1
|
McDonald P, Brown HA, Topham TH, Kelly MK, Jardine WT, Carr A, Sawka MN, Woodward AP, Clark B, Périard JD. Influence of Exercise Heat Acclimation Protocol Characteristics on Adaptation Kinetics: A Quantitative Review With Bayesian Meta-Regressions. Compr Physiol 2025; 15:e70017. [PMID: 40442924 PMCID: PMC12122934 DOI: 10.1002/cph4.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 06/02/2025]
Abstract
The integrative influence of heat acclimation (HA) protocol characteristics and approach on adaptation kinetics and exercise capacity/performance in the heat remains unclear. Bayesian multilevel regression models were used to estimate adaptations with the number of exposures, exposure duration, ambient temperature, water vapor pressure, and HA approach (e.g., constant workrate) as predictors. Data from 211 papers were included in meta-analyses with results presented as posterior means and 90% credible intervals. Mean protocol characteristics were as follows: 8 ± 4 exposures, 90 ± 36 min/exposure, 39.1°C ± 4.8°C, and 2.78 ± 0.83 kPa. HA decreased resting (-5 beats·min-1 [-7, -3]) and end-exercise heart rate (-17 beats·min-1 [-19, -14]), resting (-0.19°C [-0.23, -0.14]) and end-exercise core temperature (-0.43°C [-0.48, -0.36]), and expanded plasma volume (5.6% [3.8, 7.0]). HA also lowered exercise metabolic rate (-87 mL·min-1 [-126, -49]), increased whole-body sweat rate (WBSR) (163 mL·h-1 [94, 226]), time to exhaustion (49% [35, 61]) and incremental exercise time (14% [7, 24]), and improved time trial performance (3.1% [1.8, 4.5]). An additional HA exposure increased hemoglobin mass (1.9 g [0.6, 3.2]) and WBSR (9 mL·h-1 [1, 17]), and an additional 15 min/exposure further lowered end-exercise core temperature (-0.04°C [-0.05, -0.03]) and expanded plasma volume (0.4% [0.1, 0.7]). A 5°C increase in ambient temperature further lowered end-exercise HR (-2 beats·min-1 [-3, -1]) and a 1 kPa increase enhanced WBSR (37 mL·h-1 [4, 72]). End-exercise heart rate and core temperature decreased similarly following controlled hyperthermia (-16 beats·min-1 [-18, -14]; -0.43°C [-0.48, -0.36]) and constant workrate HA (-17 beats·min-1 [-18, -16]; -0.45°C [-0.49, -0.42]). HA protocol characteristics influence the adaptive response and may be manipulated to optimize adaptations. A predictor for estimating HA adaptations based on protocol characteristics is available at: https://www.canberra.edu.au/research/centres/uc-rise/research/environmental-physiology/exercise-heat-acclimation-predictor.
Collapse
Affiliation(s)
- Peter McDonald
- Research Institute for Sport and ExerciseUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| | - Harry A. Brown
- Research Institute for Sport and ExerciseUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| | - Thomas H. Topham
- Research Institute for Sport and ExerciseUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| | - Monica K. Kelly
- Centre for Sport Research, School of Exercise and Nutrition SciencesDeakin UniversityMelbourneVictoriaAustralia
| | - William T. Jardine
- Centre for Sport Research, School of Exercise and Nutrition SciencesDeakin UniversityMelbourneVictoriaAustralia
| | - Amelia Carr
- Centre for Sport Research, School of Exercise and Nutrition SciencesDeakin UniversityMelbourneVictoriaAustralia
| | - Michael N. Sawka
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Andrew P. Woodward
- Faculty of HealthUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| | - Brad Clark
- Research Institute for Sport and ExerciseUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| | - Julien D. Périard
- Research Institute for Sport and ExerciseUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| |
Collapse
|
2
|
Edwards BJ, Gibbins KP, Morgan CJ, Giacomoni M, Robertson CM, Low DA, Pullinger SA. Investigating effects of moderate hyperthermia at two phases of the circadian cycle for core temperature (heat gain and peak), on quadriceps maximal voluntary contraction force. Chronobiol Int 2025; 42:622-639. [PMID: 40293199 DOI: 10.1080/07420528.2025.2494631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/27/2025] [Accepted: 04/13/2025] [Indexed: 04/30/2025]
Abstract
Athletes often perceive a performance disadvantage in the morning, in part, because of a recognised deficit in functional muscle force capacity. This diurnal variation in muscle force production has been attributed to higher rectal (Trec) and muscle (Tm) temperatures in the evening as well as motivational, peripheral, and central factors. A warm-up is an essential component of sporting performance, however moderate hyperthermia reduces sporting gross muscular performance although possibly to a lesser degree in the morning (raising phase) than the peak of the core temperature rhythm (~17:00 h). We investigated whether i) increasing morning Trec temperatures to evening resting values by an active warm-up leads to quadriceps muscle force production becoming equal to evening values. Or ii) raising Trec passively in the morning or evening to 38.5°C results in greater quadriceps muscle force production reductions in the evening. Eight active males (mean±SD: age, 25.5 ± 1.9 yrs; body mass, 71.0 ± 6.7 kg; height, 1.79 ± 0.06 m) volunteered and randomly completed five sessions (separated by > 48 h): control morning (M, 07:30 h) and evening (E, 17:30 h) sessions (both with an active 5-min warm-up) and three further trials - an active warm-up 07:30 h trial (ME, until resting evening temperatures were reached), a morning (M38.5) and an evening (E38.5) passive warm-up trial which continued until Trec values reached 38.5°C (immersed in a water-bath @ ~40°C, 45-50% Relative humidity). During each trial, 5-measures of maximal voluntary contraction (MVC) of the quadriceps on an isometric dynamometer (utilizing the twitch-interpolation technique) were performed with force (peak and mean of the 5-trials) and percentage activation recorded. Trec, ratings of perceived exertion (RPE) and thermal comfort (TC) were measured. Measurements were made after the participants had reclined for 30-min at the start of the protocol and after the warm-ups/passive heating and prior to the measures for isometric dynamometry. Trec and Tm (at 3, 2 and 1 cm depths) temperatures were taken at rest, after the passive warm-up, and immediately before the isometric MVC measurements. Data were analysed by general linear models with repeated measures. Isometric force for knee extension showed higher values in the evening than morning (peak Δ83.2 N, mean Δ67.8 N; p < 0.05). Trec and Tm (at 3 cm depth) values were higher at rest in the evening than the morning (by 0.47 and 0.85°C respectively; p < 0.05) increasing from rest by 0.54 and 2.2°C, 1.78 and 2.2°C, and 1.31 and 1.8°C, in the ME, M38.5 and E38.5 conditions, respectively; ratings of thermal comfort reflecting this (p < 0.05). There was no significant effect of active ME warm-up and moderate hyperthermia M38.5 compared to morning control peak (peak or mean) torque (M). E38.5 reduced "mean" but not "peak" torque in the evening (Δ61.9 N, p = 0.009; p = 0.051). In summary, active warm-up did not improve isometric MVC in the morning and moderate hyperthermia reduced isometric MVC "mean" force only during the peak of the core temperature rhythm (~17:00 h).
Collapse
Affiliation(s)
- Ben J Edwards
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Kevin P Gibbins
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Chris J Morgan
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Magali Giacomoni
- UFR STAPS Laboratoire J-AP2S, Université de Toulon, La Garde, France
| | - Colin M Robertson
- Sport, School of Health, Social Work and Sport, University of Central Lancashire, Preston, UK
| | - David A Low
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | | |
Collapse
|
3
|
Zanini M, Folland JP, Blagrove RC. The Effect of 90 and 120 Min of Running on the Determinants of Endurance Performance in Well-Trained Male Marathon Runners. Scand J Med Sci Sports 2025; 35:e70076. [PMID: 40375575 DOI: 10.1111/sms.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/18/2025]
Abstract
The combination of maximal oxygen uptake (V̇O2max), fractional utilization at lactate threshold (FULT), and running economy (RE) is considered to largely determine/predict marathon performance, which is also closely associated with the speed at lactate threshold (sLT). Although these determinants are considered to deteriorate during prolonged running, except for RE, their temporal changes with fatigue remain largely unknown. This study aimed to measure the changes in V̇O2max, FULT, RE, and sLT after running for 90 and 120 min in the heavy-intensity domain. Fourteen trained marathon runners (V̇O2max 63.1 ± 5.8 mL·kg-1·min-1; marathon time 2:46:58 h:mm:ss) completed three separate visits to determine sLT, FULT, and V̇O2peak in the following conditions (sessions): unfatigued, and after two prolonged runs of 90 and 120 min at a fixed speed (10% Δ between LT and lactate threshold 2). During the runs, respiratory gases were collected at 15 min intervals to quantify RE. Decreases in V̇O2peak (-3.1%, p = 0.04 [post-90]; -7.1%, p < 0.001 [post-120]) and subsequent increases in FULT (+2.8%, p = 0.03 [post-90]; +4.9% p = 0.01 [post-120]) both occurred at an increasing rate with run duration, with FULT changes linked to the decreased V̇O2peak, while RE (mL·kg-1·km-1) deteriorated more linearly with time (by 4.2% [post-90] and 5.8% [post-120], p < 0.001). sLT also showed a nonlinear decrease, from 14.0 to 13.5 (p = 0.01 post-90), to 13.0 km·h-1 (p < 0.001 post-120). In conclusion, performance determinants and sLT changed following 90 min, and particularly 120 min of prolonged running. These dynamic changes have strong implications for running performance and would particularly affect longer duration events such as the marathon.
Collapse
Affiliation(s)
- Michele Zanini
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, UK
| | - Jonathan P Folland
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health and Care Research (NIHR), Leicester Biomedical Research Centre, Leicester, UK
| | - Richard C Blagrove
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
4
|
Wei Y, Jiang X, Li H, Zhang Q, Hua L, Dong J, Xu J, Yang Y, Wang Q, Shen H, Zhang Y, Yan D, Peng Z, Kan H, Ma X, Cai J, He Y. Prenatal exposure to temperature variability, gestational duration and preterm birth: A nationwide birth cohort with 3 million singleton births in China. ENVIRONMENT INTERNATIONAL 2025; 198:109430. [PMID: 40209397 DOI: 10.1016/j.envint.2025.109430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Little is known about how temperature variability (TV) affects the risk of preterm birth (PTB). OBJECTIVE This cohort study aims to evaluate the associations of prenatal TV exposure with gestational age and PTB risk. METHODS This study included 3,012,744 live singleton births from 336 Chinese cities delivered between January 2013 and December 2015. TV exposure, indicating by standard deviation of temperature (SDT) and diurnal temperature range (DTR), were assessed by spatiotemporal models. Cox proportional hazard regression models were used to analyze the associations of PTB risk with TV exposure during the entire pregnancy and specific trimesters. Multivariate linear regressions were used to assess the associations between TV exposure and gestational age. RESULTS During the entire pregnancy, each 1 °C incremental in SDT and DTR was associated with a reduction in gestational age by 0.98 day (95 % confidence interval (CI), 0.89-1.06) and 0.36 day (95 % CI, 0.32-0.39). These increases in TV were also linked to a 20.1 % higher risk of PTB (hazard ratio [HR]: 1.201; 95 % CI: 1.182-1.233) for SDT and a 7.3 % higher risk of PTB (HR: 1.073; 95 % CI: 1.064-1.081) for DTR. The risk associated with TV was greater for very PTB than moderate and late PTB. Non-linear exposure-response curves indicated a monotonic increase in HRs for PTB with higher TV exposure, with the curves becoming less steep beyond an inflection point. These associations seemed to be more pronounced in women who lived in rural areas and in the climate zone of tropical monsoon, and gave birth in winter compared to their counterparts. CONCLUSIONS TV was associated with higher PTB risk and shortened gestational age in China.
Collapse
Affiliation(s)
- Yuhao Wei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xiaomin Jiang
- Department of Obstetrics, Anhui Province Hefei Maternity and Child Health Hospital, Hefei, Anhui 230001, China; Department of Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230032, China
| | - Huimin Li
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 101199, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qing Zhang
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450053, China.
| | - Linlin Hua
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450053, China
| | - Jing Dong
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 101199, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jihong Xu
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 101199, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ying Yang
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 101199, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qiaomei Wang
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 101199, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Haiping Shen
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 101199, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yiping Zhang
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 101199, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Donghai Yan
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 101199, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zuoqi Peng
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 101199, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 101199, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Yuan He
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 101199, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
5
|
Petter Rodrigues M, Berube ME, Collins G, McLean L. What Pad Weight Gain During Treadmill Running Indicates Urine Leakage Among Females? An Observational Study. Int Urogynecol J 2025:10.1007/s00192-025-06122-0. [PMID: 40116903 DOI: 10.1007/s00192-025-06122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/05/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Pad tests have been used to assess urinary incontinence (UI) during exercise, but they do not account for confounding factors such as perspiration. The objectives of this study were to describe pad weight gain among runners with and without running-induced stress UI (RI-SUI), who complete a standardized treadmill-based pad test, and to investigate the sensitivity and specificity of pad weight gain as a measure of urine leakage. METHODS This was an observational cohort study. We recruited adult female runners with and without RI-SUI. Participants performed a 38-min treadmill-based running protocol while wearing a pre-weighted incontinence pad. Pad weight gain was described by group, then compared between groups using the Mann-Whitney U test. A receiver-operating characteristic (ROC) curve was used to evaluate the sensitivity and specificity of different cutoff values for pad weight gain. RESULTS Data from 74 runners (20 with and 54 without RI-SUI) were included. The median pad weight gain was significantly higher in the incontinent group (24.20 g; range 3.90-166.30 g) than in the continent group (3.80 g; range 0.20-19.96 g; p < 0.001). When using a 9.35 g cutoff, the ROC curve predicted urine leakage with 70% sensitivity and 88% specificity, while a 0.25 g cutoff would achieve 100% sensitivity and 19.98 g would achieve 100% specificity. CONCLUSION Pad weight gain during a treadmill-based pad test should be interpreted cautiously, as values up to 19.96 g may result from perspiration or other fluids.
