|
31
|
Functional analysis of missense variants in the TRESK (KCNK18) K channel. Sci Rep 2012; 2:237. [PMID: 22355750 PMCID: PMC3266952 DOI: 10.1038/srep00237] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/23/2011] [Indexed: 01/13/2023] Open
Abstract
A loss of function mutation in the TRESK K2P potassium channel (KCNK18), has recently been linked with typical familial migraine with aura. We now report the functional characterisation of additional TRESK channel missense variants identified in unrelated patients. Several variants either had no apparent functional effect, or they caused a reduction in channel activity. However, the C110R variant was found to cause a complete loss of TRESK function, yet is present in both sporadic migraine and control cohorts, and no variation in KCNK18 copy number was found. Thus despite the previously identified association between loss of TRESK channel activity and migraine in a large multigenerational pedigree, this finding indicates that a single non-functional TRESK variant is not alone sufficient to cause typical migraine and highlights the genetic complexity of this disorder.
Collapse
|
32
|
Bertram S, Cherubino F, Bossi E, Castagna M, Peres A. GABA reverse transport by the neuronal cotransporter GAT1: influence of internal chloride depletion. Am J Physiol Cell Physiol 2011; 301:C1064-73. [PMID: 21775701 DOI: 10.1152/ajpcell.00120.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of intracellular ions on the reverse GABA transport by the neuronal transporter GAT1 was studied using voltage-clamp and [(3)H]GABA efflux determinations in Xenopus oocytes transfected with heterologous mRNA. Reverse transport was induced by intracellular GABA injections and measured in terms of the net outward current generated by the transporter. Changes in various intracellular ionic conditions affected the reverse current: higher concentrations of Na(+) enhanced the ratio of outward over inward transport current, while a considerable decrease of the outward current and a parallel reduction of the transporter-mediated GABA efflux were observed after treatments causing a diminution of the intracellular Cl(-) concentration. Particularly interesting was the impairment of the reverse transport observed after depletion of internal Cl(-) generated by the activity of a coexpressed K(+)-Cl(-) exporter KCC2. This finding suggests that reverse GABA transport may be physiologically regulated during early neuronal development, similarly to the functional alterations seen in GABA receptors caused by KCC2 activity.
Collapse
Affiliation(s)
- Simone Bertram
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Molecular Sciences, University of Insubria, Varese, Italy
| | | | | | | | | |
Collapse
|
33
|
Rispoli LA, Lawrence JL, Payton RR, Saxton AM, Schrock GE, Schrick FN, Middlebrooks BW, Dunlap JR, Parrish JJ, Edwards JL. Disparate consequences of heat stress exposure during meiotic maturation: embryo development after chemical activation vs fertilization of bovine oocytes. Reproduction 2011; 142:831-43. [PMID: 21994359 DOI: 10.1530/rep-11-0032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Consequences of heat stress exposure during the first 12 h of meiotic maturation differed depending on how and when bovine oocytes were activated. If heat-stressed oocytes underwent IVF at ~24 h, blastocyst development was less than for respective controls and similar to that obtained for nonheat-stressed oocytes undergoing IVF at 30 h (i.e. slightly aged). In contrast, if heat-stressed oocytes underwent chemical activation with ionomycin/6-dimethylaminopurine at 24 h, blastocyst development was not only higher than respective controls, but also equivalent to development obtained after activation of nonheat-stressed oocytes at 30 h. Developmental differences in chemically activated vs IVF-derived embryos were not related to fertilization failure or gross alterations in cytoskeletal components. Rather, ionomycin-induced calcium release and MAP kinase activity were less in heat-stressed oocytes. While underlying mechanisms are multifactorial, ability to obtain equivalent or higher development after parthenogenetic activation demonstrates that oocytes experiencing heat stress during the first 12 h of meiotic maturation have the necessary components to develop to the blastocyst stage, but fail to do so after fertilization.
Collapse
Affiliation(s)
- L A Rispoli
- Department of Animal Science, Institute of Agriculture, UT AgResearch, The University of Tennessee, Knoxville, Tennessee 37996-4574, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Szeto GL, Pomerantz JL, Graham DRM, Clements JE. Minocycline suppresses activation of nuclear factor of activated T cells 1 (NFAT1) in human CD4+ T cells. J Biol Chem 2011; 286:11275-82. [PMID: 21282105 DOI: 10.1074/jbc.m110.210518] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Minocycline is a tetracycline family antibiotic that has anti-inflammatory and immunomodulatory properties. These properties have shown promise in the treatment of conditions such as rheumatoid arthritis, Huntington disease, and multiple sclerosis. As lymphocyte activation is involved in the pathogenesis of many of these diseases, T cells are postulated to be a primary target in minocycline therapy. Previous studies have demonstrated attenuation of CD4(+) T cell activation by minocycline, but a specific mechanism has not been elucidated. In this study, we investigated the effect of minocycline on the activity of three key transcription factors regulating CD4(+) T cell activation: NF-κB, AP-1 (activator protein 1), and NFAT (nuclear factor of activated T) cells. Our data demonstrate that minocycline selectively impairs NFAT-mediated transcriptional activation, a result of increased phosphorylation and reduced nuclear translocation of the isoform NFAT1. Minocycline increased the activity of the NFAT kinase GSK3 and decreased intracellular Ca(2+) flux, both of which facilitate NFAT1 phosphorylation. These findings provide a novel mechanism for minocycline induced suppression of CD4(+) T cell activation and may better inform the application of minocycline as an immunomodulatory agent.
