1
|
Shimada H, Powell TL, Jansson T. Regulation of placental amino acid transport in health and disease. Acta Physiol (Oxf) 2024; 240:e14157. [PMID: 38711335 PMCID: PMC11162343 DOI: 10.1111/apha.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Abnormal fetal growth, i.e., intrauterine growth restriction (IUGR) or fetal growth restriction (FGR) and fetal overgrowth, is associated with increased perinatal morbidity and mortality and is strongly linked to the development of metabolic and cardiovascular disease in childhood and later in life. Emerging evidence suggests that changes in placental amino acid transport may contribute to abnormal fetal growth. This review is focused on amino acid transport in the human placenta, however, relevant animal models will be discussed to add mechanistic insights. At least 25 distinct amino acid transporters with different characteristics and substrate preferences have been identified in the human placenta. Of these, System A, transporting neutral nonessential amino acids, and System L, mediating the transport of essential amino acids, have been studied in some detail. Importantly, decreased placental Systems A and L transporter activity is strongly associated with IUGR and increased placental activity of these two amino acid transporters has been linked to fetal overgrowth in human pregnancy. An array of factors in the maternal circulation, including insulin, IGF-1, and adiponectin, and placental signaling pathways such as mTOR, have been identified as key regulators of placental Systems A and L. Studies using trophoblast-specific gene targeting in mice have provided compelling evidence that changes in placental Systems A and L are mechanistically linked to altered fetal growth. It is possible that targeting specific placental amino acid transporters or their upstream regulators represents a novel intervention to alleviate the short- and long-term consequences of abnormal fetal growth in the future.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Departments of Obstetrics & Gynecology, Sapporo Medical University, Sapporo, Japan
| | - Theresa L Powell
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| | - Thomas Jansson
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| |
Collapse
|
2
|
Abstract
The small intestine mediates the absorption of amino acids after ingestion of protein and sustains the supply of amino acids to all tissues. The small intestine is an important contributor to plasma amino acid homeostasis, while amino acid transport in the large intestine is more relevant for bacterial metabolites and fluid secretion. A number of rare inherited disorders have contributed to the identification of amino acid transporters in epithelial cells of the small intestine, in particular cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, and dicarboxylic aminoaciduria. These are most readily detected by analysis of urine amino acids, but typically also affect intestinal transport. The genes underlying these disorders have all been identified. The remaining transporters were identified through molecular cloning techniques to the extent that a comprehensive portrait of functional cooperation among transporters of intestinal epithelial cells is now available for both the basolateral and apical membranes. Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology. Intestinal amino acid transport activities can vary between species, but these can now be explained as differences of amino acid transporter distribution along the intestine. © 2019 American Physiological Society. Compr Physiol 9:343-373, 2019.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Fairweather
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Pinto V, Pinho MJ, Soares-da-Silva P. Renal amino acid transport systems and essential hypertension. FASEB J 2013; 27:2927-38. [PMID: 23616567 DOI: 10.1096/fj.12-224998] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several clinical and animal studies suggest that "blood pressure goes with the kidney," that is, a normotensive recipient of a kidney genetically programmed for hypertension will develop hypertension. Intrarenal dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport. The candidate transport systems for L-DOPA, the source for dopamine, include the sodium-dependent systems B(0), B(0,+), and y(+)L, and the sodium-independent systems L (LAT1 and LAT2) and b(0,+). Renal LAT2 is overexpressed in the prehypertensive spontaneously hypertensive rat (SHR), which might contribute to enhanced L-DOPA uptake in the proximal tubule and increased dopamine production, as an attempt to overcome the defect in D1 receptor function. On the other hand, it has been recently reported that impaired arginine transport contributes to low renal nitric oxide bioavailability observed in the SHR renal medulla. Here we review the importance of renal amino acid transporters in the kidney and highlight pathophysiological changes in the expression and regulation of these transporters in essential hypertension. The study of the regulation of renal amino acid transporters may help to define the underlying mechanisms predisposing individuals to an increased risk for development of hypertension.
Collapse
Affiliation(s)
- Vanda Pinto
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
4
|
Tsitsiou E, Sibley CP, D'Souza SW, Catanescu O, Jacobsen DW, Glazier JD. Homocysteine transport by systems L, A and y+L across the microvillous plasma membrane of human placenta. J Physiol 2009; 587:4001-13. [PMID: 19564394 PMCID: PMC2756434 DOI: 10.1113/jphysiol.2009.173393] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/29/2009] [Indexed: 12/26/2022] Open
Abstract
Elevated maternal plasma levels of homocysteine (Hcy) are associated with pregnancy complications and adverse neonatal outcomes, suggesting placental transport of Hcy may impact on fetal development. However, such transport mechanisms have not been defined. In this study we characterise Hcy transport mechanisms across the microvillous plasma membrane (MVM) of the syncytiotrophoblast, the transporting epithelium of human placenta. Three candidate transport systems, systems L, A and y(+)L, were examined utilising competitive inhibition to investigate the effects of Hcy on the uptake of well-characterised radiolabelled substrates for each system into isolated MVM vesicles, and that of model substrates on 10 microm [(35)S]l-Hcy uptake. System L activity was inhibited by both l-Hcy and dl-Hcy, comparable to model substrates including 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH). System L constituted the major transport mechanism, with significant BCH inhibition (69%) of [(35)S]l-Hcy uptake. System A activity was also inhibited by l-Hcy and dl-Hcy with a smaller contribution (21%) to [(35)S]l-Hcy uptake. Inhibition by l-Hcy and dl-Hcy of system y(+)L activity was Na(+) sensitive with a significant inhibition constant (K(i)) shift observed following K(+) replacement; l-arginine reduced [(35)S]l-Hcy uptake by 19%. Kinetic modelling of [(35)S]l-Hcy uptake resolved two, Na(+)-independent, transport components (K(m) 72 microm and 9.7 mm). This study provides evidence for the involvement of systems L, A and y(+)L in placental Hcy transport. Such transport, by competing with endogenous amino acids for transporter activity, could have major implications for syncytiotrophoblast metabolism and function as well as fetal development.