Collapse
Affiliation(s)
- Marina Petter Rodrigues
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Marie-Eve Berube
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Grace Collins
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Linda McLean
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
6
|
Kelly MR, Emerson DM, Torres-McGehee TM, Uriegas NA, Smith MO, Kloesel K, Smith AB. Self-reported exertional heat illness and risk factors among collegiate marching band artists. SPORTS MEDICINE AND HEALTH SCIENCE 2025; 7:132-142. [PMID: 39811407 PMCID: PMC11726051 DOI: 10.1016/j.smhs.2024.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 01/16/2025] Open
Abstract
Marching band (MB) artists are often part of the general student population and not required to complete a pre-participation health screening to identify predisposing medical conditions or risks for injury/illness. Anecdotally, exertional heat illnesses (EHI) are a concern for MB artists. As more athletic trainers provide MB healthcare, research is needed on EHI occurrence and MB associated EHI risk factors. We utilized an exploratory cross-sectional study design to determine EHI risk factors, including previous EHI occurrence, among collegiate MB artists. MB artists (n = 1 207; age = [19.6 ± 1.3] years) actively participating in their college/university's MB during the 2019 football season completed an online survey to characterize demographics, medical history, medication and supplement use, and nutrition behaviors. Chi-square and binomial logistical regressions assessed associations between categorical variables. Previous EHI was reported by 50.6% of MB artists, with 466 (76.3%) experiencing exertional heat exhaustion and 31 (5.1%) exertional heat stroke. More females reported exertional heat exhaustion overall (68.2%, p < 0.001) and in the previous year (73.3%, p < 0.001). Experiencing a previous EHI was significantly associated with having a mood/neurological condition (63.5%, p < 0.001), diagnosed (74.3%, p = 0.004) or perceived eating disorder (66.7%, p < 0.001), and taking prescription medications (59.4%, p < 0.001), over-the-counter medications (58.9%, p = 0.002), and supplements (55.4%, p = 0.037). Half of collegiate MB artists reported experiencing previous EHIs and engaged in behaviors known to increase EHI risk. MB artists should complete pre-participation examinations to identify pre-existing medical conditions and risks for adverse medical events. Healthcare providers working with MB artists should develop policies and procedures to mitigate EHI risks and occurrence.
Collapse
Affiliation(s)
- Melani R. Kelly
- Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, KS, 66045, USA
- Department of Exercise Science and Outdoor Recreation, Utah Valley University, Orem, UT, 84058, USA
| | - Dawn M. Emerson
- Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, KS, 66045, USA
- Department of Exercise Science, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Nancy A. Uriegas
- Department of Exercise Science, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Kevin Kloesel
- Department of Campus Safety, University of Oklahoma, Norman, OK, 73072, USA
| | - Allison B. Smith
- Department of Allied Health, Otterbein University, Westerville, OH, 43081, USA
| |
Collapse
|
7
|
Yang Q, Xu W, Sun X, Chen Q, Niu B. The Application of Machine Learning in Doping Detection. J Chem Inf Model 2024; 64:8673-8683. [PMID: 39574320 DOI: 10.1021/acs.jcim.4c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Detecting doping agents in sports poses a significant challenge due to the continuous emergence of new prohibited substances and methods. Traditional detection methods primarily rely on targeted analysis, which is often labor-intensive and is susceptible to errors. In response, machine learning offers a transformative approach to enhancing doping screening and detection. With its powerful data analysis capabilities, machine learning enables the rapid identification of patterns and features in complex compound data, increasing both the efficiency and the accuracy of detection. Moreover, when integrated with nontargeted metabolomics, machine learning can predict unknown metabolites, aiding the discovery of long-lasting biomarkers of doping. It also excels in classifying novel compounds, thereby reducing false-negative rates. As instrumental analysis and machine learning technologies continue to advance, the development of rapid, scalable, and highly efficient doping detection methods becomes increasingly feasible, supporting the pursuit of fairness and integrity in sports competitions.
Collapse
Affiliation(s)
- Qingqing Yang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wennuo Xu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaodong Sun
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
8
|
Niu Z, Goto T. Effects of individual characteristics and local body functions on sweating response: A review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2185-2204. [PMID: 39141136 PMCID: PMC11519300 DOI: 10.1007/s00484-024-02758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
In this study, we conducted a literature review to deepen our understanding of the sweating response of the thermoregulatory system, focusing on the influence of individual characteristics and local body functions. Among the factors related to individual characteristics, improvement in aerobic fitness had a positive effect on the sweating response, whereas aging exerted an inhibitory effect. Short-term artificial acclimation and seasonal heat acclimatization promoted sweating, whereas long-term geographical acclimatization suppressed sweating. Male exhibited higher sweat rates than female when the metabolic heat production was high. Individuals with smaller surface area-to-mass ratios tended to have higher sweat rates than those with larger ratios. Regarding local body functions, sweat distribution in the resting state showed high regional sweat rates in the lower limbs and torso, with higher values in the lower limbs when in the supine position and higher values in the torso when in the seated position. During exercise, the regional sweat rates was high in the torso, whereas the limbs exhibited relatively low sweat rates. These differences in sweat distribution stem from the thermoregulatory potential of each body region, which aims to efficiently regulate body temperature. Local effects have only been examined in the thigh and forearm, with temperature coefficient Q10 ranging from 2 to 5. Only the forehead showed significantly high thermosensitivity among all body regions.
Collapse
Affiliation(s)
- Zhuoxi Niu
- Department of Architecture and Building Science, Tohoku University, Sendai, Japan.
| | - Tomonobu Goto
- Department of Architecture and Building Science, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Bennett S, Tiollier E, Owens DJ, Brocherie F, Louis JB. Implications of Heat Stress-induced Metabolic Alterations for Endurance Training. Int J Sports Med 2024; 45:422-435. [PMID: 38401534 DOI: 10.1055/a-2251-3170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Inducing a heat-acclimated phenotype via repeated heat stress improves exercise capacity and reduces athletes̓ risk of hyperthermia and heat illness. Given the increased number of international sporting events hosted in countries with warmer climates, heat acclimation strategies are increasingly popular among endurance athletes to optimize performance in hot environments. At the tissue level, completing endurance exercise under heat stress may augment endurance training adaptation, including mitochondrial and cardiovascular remodeling due to increased perturbations to cellular homeostasis as a consequence of metabolic and cardiovascular load, and this may improve endurance training adaptation and subsequent performance. This review provides an up-to-date overview of the metabolic impact of heat stress during endurance exercise, including proposed underlying mechanisms of altered substrate utilization. Against this metabolic backdrop, the current literature highlighting the role of heat stress in augmenting training adaptation and subsequent endurance performance will be presented with practical implications and opportunities for future research.
Collapse
Affiliation(s)
- Samuel Bennett
- Center for Biological Clocks Research, Texas A&M University, College Station, United States
| | - Eve Tiollier
- Laboratory Sport, Expertise and Performance, Research Department, Institut National du Sport de l'Expertise et de la Performance, Paris, France
| | - Daniel J Owens
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom of Great Britain and Northern Ireland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance, Research Department, Institut National du Sport de l'Expertise et de la Performance, Paris, France
| | - Julien B Louis
- Laboratory Sport, Expertise and Performance, Research Department, Institut National du Sport de l'Expertise et de la Performance, Paris, France
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
10
|
Ebisuda Y, Mukai K, Takahashi Y, Yoshida T, Matsuhashi T, Kawano A, Miyata H, Kuwahara M, Ohmura H. Heat acclimation improves exercise performance in hot conditions and increases heat shock protein 70 and 90 of skeletal muscles in Thoroughbred horses. Physiol Rep 2024; 12:e16083. [PMID: 38789393 PMCID: PMC11126422 DOI: 10.14814/phy2.16083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to determine whether heat acclimation could induce adaptations in exercise performance, thermoregulation, and the expression of proteins associated with heat stress in the skeletal muscles of Thoroughbreds. Thirteen trained Thoroughbreds performed 3 weeks of training protocols, consisting of cantering at 90% maximal oxygen consumption (VO2max) for 2 min 2 days/week and cantering at 7 m/s for 3 min 1 day/week, followed by a 20-min walk in either a control group (CON; Wet Bulb Globe Temperature [WBGT] 12-13°C; n = 6) or a heat acclimation group (HA; WBGT 29-30°C; n = 7). Before and after heat acclimation, standardized exercise tests (SET) were conducted, cantering at 7 m/s for 90 s and at 115% VO2max until fatigue in hot conditions. Increases in run time (p = 0.0301), peak cardiac output (p = 0.0248), and peak stroke volume (p = 0.0113) were greater in HA than in CON. Pulmonary artery temperature at 7 m/s was lower in HA than in CON (p = 0.0332). The expression of heat shock protein 70 (p = 0.0201) and 90 (p = 0.0167) increased in HA, but not in CON. These results suggest that heat acclimation elicits improvements in exercise performance and thermoregulation under hot conditions, with a protective adaptation to heat stress in equine skeletal muscles.
Collapse
Affiliation(s)
- Yusaku Ebisuda
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| | - Kazutaka Mukai
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| | - Yuji Takahashi
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| | - Toshinobu Yoshida
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| | - Tsubasa Matsuhashi
- Department of Biological Sciences, Graduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchiJapan
| | - Aoto Kawano
- Department of Biological Sciences, Graduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchiJapan
| | - Hirofumi Miyata
- Department of Biological Sciences, Graduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchiJapan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Hajime Ohmura
- Sports Science DivisionEquine Research Institute, Japan Racing AssociationShimotsukeJapan
| |
Collapse
|
11
|
Deshayes TA, Sodabi DGA, Dubord M, Gagnon D. Shifting focus: Time to look beyond the classic physiological adaptations associated with human heat acclimation. Exp Physiol 2024; 109:335-349. [PMID: 37885125 PMCID: PMC10988689 DOI: 10.1113/ep091207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Planet Earth is warming at an unprecedented rate and our future is now assured to be shaped by the consequences of more frequent hot days and extreme heat. Humans will need to adapt both behaviorally and physiologically to thrive in a hotter climate. From a physiological perspective, countless studies have shown that human heat acclimation increases thermoeffector output (i.e., sweating and skin blood flow) and lowers cardiovascular strain (i.e., heart rate) during heat stress. However, the mechanisms mediating these adaptations remain understudied. Furthermore, several possible benefits of heat acclimation for other systems and functions involved in maintaining health and performance during heat stress remain to be elucidated. This review summarizes recent advances in human heat acclimation, with emphasis on recent studies that (1) advanced our understanding of the mechanisms mediating improved thermoeffector output and (2) investigated adaptations that go beyond those classically associated with heat acclimation. We highlight that these studies have contributed to a better understanding of the integrated physiological responses underlying human heat acclimation while leaving key unanswered questions that will need to be addressed in the future.
Collapse
Affiliation(s)
- Thomas A. Deshayes
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Dèwanou Gilles Arnaud Sodabi
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Marianne Dubord
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Daniel Gagnon
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| |
Collapse
|
12
|
Willmott AGB, Diment AG, Chung HC, James CA, Maxwell NS, Roberts JD, Gibson OR. Cross-adaptation from heat stress to hypoxia: A systematic review and exploratory meta-analysis. J Therm Biol 2024; 120:103793. [PMID: 38471285 DOI: 10.1016/j.jtherbio.2024.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 03/14/2024]
Abstract
Cross-adaptation (CA) refers to the successful induction of physiological adaptation under one environmental stressor (e.g., heat), to enable subsequent benefit in another (e.g., hypoxia). This systematic review and exploratory meta-analysis investigated the effect of heat acclimation (HA) on physiological, perceptual and physical performance outcome measures during rest, and submaximal and maximal intensity exercise in hypoxia. Database searches in Scopus and MEDLINE were performed. Studies were included when they met the Population, Intervention, Comparison, and Outcome criteria, were of English-language, peer-reviewed, full-text original articles, using human participants. Risk of bias and study quality were assessed using the COnsensus based Standards for the selection of health status Measurement INstruments checklist. Nine studies were included, totalling 79 participants (100 % recreationally trained males). The most common method of HA included fixed-intensity exercise comprising 9 ± 3 sessions, 89 ± 24-min in duration and occurred within 39 ± 2 °C and 32 ± 13 % relative humidity. CA induced a moderate, beneficial effect on physiological measures at rest (oxygen saturation: g = 0.60) and during submaximal exercise (heart rate: g = -0.65, core temperature: g = -0.68 and skin temperature: g = -0.72). A small effect was found for ventilation (g = 0.24) and performance measures (peak power: g = 0.32 and time trial time: g = -0.43) during maximal intensity exercise. No effect was observed for perceptual outcome measures. CA may be appropriate for individuals, such as occupational or military workers, whose access to altitude exposure prior to undertaking submaximal activity in hypoxic conditions is restricted. Methodological variances exist within the current literature, and females and well-trained individuals have yet to be investigated. Future research should focus on these cohorts and explore the mechanistic underpinnings of CA.