Collapse
Affiliation(s)
- Gregory L Szeto
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
35
|
Mezzalira JC, Ohlweiler LU, da Costa Gerger RP, Casali R, Vieira FK, Ambrósio CE, Miglino MA, Rodrigues JL, Mezzalira A, Bertolini M. Production of bovine hand-made cloned embryos by zygote-oocyte cytoplasmic hemi-complementation. Cell Reprogram 2011; 13:65-76. [PMID: 21241164 DOI: 10.1089/cell.2010.0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the effect of the cytoplast type and activation process on development of cloned embryos. Bovine oocytes (MII) or zygotes at the one-cell stage (IVF) were manually bisected and segregated in MII or IVF hemi-cytoplasts or hemi-karyoplasts. Adult skin cells from a bovine female were used as nucleus donors (SC). Experimental groups were composed of IVF embryos; parthenogenetic embryos; hand-made cloned (HMC) embryos; and reconstructed HMC embryos using IVF hemi-cytoplast + MII hemi-cytoplast + SC (G-I); IVF hemi-cytoplast + IVF hemi-cytoplast + SC (G-II); MII hemi-cytoplast + IVF hemi-karyoplast (G-III); and IVF hemi-cytoplast + IVF hemi-karyoplast (G-IV). Embryos from G-I to G-IV were allocated to subgroups as sperm-activated (SA) or were further chemically activated (SA + CA). Embryos from all groups and subgroups were in vitro cultured in the WOW system. Blastocyst development in subgroup G-I SA (28.2%) was similar to IVF (27.0%) and HMC (31.4%) controls, perhaps due to a to a more suitable activation process and/or better complementation of cytoplasmic reprogramming factors, with the other groups and subgroups having lower levels of development. No blastocyst development was observed when using IVF hemi-karyoplasts (G-III and G-IV), possibly due to the manipulation process during a sensitive biological period. In summary, the presence of cytoplasmic factors from MII hemi-oocytes and the sperm activation process from hemi-zygotes appear to be necessary for adequate in vitro development, as only the zygote-oocyte hemi-complementation was as efficient as controls for the generation of bovine cloned blastocysts.
Collapse
Affiliation(s)
- Joana Claudia Mezzalira
- Animal Reproduction Laboratory, Center of Agronomy and Veterinary Sciences (CAV), Santa Catarina State University (UDESC) , Santa Catarina, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJ, Goloubinoff P. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. THE PLANT CELL 2009; 21:2829-43. [PMID: 19773386 PMCID: PMC2768932 DOI: 10.1105/tpc.108.065318] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 08/28/2009] [Accepted: 09/02/2009] [Indexed: 05/17/2023]
Abstract
Land plants are prone to strong thermal variations and must therefore sense early moderate temperature increments to induce appropriate cellular defenses, such as molecular chaperones, in anticipation of upcoming noxious temperatures. To investigate how plants perceive mild changes in ambient temperature, we monitored in recombinant lines of the moss Physcomitrella patens the activation of a heat-inducible promoter, the integrity of a thermolabile enzyme, and the fluctuations of cytoplasmic calcium. Mild temperature increments, or isothermal treatments with membrane fluidizers or Hsp90 inhibitors, induced a heat shock response (HSR) that critically depended on a preceding Ca(2+) transient through the plasma membrane. Electrophysiological experiments revealed the presence of a Ca(2+)-permeable channel in the plasma membrane that is transiently activated by mild temperature increments or chemical perturbations of membrane fluidity. The amplitude of the Ca(2+) influx during the first minutes of a temperature stress modulated the intensity of the HSR, and Ca(2+) channel blockers prevented HSR and the onset of thermotolerance. Our data suggest that early sensing of mild temperature increments occurs at the plasma membrane of plant cells independently from cytosolic protein unfolding. The heat signal is translated into an effective HSR by way of a specific membrane-regulated Ca(2+) influx, leading to thermotolerance.