Collapse
Affiliation(s)
- Eleni Tsitsiou
- Maternal and Fetal Health Research Group, University of Manchester, St Mary's Hospital, Hathersage Road, Manchester M13 0JH, UK
| | | | | | | | | | | |
Collapse
|
5
|
Bröer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 2008; 88:249-86. [PMID: 18195088 DOI: 10.1152/physrev.00018.2006] [Citation(s) in RCA: 632] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transport of amino acids in kidney and intestine is critical for the supply of amino acids to all tissues and the homeostasis of plasma amino acid levels. This is illustrated by a number of inherited disorders affecting amino acid transport in epithelial cells, such as cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, dicarboxylic aminoaciduria, and some other less well-described disturbances of amino acid transport. The identification of most epithelial amino acid transporters over the past 15 years allows the definition of these disorders at the molecular level and provides a clear picture of the functional cooperation between transporters in the apical and basolateral membranes of mammalian epithelial cells. Transport of amino acids across the apical membrane not only makes use of sodium-dependent symporters, but also uses the proton-motive force and the gradient of other amino acids to efficiently absorb amino acids from the lumen. In the basolateral membrane, antiporters cooperate with facilitators to release amino acids without depleting cells of valuable nutrients. With very few exceptions, individual amino acids are transported by more than one transporter, providing backup capacity for absorption in the case of mutational inactivation of a transport system.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
6
|
|
7
|
Grillo MA, Lanza A, Colombatto S. Transport of amino acids through the placenta and their role. Amino Acids 2008; 34:517-23. [PMID: 18172742 DOI: 10.1007/s00726-007-0006-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 11/13/2007] [Indexed: 01/01/2023]
Abstract
Amino acids are transported across the human placenta mediated by transporter proteins that differ in structure, mechanism and substrate specificity. Some of them are Na+-dependent systems, whereas others are Na+-independent. Among these there are transporters composed of a heavy chain, a glycoprotein, and a light chain. Moreover, they can be differently distributed in the two membranes forming the syncytiotrophoblast. The transport mechanisms involved and their regulation are only partially known. In the placenta itself, part of the amino acids is metabolized to form other compounds important for the fetus. This occurs for instance for arginine, which gives rise to polyamines and to NO. Interconversion occurs among few other amino acids Transport is altered in pregnancy complications, such as restricted fetal growth.
Collapse
Affiliation(s)
- M A Grillo
- Dipartimento di Medicina e Oncologia Sperimentale, Sezione di Biochimica, Università di Torino, Via Michelangelo 27, 10126 Torino, Italy.
| | | | | |
Collapse
|
8
|
Reig N, del Rio C, Casagrande F, Ratera M, Gelpí JL, Torrents D, Henderson PJF, Xie H, Baldwin SA, Zorzano A, Fotiadis D, Palacín M. Functional and Structural Characterization of the First Prokaryotic Member of the L-Amino Acid Transporter (LAT) Family. J Biol Chem 2007; 282:13270-81. [PMID: 17344220 DOI: 10.1074/jbc.m610695200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified YkbA from Bacillus subtilis as a novel member of the L-amino acid transporter (LAT) family of amino acid transporters. The protein is approximately 30% identical in amino acid sequence to the light subunits of human heteromeric amino acid transporters. Purified His-tagged YkbA from Escherichia coli membranes reconstituted in proteoliposomes exhibited sodium-independent, obligatory exchange activity for L-serine and L-threonine and also for aromatic amino acids, albeit with less activity. Thus, we propose that YkbA be renamed SteT (Ser/Thr exchanger transporter). Kinetic analysis supports a sequential mechanism of exchange for SteT. Freeze-fracture analysis of purified, functionally active SteT in proteoliposomes, together with blue native polyacrylamide gel electrophoresis and transmission electron microscopy of detergent-solubilized purified SteT, suggest that the transporter exists in a monomeric form. Freeze-fracture analysis showed spherical particles with a diameter of 7.4 nm. Transmission electron microscopy revealed elliptical particles (diameters 6 x 7 nm) with a distinct central depression. To our knowledge, this is the first functional characterization of a prokaryotic member of the LAT family and the first structural data on an APC (amino acids, polyamines, and choline for organocations) transporter. SteT represents an excellent model to study the molecular architecture of the light subunits of heteromeric amino acid transporters and other APC transporters.
Collapse
Affiliation(s)
- Núria Reig
- Institute for Research in Biomedicine, Barcelona Science Park and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nuccitelli S, Cerella C, Cordisco S, Albertini MC, Accorsi A, De Nicola M, D'Alessio M, Radogna F, Magrini A, Bergamaschi A, Ghibelli L. Hyperpolarization of plasma membrane of tumor cells sensitive to antiapoptotic effects of magnetic fields. Ann N Y Acad Sci 2007; 1090:217-25. [PMID: 17384265 DOI: 10.1196/annals.1378.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chemical/physical agents able to prevent apoptosis are receiving much attention for their potential health hazard as tumor promoters. Magnetic fields (MFs), which have been shown to increase the occurrence of some tumors, reduce damage-induced apoptosis by a mechanism involving Ca2+ entry into cells. In order to discover the mechanism of such effect of MFs, we investigated the interference of MFs on cell metabolism and analyzed cell parameters that are involved in apoptotic signaling and regulation of Ca2+ fluxes. Here we show that different types (static and extremely low-frequency, ELF pulsating) of MFs of different intensities alter plasma membrane potential. Interestingly, MFs induce plasma membrane hyperpolarization in cells sensitive to the antiapoptotic effect of MFs, whereas cells that are insensitive showed a plasma membrane depolarization. These opposite effects suggest that protection against apoptosis and membrane potential modulation are correlated, plasma membrane hyperpolarization possibly being part of the signal transduction chain determining MFs' antiapoptotic effect.