Collapse
Affiliation(s)
- Ashley G B Willmott
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom; Environmental Extremes Laboratory, University of Brighton, Eastbourne, East Sussex, United Kingdom; Para-Monte Altitude Awareness Charity, Eastbourne, East Sussex, United Kingdom.
| | - Alicia G Diment
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom; Pulmonary Function Laboratory, Norfolk and Norwich University Hospital, Colney Lane, Norwich, Norfolk, United Kingdom.
| | - Henry C Chung
- School of Sport, Rehabilitation and Exercise Sciences (SRES), University of Essex, Colchester, Essex, United Kingdom.
| | - Carl A James
- Hong Kong Sports Institute, Sha Tin, Hong Kong, China; Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Neil S Maxwell
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, East Sussex, United Kingdom; Para-Monte Altitude Awareness Charity, Eastbourne, East Sussex, United Kingdom.
| | - Justin D Roberts
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom.
| | - Oliver R Gibson
- Centre for Physical Activity in Health and Disease (CPAHD), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom.
| |
Collapse
|
13
|
Hagen LT, Brattebø G, Dipl-Math JA, Wiggen Ø, Østerås Ø, Mydske S, Thomassen Ø. Effect of wet clothing removal on skin temperature in subjects exposed to cold and wrapped in a vapor barrier: a human, randomized, crossover field study. BMC Emerg Med 2024; 24:18. [PMID: 38273259 PMCID: PMC10809790 DOI: 10.1186/s12873-024-00937-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Prehospital care for cold-stressed and hypothermic patients focuses on effective insulation and rewarming. When encountering patients wearing wet clothing, rescuers can either remove the wet clothing before isolating the patient or isolate the patient using a vapor barrier. Wet clothing removal increases skin exposure but avoids the need to heat the wet clothing during rewarming. Leaving wet clothing on will avoid skin exposure but is likely to increase heat loss during rewarming. This study aimed to evaluate the effect of wet clothing removal compared to containing the moisture using a vapor barrier on skin temperature in a prehospital setting. METHODS This randomized crossover experimental field study was conducted in a snow cave in Hemsedal, Norway. After an initial cooling phase of 30 min while wearing wet clothes, the participants were subjected to one of two rewarming scenarios: (1) wet clothing removal and wrapping in a vapor barrier, insulating blankets, and windproof outer shell (dry group) or (2) wrapping in a vapor barrier, insulating blankets, and windproof outer shell (wet group). The mean skin temperature was the primary outcome whereas subjective scores for both thermal comfort and degree of shivering were secondary outcomes. Primary outcome data were analyzed using the analysis of covariance (ANCOVA). RESULTS After an initial decrease in temperature during the exposure phase, the dry group had a higher mean skin temperature compared to the wet group after only 2 min. The skin-rewarming rate was highest in the initial rewarming stages for both groups, but increased in the dry group as compared to the wet group in the first 10 min. Return to baseline temperature occurred significantly faster in the dry group (mean 12.5 min [dry] vs. 28.1 min [wet]). No intergroup differences in the subjective thermal comfort or shivering were observed. CONCLUSION Removal of wet clothing in combination with a vapor barrier increases skin rewarming rate compared to encasing the wet clothing in a vapor barrier, in mild cold and environments without wind. TRIAL REGISTRATION ClinicalTrials.gov ID NCT05996757, retrospectively registered 18/08/2023.
Collapse
Affiliation(s)
- Linn Therese Hagen
- Department of Anaesthesia and Intensive Care, Haukeland University Hospital, P.O. Box 1400, Bergen, 5021, Norway.
- Faculty of health sciences, University of Stavanger, Stavanger, Norway.
- Mountain Medicine Research Group, The Norwegian Air Ambulance Foundation, Bergen, Norway.
| | - Guttorm Brattebø
- Department of Anaesthesia and Intensive Care, Haukeland University Hospital, P.O. Box 1400, Bergen, 5021, Norway
- Mountain Medicine Research Group, The Norwegian Air Ambulance Foundation, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jörg Assmus Dipl-Math
- Mountain Medicine Research Group, The Norwegian Air Ambulance Foundation, Bergen, Norway
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - Øystein Wiggen
- SINTEF Technology and Society, Preventive Health Research, Trondheim, Norway
| | - Øyvind Østerås
- Department of Anaesthesia and Intensive Care, Haukeland University Hospital, P.O. Box 1400, Bergen, 5021, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Sigurd Mydske
- Department of Anaesthesia and Intensive Care, Haukeland University Hospital, P.O. Box 1400, Bergen, 5021, Norway
- Mountain Medicine Research Group, The Norwegian Air Ambulance Foundation, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Øyvind Thomassen
- Department of Anaesthesia and Intensive Care, Haukeland University Hospital, P.O. Box 1400, Bergen, 5021, Norway
- Mountain Medicine Research Group, The Norwegian Air Ambulance Foundation, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
14
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 4: evolution, thermal adaptation and unsupported theories of thermoregulation. Eur J Appl Physiol 2024; 124:147-218. [PMID: 37796290 DOI: 10.1007/s00421-023-05262-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 10/06/2023]
Abstract
This review is the final contribution to a four-part, historical series on human exercise physiology in thermally stressful conditions. The series opened with reminders of the principles governing heat exchange and an overview of our contemporary understanding of thermoregulation (Part 1). We then reviewed the development of physiological measurements (Part 2) used to reveal the autonomic processes at work during heat and cold stresses. Next, we re-examined thermal-stress tolerance and intolerance, and critiqued the indices of thermal stress and strain (Part 3). Herein, we describe the evolutionary steps that endowed humans with a unique potential to tolerate endurance activity in the heat, and we examine how those attributes can be enhanced during thermal adaptation. The first of our ancestors to qualify as an athlete was Homo erectus, who were hairless, sweating specialists with eccrine sweat glands covering almost their entire body surface. Homo sapiens were skilful behavioural thermoregulators, which preserved their resource-wasteful, autonomic thermoeffectors (shivering and sweating) for more stressful encounters. Following emigration, they regularly experienced heat and cold stress, to which they acclimatised and developed less powerful (habituated) effector responses when those stresses were re-encountered. We critique hypotheses that linked thermoregulatory differences to ancestry. By exploring short-term heat and cold acclimation, we reveal sweat hypersecretion and powerful shivering to be protective, transitional stages en route to more complete thermal adaptation (habituation). To conclude this historical series, we examine some of the concepts and hypotheses of thermoregulation during exercise that did not withstand the tests of time.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise. Eur J Appl Physiol 2024; 124:1-145. [PMID: 37796292 DOI: 10.1007/s00421-023-05276-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
In this third installment of our four-part historical series, we evaluate contributions that shaped our understanding of heat and cold stress during occupational and athletic pursuits. Our first topic concerns how we tolerate, and sometimes fail to tolerate, exercise-heat stress. By 1900, physical activity with clothing- and climate-induced evaporative impediments led to an extraordinarily high incidence of heat stroke within the military. Fortunately, deep-body temperatures > 40 °C were not always fatal. Thirty years later, water immersion and patient treatments mimicking sweat evaporation were found to be effective, with the adage of cool first, transport later being adopted. We gradually acquired an understanding of thermoeffector function during heat storage, and learned about challenges to other regulatory mechanisms. In our second topic, we explore cold tolerance and intolerance. By the 1930s, hypothermia was known to reduce cutaneous circulation, particularly at the extremities, conserving body heat. Cold-induced vasodilatation hindered heat conservation, but it was protective. Increased metabolic heat production followed, driven by shivering and non-shivering thermogenesis, even during exercise and work. Physical endurance and shivering could both be compromised by hypoglycaemia. Later, treatments for hypothermia and cold injuries were refined, and the thermal after-drop was explained. In our final topic, we critique the numerous indices developed in attempts to numerically rate hot and cold stresses. The criteria for an effective thermal stress index were established by the 1930s. However, few indices satisfied those requirements, either then or now, and the surviving indices, including the unvalidated Wet-Bulb Globe-Thermometer index, do not fully predict thermal strain.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Yen CL, Petrie MA, Suneja M, Shields RK. Neuromuscular and gene signaling responses to passive whole-body heat stress in young adults. J Therm Biol 2023; 118:103730. [PMID: 37890230 DOI: 10.1016/j.jtherbio.2023.103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
This study aimed to investigate whether acute passive heat stress 1) decreases muscle Maximal Voluntary Contraction (MVC); 2) increases peripheral muscle fatigue; 3) increases spinal cord excitability, and 4) increases key skeletal muscle gene signaling pathways in skeletal muscle. Examining the biological and physiological markers underlying passive heat stress will assist us in understanding the potential therapeutic benefits. MVCs, muscle fatigue, spinal cord excitability, and gene signaling were examined after control or whole body heat stress in an environmental chamber (heat; 82 °C, 10% humidity for 30 min). Heart Rate (HR), an indicator of stress response, was correlated to muscle fatigue in the heat group (R = 0.59; p < 0.05) but was not correlated to MVC, twitch potentiation, and H reflex suppression. Sixty-one genes were differentially expressed after heat (41 genes >1.5-fold induced; 20 < 0.667 fold repressed). A strong correlation emerged between the session type (control or heat) and principal components (PC1) (R = 0.82; p < 0.005). Cell Signal Transduction, Metabolism, Gene Expression and Transcription, Immune System, DNA Repair, and Metabolism of Proteins were pathway domains with the largest number of genes regulated after acute whole body heat stress. Acute whole-body heat stress may offer a physiological stimulus for people with a limited capacity to exercise.
Collapse
Affiliation(s)
- Chu-Ling Yen
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Chang Gung Memorial Hospital, Neuroscience Research Center, Linkou, Taoyuan, Taiwan
| | - Michael A Petrie
- Department of Physical Therapy and Rehabilitation Science, Roy and Lucille Carver College of Medicine, The University of Iowa, Medical Education Building, Iowa City, IA, USA
| | - Manish Suneja
- Department of Internal Medicine, Roy and Lucille Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Richard K Shields
- Department of Physical Therapy and Rehabilitation Science, Roy and Lucille Carver College of Medicine, The University of Iowa, Medical Education Building, Iowa City, IA, USA.
| |
Collapse
|
17
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 2: physiological measurements. Eur J Appl Physiol 2023; 123:2587-2685. [PMID: 37796291 DOI: 10.1007/s00421-023-05284-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/14/2023] [Indexed: 10/06/2023]
Abstract
In this, the second of four historical reviews on human thermoregulation during exercise, we examine the research techniques developed by our forebears. We emphasise calorimetry and thermometry, and measurements of vasomotor and sudomotor function. Since its first human use (1899), direct calorimetry has provided the foundation for modern respirometric methods for quantifying metabolic rate, and remains the most precise index of whole-body heat exchange and storage. Its alternative, biophysical modelling, relies upon many, often dubious assumptions. Thermometry, used for >300 y to assess deep-body temperatures, provides only an instantaneous snapshot of the thermal status of tissues in contact with any thermometer. Seemingly unbeknownst to some, thermal time delays at some surrogate sites preclude valid measurements during non-steady state conditions. To assess cutaneous blood flow, immersion plethysmography was introduced (1875), followed by strain-gauge plethysmography (1949) and then laser-Doppler velocimetry (1964). Those techniques allow only local flow measurements, which may not reflect whole-body blood flows. Sudomotor function has been estimated from body-mass losses since the 1600s, but using mass losses to assess evaporation rates requires precise measures of non-evaporated sweat, which are rarely obtained. Hygrometric methods provide data for local sweat rates, but not local evaporation rates, and most local sweat rates cannot be extrapolated to reflect whole-body sweating. The objective of these methodological overviews and critiques is to provide a deeper understanding of how modern measurement techniques were developed, their underlying assumptions, and the strengths and weaknesses of the measurements used for humans exercising and working in thermally challenging conditions.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- College of Human Ecology, Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Zhai C, Bai L, Xu Y, Liu Y, Sun H, Gong X, Yu G, Zong Q, Hu W, Wang F, Cheng J, Zou Y. Temperature variability associated with respiratory disease hospitalisations, hospital stays and hospital expenses the warm temperate sub-humid monsoon climate. Public Health 2023; 225:206-217. [PMID: 37939462 DOI: 10.1016/j.puhe.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/25/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVES The abrupt change of climate has led to an increasing trend of hospitalised patients in recent years. This study aimed to analyse the temperature variability (TV) associated with respiratory disease (RD) hospitalisations, hospital stays and hospital expenses. STUDY DESIGN The generalized linear model combined with distributed lag non-linear model was used to investigate the association between TV and RD hospitalisations. METHODS TV was determined by measuring the standard deviation of maximum and minimum temperatures for the current day and the previous 7 days. RD hospitalisations data were obtained from three major tertiary hospitals in Huaibei City, namely, the Huaibei People's Hospital, the Huaibei Hospital Of Traditional Chinese Medicine and the Huaibei Maternal and Child Health Care Hospital. First, using a time series decomposition model, the seasonality and long-term trend of hospitalisations, hospital stays and hospital expenses for RD were explored in this warm temperate sub-humid monsoon climate. Second, robust models were used to analyse the association between TV and RD hospitalisations, hospital stays and hospital expenses. In addition, this study stratified results by sex, age and season. Third, using the attributable fraction (AF) and attributable number (AN), hospitalisations, hospital stays and hospital expenses for RD attributed to TV were quantified. RESULTS Overall, 0.013% of hospitalisations were attributed to TV0-1 (i.e. TV at the current day and previous 1 day), corresponding to 220 cases, 1603 days of hospital stays and 1,308,000 RMB of hospital expenses. Females were more susceptible to TV than males, and the risk increased with longer exposure (the highest risk was seen at TV0-7 [i.e. TV at the current day and previous 7 days] exposure). Higher AF and AN were observed at ages 0-5 years and ≥65 years. In addition, it was also found that TV was more strongly linked to RD in the cool season. The hot season was positively associated with hospital stays and hospital expenses at TV0-3 to TV0-7 exposure. CONCLUSIONS Exposure to TV increased the risk of hospitalisations, longer hospital stays and higher hospital expenses for RD. The findings suggested that more attention should be paid to unstable weather conditions in the future to protect the health of vulnerable populations.