Collapse
Affiliation(s)
- Younousse Saidi
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH1015, Switzerland
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Andrija Finka
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH1015, Switzerland
| | - Maude Muriset
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH1015, Switzerland
| | - Zohar Bromberg
- Hadassah Hebrew University, School of Medicine, Hebrew University of Jerusalem, Jerusalem il-91120, Israel
| | - Yoram G. Weiss
- Hadassah Hebrew University, School of Medicine, Hebrew University of Jerusalem, Jerusalem il-91120, Israel
- University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104–2646
| | | | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH1015, Switzerland
| |
Collapse
|
37
|
Oh SJ, Park JH, Han S, Lee JK, Roh EJ, Lee CJ. Development of selective blockers for Ca²(+)-activated Cl channel using Xenopus laevis oocytes with an improved drug screening strategy. Mol Brain 2008; 1:14. [PMID: 18959787 PMCID: PMC2585076 DOI: 10.1186/1756-6606-1-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ca²(+)-activated Cl⁻ channels (CaCCs) participate in many important physiological processes. However, the lack of effective and selective blockers has hindered the study of these channels, mostly due to the lack of good assay system. Here, we have developed a reliable drug screening method for better blockers of CaCCs, using the endogeneous CaCCs in Xenopus laevis oocytes and two-electrode voltage-clamp (TEVC) technique. RESULTS Oocytes were prepared with a treatment of Ca²(+) ionophore, which was followed by a treatment of thapsigargin which depletes Ca²(+) stores to eliminate any contribution of Ca²(+) release. TEVC was performed with micropipette containing chelerythrine to prevent PKC dependent run-up or run-down. Under these conditions, Ca²(+)-activated Cl⁻ currents induced by bath application of Ca²(+) to oocytes showed stable peak amplitude when repetitively activated, allowing us to test several concentrations of a test compound from one oocyte. Inhibitory activities of commercially available blockers and synthesized anthranilic acid derivatives were tested using this method. As a result, newly synthesized N-(4-trifluoromethylphenyl)anthranilic acid with trifluoromethyl group (-CF₃) at para position on the benzene ring showed the lowest IC₅₀. CONCLUSION Our results provide an optimal drug screening strategy suitable for high throughput screening, and propose N-(4-trifluoromethylphenyl)anthranilic acid as an improved CaCC blocker.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Center for Neural Science, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
38
|
Cohen R, Marom M, Atlas D. Depolarization-evoked secretion requires two vicinal transmembrane cysteines of syntaxin 1A. PLoS One 2007; 2:e1273. [PMID: 18060067 PMCID: PMC2094736 DOI: 10.1371/journal.pone.0001273] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 11/14/2007] [Indexed: 11/24/2022] Open
Abstract
Background The interactions of the voltage-gated Ca2+ channel (VGCC) with syntaxin 1A (Sx 1A), Synaptosome-associated protein of 25 kD (SNAP-25), and synaptotagmin, couple electrical excitation to evoked secretion. Two vicinal Cys residues, Cys 271 and Cys 272 in the Sx 1A transmembrane domain, are highly conserved and participate in modulating channel kinetics. Each of the Sx1A Cys mutants, differently modify the kinetics of Cav1.2, and neuronal Cav2.2 calcium channel. Methodology/Principle Findings We examined the effects of various Sx1A Cys mutants and the syntaxin isoforms 2, 3, and 4 each of which lack vicinal Cys residues, on evoked secretion, monitoring capacitance transients in a functional release assay. Membrane capacitance in Xenopus oocytes co-expressing Cav1.2, Sx1A, SNAP-25 and synaptotagmin, which is Bot C- and Bot A-sensitive, was elicited by a double 500 ms depolarizing pulse to 0 mV. The evoked-release was obliterated when a single Cys Sx1A mutant or either one of the Sx isoforms were substituted for Sx 1A, demonstrating the essential role of vicinal Cys residues in the depolarization mediated process. Protein expression and confocal imaging established the level of the mutated proteins in the cell and their targeting to the plasma membrane. Conclusions/Significance We propose a model whereby the two adjacent transmembranal Cys residues of Sx 1A, lash two calcium channels. Consistent with the necessity of a minimal fusion complex termed the excitosome, each Sx1A is in a complex with SNAP-25, Syt1, and the Ca2+ channel. A Hill coefficient >2 imply that at least three excitosome complexes are required for generating a secreting hetero-oligomer protein complex. This working model suggests that a fusion pore that opens during membrane depolarization could be lined by alternating transmembrane segments of Sx1A and VGCC. The functional coupling of distinct amino acids of Sx 1A with VGCC appears to be essential for depolarization-evoked secretion.