Collapse
Affiliation(s)
- S Nuccitelli
- Dipartimento di Biologia, Università di Roma Tor Vergata, via della Ricerca Scientifica, 1, 00133, Roma, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Regnault TRH, Friedman JE, Wilkening RB, Anthony RV, Hay WW. Fetoplacental transport and utilization of amino acids in IUGR — a review. Placenta 2005; 26 Suppl A:S52-62. [PMID: 15837069 DOI: 10.1016/j.placenta.2005.01.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2005] [Indexed: 11/16/2022]
Abstract
Amino acids have multiple functions in fetoplacental development. The supply of amino acids to the fetus involves active transport across and metabolism within the trophoblast. Transport occurs through various amino acid transport systems located on both the maternal and fetal facing membranes, many of which have now been documented to be present in rat, sheep and human placentas. The capacity of the placenta to supply amino acids to the fetus develops during pregnancy through alterations in such factors as surface area and specific time-dependent transport system expression. In intrauterine growth restriction (IUGR), placental surface area and amino acid uptakes are decreased in human and experimental animal models. In an ovine model of IUGR, produced by hyperthermia-induced placental insufficiency (PI-IUGR), umbilical oxygen and essential amino acid uptake rates are significantly reduced in the most severe cases in concert with decreased fetal growth. These changes indicate that severe IUGR is likely associated with a shift in amino acid transport capacity and metabolic pathways within the fetoplacental unit. After transport across the trophoblast in normal conditions, amino acids are actively incorporated into tissue proteins or oxidized. In the sheep IUGR fetus, however, which is hypoxic, hypoglycemic and hypoinsulinemic, there appear to be net effluxes of amino acids from the liver and skeletal muscle, suggesting changes in amino acid metabolism. Potential changes may be occurring in the insulin/IGF-I signaling pathway that includes decreased production and/or activation of specific signaling proteins leading to a reduced protein synthesis in fetal tissues. Such observations in the placental insufficiency model of IUGR indicate that the combination of decreased fetoplacental amino acid uptake and disrupted insulin/IGF signaling in liver and muscle account for decreased fetal growth in IUGR.
Collapse
Affiliation(s)
- T R H Regnault
- Perinatal Research Center, Department of Pediatrics, Division of Perinatal Medicine, University of Colorado Health Sciences Center, F441, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
11
|
Palacín M, Bertran J, Chillarón J, Estévez R, Zorzano A. Lysinuric protein intolerance: mechanisms of pathophysiology. Mol Genet Metab 2004; 81 Suppl 1:S27-37. [PMID: 15050971 DOI: 10.1016/j.ymgme.2003.11.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 11/06/2003] [Accepted: 11/12/2003] [Indexed: 12/27/2022]
Abstract
Heteromeric amino acid transporters (HATs) are composed of two subunits, a polytopic membrane protein (the light subunit) and a disulfide-linked type II membrane glycoprotein (the heavy subunit). HATs represent several of the classic mammalian amino acid transport systems (e.g., L isoforms, y(+)L isoforms, asc, xc-, and b(0,+)). The light subunits confer the amino acid transport specificity to the HAT. Two transporters of this family are relevant for inherited aminoacidurias. Mutations in any of the two genes coding for the subunits of system b(0,+) (rBAT and b(0,+)AT) lead to cystinuria (MIM 220100). Transport defects in a system y(+)L isoform, composed of 4F2hc and y(+)LAT-1, result in lysinuric protein intolerance (LPI) (MIM 222700). In this case, only mutations in the light subunit y(+)LAT-1, but not in the heavy chain 4F2hc, cause the disease. LPI, in addition to affecting intestinal and renal reabsorption of amino acids, is a multisystemic disease affecting the urea cycle and presents also with symptoms related to the immune system. The pathogenesis of these alterations is less well, or not understood at all.
Collapse
Affiliation(s)
- Manuel Palacín
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona and Parc Científic de Barcelona, Avenidda Diagonal 645, Barcelona 08028, Spain.
| | | | | | | | | |
Collapse
|
12
|
Cariappa R, Heath-Monnig E, Smith CH. Isoforms of amino acid transporters in placental syncytiotrophoblast: plasma membrane localization and potential role in maternal/fetal transport. Placenta 2003; 24:713-26. [PMID: 12852862 DOI: 10.1016/s0143-4004(03)00085-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many cell proteins exist as isoforms arising either from gene duplication or alternate RNA splicing. There is growing evidence that isoforms with different, but closely related, functional characteristics are often directed to discrete cellular locations. Thus, specialized functions may be carried out by proteins of similar evolutionary origin in different membrane compartments. In polarized epithelial cells, this mechanism allows the cell to control amino acid transport independently at each of its specialized apical and basolateral plasma membrane domains. Investigations of isoform localization in these membranes have generally been performed in epithelia other than the placental trophoblast.This review of placental amino acid transporter isoforms first provides an overview of their properties and preliminary plasma membrane localization. We then discuss studies suggesting various roles of isoform localization in trophoblast function. To provide insights into the molecular basis of this localization in trophoblast, we present a review of current knowledge of plasma membrane protein localization as derived from investigations with a widely used epithelial model cell line. Finally, we discuss a potential approach using cultured trophoblast-derived cells for studies of transporter isoform localization and function. We hope that this review will stimulate investigation of the properties of trophoblast transporter isoforms, their membrane localization and their contribution to the cellular mechanism of maternal-fetal nutrient transport.
Collapse
Affiliation(s)
- R Cariappa
- Department of Pediatrics, Washington University School of Medicine and St Louis Children's Hospital, Box 8116 One Children's Place, St Louis, MO 63110, USA
| | | | | |
Collapse
|
13
|
Signorello MG, Pascale R, Leoncini G. Transport of L-arginine and nitric oxide formation in human platelets. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2005-12. [PMID: 12709060 DOI: 10.1046/j.1432-1033.2003.03572.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The results of the present study show that human platelets take up l-arginine by two transport systems which are compatible with the systems y+ and y+L. These Na+independent transporters have been distinguished by treating platelets with N-ethylmaleimide that blocks selectively system y+. System y+, that accounts for 30-40% of the total transport, is characterized by low affinity for l-arginine, is unaffected by l-leucine, is sensitive to changes of membrane potential and to trans-stimulation. The other component of l-arginine transport identified with the system y+L (approximately 60-70% of the total flux) shows high affinity for l-arginine, is insensitive to N-ethylmaleimide treatment, unaffected by changes in membrane potential, sensitive to trans-stimulation and inhibited by l-leucine in the presence of Na+. Moreover a strict correlation between l-arginine transport and nitric oxide (NO) production in whole cells was found. N-ethylmaleimide and l-leucine decreased NO production as well as cGMP elevation, and the effect on NO and cGMP were closely related. It is likely that the l-arginine transport systems y+ and y+L are both involved in supplying substrate for NO production and regulation in human platelets.