Collapse
Affiliation(s)
- Chunxia Zhai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Liangliang Bai
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China
| | - Ying Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuqi Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hongyu Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - XingYu Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Guanghui Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qiqun Zong
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wanqin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
19
|
Corbett J, Young JS, Tipton MJ, Costello JT, Williams TB, Walker EF, Lee BJ, Stevens CE. Molecular biomarkers for assessing the heat-adapted phenotype: a narrative scoping review. J Physiol Sci 2023; 73:26. [PMID: 37848829 PMCID: PMC10717221 DOI: 10.1186/s12576-023-00882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Heat acclimation/acclimatisation (HA) mitigates heat-related decrements in physical capacity and heat-illness risk and is a widely advocated countermeasure for individuals operating in hot environments. The efficacy of HA is typically quantified by assessing the thermo-physiological responses to a standard heat acclimation state test (i.e. physiological biomarkers), but this can be logistically challenging, time consuming, and expensive. A valid molecular biomarker of HA would enable evaluation of the heat-adapted state through the sampling and assessment of a biological medium. This narrative review examines candidate molecular biomarkers of HA, highlighting the poor sensitivity and specificity of these candidates and identifying the current lack of a single 'standout' biomarker. It concludes by considering the potential of multivariable approaches that provide information about a range of physiological systems, identifying a number of challenges that must be overcome to develop a valid molecular biomarker of the heat-adapted state, and highlighting future research opportunities.
Collapse
Affiliation(s)
- J Corbett
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK.
| | - J S Young
- National Horizons Centre, Teesside University, Darlington, UK
| | - M J Tipton
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - J T Costello
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - T B Williams
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - E F Walker
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - B J Lee
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - C E Stevens
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
20
|
Di Cicco F, Evans RL, James AG, Weddell I, Chopra A, Smeets MAM. Intrinsic and extrinsic factors affecting axillary odor variation. A comprehensive review. Physiol Behav 2023; 270:114307. [PMID: 37516230 DOI: 10.1016/j.physbeh.2023.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
Humans produce odorous secretions from multiple body sites according to the microbiomic profile of each area and the types of secretory glands present. Because the axilla is an active, odor-producing region that mediates social communication via the sense of smell, this article focuses on the biological mechanisms underlying the creation of axillary odor, as well as the intrinsic and extrinsic factors likely to impact the odor and determine individual differences. The list of intrinsic factors discussed includes sex, age, ethnicity, emotions, and personality, and extrinsic factors include dietary choices, diseases, climate, and hygienic habits. In addition, we also draw attention to gaps in our understanding of each factor, including, for example, topical areas such as the effect of climate on body odor variation. Fundamental challenges and emerging research opportunities are further outlined in the discussion. Finally, we suggest guidelines and best practices based on the factors reviewed herein for preparatory protocols of sweat collection, data analysis, and interpretation.
Collapse
Affiliation(s)
- Francesca Di Cicco
- Faculty of Social and Behavioural Sciences, Utrecht University, Heidelberglaan 1, Utrecht, CS 3584, the Netherlands.
| | - Richard L Evans
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - A Gordon James
- Unilever Research & Development, Colworth House, Sharnbrook, UK
| | - Iain Weddell
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - Anita Chopra
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - Monique A M Smeets
- Faculty of Social and Behavioural Sciences, Utrecht University, Heidelberglaan 1, Utrecht, CS 3584, the Netherlands; Unilever Research & Development, Rotterdam, the Netherlands
| |
Collapse
|
21
|
Zheng S, Zhang X, Zhu W, Nie Y, Ke X, Liu S, Wang X, You J, Kang F, Bai Y, Wang M. A study of temperature variability on admissions and deaths for cardiovascular diseases in Northwestern China. BMC Public Health 2023; 23:1751. [PMID: 37684635 PMCID: PMC10486070 DOI: 10.1186/s12889-023-16650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
OBJECTIVE To explore the effect of temperature variability (TV) on admissions and deaths for cardiovascular diseases (CVDs). METHOD The admissions data of CVDs were collected in 4 general hospitals in Jinchang City, Gansu Province from 2013 to 2016. The monitoring data of death for CVDs from 2013 to 2017 were collected through the Jinchang City Center for Disease Control and Prevention. Distributed lag nonlinear model (DLNM) was combined to analyze the effects of TV (daily temperature variability (DTV) and hourly temperature variability (HTV)) on the admissions and deaths for CVDs after adjusting confounding effects. Stratified analysis was conducted by age and gender. Then the attribution risk of TV was evaluated. RESULTS There was a broadly linear correlation between TV and the admissions and deaths for CVDs, but only the association between TV and outpatient and emergency room (O&ER) visits for CVDs have statistically significant. DTV and HTV have similar lag effect. Every 1 ℃ increase in DTV and HTV was associated with a 3.61% (95% CI: 1.19% ~ 6.08%), 3.03% (95% CI: 0.27% ~ 5.86%) increase in O&ER visits for CVDs, respectively. There were 22.75% and 14.15% O&ER visits for CVDs can attribute to DTV and HTV exposure during 2013-2016. Males and the elderly may be more sensitive to the changes of TV. Greater effect of TV was observed in non-heating season than in heating season. CONCLUSION TV was an independent risk factor for the increase of O&ER visits for CVDs, suggesting effective guidance such as strengthening the timely prevention for vulnerable groups before or after exposure, which has important implications for risk management of CVDs.
Collapse
Affiliation(s)
- Shan Zheng
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| | - Xiaofei Zhang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wenzhi Zhu
- Center for Immunological and Metabolic Diseases (CIMD), MED-X Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yonghong Nie
- Jinchang Center for Disease Control and Prevention, Jinchang, 737100, China
| | - Ximeng Ke
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Shaodong Liu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xue Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jinlong You
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Feng Kang
- Workers' Hospital of Jinchuan Group Co., Ltd, Jinchang, 737103, China
| | - Yana Bai
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Minzhen Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
22
|
Chen J, Fonseca MA, Heyes A, Yang J, Zhang X. How Much Will Climate Change Reduce Productivity in a High-Technology Supply Chain? Evidence from Silicon Wafer Manufacturing. ENVIRONMENTAL & RESOURCE ECONOMICS 2023; 86:533-563. [PMID: 37860592 PMCID: PMC10581999 DOI: 10.1007/s10640-023-00803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 10/21/2023]
Abstract
The frequency of hot days in much of the world is increasing. What is the impact of high temperatures on productivity? Can technology-based adaptation mitigate such effects of climate change? We provide some answers to these questions by examining how high outdoor temperatures affect a high-technology, precision manufacturing setting. Exploiting individual-level data on the quantity and quality of work done across 35,190 worker-shifts in a leading NYSE-listed silicon wafer maker in China, we evidence a negative effect of outdoor heat on productivity. The effects are large: in our preferred linear specification, an increase in wet bulb temperature of 10 ∘ C causes a reduction in output of 8.3%. Temperature effects exist even though the manufacturer's work-spaces are indoors and protected by high-quality climate control systems. Results are not driven by extreme weather events and are robust to alternative modelling approaches. They illustrate the potential future adverse economic effects of climate change in most of the industrialised world.
Collapse
Affiliation(s)
- Jingnan Chen
- Economics Department, Business School, University of Exeter, Exeter, EX4 4PU UK
| | - Miguel A. Fonseca
- Economics Department, Business School, University of Exeter, Exeter, EX4 4PU UK
- NIPE, Universidade do Minho, Braga, Portugal
| | - Anthony Heyes
- Economics Department, University of Birmingham, Birmingham, B15 2TT UK
| | - Jie Yang
- Business School, Guilin University of Electronic Technology, Guilin, 541004 Guangxi China
| | - Xiaohui Zhang
- Economics Department, Business School, University of Exeter, Exeter, EX4 4PU UK
| |
Collapse
|
23
|
Ebisuda Y, Mukai K, Takahashi Y, Yoshida T, Kawano A, Matsuhashi T, Miyata H, Kuwahara M, Ohmura H. Acute exercise in a hot environment increases heat shock protein 70 and peroxisome proliferator-activated receptor γ coactivator 1α mRNA in Thoroughbred horse skeletal muscle. Front Vet Sci 2023; 10:1230212. [PMID: 37671280 PMCID: PMC10475567 DOI: 10.3389/fvets.2023.1230212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
Heat acclimatization or acclimation training in horses is practiced to reduce physiological strain and improve exercise performance in the heat, which can involve metabolic improvement in skeletal muscle. However, there is limited information concerning the acute signaling responses of equine skeletal muscle after exercise in a hot environment. The purpose of this study was to investigate the hypothesis that exercise in hot conditions induces greater changes in heat shock proteins and mitochondrial-related signaling in equine skeletal muscle compared with exercise in cool conditions. Fifteen trained Thoroughbred horses [4.6 ± 0.4 (mean ± SE) years old; 503 ± 14 kg] were assigned to perform a treadmill exercise test in cool conditions [COOL; Wet Bulb Globe Temperature (WBGT), 12.5°C; n = 8] or hot conditions (HOT; WBGT, 29.5°C; n = 7) consisting of walking at 1.7 m/s for 1 min, trotting at 4 m/s for 5 min, and cantering at 7 m/s for 2 min and at 90% of VO2max for 2 min, followed by walking at 1.7 m/s for 20 min. Heart rate during exercise and plasma lactate concentration immediately after exercise were measured. Biopsy samples were obtained from the middle gluteal muscle before and at 4 h after exercise, and relative quantitative analysis of mRNA expression using real-time RT-PCR was performed. Data were analyzed with using mixed models. There were no significant differences between the two groups in peak heart rate (COOL, 213 ± 3 bpm; HOT, 214 ± 4 bpm; p = 0.782) and plasma lactate concentration (COOL, 13.1 ± 1.4 mmoL/L; HOT, 17.5 ± 1.7 mmoL/L; p = 0.060), while HSP-70 (COOL, 1.9-fold, p = 0.207; HOT, 2.4-fold, p = 0.045), PGC-1α (COOL, 3.8-fold, p = 0.424; HOT, 8.4-fold, p = 0.010), HIF-1α (COOL, 1.6-fold, p = 0.315; HOT, 2.2-fold, p = 0.018) and PDK4 (COOL, 7.6-fold, p = 0.412; HOT, 14.1-fold, p = 0.047) mRNA increased significantly only in HOT at 4 h after exercise. These data indicate that acute exercise in a hot environment facilitates protective response to heat stress (HSP-70), mitochondrial biogenesis (PGC-1α and HIF-1α) and fatty acid oxidation (PDK4).
Collapse
Affiliation(s)
- Yusaku Ebisuda
- Sports Science Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Japan
| | - Kazutaka Mukai
- Sports Science Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Japan
| | - Yuji Takahashi
- Sports Science Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Japan
| | - Toshinobu Yoshida
- Sports Science Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Japan
| | - Aoto Kawano
- Department of Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Tsubasa Matsuhashi
- Department of Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Hirofumi Miyata
- Department of Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Hajime Ohmura
- Racehorse Hospital, Miho Training Center, Inashiki, Japan
| |
Collapse
|
24
|
Healy JP, Danesh Yazdi M, Wei Y, Qiu X, Shtein A, Dominici F, Shi L, Schwartz JD. Seasonal Temperature Variability and Mortality in the Medicare Population. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:77002. [PMID: 37404028 PMCID: PMC10321237 DOI: 10.1289/ehp11588] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Seasonal temperature variability remains understudied and may be modified by climate change. Most temperature-mortality studies examine short-term exposures using time-series data. These studies are limited by regional adaptation, short-term mortality displacement, and an inability to observe longer-term relationships in temperature and mortality. Seasonal temperature and cohort analyses allow the long-term effects of regional climatic change on mortality to be analyzed. OBJECTIVES We aimed to carry out one of the first investigations of seasonal temperature variability and mortality across the contiguous United States. We also investigated factors that modify this association. Using adapted quasi-experimental methods, we hoped to account for unobserved confounding and to investigate regional adaptation and acclimatization at the ZIP code level. METHODS We examined the mean and standard deviation (SD) of daily temperature in the warm (April-September) and cold (October-March) season in the Medicare cohort from 2000 to 2016. This cohort comprised 622,427,230 y of person-time in all adults over the age of 65 y from 2000 to 2016. We used daily mean temperature obtained from gridMET to develop yearly seasonal temperature variables for each ZIP code. We used an adapted difference-in-difference approach model with a three-tiered clustering approach and meta-analysis to observe the relationship between temperature variability and mortality within ZIP codes. Effect modification was assessed with stratified analyses by race and population density. RESULTS For every 1°C increase in the SD of warm and cold season temperature, the mortality rate increased by 1.54% [95% confidence interval (CI): 0.73%, 2.15%] and 0.69% (95% CI: 0.22%, 1.15%) respectively. We did not see significant effects for seasonal mean temperatures. Participants who were classified by Medicare into an "other" race group had smaller effects than those classified as White for Cold and Cold SD and areas with lower population density had larger effects for Warm SD. DISCUSSION Warm and cold season temperature variability were significantly associated with increased mortality rates in U.S. individuals over the age of 65 y, even after controlling for seasonal temperature averages. Warm and cold season mean temperatures showed null effects on mortality. Cold SD had a larger effect size for those who were in the racial subgroup other, whereas Warm SD was more harmful for those living in lower population density areas. This study adds to the growing calls for urgent climate mitigation and environmental health adaptation and resiliency. https://doi.org/10.1289/EHP11588.