Collapse
Affiliation(s)
- Roy Cohen
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Marom
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daphne Atlas
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Mefloquine-induced disruption of calcium homeostasis in mammalian cells is similar to that induced by ionomycin. Antimicrob Agents Chemother 2007; 52:684-93. [PMID: 17999964 DOI: 10.1128/aac.00874-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies, we have shown that mefloquine disrupts calcium homeostasis in neurons by depletion of endoplasmic reticulum (ER) stores, followed by an influx of external calcium across the plasma membrane. In this study, we explore two hypotheses concerning the mechanism(s) of action of mefloquine. First, we investigated the possibility that mefloquine activates non-N-methyl-d-aspartic acid receptors and the inositol phosphate 3 (IP3) signaling cascade leading to ER calcium release. Second, we compared the disruptive effects of mefloquine on calcium homeostasis to those of ionomycin in neuronal and nonneuronal cells. Ionomycin is known to discharge the ER calcium store (through an undefined mechanism), which induces capacitative calcium entry (CCE). In radioligand binding assays, mefloquine showed no affinity for the known binding sites of several glutamate receptor subtypes. The pattern of neuroprotection induced by a panel of glutamate receptor antagonists was dissimilar to that of mefloquine. Both mefloquine and ionomycin exhibited dose-related and qualitatively similar disruptions of calcium homeostasis in both neurons and macrophages. The influx of external calcium was blocked by the inhibitors of CCE in a dose-related fashion. Both mefloquine and ionomycin upregulated the IP3 pathway in a manner that we interpret to be secondary to CCE. Collectively, these data suggest that mefloquine does not activate glutamate receptors and that it disrupts calcium homeostasis in mammalian cells in a manner similar to that of ionomycin.
Collapse
|
40
|
Czirják G, Enyedi P. Targeting of Calcineurin to an NFAT-like Docking Site Is Required for the Calcium-dependent Activation of the Background K+ Channel, TRESK. J Biol Chem 2006; 281:14677-82. [PMID: 16569637 DOI: 10.1074/jbc.m602495200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two-pore domain K(+) channel, TRESK (TWIK-related spinal cord K(+) channel) is activated in response to the calcium signal by the calcium/calmodulin-dependent protein phosphatase, calcineurin. In the present study we report that calcineurin also interacts with TRESK via an NFAT-like docking site, in addition to its enzymatic action. In its intracellular loop, mouse TRESK possesses the amino acid sequence, PQIVID, which is similar to the calcineurin binding consensus motif, PXIXIT (where X denotes any amino acids), necessary for NFAT (nuclear factor of activated T cells) activation and nuclear translocation. Mutations of the PQIVID sequence of TRESK to PQIVIA, PQIVAD, or PQAVAD increasingly deteriorated the calcium-dependent activation in the listed order and correspondingly reduced the benzocaine sensitivity (a property discriminating activated channels from resting ones), when it was measured after the calcium signal in Xenopus oocytes. Microinjection of VIVIT peptide, designed to inhibit the NFAT-calcineurin interaction specifically, also eliminated TRESK activation. The intracellular loop of TRESK, expressed as a GST fusion protein, bound constitutively active calcineurin in vitro. PQAVAD mutation as well as addition of VIVIT peptide to the reaction abrogated this calcineurin binding. Wild type calcineurin was recruited to GST-TRESK-loop in the presence of calcium and calmodulin. These results indicate that the PQIVID sequence is a docking site for calcineurin, and its occupancy is required for the calcium-dependent regulation of TRESK. Immunosuppressive compounds, developed to target the NFAT binding site of calcineurin, are also expected to interfere with TRESK regulation, in addition to their desired effect on NFAT.
Collapse
Affiliation(s)
- Gábor Czirják
- Department of Physiology, Semmelweis University, H-1444 Budapest, Hungary
| | | |
Collapse
|
41
|
Cavarra MS, Assef YA, Kotsias BA. Effects of ionomycin and thapsigargin on ion currents in oocytes of Bufo arenarum. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 297:130-7. [PMID: 12945749 DOI: 10.1002/jez.a.10237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, two electrode voltage clamp technique was used to assess the ionic current of oocytes of the South American toad Bufo arenarum and to study the dependence of these currents on the extracellular and intracellular Ca2+ concentrations. Ca2+ chelators, ionomycin -a calcium ionophore- and thapsigargin, a blocker of the Ca2+ pump of the sarcoplasmic reticulum, were used. The main results were the following: Most oocytes showed a voltage activated rectifying conductance. Ionomycin (1 microM) increased inward and outward currents in control solution. The effect of ionomycin was blocked partially at negative potentials and was blocked completely at positive potentials in absence of extracellular Ca2+. When the oocytes were treated with thapsigargin (2 microM) or BAPTA-am, a membrane-permeant intracellular chelator in control solution (10 microM), ionomycin did not increased either inward nor outward currents. The conclusion of our experiments is that there are two sources of Ca2+ for activation of the current induced by ionomycin, the cytoplasmic stores and the extracellular space. We believe ionomycin directly translocates Ca2+ from the SER into the cytoplasm but not from the extracellular medium. Ca2+ entry probably occurs through store-operated-Ca-channels.