Collapse
Affiliation(s)
- Maria G Signorello
- Dipartimento di Medicina Sperimentale, sezione Biochimica, Università di Genova, Italy
| | | | | |
Collapse
|
14
|
Regnault TRH, de Vrijer B, Battaglia FC. Transport and metabolism of amino acids in placenta. Endocrine 2002; 19:23-41. [PMID: 12583600 DOI: 10.1385/endo:19:1:23] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Revised: 09/16/2002] [Accepted: 09/16/2002] [Indexed: 11/11/2022]
Abstract
In all mammalian species, the 20 amino acids of the genetic code are required for net protein accretion. The nutritional supply of amino acids for growth is defined as the net umbilical uptake of amino acids, representing the net transfer from maternal circulation, through the placenta and then to the fetus, of essential and non-essential amino acids. In considering the primary role of the placenta in the delivery of amino acids to the fetus for metabolism, it is important to consider the multiplicity of factors that may affect these overall delivery rates, including the activity and location of amino acid transporter systems, changes in these systems as gestation advances, effects of changes in placental surface area, uteroplacental blood flows, and maternal concentrations of amino acids. In this review, we discuss placental amino acid transport, the systems and their associated proteins, umbilical uptake data in animal and human studies, and amino acid transport in fetal growth restriction. Additionally, we discuss the current pool of thought concerning the mechanisms of placental amino acid transport as generated through in vitro vesicle studies and how they relate to the in vivo fluxes of animal studies. Finally, we discuss fetoplacental amino acid metabolism and specifically interorgan exchange.
Collapse
Affiliation(s)
- Timothy R H Regnault
- Department of Pediatrics, Division of Perinatal Medicine, University of Colorado Health Sciences Center, Aurora, CO 80010, USA.
| | | | | |
Collapse
|
15
|
Jansson T, Ekstrand Y, Björn C, Wennergren M, Powell TL. Alterations in the activity of placental amino acid transporters in pregnancies complicated by diabetes. Diabetes 2002; 51:2214-9. [PMID: 12086952 DOI: 10.2337/diabetes.51.7.2214] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alterations in placental transport may contribute to accelerated fetal growth in pregnancies complicated by diabetes. We studied the activity of the syncytiotrophoblast amino acid transporter system A and the transport of the essential amino acids leucine, lysine, and taurine. Syncytiotrophoblast microvillous plasma membranes (MVMs) and basal plasma membranes (BMs) were isolated from placentas obtained from normal pregnancies and pregnancies complicated by gestational diabetes mellitus (GDM) and type 1 diabetes, with and without large-for-gestational-age (LGA) fetuses. Amino acid transport was assessed using radio-labeled substrates and rapid filtration techniques. System A activity in MVM was increased (65-80%, P < 0.05) in all groups with diabetes independent of fetal overgrowth. However, MVM system A activity was unaffected in placentas of normal pregnancies with LGA fetuses. MVM leucine transport was increased in the GDM/LGA group. In BMs, amino acid transport was unaffected by diabetes. In conclusion, diabetes in pregnancy is associated with an increased system A activity in MVM, and MVM leucine transport is increased in the GDM/LGA group. We suggest that these changes result in an increased uptake of neutral amino acids across MVM, which may be used in placental metabolism or be delivered to the fetus. The increased MVM leucine uptake in the GDM/LGA group may contribute to accelerated fetal growth in these patients.
Collapse
Affiliation(s)
- Thomas Jansson
- Department of Physiology and Pharmacology, the Perinatal Center, Göteborg University, Box 432, S-405 30 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Wagner CA, Lang F, Bröer S. Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol 2001; 281:C1077-93. [PMID: 11546643 DOI: 10.1152/ajpcell.2001.281.4.c1077] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterodimeric amino acid transporters are comprised of two subunits, a polytopic membrane protein (light chain) and an associated type II membrane protein (heavy chain). The heavy chain rbAT (related to b(0,+) amino acid transporter) associates with the light chain b(0,+)AT (b(0,+) amino acid transporter) to form the amino acid transport system b(0,+), whereas the homologous heavy chain 4F2hc interacts with several light chains to form system L (with LAT1 and LAT2), system y(+)L (with y(+)LAT1 and y(+)LAT2), system x (with xAT), or system asc (with asc1). The association of light chains with the two heavy chains is not unambiguous. rbAT may interact with LAT2 and y(+)LAT1 and vice versa; 4F2hc may interact with b(0,+)AT when overexpressed. 4F2hc is necessary for trafficking of the light chain to the plasma membrane, whereas the light chains are thought to determine the transport characteristics of the respective heterodimer. In contrast to 4F2hc, mutations in rbAT suggest that rbAT itself takes part in the transport besides serving for the trafficking of the light chain to the cell surface. Heavy and light subunits are linked together by a disulfide bridge. The disulfide bridge, however, is not necessary for the trafficking of rbAT or 4F2 heterodimers to the membrane or for the functioning of the transporter. However, there is experimental evidence that the disulfide bridge in the 4F2hc/LAT1 heterodimer plays a role in the regulation of a cation channel. These results highlight complex interactions between the different subunits of heterodimeric amino acid transporters and suggest that despite high grades of homology, the interactions between rbAT and 4F2hc and their respective partners may be different.