Collapse
Affiliation(s)
- James P. Healy
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mahdieh Danesh Yazdi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Alexandra Shtein
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, Georgia, USA
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Mornas A, Brocherie F, Guilhem G, Guillotel A, LE Garrec S, Gouwy R, Gennisson JL, Beuve S, Racinais S. Active Heat Acclimation Does Not Alter Muscle-Tendon Unit Properties. Med Sci Sports Exerc 2023; 55:1076-1086. [PMID: 36719653 DOI: 10.1249/mss.0000000000003129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Heat acclimation (HA) is recommended before competing in hot and humid conditions. HA has also been recently suggested to increase muscle strength, but its effects on human's muscle and tendon mechanical properties are not yet fully understood. This study investigated the effect of active HA on gastrocnemius medialis (GM) muscle-tendon properties. METHODS Thirty recreationally active participants performed 13 low-intensity cycling sessions, distributed over a 17-d period in hot (HA = ~38°C, ~58% relative humidity; n = 15) or in temperate environment (CON = ~23°C, ~35% relative humidity; n = 15). Mechanical data and high-frame rate ultrasound images were collected during electrically evoked and voluntary contractions pre- and postintervention. Shear modulus was measured at rest in GM, and vertical jump performance was assessed. RESULTS Core temperature decreased from the first to the last session in HA (-0.4°C ± 0.3°C; P = 0.015), while sweat rate increased (+0.4 ± 0.3 L·h -1 ; P = 0.010), suggesting effective HA, whereas no changes were observed in CON (both P ≥ 0.877). Heart rate was higher in HA versus CON and decreased throughout intervention in groups (both P ≤ 0.008), without an interaction effect ( P = 0.733). Muscle-tendon unit properties (i.e., maximal and explosive isometric torque production, contractile properties, voluntary activation, joint and fascicular force-velocity relationship, passive muscle, and active tendon stiffness) and vertical jump performance did not show training ( P ≥ 0.067) or group-training interaction ( P ≥ 0.232) effects. CONCLUSIONS Effective active HA does not alter muscle-tendon properties. Preparing hot and humid conditions with active HA can be envisaged in all sporting disciplines without the risk of impairing muscle performance.
Collapse
Affiliation(s)
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, FRANCE
| | - Gaël Guilhem
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, FRANCE
| | - Arthur Guillotel
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, FRANCE
| | | | | | - Jean-Luc Gennisson
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, FRANCE
| | - Steve Beuve
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, FRANCE
| | | |
Collapse
|
26
|
Toro-Román V, Prieto-González I, Siquier-Coll J, Bartolomé I, Grijota FJ, Maynar-Mariño M. Effects of High Temperature Exposure on the Wingate Test Performance in Male University Students. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4782. [PMID: 36981697 PMCID: PMC10049338 DOI: 10.3390/ijerph20064782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
It has been suggested that heat exposure prior to exercise could induce changes in anaerobic exercise. Therefore, the purpose of this study was to observe the effects of high temperature heat exposure prior to an anaerobic test. Twenty-one men (age: 19.76 ± 1.22 years; height: 1.69 ± 0.12 m; weight: 67.89 ± 11.78 kg) voluntarily participated in this investigation. All of them performed two Wingate tests, vertical jump and macronutrient intake control. On the first day, the test was performed under normal environmental conditions. On the second day, it was performed in a similar way, but with previous exposure to heat at high sauna temperatures (15 min; 100 ± 2 °C). There were no differences in the vertical jump and macronutrient intake. However, the results showed an improvement in power (W) (p < 0.05), relative power (W/kg) (p < 0.01) and revolutions per minute (p < 0.05) 10 s after the start of the test. There was also an increase in thigh (p < 0.01) and skin temperature (p < 0.01) with pre-heat exposure. The results obtained suggest that this pre-exercise protocol could improve power in short and intensive actions.
Collapse
Affiliation(s)
- Víctor Toro-Román
- Faculty of Sport Sciences, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (V.T.-R.)
| | - Isaac Prieto-González
- Faculty of Sport Sciences, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (V.T.-R.)
| | - Jesús Siquier-Coll
- SER Research Group, Center of Higher Education Alberta Giménez, Comillas Pontifical University, Costa de Saragossa 16, 07013 Palma Mallorca, Spain
| | - Ignacio Bartolomé
- Department of Sport Science, Faculty of Education, Pontifical University of Salamanca, C/Henry Collet, 52-70, 37007 Salamanca, Spain
| | - Francisco J. Grijota
- Faculty of Life and Nature Sciences, University of Nebrija, Campus La Berzosa, Calle del Hostal, Hoyo de Manzanares, 28248 Madrid, Spain
| | - Marcos Maynar-Mariño
- Faculty of Sport Sciences, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (V.T.-R.)
| |
Collapse
|
27
|
Fu J, Liu Y, Zhao Y, Chen Y, Chang Z, Xu KF, Huang C, Fan Z. Association between the temperature difference and acute exacerbations of chronic obstructive pulmonary disease: A time-series analysis with 143,318 hospital admissions in Beijing, China. Front Public Health 2023; 11:1112926. [PMID: 36778544 PMCID: PMC9909227 DOI: 10.3389/fpubh.2023.1112926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Purpose Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) has the adverse influence on quality of life and creates significant healthcare costs. However, there were sparse studies investigating the correlation between AECOPD hospital admissions and temperature change. Therefore, it is noteworthy to investigate the impact of various temperature differences and recognize the susceptible population. The purpose of this study was to investigate the impact of temperature differences on AECOPD hospital admissions, and to give potentially helpful material for disease preventative efforts. Methods The distributed lag non-linear model was adopted to characterize the exposure-response relationship and to assess the impact of temperature difference. The stratified analysis and sensitivity analysis were also conducted to determine the susceptible populations and examine the robustness of the results. Results There were 143,318 AECOPD hospital admissions overall during the study period. The AECOPD hospital admissions had significant association with the daily mean temperature difference (DTDmean) such as the extreme-cold temperature difference (1st DTDmean), the ultra-cold temperature difference (5th DTDmean), the ultra-hot temperature difference (95th DTDmean) and the extreme-hot temperature difference (99th DTDmean). Besides, there was the "U-shaped" association between DTDmean and 21 days cumulative relative risk of AECOPD. Conclusion The AECOPD hospital admissions was correlated with the DTDmean temperature differences, especially the extreme-cold and extreme-hot temperature difference. Moreover, people older than 65 years were more susceptible to the extreme-hot and extreme-cold temperature difference.
Collapse
Affiliation(s)
- Jia Fu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanbo Liu
- Department of International Medical Services, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yakun Zhao
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiong Chen
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenge Chang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai-Feng Xu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Cheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,Cheng Huang ✉
| | - Zhongjie Fan
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Zhongjie Fan ✉
| |
Collapse
|
28
|
Peel J, John K, Page J, Scott G, Jeffries O, Heffernan S, Tallent J, Waldron M. Factors contributing to the change in thermoneutral maximal oxygen consumption after iso-intensity heat acclimation programmes. Eur J Sport Sci 2023:1-10. [PMID: 36533403 DOI: 10.1080/17461391.2022.2160278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The factors explaining variance in thermoneutral maximal oxygen uptake (V˙O2max) adaptation to heat acclimation (HA) were evaluated, with consideration of HA programme parameters, biophysical variables and thermo-physiological responses. Seventy-one participants consented to perform iso-intensity training (range: 45%-55% V˙O2max) in the heat (range: 30°C-38°C; 20%-60% relative humidity) on consecutive days (range: 5-days-14-days) for between 50-min and-90 min. The participants were evaluated for their thermoneutral V˙O2max change pre-to-post HA. Participants' whole-body sweat rate, heart rate, core temperature, perceived exertion and thermal sensation and plasma volume were measured, and changes in these responses across the programme determined. Partial least squares regression was used to explain variance in the change in V˙O2max across the programme using 24 variables. Sixty-three percent of the participants increased V˙O2max more than the test error, with a mean ± SD improvement of 2.6 ± 7.9%. A two-component model minimised the root mean squared error and explained the greatest variance (R2; 65%) in V˙O2max change. Eight variables positively contributed (P < 0.05) to the model: exercise intensity (%V˙O2max), ambient temperature, HA training days, total exposure time, baseline body mass, thermal sensation, whole-body mass losses and the number of days between the final day of HA and the post-testing day. Within the ranges evaluated, iso-intensity HA improved V˙O2max 63% of the time, with intensity - and volume-based parameters, alongside sufficient delays in post-testing being important considerations for V˙O2max maximisation. Monitoring of thermal sensation and body mass losses during the programme offers an accessible way to gauge the degree of potential adaptation.
Collapse
Affiliation(s)
- Jenny Peel
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Kevin John
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Joe Page
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Georgia Scott
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Owen Jeffries
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Shane Heffernan
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Jamie Tallent
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, UK.,Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Mark Waldron
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK.,Welsh Institute of Performance Science, Swansea University, Swansea, UK.,School of Health and Behavioural Sciences, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
29
|
Mazoteras-Pardo V, Losa-Iglesias ME, Casado-Hernández I, Calvo-Lobo C, Morales-Ponce Á, Medrano-Soriano A, Coco-Villanueva S, Becerro-de-Bengoa-Vallejo R. Indoor air quality in a training centre used for sports practice. PeerJ 2023; 11:e15298. [PMID: 37151296 PMCID: PMC10158773 DOI: 10.7717/peerj.15298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Background One of the measures for controlling the coronavirus disease 2019 (COVID-19) pandemic was the mass closure of gyms. This measure leads us to determine the differences between indoor and outdoor air quality. That is why the objective of this study was to analyse the indoor air quality of a sports centre catering to small groups and rehabilitation. Methods The study was conducted in a single training centre, where 26 measurements were taken in two spaces (indoors and outdoors). The air quality index, temperature, relative humidity, total volatile compounds, carbon monoxide, ozone, formaldehyde, carbon dioxide, and particulate matter were measured indoors and outdoors using the same protocol and equipment. These measurements were taken twice, once in the morning and once in the afternoon, with all measurements made at the same time, 10 am and 6 pm, respectively. Additionally, four determinations of each variable were collected during each shift, and the number of people who had trained in the room and the number of trainers were counted. Results In the different variables analysed, the results show that CO2 and RH levels are higher indoors than outdoors in both measurement shifts. Temperatures are higher outside than inside and, in the evening, than in the morning. TVOC, AQI and PM show less variation, although they are higher outdoors in the morning. CO is highest indoors. HCHO levels are almost negligible and do not vary significantly, except for a slight increase in the afternoon outside. Ozone levels are not significant. All the variables showed practically perfect reliability in all the measurements, except for ozone measured outside in the morning. On the other hand, the variables exhibit variations between indoors and outdoors during the morning and afternoon, except for the three types of PM. Also, the data show that all the main variables measured inside the sports training centre are similar between morning and afternoon. However, outside, temperature, relative humidity and HCHO levels show significant differences between morning and afternoon while no differences are observed for the other variables. Conclusion The indoor air quality of the training centre assessed was good and met current regulations; some of its components even exhibited better levels than fresh air. This article is the first to measure indoor air quality in a sports training centre catering to rehabilitation and small groups.
Collapse
Affiliation(s)
- Victoria Mazoteras-Pardo
- Department of Nursing, Physiotherapy and Occupational Therapy, Faculty of Physiotherapy and Nursing of Toledo, Toledo, Spain
| | - Marta Elena Losa-Iglesias
- Department of Nursing, Faculty of Health Sciences. Universidad Rey Juan Carlos de Madrid, Madrid, Spain
| | - Israel Casado-Hernández
- Department of Nursing, Faculty of Nursing, Physiotherapy and Podiatry, Universidad Complutense de Madrid, Madrid, Spain
| | - César Calvo-Lobo
- Department of Nursing, Faculty of Nursing, Physiotherapy and Podiatry, Universidad Complutense de Madrid, Madrid, Spain
| | - Ángel Morales-Ponce
- Department of Nursing, Faculty of Nursing, Physiotherapy and Podiatry, Universidad Complutense de Madrid, Madrid, Spain
| | - Alfredo Medrano-Soriano
- Department of Nursing, Faculty of Nursing, Physiotherapy and Podiatry, Universidad Complutense de Madrid, Madrid, Spain
| | - Sergio Coco-Villanueva
- Department of Nursing, Faculty of Nursing, Physiotherapy and Podiatry, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
30
|
The Impact of Heat Acclimation on Gastrointestinal Function following Endurance Exercise in a Hot Environment. Nutrients 2023; 15:nu15010216. [PMID: 36615873 PMCID: PMC9823684 DOI: 10.3390/nu15010216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
To determine the effects of heat acclimation on gastrointestinal (GI) damage and the gastric emptying (GE) rate following endurance exercise in a hot environment. Fifteen healthy men were divided into two groups: endurance training in hot (HOT, 35 °C, n = 8) or cool (COOL, 18 °C, n = 7) environment. All subjects completed 10 days of endurance training (eight sessions of 60 min continuous exercise at 50% of the maximal oxygen uptake (V·O2max). Subjects completed a heat stress exercise tests (HST, 60 min exercise at 60% V·O2max) to evaluate the plasma intestinal fatty acid-binding protein (I-FABP) level and the GE rate following endurance exercise in a hot environment (35 °C) before (pre-HST) and after (post-HST) the training period. We assessed the GE rate using the 13C-sodium acetate breath test. The core temperature during post-HST exercise decreased significantly in the HOT group compared to the pre-HST (p = 0.004) but not in the COOL group. Both the HOT and COOL groups showed exercise-induced plasma I-FABP elevations in the pre-HST (p = 0.002). Both groups had significantly attenuated exercise-induced I-FABP elevation in the post-HST. However, the reduction of exercise-induced I-FABP elevation was not different significantly between both groups. GE rate following HST did not change between pre- and post-HST in both groups, with no significant difference between two groups in the post-HST. Ten days of endurance training in a hot environment improved thermoregulation, whereas exercise-induced GI damage and delay of GE rate were not further attenuated compared with training in a cool environment.