Collapse
Affiliation(s)
- M Soledad Cavarra
- Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, UBA, Buenos Aires and Universidad Maimónides, Buenos Aires, Argentina
| | | | | |
Collapse
|
42
|
Yoshida S, Yoshimura M, Taniyama K. Activation of a potassium conductance by extracellular alkaline pH in oocytes of Xenopus laevis. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 87:202-7. [PMID: 11885969 DOI: 10.1254/jjp.87.202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Electrophysiological properties of Xenopus oocytes exposed to alkaline extracellular pH (pHo) were investigated by measuring whole-cell currents using the two-electrode voltage-clamp method. Alkaline pHo (8.5-10.5) elicited an outward current in a pHo-dependent manner with a concomitant increase in the membrane conductance. This outward-current response was dependent on K+ because it was suppressed by a K+ channel blocker tetraethylammonium+ (20 mM), and the reversal potential of the response was in good agreement with the Nernst equation for K+. The response was not affected by pretreatment of oocytes with the acetoxymethyl ester of bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (10,uM), a membrane-permeant intracellular Ca2+ chelator, but it was augmented by forskolin (0.4 microM), a stimulant of adenylate cyclase. The outward-current response originates in the oocyte but not in the surrounding follicle cells because the current could still be evoked when follicle cells were removed by collagenase or when gap junctions connecting the oocyte membrane and follicle cells were blocked by 1-octanol (1 mM). It is concluded that the outward current elicited by alkaline pHo in Xenopus oocytes is dependent on the activation of K+ channels via the cAMP pathway and that the outward current originates in the oocyte rather than the surrounding follicle cells.
Collapse
Affiliation(s)
- S Yoshida
- Department of Physiology, Nagasaki University School of Medicine, Japan.
| | | | | |
Collapse
|
43
|
Czirják G, Petheo GL, Spät A, Enyedi P. Inhibition of TASK-1 potassium channel by phospholipase C. Am J Physiol Cell Physiol 2001; 281:C700-8. [PMID: 11443069 DOI: 10.1152/ajpcell.2001.281.2.c700] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The two-pore-domain K(+) channel, TASK-1, was recently shown to be a target of receptor-mediated regulation in neurons and in adrenal glomerulosa cells. Here, we demonstrate that TASK-1 expressed in Xenopus laevis oocytes is inhibited by different Ca(2+)-mobilizing agonists. Lysophosphatidic acid, via its endogenous receptor, and ANG II and carbachol, via their heterologously expressed ANG II type 1a and M(1) muscarinic receptors, respectively, inhibit TASK-1. This effect can be mimicked by guanosine 5'-O-(3-thiotriphosphate), indicating the involvement of GTP-binding protein(s). The phospholipase C inhibitor U-73122 reduced the receptor-mediated inhibition of TASK-1. Downstream signals of phospholipase C action (inositol 1,4,5-trisphosphate, cytoplasmic Ca(2+) concentration, and diacylglycerol) do not mediate the inhibition. Unlike the G(q)-coupled receptors, stimulation of the G(i)-activating M(2) muscarinic receptor coexpressed with TASK-1 results in an only minimal decrease of the TASK-1 current. However, additional coexpression of phospholipase C-beta(2) (which is responsive also to G(i) beta gamma-subunits) renders M(2) receptor activation effective. This indicates the significance of phospholipase C activity in the receptor-mediated inhibition of TASK-1.