Collapse
Affiliation(s)
- C A Wagner
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
17
|
Kudo Y, Boyd CA. Characterisation of L-tryptophan transporters in human placenta: a comparison of brush border and basal membrane vesicles. J Physiol 2001; 531:405-16. [PMID: 11230513 PMCID: PMC2278476 DOI: 10.1111/j.1469-7793.2001.0405i.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The mechanisms responsible for L-tryptophan transport at both the maternal- and fetal-facing surfaces of the term placenta have been determined in isolated membrane vesicles as part of a study on placental indoleamine 2,3-dioxygenase, the L-tryptophan-catabolising enzyme recently shown to regulate feto-maternal immunology. Brush border vesicle uptake of L-tryptophan is substantially into an osmotically active space. It is sodium independent and N-ethylmaleimide sensitive. Uptake of L-tryptophan, which is markedly stereospecific, has a Km of 26.3 microM and Vmax of 1.72 pmol (mg protein)(-1) s(-1) and is completely abolished by the L-system-specific substrate 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). These findings are in keeping with L-tryptophan transport being exclusively via system L (induced by the heterodimeric heavy chain of CD98 and system L-amino acid transporter-1 (LAT-1)). 1-Methyl-tryptophan (which is a known competitive inhibitor of indoleamine 2,3-dioxygenase) is a competitive inhibitor of L-tryptophan flux through this transport system (Ki = 113 microM). Basal membrane transport of L-tryptophan is more complex. Uptake is slower than at the brush border and although, as in the brush border, uptake is sodium independent, it is less sensitive to N-ethylmaleimide. There is clear evidence that two systems contribute to basal membrane transport since BCH is (in sodium-free media) only a partial inhibitor whereas L-histidine and L-cysteine are fully effective. The simplest explanation of these and other findings is that the basal membrane possesses two systems, one of which is similar to that induced by the heavy chain of CD98 and system L-amino acid transporter-2 (LAT-2). The other appears to be system y+L since in the presence of BCH inhibition by L-leucine but not by L-lysine is sodium dependent. These findings suggest the existence of non-identical carrier-mediated transport systems for L-tryptophan in brush border and basal membranes. This asymmetry may explain net transplacental transfer of this amino acid.
Collapse
Affiliation(s)
- Y Kudo
- Department of Human Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.
| | | |
Collapse
|
18
|
Abstract
Amino acid transport across the human placenta is active, mediated by specific transporters in syncytiotrophoblast plasma membranes. Using functional criteria such as substrate specificity and sodium dependence, approximately 15 transport systems have been identified in the human placenta. Recently, the area of molecular biology of amino acid transporters has evolved rapidly and at least 25 cDNA clones coding for mammalian amino acid transporters or transporter subunits have been identified. The primary objective of this review is to integrate the available functional data on placental amino acid transport systems with recent molecular information on mammalian amino acid transporters. Furthermore, models for the mechanisms for net materno-fetal transfer of amino acids are discussed. Finally, the evidence to suggest that alterations in placental amino acid transport systems may play a crucial role in the regulation of fetal growth are presented briefly.
Collapse
Affiliation(s)
- T Jansson
- Perinatal Center, Department of Physiology and Pharmacology, Göteborg University, s-405 30 Göteborg, Sweden
| |
Collapse
|
19
|
Abstract
This review examines the placental transport and metabolism of amino acids, with a special emphasis on unifying and interpreting in-vivo and in-vitro data. For a variety of technical reasons, in-vivo studies, which quantify placental amino-acid fluxes and metabolism, have been relatively limited, in comparison to in-vitro studies using various placental preparations. Following an introduction to placental amino-acid uptake and transfer to the fetus, the review attempts to reconcile in-vitro placental transport data with in-vivo placental data. Data are discussed with reference to the measured delivery rates of amino acids into the fetal circulation and the contribution of placental metabolism to this rate for many amino acids. The importance of exchange transporters in determining efflux from the placenta into the fetal circulation is presented with special reference to in-vivo studies of non-metabolizable and essential amino acids. The data which illustrate the interconversion and nitrogen exchange of three groups of amino acids, glutamine-glutamate, BCAAs and serine-glycine, within the placenta are discussed in terms of the potential role such pathways may serve for other placenta functions. The review also presents comparisons of the sheep and human placentae in terms of their in-vivo amino-acid transport rates.
Collapse
Affiliation(s)
- F C Battaglia
- Perinatal Research Center, Department of Pediatrics, Division of Perinatal Medicine, University of Colorado Health Sciences Center, Denver, Colorado, 80045, USA.
| | | |
Collapse
|
20
|
Dall'Asta V, Bussolati O, Sala R, Rotoli BM, Sebastio G, Sperandeo MP, Andria G, Gazzola GC. Arginine transport through system y(+)L in cultured human fibroblasts: normal phenotype of cells from LPI subjects. Am J Physiol Cell Physiol 2000; 279:C1829-37. [PMID: 11078698 DOI: 10.1152/ajpcell.2000.279.6.c1829] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In lysinuric protein intolerance (LPI), impaired transport of cationic amino acids in kidney and intestine is due to mutations of the SLC7A7 gene. To assess the functional consequences of the LPI defect in nonepithelial cells, we have characterized cationic amino acid (CAA) transport in human fibroblasts obtained from LPI patients and a normal subject. In both cell types the bidirectional fluxes of arginine are due to the additive contributions of two Na(+)-independent, transstimulated transport systems. One of these mechanisms, inhibited by N-ethylmaleimide (NEM) and sensitive to the membrane potential, is identifiable with system y(+). The NEM- and potential-insensitive component, suppressed by L-leucine only in the presence of Na(+), is mostly due to the activity of system y(+)L. The inward and outward activities of the two systems are comparable in control and LPI fibroblasts. Both cell types express SLC7A1 (CAT1) and SLC7A2 (CAT2B and CAT2A) as well as SLC7A6 (y+LAT2) and SLC7A7 (y+LAT1). We conclude that LPI fibroblasts exhibit normal CAA transport through system y(+)L, probably referable to the activity of SLC7A6/y+LAT2.