Collapse
|
31
|
Effectiveness of short-term isothermic-heat acclimation (4 days) on physical performance in moderately trained males. PLoS One 2022; 17:e0270093. [DOI: 10.1371/journal.pone.0270093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/04/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction
A typical heat acclimation (HA) protocol takes 5–7 d of 60–90 minutes of heat exposure. Identifying the minimum dose of HA required to elicit a heat adapted phenotype could reduce financial constraints on participants and aid in the tapering phase for competition in hot countries. Therefore, the aim of this study was to investigate a 4 d HA regimen on physical performance
Methods
Twelve moderately trained males were heat acclimated using controlled hyperthermia (Tre>38.5°C), with no fluid intake for 90 min on 4 consecutive days, with a heat stress test (HST) being completed one week prior to (HST2), and within one-week post (HST3) HA. Eleven completed the control study of HST1 versus HST2, one week apart with no intervention. Heat stress tests comprised of cycling for 90 min @ 40% Peak Power Output (PPO); 35°C; 60%RH followed by 10 minutes of passive recovery before an incremental test to exhaustion. Physical performance outcomes time to exhaustion (TTE), PPO, end rectal temperature (Tre END), and heart rate (HREND) was measured during the incremental test to exhaustion.
Results
Physiological markers indicated no significant changes in the heat; however descriptive statistics indicated mean resting Tre lowered 0.24°C (-0.54 to 0.07°C; d = 2.35: very large) and end-exercise lowered by 0.32°C (-0.81 to 0.16; d = 2.39: very large). There were significant improvements across multiple timepoints following HA in perceptual measures; Rate of perceived exertion (RPE), Thermal Sensation (TS), and Thermal Comfort (TC) (P<0.05). Mean TTE in the HST increased by 142 s (323±333 to 465±235s; P = 0.04) and mean PPO by 76W (137±128 to 213±77 W; P = 0.03).
Conclusion
Short-term isothermic HA (4 d) was effective in enhancing performance capacity in hot and humid conditions. Regardless of the level of physiological adaptations, behavioural adaptations were sufficient to elicit improved performance and thermotolerance in hot conditions. Additional exposures may be requisite to ensure physiological adaptation.
Collapse
|
32
|
Liu H, Tong M, Guo F, Nie Q, Li J, Li P, Zhu T, Xue T. Deaths attributable to anomalous temperature: A generalizable metric for the health impact of global warming. ENVIRONMENT INTERNATIONAL 2022; 169:107520. [PMID: 36170754 DOI: 10.1016/j.envint.2022.107520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/05/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
The U-shaped association between health outcomes and ambient temperatures has been extensively investigated. However, such analyses cannot fully estimate the mortality burden of climate change because the features of the association (e.g., minimum mortality temperature) vary with human adaptation; thus, they are not generalizable to different locations. In this study, we assumed that humans could adapt to regular temperature variations; and thus examined the all-cause mortality attributable to temperature anomaly (TA), an indicator widely utilized in climate science to measure irregular temperature fluctuations, across 115 cities in the United States (US). We first used quasi-Poisson regressions to obtain the city-specific TA-mortality associations, then used meta-regression to pool these city-specific estimates. Finally, we calculated the number of TA-related deaths using the uniform pooled association, then compared it to the estimates from city-specific associations, which had been controlled for adaptation. Meta-regression showed a U-shaped TA-mortality association, centered at a TA near 0. According to the pooled association, 0.579 % (95 % confidence interval [CI]: 0.465-0.681 %), 0.394 % (95 % CI: 0.332-0.451 %), and 0.185 % (95 % CI: 0.107-0.254 %) of all-cause deaths were attributable to all anomalous temperatures (TA ≠ 0), anomalous heat (TA > 0), and anomalous cold (TA < 0), respectively. At the city level, heat-related deaths estimated from the pooled association were in good agreement with heat-related deaths estimated from the city-specific associations (R2 = 0.84). However, the cold-related deaths estimated from the two methods showed a weaker correlation (R2 = 0.07). Our findings suggest that TA constitutes a generalizable indicator that can uniformly evaluate deaths attributable to anomalous heat in distinct geographical locations.
Collapse
Affiliation(s)
- Hengyi Liu
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Mingkun Tong
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Fuyu Guo
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Qiyue Nie
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jiwei Li
- School of Computer Science, Zhejiang University, Hangzhou, China
| | - Pengfei Li
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, China
| | - Tong Zhu
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tao Xue
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China.
| |
Collapse
|
33
|
Cottle RM, Lichter ZS, Vecellio DJ, Wolf ST, Kenney WL. Core temperature responses to compensable versus uncompensable heat stress in young adults (PSU HEAT Project). J Appl Physiol (1985) 2022; 133:1011-1018. [PMID: 36049058 PMCID: PMC9550570 DOI: 10.1152/japplphysiol.00388.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
With global warming, much attention has been paid to the upper limits of human adaptability. However, the time to reach a generally accepted core temperature criterion (40.2°C) associated with heat-related illness above (uncompensable heat stress) and just below (compensable heat stress) the upper limits for heat balance remains unclear. Forty-eight (22 men/26 women; 23 ± 4 yr) subjects were exposed to progressive heat stress in an environmental chamber during minimal activity (MinAct, 159 ± 34 W) and light ambulation (LightAmb, 260 ± 55 W) in warm-humid (WH; ∼35°C, >60% RH) and hot-dry (HD; 43°C-48°C, <25% RH) environments until heat stress became uncompensable. For each condition, we compared heat storage (S) and the change in gastrointestinal temperature (ΔTgi) over time during compensable and uncompensable heat stress. In addition, we examined whether individual characteristics or seasonality were associated with the rate of increase in Tgi. During compensable heat stress, S was higher in HD than in WH environments (P < 0.05) resulting in a greater but more variable ΔTgi (P ≥ 0.06) for both metabolic rates. There were no differences among conditions during uncompensable heat stress (all P > 0.05). There was no influence of sex, aerobic fitness, or seasonality, but a larger body size was associated with a greater ΔTgi during LightAmb in WH (P = 0.003). The slopes of the Tgi response during compensable (WH: MinAct, 0.06, LightAmb, 0.09; HD: MinAct, 0.12, LightAmb, 0.15°C/h) and uncompensable (WH: MinAct, 0.74, LightAmb, 0.87; HD: MinAct, 0.71, LightAmb, 0.93°C/h) heat stress can be used to estimate the time to reach a target core temperature from any given starting value.NEW & NOTEWORTHY This study is the first to examine heat storage and the rate of change in core temperature above (uncompensable heat stress) and just below (compensable heat stress) critical environmental limits to human heat balance. Furthermore, we examine the influence of individual subject characteristics and seasonality on the change in core temperature in warm-humid versus hot-dry environments. We provide the rate of change in core temperature, enabling projections to be made to and from any hypothetical core temperature.
Collapse
Affiliation(s)
- Rachel M Cottle
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Healthy Aging, College of Health and Human Development, The Pennsylvania State University, University Park, Pennsylvania
| | - Zachary S Lichter
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Daniel J Vecellio
- Center for Healthy Aging, College of Health and Human Development, The Pennsylvania State University, University Park, Pennsylvania
| | - S Tony Wolf
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Healthy Aging, College of Health and Human Development, The Pennsylvania State University, University Park, Pennsylvania
- Graduate Program in Physiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
34
|
Chou TH, Coyle EF. Cardiovascular responses to hot skin at rest and during exercise. Temperature (Austin) 2022; 10:326-357. [PMID: 37554384 PMCID: PMC10405766 DOI: 10.1080/23328940.2022.2109931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022] Open
Abstract
Integrative cardiovascular responses to heat stress during endurance exercise depend on various variables, such as thermal stress and exercise intensity. This review addresses how increases in skin temperature alter and challenge the integrative cardiovascular system during upright submaximal endurance exercise, especially when skin is hot (i.e. >38°C). Current evidence suggests that exercise intensity plays a significant role in cardiovascular responses to hot skin during exercise. At rest and during mild intensity exercise, hot skin increases skin blood flow and abolishes cutaneous venous tone, which causes blood pooling in the skin while having little impact on stroke volume and thus cardiac output is increased with an increase in heart rate. When the heart rate is at relatively low levels, small increases in heart rate, skin blood flow, and cutaneous venous volume do not compromise stroke volume, so cardiac output can increase to fulfill the demands for maintaining blood pressure, heat dissipation, and the exercising muscle. On the contrary, during more intense exercise, hot skin does not abolish exercise-induced cutaneous venoconstriction possibly due to high sympathetic nerve activities; thus, it does not cause blood pooling in the skin. However, hot skin reduces stroke volume, which is associated with a decrease in ventricular filling time caused by an increase in heart rate. When the heart rate is high during moderate or intense exercise, even a slight reduction in ventricular filling time lowers stroke volume. Cardiac output is therefore not elevated when skin is hot during moderate intensity exercise.
Collapse
Affiliation(s)
- Ting-Heng Chou
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Edward F. Coyle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Texas, Tx, USA
| |
Collapse
|
35
|
McGlynn ML, Collins C, Hailes W, Ruby B, Slivka D. Heat Acclimation in Females Does Not Limit Aerobic Exercise Training Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5554. [PMID: 35564948 PMCID: PMC9103535 DOI: 10.3390/ijerph19095554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
Recent aerobic exercise training in the heat has reported blunted aerobic power improvements and reduced mitochondrial-related gene expression in men. It is unclear if this heat-induced blunting of the training response exists in females. The purpose of the present study was to determine the impact of 60 min of cycling in the heat over three weeks on thermoregulation, gene expression, and aerobic capacity in females. Untrained females (n = 22; 24 ± 4yoa) were assigned to three weeks of aerobic training in either 20 °C (n = 12) or 33 °C (n = 10; 40%RH). Maximal aerobic capacity (39.5 ± 6.5 to 41.5 ± 6.2 mL·kg−1·min−1, p = 0.021, ηp2 = 0.240, 95% CI [0.315, 3.388]) and peak aerobic power (191.0 ± 33.0 to 206.7 ± 27.2 W, p < 0.001, ηp2 = 0.531, 95% CI [8.734, 22.383]) increased, while the absolute-intensity trial (50%VO2peak) HR decreased (152 ± 15 to 140 ± 13 b·min−1, p < 0.001, ηp2 = 0.691, 95% CI [15.925, 8.353]), but they were not different between temperatures (p = 0.440, p = 0.955, p = 0.341, respectively). Independent of temperature, Day 22 tolerance trial skin temperatures decreased from Day 1 (p = 0.006, ηp2 = 0.319, 95% CI [1.408, 0.266), but training did not influence core temperature (p = 0.598). Average sweat rates were higher in the 33 °C group vs. the 20 °C group (p = 0.008, ηp2 = 0.303, 95% CI [67.9, 394.9]) but did not change due to training (p = 0.571). Pre-training PGC-1α mRNA increased 4h-post-exercise (5.29 ± 0.70 fold change, p < 0.001), was lower post-training (2.69 ± 0.22 fold change, p = 0.004), and was not different between temperatures (p = 0.455). While training induced some diminished transcriptional stimulus, generally the training temperature had little effect on genes related to mitochondrial biogenesis, mitophagy, and metabolic enzymes. These female participants increased aerobic fitness and maintained an exercise-induced PGC-1α mRNA response in the heat equal to that of room temperature conditions, contrasting with the blunted responses previously observed in men.