Collapse
Affiliation(s)
- G Czirják
- Faculty of Medicine, Laboratory of Cellular and Molecular Physiology, Department of Physiology, Semmelweis University, H-1444 Budapest, Hungary
| | | | | | | |
Collapse
|
44
|
Ongeri EM, Bormann CL, Butler RE, Melican D, Gavin WG, Echelard Y, Krisher RL, Behboodi E. Development of goat embryos after in vitro fertilization and parthenogenetic activation by different methods. Theriogenology 2001; 55:1933-45. [PMID: 11414497 DOI: 10.1016/s0093-691x(01)00534-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effective activation protocols that can be used during nuclear transfer investigations in goats need to be developed. We compared the development of IVF goat embryos with those of nonfertilized parthogenetically developing oocytes activated by treatment with either ionomycin or ethanol, both followed by immediate exposure to 6-diethylaminopurine (6-DMAP). Cumulus oocyte complexes (COCs) recovered from abattoir goat ovaries were either matured in a conventional laboratory incubator or placed in pre-equilibrated maturation medium and shipped overnight in a battery-operated dry incubator to another laboratory. Mature COCs were allocated randomly to one of three treatment groups. Group 1 oocytes (n=169 shipped, n=253 not shipped) were fertilized in vitro at 24 h postmaturation (hpm). The remaining COCs were activated at 28 hpm in either ionomycin (Group 2: n=362 shipped, n=202 not shipped), or ethanol (Group 3: n=263 shipped, n=249 not shipped). Activated oocytes were immediately incubated in 6-DMAP for 4 h. Blastocyst development was evaluated on Day 8 post-insemination/activation. Percent cleavage was comparable in shipped and nonshipped oocytes and in all treatment groups. In both shipped and nonshipped oocytes, parthenotes developing from ionomycin- and ethanol-activated oocytes had significantly greater blastocyst development (P<0.01) compared to IVF embryos (28.5 +/- 3.0, 27.4 +/- 2.8, 10.3 +/- 3.0, respectively for the nonshipped oocytes and 9.9 +/- 2.1, 10.3 +/- 2.4, 3.7 +/- 4.7 respectively for the shipped oocytes). Shipped oocytes had lower blastocyst development compared to nonshipped oocytes in the three treatment groups. The mean blastocyst cell number was not statistically different between shipped and nonshipped oocytes or among treatment groups, suggesting that all were equally viable.
Collapse
Affiliation(s)
- E M Ongeri
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yoshida S. Re-evaluation of acute neurotoxic effects of Cd2+ on mesencephalic trigeminal neurons of the adult rat. Brain Res 2001; 892:102-10. [PMID: 11172754 DOI: 10.1016/s0006-8993(00)03240-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanism of Cd2+ neurotoxicity, which is considered to be secondary to changes in blood vessels, was re-evaluated in dissociated mesencephalic trigeminal (Me5) neurons of the adult rat. Cd2+ induced morphological changes in Me5 neurons at 0.1 and 1 mM but not at 0.01 mM. The changes appeared predominantly in the cytoplasm: destruction of the cytoplasmic organelles, swelling and vacuolization of the cell body, and finally resulted in cell lysis. These observations indicate necrosis rather than apoptosis, and no sign of degraded nuclear DNA, characteristic to apoptosis, was detected by the TUNEL technique. Using a Ca2+-sensitive dye Indo-1, Cd2+ was found to elevate the intracellular Ca2+ concentration [Ca2+](i) (both in the cytoplasm and the nucleus). Both the elevation in [Ca2+](i) and the morphological alteration were inhibited either by removing Ca2+-from the bathing medium or by the application of BAPTA/AM (10 microM), a membrane-permeable intracellular Ca2+ chelator. Furthermore, neither morphological changes nor elevation in [Ca2+](i) by Cd2+ occurred in the presence of Zn2+. It is concluded that (1) Cd2+ can directly affect nerve cells, (2) toxicity of Cd2+ on Me5 neurons is mediated by continuous elevation in [Ca2+](i), (3) Cd2+ induces necrotic cell death, and (4) Cd2+ neurotoxicity can be antagonized by Zn2+.
Collapse
Affiliation(s)
- S Yoshida
- Department of Physiology, Fukui Medical School, Matsuoka, Fukui 910-1193, Japan.
| |
Collapse
|
46
|
Thurman CL, Burns JS, O'Neil RG. Identifying the Ca(++) signalling sources activating chloride currents in Xenopus oocytes using ionomycin and thapsigargin. Cell Signal 2000; 12:629-35. [PMID: 11080614 DOI: 10.1016/s0898-6568(00)00106-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The calcium ionophore, ionomycin (IM), and the sarcoplasmic/endoplasmic reticulum (SER) calcium pump inhibitor, thapsigargin (TG), were used to study the roles of Ca(++) from different sources in regulating Ca(++)-dependent Cl(-) currents in Xenopus oocytes. The Ca(++)-dependent Cl(-) currents, Ic, were measured in voltage-clamped oocytes (Vc = -60 mV). In the presence of extracellular Ca(++), both TG (0.1 to 10 microM) and IM (0.1 to 10 microM) induce release of Ca(++) from SER and activated capacitative Ca(++) entry (CCE) across the plasma membrane leading to activation of both "fast" and "slow" Cl(-) currents. The fast Ic was produced by Ca(++) release from SER while Ca(++) entry across the plasma membrane activated the slow Ic. Intracellular application of the calcium buffer, BAPTA, blocked activation of the slow Ic due to Ca(++) entry via CCE pathways, but not via IM-mediated movement across the plasma membrane. It is concluded that predominantly Ca(++) release from stores regulates a fast Ic while Ca(++) entry through CCE pathways regulates a slow Ic. Further, the CCE and slow Ic pathways must be located in spatially separated compartments since BAPTA can effectively abolish the effects of Ca(++) entry via the CCE pathway, but not by the IM-mediated entry pathway.