Collapse
Affiliation(s)
- V Dall'Asta
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Generale e Clinica, Plesso Biotecnologico Integrato, Università degli Studi di Parma, 43100 Parma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
BeWo choriocarcinoma cells were cultured onto solid microcarrier beads, packed into columns and superfused. Unidirectional influx of l -phenylalanine (l -phe) and l -leucine (l -leu) across the microvillous border of the cells was studied using a rapid paired-tracer dilution technique. Influx of l -phe and l -leu comprised both saturable and non-saturable components. K(m)values for l -phe and l -leu were 0.57+/-0.01 m m and 0.05+/-0.01 m m, respectively, with V(max)values of 120.4+/-0.5 nmol/mg/min and 41. 7+/-0.2 nmol/mg/min. Non-saturable uptake components were 29.0+/-0.1 nmol/mg/m m and 37.9+/-0.1 nmol/mg/min/m m respectively. l -leu uptake was found to be sodium-independent. The uptake of l -[(3)H]phe was strongly inhibited (90-100 per cent) by unlabelled l -phe, d -phe, l -leu or 2-aminoendobicyclo-[2,2, 1]-heptane-2-carboxylic acid (BCH) but not by l -arginine (l -arg) or methyl alpha-aminoisobutric acid (Me-AIB). Pre-incubation of Bewo cultures for 24 h in the presence of an additional 1.2 m ml -phe (simulating maternal phenylketonuria) significantly reduced both the K(m)and V(max)components of l -phe influx. l -arg (2 m m) had no effect on l -leu influx whereas 2 m ml -phe completely inhibited saturable l -leu influx. These data suggest that the microvillous border of differentiated BeWo cells transport large neutral amino acids predominantly via system L rather than by B(0) or y(+)L transporters.
Collapse
Affiliation(s)
- B M Eaton
- Department of Maternal and Fetal Medicine, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK.
| | | |
Collapse
|
22
|
Kudo Y, Boyd CA. Heterodimeric amino acid transporters: expression of heavy but not light chains of CD98 correlates with induction of amino acid transport systems in human placental trophoblast. J Physiol 2000; 523 Pt 1:13-8. [PMID: 10673541 PMCID: PMC2269792 DOI: 10.1111/j.1469-7793.2000.t01-1-00013.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Activity of amino acid transport and relative abundance of mRNAs encoding related transporters have been studied in parallel either before or following in vitro culture of explants of human placental chorionic villi. 2. Amino acid transport activities through systems L (1.9-fold), y+L (2.6-fold) and y+ (3.2-fold) were markedly enhanced following culture for 48 h. 3. Relative mRNA abundance (determined by reverse transcription-polymerase chain reaction) for the heavy chain of CD98 surface antigen and for the cationic amino acid transporter-1 were similarly stimulated (2.8-fold and 2.6-fold, respectively). In contrast, none of the mRNA levels for light chains of CD98 (system L-amino acid transporter-1, system L-amino acid transporter-2, system y+L-amino acid transporter-1 and system y+L-amino acid transporter-2) studied nor for the cationic amino acid transporter-2B were altered.
Collapse
Affiliation(s)
- Y Kudo
- Department of Human Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.
| | | |
Collapse
|
23
|
Soriano-García JF, Torras-Llort M, Moretó M, Ferrer R. Regulation of L-methionine and L-lysine uptake in chicken jejunal brush-border membrane by dietary methionine. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R1654-61. [PMID: 10600911 DOI: 10.1152/ajpregu.1999.277.6.r1654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the chicken intestine, L-methionine is transported by systems that are specific for neutral amino acids (L- and B-like) and by systems that can also transport cationic amino acids (y(+)m and b(0,+)-like). These four uptake pathways have been investigated in brush-border membrane vesicles from the jejunum of chickens fed a diet enriched with 0.4% L-methionine. Methionine supplementation from the 1st to the 6th wk of age has no effect on body weight or on the efficiency of food utilization. The kinetic analysis of L-methionine influx across the transport systems specific for neutral amino acids shows, for system L, no dietary effect on the Michaelis constant (Km) and a 30% reduction in maximal velocity (Vmax); for system B it shows a decrease in Km (30%) and in Vmax (51%). Transport systems shared by cationic and neutral amino acids show no dietary effect on b(0,+) activity and a significant reduction in y(+)m Vmax, similar for L-methionine and L-lysine, both in the absence and in the presence of Na+ (L-methionine, 30 and 26% reduction; L-lysine, 19 and 28% reduction, respectively). The downregulation induced by L-methionine supplementation may be an adaptive response to reduce the risk of intoxication by dietary excess of L-methionine. These results support the view that the toxicity of the supplemented substrate can be an important factor in the regulation of amino acid transport by dietary content.
Collapse
Affiliation(s)
- J F Soriano-García
- Departament de Fisiologia-Divisió IV, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
24
|
Matthews JC, Beveridge MJ, Dialynas E, Bartke A, Kilberg MS, Novak DA. Placental anionic and cationic amino acid transporter expression in growth hormone overexpressing and null IGF-II or null IGF-I receptor mice. Placenta 1999; 20:639-50. [PMID: 10527818 DOI: 10.1053/plac.1999.0421] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The role of growth hormone (GH), insulin-like growth factor (IGF)-II and the IGF-I receptor (IGF-Ir) in the regulation of the in vivo expression of Na(+)-coupled anionic [System X-AG; GLAST1 (EAAT1), GLT1 (EAAT2), EAAC1 (EAAT3), EAAT4; where the human homologues of amino acid transport proteins first cloned in the rat are given in parentheses] and Na(+)-independent cationic (System y(+);CAT1) amino acid transport proteins was evaluated by comparing transporter expression in day 17 placentae of mice that overexpressed bovine GH (GH+) or that carried null gene mutations for IGF-II or IGF-Ir. Northern analysis revealed no apparent difference in the mRNA content of GLAST1 (EAAT1), EAAC1 (EAAT3), or EAAT4, in homogenates of GH+ placentae, but levels of GLT1 (EAAT2) and CAT1 mRNA were increased. Immunoblot analysis revealed that whole-placental steady-state GLAST1 (EAAT1), EAAC1 (EAAT3), and EAAT4 protein levels were not affected by GH+, whereas GLT1 (EAAT2) levels were increased. Immunohistochemical analysis showed that the cell-specific expression of the anionic and CAT1 transporters was not affected by overexpression of GH. Similar analyses of null IGF-II placentae demonstrated increases in GLAST1 (EAAT1), EAAT4 and CAT1 mRNAs. Parallel immunoblot analysis demonstrated decreased expression of GLT1 (EAAT2), GLAST1 (EAAT1) and EAAC1 (EAAT3) protein, but an increased expression of EAAT4. In null IGF-II and IGF-Ir placentae, however, GLT1 (EAAT2) and EAAC1 (EAAT3) protein content was decreased in junctional zone cells, whereas CAT1 content was increased in junctional and labyrinth zone cells. These data indicate that an excess level of GH stimulates GLT1 (EAAT2) expression and that a normal level of IGF-II is required for typical expression of GLT1 (EAAT2), GLAST1 (EAAT1) and EAAC1 (EAAT3), but that IGF-II downregulates the expression of EAAT4 and CAT1.