Collapse
Affiliation(s)
- Mark L. McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (M.L.M.); (C.C.)
| | - Christopher Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (M.L.M.); (C.C.)
| | - Walter Hailes
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA; (W.H.); (B.R.)
| | - Brent Ruby
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA; (W.H.); (B.R.)
| | - Dustin Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (M.L.M.); (C.C.)
| |
Collapse
|
36
|
Travers G, Kippelen P, Trangmar SJ, González-Alonso J. Physiological Function during Exercise and Environmental Stress in Humans-An Integrative View of Body Systems and Homeostasis. Cells 2022; 11:383. [PMID: 35159193 PMCID: PMC8833916 DOI: 10.3390/cells11030383] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
Claude Bernard's milieu intérieur (internal environment) and the associated concept of homeostasis are fundamental to the understanding of the physiological responses to exercise and environmental stress. Maintenance of cellular homeostasis is thought to happen during exercise through the precise matching of cellular energetic demand and supply, and the production and clearance of metabolic by-products. The mind-boggling number of molecular and cellular pathways and the host of tissues and organ systems involved in the processes sustaining locomotion, however, necessitate an integrative examination of the body's physiological systems. This integrative approach can be used to identify whether function and cellular homeostasis are maintained or compromised during exercise. In this review, we discuss the responses of the human brain, the lungs, the heart, and the skeletal muscles to the varying physiological demands of exercise and environmental stress. Multiple alterations in physiological function and differential homeostatic adjustments occur when people undertake strenuous exercise with and without thermal stress. These adjustments can include: hyperthermia; hyperventilation; cardiovascular strain with restrictions in brain, muscle, skin and visceral organs blood flow; greater reliance on muscle glycogen and cellular metabolism; alterations in neural activity; and, in some conditions, compromised muscle metabolism and aerobic capacity. Oxygen supply to the human brain is also blunted during intense exercise, but global cerebral metabolism and central neural drive are preserved or enhanced. In contrast to the strain seen during severe exercise and environmental stress, a steady state is maintained when humans exercise at intensities and in environmental conditions that require a small fraction of the functional capacity. The impact of exercise and environmental stress upon whole-body functions and homeostasis therefore depends on the functional needs and differs across organ systems.
Collapse
Affiliation(s)
- Gavin Travers
- The European Astronaut Centre, The European Space Agency, Linder Höhe, 51147 Cologne, Germany;
| | - Pascale Kippelen
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Steven J. Trangmar
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
37
|
Razi O, Tartibian B, Teixeira AM, Zamani N, Govindasamy K, Suzuki K, Laher I, Zouhal H. Thermal dysregulation in patients with multiple sclerosis during SARS-CoV-2 infection. The potential therapeutic role of exercise. Mult Scler Relat Disord 2022; 59:103557. [PMID: 35092946 PMCID: PMC8785368 DOI: 10.1016/j.msard.2022.103557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022]
Abstract
Thermoregulation is a homeostatic mechanism that is disrupted in some neurological diseases. Patients with multiple sclerosis (MS) are susceptible to increases in body temperature, especially with more severe neurological signs. This condition can become intolerable when these patients suffer febrile infections such as coronavirus disease-2019 (COVID-19). We review the mechanisms of hyperthermia in patients with MS, and they may encounter when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finally, the thermoregulatory role and relevant adaptation to regular physical exercise are summarized.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Ana Maria Teixeira
- University of Coimbra, Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Karuppasamy Govindasamy
- Department of Physical Education & Sports Science, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Rennes F-35000, France; Institut International des Sciences du Sport (2I2S), Irodouer 35850, France.
| |
Collapse
|
38
|
Kissling LS, Akerman AP, Campbell HA, Prout JR, Gibbons TD, Thomas KN, Cotter JD. A crossover control study of three methods of heat acclimation on the magnitude and kinetics of adaptation. Exp Physiol 2021; 107:337-349. [PMID: 34957632 DOI: 10.1113/ep089993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS Central question to the study? Are primary indices of heat adaptation (e.g., expansion of plasma volume and reduction in resting core temperature) differentially affected by the three major modes of short-term heat acclimation, i.e., exercise in the heat, hot water immersion and sauna? Main finding and its importance? The three modes elicited typical adaptations expected with short-term heat acclimation, however these were not significantly different between modes. This comparison has not previously been done and highlights that individuals can expect similar adaptation to heat regardless of the mode used. ABSTRACT Heat acclimation (HA) can improve heat tolerance and cardiovascular health. The mode of HA potentially impacts the magnitude and time course of adaptations, but almost no comparative data exist. We therefore investigated adaptive responses to three common modes of HA, particularly with respect to plasma volume. Within a crossover repeated-measures design, 13 physically-active participants (5 female) undertook four, 5-d HA regimes (60 min/d) in randomised order, separated by ≥4 wk. Rectal temperature (Tre ) was clamped at neutrality via 36.6C (thermoneutral) water immersion (TWI; i.e., control condition), or raised by 1.5°C via heat stress in 40°C water (HWI), Sauna (55°C, 52% RH), or exercise in humid heat (40°C, 52% RH; ExH). Adaptation magnitude was assessed as the pooled response across days 4 to 6, while kinetics was assessed via the 6-d time series. Plasma volume expansion was similar in all heated conditions but only higher than TWI in ExH (by 4%, p = 0.036). Approximately two thirds of the expansion was attained within the initial 24 h and was moderately related to that present on day 6, regardless of HA mode (r = 0.560-0.887). Expansion was mediated by conservation of both sodium and albumin content, with little evidence for these having differential roles between modes (p = 0.706 and 0.320, respectively). Resting Tre decreased by 0.1-0.3°C in all heated conditions, and SBP decreased by 4 mm Hg, but not differentially between conditions (p≥0.137). In conclusion, HA mode did not substantially affect the magnitude or rate of adaptation in key resting markers of short-term HA. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lorenz S Kissling
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Ashley P Akerman
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand.,Department of Surgical Sciences, Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Holly A Campbell
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand.,Department of Surgical Sciences, Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Jamie R Prout
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Travis D Gibbons
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand.,Department of Surgical Sciences, Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Kate N Thomas
- Department of Surgical Sciences, Department of Medicine, University of Otago, Dunedin, New Zealand
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
39
|
Travers G, González-Alonso J, Riding N, Nichols D, Shaw A, Périard JD. Exercise Heat Acclimation With Dehydration Does Not Affect Vascular and Cardiac Volumes or Systemic Hemodynamics During Endurance Exercise. Front Physiol 2021; 12:740121. [PMID: 34867447 PMCID: PMC8633441 DOI: 10.3389/fphys.2021.740121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/18/2021] [Indexed: 11/14/2022] Open
Abstract
Permissive dehydration during exercise heat acclimation (HA) may enhance hematological and cardiovascular adaptations and thus acute responses to prolonged exercise. However, the independent role of permissive dehydration on vascular and cardiac volumes, ventricular-arterial (VA) coupling and systemic hemodynamics has not been systematically investigated. Seven males completed two 10-day exercise HA interventions with controlled heart rate (HR) where euhydration was maintained or permissive dehydration (-2.9 ± 0.5% body mass) occurred. Two experimental trials were conducted before and after each HA intervention where euhydration was maintained (-0.5 ± 0.4%) or dehydration was induced (-3.6 ± 0.6%) via prescribed fluid intakes. Rectal (Tre) and skin temperatures, HR, blood (BV) and left ventricular (LV) volumes, and systemic hemodynamics were measured at rest and during bouts of semi-recumbent cycling (55% V̇O2peak) in 33°C at 20, 100, and 180 min. Throughout HA sweat rate (12 ± 9%) and power output (18 ± 7 W) increased (P < 0.05), whereas Tre was 38.4 ± 0.2°C during the 75 min of HR controlled exercise (P = 1.00). Neither HA intervention altered resting and euhydrated exercising Tre, BV, LV diastolic and systolic volumes, systemic hemodynamics, and VA coupling (P > 0.05). Furthermore, the thermal and cardiovascular strain during exercise with acute dehydration post-HA was not influenced by HA hydration strategy. Instead, elevations in Tre and HR and reductions in BV and cardiac output matched pre-HA levels (P > 0.05). These findings indicate that permissive dehydration during exercise HA with controlled HR and maintained thermal stimulus does not affect hematological or cardiovascular responses during acute endurance exercise under moderate heat stress with maintained euhydration or moderate dehydration.
Collapse
Affiliation(s)
- Gavin Travers
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,Centre for Human Performance and Rehabilitation, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance and Rehabilitation, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Nathan Riding
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - David Nichols
- Sport Development Centre, Loughborough University, Loughborough, United Kingdom
| | - Anthony Shaw
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Julien D Périard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,Research Institute for Sport and Exercise, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
40
|
Crandall CG, Cramer MN, Kowalske KJ. Edward F. Adolph Distinguished Lecture. It's more than skin deep: thermoregulatory and cardiovascular consequences of severe burn injuries in humans. J Appl Physiol (1985) 2021; 131:1852-1866. [PMID: 34734782 PMCID: PMC8714984 DOI: 10.1152/japplphysiol.00620.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022] Open
Abstract
Each year, within the United States, tens of thousands of individuals are hospitalized for burn-related injuries. The treatment of deep burns often involves skin grafts to accelerate healing and reduce the risk of infection. The grafting procedure results in a physical disruption between the injured and subsequently debrided host site and the skin graft placed on top of that site. Both neural and vascular connections must occur between the host site and the graft for neural modulation of skin blood flow to take place. Furthermore, evaporative cooling from such burn injured areas is effectively absent, leading to greatly impaired thermoregulatory responses in individuals with large portions of their body surface area burned. Hospitalization following a burn injury can last weeks to months, with cardiovascular and metabolic consequences of such injuries having the potential to adversely affect the burn survivor for years postdischarge. With that background, the objectives of this article are to discuss 1) our current understanding of the physiology and associated consequences of skin grafting, 2) the effects of skin grafts on efferent thermoregulatory responses and the associated consequences pertaining to whole body thermoregulation, 3) approaches that may reduce the risk of excessive hyperthermia in burn survivors, 4) the long-term cardiovascular consequences of burn injuries, and 5) the extent to which burn survivors can "normalize" otherwise compromised cardiovascular responses. Our primary objective is to guide the reader toward an understanding that severe burn injuries result in significant physiological consequences that can persist for years after the injury.
Collapse
Affiliation(s)
- Craig G Crandall
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Matthew N Cramer
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Karen J Kowalske
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
41
|
Piil JF, Kingma B, Morris NB, Christiansen L, Ioannou LG, Flouris AD, Nybo L. Proposed framework for forecasting heat-effects on motor-cognitive performance in the Summer Olympics. Temperature (Austin) 2021; 8:262-283. [PMID: 34485620 PMCID: PMC8409751 DOI: 10.1080/23328940.2021.1957367] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heat strain impairs performance across a broad spectrum of sport disciplines. The impeding effects of hyperthermia and dehydration are often ascribed to compromised cardiovascular and muscular functioning, but expert performance also depends on appropriately tuned sensory, motor and cognitive processes. Considering that hyperthermia has implications for central nervous system (CNS) function and fatigue, it is highly relevant to analyze how heat stress forecasted for the upcoming Olympics may influence athletes. This paper proposes and demonstrates the use of a framework combining expected weather conditions with a heat strain and motor-cognitive model to analyze the impact of heat and associated factors on discipline- and scenario-specific performances during the Tokyo 2021 games. We pinpoint that hyperthermia-induced central fatigue may affect prolonged performances and analyze how hyperthermia may impair complex motor-cognitive performance, especially when accompanied by either moderate dehydration or exposure to severe solar radiation. Interestingly, several short explosive performances may benefit from faster cross-bridge contraction velocities at higher muscle temperatures in sport disciplines with little or no negative heat-effect on CNS fatigue or motor-cognitive performance. In the analyses of scenarios and Olympic sport disciplines, we consider thermal impacts on “motor-cognitive factors” such as decision-making, maximal and fine motor-activation as well as the influence on central fatigue and pacing. From this platform, we also provide perspectives on how athletes and coaches can identify risks for their event and potentially mitigate negative motor-cognitive effects for and optimize performance in the environmental settings projected.
Collapse
Affiliation(s)
- Jacob Feder Piil
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| | - Boris Kingma
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,TNO, the Netherlands Organization for Applied Scientific Research, Unit Defense, Safety & Security, Soesterberg, The Netherlands
| | - Nathan B Morris
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Leonidas G Ioannou
- FAME Laboratory, School of Exercise Science, University of Thessaly, Thessaly, Greece
| | - Andreas D Flouris
- FAME Laboratory, School of Exercise Science, University of Thessaly, Thessaly, Greece
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| |
Collapse
|
42
|
Neidell M, Graff Zivin J, Sheahan M, Willwerth J, Fant C, Sarofim M, Martinich J. Temperature and work: Time allocated to work under varying climate and labor market conditions. PLoS One 2021; 16:e0254224. [PMID: 34432806 PMCID: PMC8386856 DOI: 10.1371/journal.pone.0254224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/23/2021] [Indexed: 11/18/2022] Open
Abstract
Workers in climate exposed industries such as agriculture, construction, and manufacturing face increased health risks of working on high temperature days and may make decisions to reduce work on high-heat days to mitigate this risk. Utilizing the American Time Use Survey (ATUS) for the period 2003 through 2018 and historical weather data, we model the relationship between daily temperature and time allocation, focusing on hours worked by high-risk laborers. The results indicate that labor allocation decisions are context specific and likely driven by supply-side factors. We do not find a significant relationship between temperature and hours worked during the Great Recession (2008-2014), perhaps due to high competition for employment, however during periods of economic growth (2003-2007, 2015-2018) we find a significant reduction in hours worked on high-heat days. During periods of economic growth, for every degree above 90 on a particular day, the average high-risk worker reduces their time devoted to work by about 2.6 minutes relative to a 90-degree day. This effect is expected to intensify in the future as temperatures rise. Applying the modeled relationships to climate projections through the end of century, we find that annual lost wages resulting from decreased time spent working on days over 90 degrees across the United States range from $36.7 to $80.0 billion in 2090 under intermediate and high emission futures, respectively.