Collapse
Affiliation(s)
- C L Thurman
- Department of Biology, University of Northern Iowa, Cedar Falls, IA 50614-0421, USA.
| | | | | |
Collapse
|
47
|
Yibchok-anun S, Cheng H, Chen TH, Hsu WH. Mechanisms of AVP-induced glucagon release in clonal alpha-cells in-R1-G9: involvement of Ca(2+)-dependent and -independent pathways. Br J Pharmacol 2000; 129:257-64. [PMID: 10694231 PMCID: PMC1571828 DOI: 10.1038/sj.bjp.0703037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The mechanisms underlying AVP-induced increase in [Ca(2+)](i) and glucagon release in clonal alpha-cells In-R1-G9 were investigated. 2. AVP increased [Ca(2+)](i) and glucagon release in a concentration-dependent manner. After the administration of AVP, glucagon was released within 30 s, quickly reached the maximum within 2 min, and maintained a steady-state concentration for at least 15 min. 3. In Ca(2+)-containing medium, AVP increased [Ca(2+)](i) in a biphasic pattern; a peak followed by a sustained plateau. In Ca(2+)-free medium, the Ca(2+) response to AVP became monophasic with lower amplitude and no plateau. Both the basal and AVP-induced glucagon releases were lower in the absence than in the presence of extracellular Ca(2+). When [Ca(2+)](i) was stringently deprived by BAPTA, a Ca(2+) chelator, AVP still significantly increased glucagon release. 4. Pretreatment with thapsigargin, a microsomal Ca(2+) ATPase inhibitor, abolished both the Ca(2+) peak and sustained plateau. 5.AVP increased intracellular concentration of IP(3). 6. U-73122 (8 microM), a phospholipase C inhibitor, abolished AVP-induced increases in [Ca(2+)](i), but only reduced AVP-induced glucagon release by 39%. 7. Pretreatment with nimodipine, an L-type Ca(2+) channel blocker failed to alter AVP-induced glucagon release or increase in [Ca(2+)](i). 8. The results suggest that AVP causes glucagon release through both Ca(2+)-dependent and -independent pathways. For the Ca(2+)-dependent pathway, the G(q) protein activates phospholipase C, which catalyzes the formation of IP(3). IP(3) induces Ca(2+) release from the endoplasmic reticulum, which, in turn, triggers Ca(2+) influx. Both Ca(2+) release and Ca(2+) influx may contribute to AVP-induced glucagon release.
Collapse
Affiliation(s)
| | - Henrique Cheng
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011-1250, U.S.A
| | - Ter-Hsin Chen
- Pig Research Institute of Taiwan, Chunan, Miaoli, Taiwan 35099, Republic of China
- Department of Occupational Safety and Health, China Medical College, Taichung, Taiwan 40421, Republic of China
| | - Walter H Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011-1250, U.S.A
- Author for correspondence:
| |
Collapse
|
48
|
Kuruma A, Hartzell HC. Dynamics of calcium regulation of chloride currents in Xenopus oocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C161-75. [PMID: 9886932 DOI: 10.1152/ajpcell.1999.276.1.c161] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca-activated Cl currents are widely expressed in many cell types and play diverse and important physiological roles. The Xenopus oocyte is a good model system for studying the regulation of these currents. We previously showed that inositol 1,4,5-trisphosphate (IP3) injection into Xenopus oocytes rapidly elicits a noninactivating outward Cl current (ICl1-S) followed several minutes later by the development of slow inward (ICl2) and transient outward (ICl1-T) Cl currents. In this paper, we investigate whether these three currents are mediated by the same or different Cl channels. Outward Cl currents were more sensitive to Ca than inward Cl currents, as shown by injection of different amounts of Ca or by Ca influx through a heterologously expressed ligand-gated Ca channel, the ionotropic glutamate receptor iGluR3. These data could be explained by two channels with different Ca affinities or one channel with a higher Ca affinity at depolarized potentials. To distinguish between these possibilities, we determined the anion selectivity of the three currents. The anion selectivity sequences for the three currents were the same (I > Br > Cl), but ICl1-S had an I-to-Cl permeability ratio more than twofold smaller than the other two currents. The different anion selectivities and instantaneous current-voltage relationships were consistent with at least two different channels mediating these currents. However, after consideration of possible errors, the hypothesis that a single type of Cl channel underlies the complex waveforms of the three different macroscopic Ca-activated Cl currents in Xenopus oocytes remains a viable alternative.