Collapse
Affiliation(s)
- J C Matthews
- Department of Animal Sciences, University of Kentucky, Lexington, 40546, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The placenta forms a selective barrier that functions to transport nutrients that are of critical use to the fetus. Nutrient transport across the placenta is regulated by many different active transporters found on the surface of both maternal and fetal facing membranes of the placenta. The presence of these transporters in the placenta has been implicated in the facilitation of nutrient diffusion and proper fetal growth. In this review, recent developments concerning nutrient transporters that regulate glucose, amino acid, fatty acid, and nucleoside transplacental movement are discussed.
Collapse
Affiliation(s)
- GT Knipp
- The University of Kansas, Department of Pharmaceutical Chemistry, 2095 Constant Ave., Lawrence, KS, USA
| | | | | |
Collapse
|
26
|
Seidl J, Knuechel R, Kunz-Schughart L. Evaluation of membrane physiology following fluorescence activated or magnetic cell separation. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-0320(19990601)36:2<102::aid-cyto3>3.0.co;2-d] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Palacín M, Estévez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 1998; 78:969-1054. [PMID: 9790568 DOI: 10.1152/physrev.1998.78.4.969] [Citation(s) in RCA: 587] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Molecular biology entered the field of mammalian amino acid transporters in 1990-1991 with the cloning of the first GABA and cationic amino acid transporters. Since then, cDNA have been isolated for more than 20 mammalian amino acid transporters. All of them belong to four protein families. Here we describe the tissue expression, transport characteristics, structure-function relationship, and the putative physiological roles of these transporters. Wherever possible, the ascription of these transporters to known amino acid transport systems is suggested. Significant contributions have been made to the molecular biology of amino acid transport in mammals in the last 3 years, such as the construction of knockouts for the CAT-1 cationic amino acid transporter and the EAAT2 and EAAT3 glutamate transporters, as well as a growing number of studies aimed to elucidate the structure-function relationship of the amino acid transporter. In addition, the first gene (rBAT) responsible for an inherited disease of amino acid transport (cystinuria) has been identified. Identifying the molecular structure of amino acid transport systems of high physiological relevance (e.g., system A, L, N, and x(c)- and of the genes responsible for other aminoacidurias as well as revealing the key molecular mechanisms of the amino acid transporters are the main challenges of the future in this field.
Collapse
Affiliation(s)
- M Palacín
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
28
|
Jansson T, Scholtbach V, Powell TL. Placental transport of leucine and lysine is reduced in intrauterine growth restriction. Pediatr Res 1998; 44:532-7. [PMID: 9773842 DOI: 10.1203/00006450-199810000-00011] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrauterine growth restriction (IUGR) is characterized by a reduction in fetal plasma concentrations of a number of essential amino acids. Whether this is caused by impaired placental transport is unknown. We studied transport of leucine and lysine in syncytiotrophoblast microvillous (MVM) and basal membrane (BM) vesicles isolated from uncomplicated (control) and IUGR pregnancies. In addition, we investigated the possibility that leucine uptake is stimulated by an outwardly directed glycine gradient. Uptake of 3H-L-lysine (0.1 microM) and 3H-L-leucine (0.25 microM) was studied at 37 degrees C using rapid filtration techniques. In IUGR, mediated uptake of lysine was reduced by 44% (p < 0.05) in BM and uptake of leucine was lower in both MVM (-46%, p < 0.05) and BM (-38%, p < 0.05) compared with control vesicles. Intravesicular glycine (2 mM) increased the uptake of leucine by 98% in MVM (p < 0.05). These data suggest that the activity of placental transporters for cationic and neutral amino acids is reduced in IUGR. We speculate that a reduced glycine gradient in the placenta in IUGR, due to reduction in system A activity, will impair leucine transport to the fetus, providing an additional mechanism for reduced placental transport of leucine in IUGR.
Collapse
Affiliation(s)
- T Jansson
- Perinatal Center, Department of Physiology and Pharmacology, Göteborg University, Sweden
| | | | | |
Collapse
|
29
|
Soriano-García JF, Torras-Llort M, Ferrer R, Moreto M. Multiple pathways for L-methionine transport in brush-border membrane vesicles from chicken jejunum. J Physiol 1998; 509 ( Pt 2):527-39. [PMID: 9575301 PMCID: PMC2230979 DOI: 10.1111/j.1469-7793.1998.527bn.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. The intestinal transport of L-methionine has been investigated in brush-border membrane vesicles isolated from the jejunum of 6-week-old chickens. L-Methionine influx is mediated by passive diffusion and by Na+-dependent and Na+-independent carrier-mediated mechanisms. 2. In the absence of Na+, cis-inhibition experiments with neutral and cationic amino acids indicate that two transport components are involved in L-methionine influx: one sensitive to L-lysine and the other sensitive to 2-aminobicyclo[2.2. 1]heptane-2-carboxylic acid (BCH). The L-lysine-sensitive flux is strongly inhibited by L-phenylalanine and can be broken down into two pathways, one sensitive to N-ethylmaleimide (NEM) and the other to L-glutamine and L-cystine. 3. The kinetics of L-methionine influx in Na+-free conditions is described by a model involving three transport systems, here called a, b and c: systems a and b are able to interact with cationic amino acids but differ in their kinetic characteristics (system a: Km = 2.2 +/- 0.3 microM and Vmax = 0.13 +/- 0.005 pmol (mg protein)-1 (2 s)-1; system b: Km = 3.0 +/- 0.3 mM and Vmax = 465 +/- 4.3 pmol (mg protein)-1 (2 s)-1); system c is specific for neutral amino acids, has a Km of 1.29 +/- 0.08 mM and a Vmax of 229 +/- 5.0 pmol (mg protein)-1 (2 s)-1 and is sensitive to BCH inhibition. 4. The Na+-dependent component can be inhibited by BCH and L-phenylalanine but cannot interact either with cationic amino acids or with alpha-(methylamino)isobutyrate (MeAIB). 5. The kinetic analysis of L-methionine influx under a Na+ gradient confirms the activity of the above described transport systems a and b. System a is not affected by the presence of Na+ while system b shows a 3-fold decrease in the Michaelis constant and a 1.4-fold increase in Vmax. In the presence of Na+, the BCH-sensitive component can be subdivided into two pathways: one corresponds to system c and the other is Na+ dependent and has a Km of 0.64 +/- 0. 013 mM and a Vmax of 391 +/- 2.3 pmol (mg protein)-1 (2 s)-1. 6. It is concluded that L-methionine is transported in the chicken jejunum by four transport systems, one with functional characteristics similar to those of system bo, + (system a); a second (system b) similar to system y+, which we suggest naming y+m to account for its high Vmax for L-methionine transport in the absence of Na+; a third (system c) which is Na+ independent and has similar properties to system L; and a fourth showing Na+ dependence and tentatively identified with system B.