Collapse
Affiliation(s)
- Matthew Neidell
- Department of Health Policy and Management, Columbia University, New York, New York, United States of America
| | - Joshua Graff Zivin
- Department of Economics, University of California at San Diego, La Jolla, California, United States of America
| | - Megan Sheahan
- Industrial Economics, Cambridge, Massachusetts, United States of America
| | - Jacqueline Willwerth
- Industrial Economics, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Charles Fant
- Industrial Economics, Cambridge, Massachusetts, United States of America
| | - Marcus Sarofim
- U.S. Environmental Protection Agency, Washington, District of Columbia, United States of America
| | - Jeremy Martinich
- U.S. Environmental Protection Agency, Washington, District of Columbia, United States of America
| |
Collapse
|
43
|
The effects of pre- and per-cooling interventions used in isolation and combination on subsequent 15-minute time-trial cycling performance in the heat. J Sci Med Sport 2021; 24:800-805. [DOI: 10.1016/j.jsams.2021.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
|
44
|
Heat acclimation enhances the cold-induced vasodilation response. Eur J Appl Physiol 2021; 121:3005-3015. [PMID: 34245332 PMCID: PMC8505386 DOI: 10.1007/s00421-021-04761-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
Purpose It has been reported that the cold-induced vasodilation (CIVD) response can be trained using either regular local cold stimulation or exercise training. The present study investigated whether repeated exposure to environmental stressors, known to improve aerobic performance (heat and/or hypoxia), could also provide benefit to the CIVD response. Methods Forty male participants undertook three 10-day acclimation protocols including daily exercise training: heat acclimation (HeA; daily exercise training at an ambient temperature, Ta = 35 °C), combined heat and hypoxic acclimation (HeA/HypA; daily exercise training at Ta = 35 °C, while confined to a simulated altitude of ~ 4000 m) and exercise training in normoxic thermoneutral conditions (NorEx; no environmental stressors). To observe potential effects of the local acclimation on the CIVD response, participants additionally immersed their hand in warm water (35 °C) daily during the HeA/HypA and NorEx. Before and after the acclimation protocols, participants completed hand immersions in cold water (8 °C) for 30 min, followed by 15-min recovery phases. The temperature was measured in each finger. Results Following the HeA protocol, the average temperature of all five fingers was higher during immersion (from 13.9 ± 2.4 to 15.5 ± 2.5 °C; p = 0.04) and recovery (from 22.2 ± 4.0 to 25.9 ± 4.9 °C; p = 0.02). The HeA/HypA and NorEx protocols did not enhance the CIVD response. Conclusion Whole-body heat acclimation increased the finger vasodilatory response during cold-water immersion, and enhanced the rewarming rate of the hand, thus potentially contributing to improved local cold tolerance. Daily hand immersion in warm water for 10 days during HeA/Hyp and NorEx, did not contribute to any changes in the CIVD response.
Collapse
|
45
|
Pokora I, Sadowska-Krępa E, Wolowski Ł, Wyderka P, Michnik A, Drzazga Z. The Effect of Medium-Term Sauna-Based Heat Acclimation (MPHA) on Thermophysiological and Plasma Volume Responses to Exercise Performed under Temperate Conditions in Elite Cross-Country Skiers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6906. [PMID: 34199101 PMCID: PMC8297353 DOI: 10.3390/ijerph18136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
The influence of a series of ten sauna baths (MPHA) on thermophysiological and selected hematological responses in 14 elite cross-country skiers to a submaximal endurance exercise test performed under thermoneutral environmental conditions was studied. Thermal and physiological variables were measured before and after the exercise test, whereas selected hematological indices were studied before, immediately after, and during recovery after a run, before (T1) and after sauna baths (T2). MPHA did not influence the baseline internal, body, and skin temperatures. There was a decrease in the resting heart rate (HR: p = 0.001) and physiological strain (PSI: p = 0.052) after MPHA and a significant effect of MPHA on systolic blood pressure (p = 0.03), hematological indices, and an exercise effect but no combined effect of treatments and exercise on the tested variables. A positive correlation was reported between PSI and total protein (%ΔTP) in T2 and a negative between plasma volume (%ΔPV) and mean red cellular volume (%ΔMCV) in T1 and T2 in response to exercise and a positive one during recovery. This may suggest that MPHA has a weak influence on body temperatures but causes a moderate decrease in PSI and modifications of plasma volume restoration in response to exercise under temperate conditions in elite athletes.
Collapse
Affiliation(s)
- Ilona Pokora
- Department of Physiological-Medical Sciences, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland;
| | - Ewa Sadowska-Krępa
- Department of Physiological-Medical Sciences, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland;
| | - Łukasz Wolowski
- Doctoral Studies, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (Ł.W.); (P.W.)
| | - Piotr Wyderka
- Doctoral Studies, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (Ł.W.); (P.W.)
| | - Anna Michnik
- The Silesian Centre for Education and Interdisciplinary Research, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (A.M.); (Z.D.)
| | - Zofia Drzazga
- The Silesian Centre for Education and Interdisciplinary Research, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (A.M.); (Z.D.)
| |
Collapse
|
46
|
Adams WM, Hosokawa Y, Casa DJ, Périard JD, Racinais S, Wingo JE, Yeargin SW, Scarneo-Miller SE, Kerr ZY, Belval LN, Alosa D, Csillan D, LaBella C, Walker L. Roundtable on Preseason Heat Safety in Secondary School Athletics: Heat Acclimatization. J Athl Train 2021; 56:352-361. [PMID: 33878177 DOI: 10.4085/1062-6050-596-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To provide best-practice recommendations for developing and implementing heat-acclimatization strategies in secondary school athletics. DATA SOURCES An extensive literature review on topics related to heat acclimatization and heat acclimation was conducted by a group of content experts. Using the Delphi method, action-oriented recommendations were developed. CONCLUSIONS A period of heat acclimatization consisting of ≥14 consecutive days should be implemented at the start of fall preseason training or practices for all secondary school athletes to mitigate the risk of exertional heat illness. The heat-acclimatization guidelines should outline specific actions for secondary school athletics personnel to use, including the duration of training, the number of training sessions permitted per day, and adequate rest periods in a cool environment. Further, these guidelines should include sport-specific and athlete-specific recommendations, such as phasing in protective equipment and reintroducing heat acclimatization after periods of inactivity. Heat-acclimatization guidelines should be clearly detailed in the secondary school's policy and procedures manual and disseminated to all stakeholders. Heat-acclimatization guidelines, when used in conjunction with current best practices surrounding the prevention, management, and care of secondary school student-athletes with exertional heat stroke, will optimize their health and safety.
Collapse
Affiliation(s)
- William M Adams
- Hydration, Environment, and Thermal Stress Lab, Department of Kinesiology, University of North Carolina at Greensboro
| | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Douglas J Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs
| | - Julien D Périard
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| | - Sebastien Racinais
- Research and Scientific Support Department, ASPETAR Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | | | - Susan W Yeargin
- Department of Exercise Science, University of South Carolina, Columbia
| | | | - Zachary Y Kerr
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| | - Luke N Belval
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas
| | - Denise Alosa
- Athletic Medicine, South Burlington School District, Burlington, VT.,College of Nursing and Health Science, University of Vermont, Burlington
| | - David Csillan
- Department of Physical Therapy, Princeton Orthopedic Associates, NJ
| | - Cynthia LaBella
- Department of Pediatrics, Northwestern University Feinberg School of Medicine Institute for Sports Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | | |
Collapse
|
47
|
Smith JW, Bello ML, Price FG. A Case-Series Observation of Sweat Rate Variability in Endurance-Trained Athletes. Nutrients 2021; 13:nu13061807. [PMID: 34073387 PMCID: PMC8226773 DOI: 10.3390/nu13061807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/31/2023] Open
Abstract
Adequate fluid replacement during exercise is an important consideration for athletes, however sweat rate (SR) can vary day-to-day. The purpose of this study was to investigate day-to-day variations in SR while performing self-selected exercise sessions to evaluate error in SR estimations in similar temperature conditions. Thirteen endurance-trained athletes completed training sessions in a case-series design 1x/week for a minimum 30 min of running/biking over 24 weeks. Body mass was recorded pre/post-training and corrected for fluid consumption. Data were split into three Wet-Bulb Globe Thermometer (WBGT) conditions: LOW (<10 °C), MOD (10–19.9 °C), HIGH (>20 °C). No significant differences existed in exercise duration, distance, pace, or WBGT for any group (p > 0.07). Significant differences in SR variability occurred for all groups, with average differences of: LOW = 0.15 L/h; MOD = 0.14 L/h; HIGH = 0.16 L/h (p < 0.05). There were no significant differences in mean SR between LOW-MOD (p > 0.9), but significant differences between LOW-HIGH and MOD-HIGH (p < 0.03). The assessment of SR can provide useful data for determining hydration strategies. The significant differences in SR within each temperature range indicates a single assessment may not accurately represent an individual’s typical SR even in similar environmental conditions.
Collapse
|
48
|
Riera F, Monjo R, Coudevylle GR, Meric H, Hue O. Face Cooling During Swimming Training in Tropical Condition. Front Psychol 2021; 12:622184. [PMID: 33967888 PMCID: PMC8102736 DOI: 10.3389/fpsyg.2021.622184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/25/2021] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to test the effect of face cooling with cold water (1.2 ± 0.7°C) vs. face cooling with neutral water (28.0 ± 3.0°C) during high-intensity swimming training on both the core temperature (Tco) and thermal perceptions in internationally ranked long-distance swimmers (5 men’s and 3 women’s) during 2 randomized swimming sessions. After a standardized warm-up of 1,200 m, the athletes performed a standardized training session that consisted of 2,000 m (5 × 400 m; start every 5’15”) at a best velocity then 600 m of aerobic work. Heart rate (HR) was continuously monitored during 5 × 400 m, whereas Tco, thermal comfort (TC), and thermal sensation (TS) were measured before and after each 400 m. Before and after each 400 m, the swimmers were asked to flow 200 mL of cold water (1.2°C) or neutral (22°C) water packaged in standardized bottles on their face. The swimmers were asked don’t drink during exercise. The velocity was significantly different between cold water and neutral water (p < 0.004 – 71.58 m.min–1 ± 2.32 and 70.52 m.min–1 ± 1.73, respectively). The Tco was increased by ±0.5°C at race pace, under both face cooling conditions with no significant difference. No significant changes were noted in mean HR (i.e., 115 ± 9 and 114 ± 15 bpm for NW and CW, respectively). TC was higher with Cold Cooling than Neutral Cooling and TS was lower with Cold cooling compared with Neutral cooling. The changes in perceptual parameters caused by face cooling with cold water reflect the psychological impact on the physical parameters. The mean velocity was less important with face cooling whereas the heat rate and Tco were the same in the both conditions. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.
Collapse
Affiliation(s)
- Florence Riera
- Laboratory ACTES, UPRES-EA 3596, University of the French West Indies, Point-à-Pitre, France.,Laboratory IMAGE, UMR ESPACE DEV 228, University of Perpignan Via Domitia, Perpignan, France
| | - Roland Monjo
- Laboratory ACTES, UPRES-EA 3596, University of the French West Indies, Point-à-Pitre, France
| | - Guillaume R Coudevylle
- Laboratory ACTES, UPRES-EA 3596, University of the French West Indies, Point-à-Pitre, France
| | - Henri Meric
- Laboratory IMAGE, UMR ESPACE DEV 228, University of Perpignan Via Domitia, Perpignan, France
| | - Olivier Hue
- Laboratory ACTES, UPRES-EA 3596, University of the French West Indies, Point-à-Pitre, France
| |
Collapse
|
49
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Exercise in the heat blunts improvements in aerobic power. Eur J Appl Physiol 2021; 121:1715-1723. [PMID: 33682060 DOI: 10.1007/s00421-021-04653-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/25/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION PGC-1a has been termed the master regulator of mitochondrial biogenesis. The exercise-induced rise in PGC-1a transcription is blunted when acute exercise takes place in the heat. However, it is unknown if this alteration has functional implications after heat acclimation and exercise training. PURPOSE To determine the impact of 3 weeks of aerobic exercise training in the heat (33 °C) compared to training in room temperature (20 °C) on thermoregulation, PGC-1a mRNA response, and aerobic power. METHODS Twenty-one untrained college aged males (age, 24 ± 4 years; height, 178 ± 6 cm) were randomly assigned to 3 weeks of aerobic exercise training in either 33 °C (n = 12) or 20 °C (n = 11) environmental temperatures. RESULTS The 20 °C training group increased 20 °C [Formula: see text]̇O2peak from 3.21 ± 0.77 to 3.66 ± 0.78 L·min-1 (p < 0.001) while the 33 °C training group did not improve (pre, 3.16 ± 0.48 L·min-1; post, 3.28 ± 0.63 L·min-1; p = 0.283). PGC-1a increased in response to acute aerobic exercise more in 20 °C (6.6 ± 0.7 fold) than 33 °C (4.6 ± 0.7 fold, p = 0.031) before training, but was no different after training in 20 °C (2.4 ± 0.3 fold) or 33 °C (2.4 ± 0.5 fold, p = 0.999). No quantitative alterations in mitochondrial DNA were detected with training or between temperatures (p > 0.05). CONCLUSIONS This research indicates that exercise in the heat may limit the effectiveness of aerobic exercise at increasing aerobic power. Furthermore, this study demonstrates that heat induced blunting of the normal exercise induced PGC-1a response is eliminated after 3 weeks of heat acclimation.
Collapse
|