Collapse
Affiliation(s)
- A Kuruma
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322-3030, USA
| | | |
Collapse
|
49
|
Jiang Q, Mak D, Devidas S, Schwiebert EM, Bragin A, Zhang Y, Skach WR, Guggino WB, Foskett JK, Engelhardt JF. Cystic fibrosis transmembrane conductance regulator-associated ATP release is controlled by a chloride sensor. J Cell Biol 1998; 143:645-57. [PMID: 9813087 PMCID: PMC2148142 DOI: 10.1083/jcb.143.3.645] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1998] [Revised: 09/04/1998] [Indexed: 01/06/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is defective in cystic fibrosis, and has also been closely associated with ATP permeability in cells. Using a Xenopus oocyte cRNA expression system, we have evaluated the molecular mechanisms that control CFTR-modulated ATP release. CFTR-modulated ATP release was dependent on both cAMP activation and a gradient change in the extracellular chloride concentration. Activation of ATP release occurred within a narrow concentration range of external Cl- that was similar to that reported in airway surface fluid. Mutagenesis of CFTR demonstrated that Cl- conductance and ATP release regulatory properties could be dissociated to different regions of the CFTR protein. Despite the lack of a need for Cl- conductance through CFTR to modulate ATP release, alterations in channel pore residues R347 and R334 caused changes in the relative ability of different halides to activate ATP efflux (wtCFTR, Cl >> Br; R347P, Cl >> Br; R347E, Br >> Cl; R334W, Cl = Br). We hypothesize that residues R347 and R334 may contribute a Cl- binding site within the CFTR channel pore that is necessary for activation of ATP efflux in response to increases of extracellular Cl-. In summary, these findings suggest a novel chloride sensor mechanism by which CFTR is capable of responding to changes in the extracellular chloride concentration by modulating the activity of an unidentified ATP efflux pathway. This pathway may play an important role in maintaining fluid and electrolyte balance in the airway through purinergic regulation of epithelial cells. Insight into these molecular mechanisms enhances our understanding of pathogenesis in the cystic fibrosis lung.
Collapse
Affiliation(s)
- Q Jiang
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242-1109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Auld AM, Bawden MJ, Berven LA, Harland L, Hughes BP, Barritt GJ. Injection of rat hepatocyte poly(A)+ RNA to Xenopus laevis oocytes leads to expression of a constitutively-active divalent cation channel distinguishable from endogenous receptor-activated channels. Cell Calcium 1996; 19:439-52. [PMID: 8793184 DOI: 10.1016/s0143-4160(96)90117-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The expression of hepatocyte plasma membrane receptor-activated divalent cation channels in immature (stages V and VI) Xenopus laevis oocytes and the properties which allow these channels to be distinguished from endogenous receptor-activated divalent cation channels were investigated. Divalent cation inflow to oocytes housed in a multiwell plate was measured using the fluorescent dyes Fluo-3 and Fura-2. In control oocytes, ionomycin, cholera toxin, thapsigargin, 3-fluoro-inositol 1,4,5-trisphosphate (InsP3F) and guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) stimulated Ca2+ and Mn2+ inflow following addition of these ions to the oocytes. Ionomycin-, cholera-toxin-, thapsigargin- and InsP3F-stimulated Ca2+ inflow was inhibited by Gd3+ (half maximal inhibition at less thari 5 microM Gd3+ for InsP3F-stimulated Ca2+ inflow). GTP gamma S-stimulated Ca2+ inflow was insensitive to 50 microM Gd3+ and to SK&F 96365. These results indicate that at least three types of endogenous receptor-activated Ca2+ channels can be detected in Xenopus oocytes using Ca(2+)-sensitive fluorescent dyes: lanthanide-sensitive divalent cation channels activated by intracellular Ca2+ store depletion, lanthanide-sensitive divalent cation channels activated by cholera toxin, and lanthanide-insensitive divalent cation channels activated by an unknown trimeric G-protein. Oocytes microinjected with rat hepatocyte poly(A)+ RNA exhibited greater rates of Ca2+ and Mn2+ inflow in the basal (no agonist) state, greater rates of Ca2+ inflow in the presence of vasopressin or InsP3F and greater rates of Ba2+ inflow in the presence of InsP3F, when compared with "mock"-injected oocytes. In poly(A)+ RNA-injected oocytes, vasopressin- and InsP3F-stimulated Ca2+ inflow, but not basal Ca2+ inflow, was inhibited by Gd3+. It is concluded that at least one type of hepatocyte plasma membrane divalent cation channel, which admits Mn2+ as well as Ca2+ and is lanthanide-insensitive, can be expressed and detected in Xenopus oocytes.
Collapse
Affiliation(s)
- A M Auld
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|