Collapse
Affiliation(s)
- J F Soriano-García
- Departament de Fisiologia-Divisio IV, Facultat de Farmàcia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
30
|
Abstract
Transport of L-lysine by a cultured placental trophoblast cell line was investigated by characterization of L-[3H]lysine uptake. In the mononuclear form of the BeWo clone b30 choriocarcinoma cell, at least two sodium-independent systems are present. Concentration dependence data were fitted by a two system model with Km values (+/- s.e.) of 2 +/- 0.7 and 94 +/- 31 microM and Vmax values (+/- s.e.) of 0.7 +/- 0.3 and 25 +/- 6.0 nM/mg DNA/min. A portion of sodium-independent uptake was inhibited by the sulphydryl modifying reagent N-ethylmaleimide (NEM). Following NEM treatment, the data were fitted by a single system with Km = 10 +/- 2 microM AND Vmax = 5.1 +/- 0.8 nM/mg DNA/min. In the absence of sodium, NEM-resistant uptake was sensitively inhibited by leucine whereas NEM-sensitive uptake was not inhibited by leucine. It is concluded that like placental basal membrane, the mononuclear BeWo cell possesses two sodium-independent L-lysine transport systems. The high-capacity, NEM-sensitive, leucine-insensitive system resembles the widespread system y+. The high-affinity, NEM-resistant, leucine-sensitive system resembles system b(0,+).
Collapse
Affiliation(s)
- B A Way
- The Edward Mallinckrodt Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
31
|
Matthews JC, Beveridge MJ, Malandro MS, Kilberg MS, Novak DA. Response of placental amino acid transport to gestational age and intrauterine growth retardation. Proc Nutr Soc 1998; 57:257-63. [PMID: 9656329 DOI: 10.1079/pns19980040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- J C Matthews
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville 32610-0296, USA
| | | | | | | | | |
Collapse
|
32
|
Devés R, Boyd CA. Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev 1998; 78:487-545. [PMID: 9562037 DOI: 10.1152/physrev.1998.78.2.487] [Citation(s) in RCA: 346] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The structure and function of the four cationic amino acid transporters identified in animal cells are discussed. The systems differ in specificity, cation dependence, and physiological role. One of them, system y+, is selective for cationic amino acids, whereas the others (B[0,+], b[0,+], and y+ L) also accept neutral amino acids. In recent years, cDNA clones related to these activities have been isolated. Thus two families of proteins have been identified: 1) CAT or cationic amino acid transporters and 2) BAT or broad-scope transport proteins. In the CAT family, three genes encode for four different isoforms [CAT-1, CAT-2A, CAT-2(B) and CAT-3]; these are approximately 70-kDa proteins with multiple transmembrane segments (12-14), and despite their structural similarity, they differ in tissue distribution, kinetics, and regulatory properties. System y+ is the expression of the activity of CAT transporters. The BAT family includes two isoforms (rBAT and 4F2hc); these are 59- to 78-kDa proteins with one to four membrane-spanning segments, and it has been proposed that these proteins act as transport regulators. The expression of rBAT and 4F2hc induces system b[0,+] and system y+ L activity in Xenopus laevis oocytes, respectively. The roles of these transporters in nutrition, endocrinology, nitric oxide biology, and immunology, as well as in the genetic diseases cystinuria and lysinuric protein intolerance, are reviewed. Experimental strategies, which can be used in the kinetic characterization of coexpressed transporters, are also discussed.
Collapse
Affiliation(s)
- R Devés
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago
| | | |
Collapse
|
33
|
Yao SY, Muzyka WR, Elliott JF, Cheeseman CI, Young JD. Cloning and functional expression of a cDNA from rat jejunal epithelium encoding a protein (4F2hc) with system y+L amino acid transport activity. Biochem J 1998; 330 ( Pt 2):745-52. [PMID: 9480885 PMCID: PMC1219200 DOI: 10.1042/bj3300745] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two different protein families, designated CAT (cationic amino acid transporter) and BAT (broad-specificity amino acid transporter) mediate the plasma membrane transport of cationic amino acids in animal cells. CAT transporters have 12-14 transmembrane domains and are selective for cationic amino acids. BAT proteins, in contrast, have one to four transmembrane domains and induce the transport of both cationic and zwitterionic amino acids when expressed in Xenopus oocytes. Mutations in the human BAT gene cause type I cystinuria, a disease affecting the ability of intestinal and renal brush border membranes to transport cationic amino acids and cystine. We have used functional expression cloning in oocytes to isolate a BAT-related cDNA from rat jejunal epithelium. The cDNA encodes the rat 4F2 heavy chain (4F2hc) cell-surface antigen, a 527-residue (60 kDa) protein that is 26% identical in amino acid sequence with rat renal BAT (also known as NBAT/D2). Expression of rat jejunal 4F2hc in oocytes induced the lysine-inhibitable Na+-dependent influx of leucine and the leucine-inhibitable Na+-independent influx of lysine. Lysine efflux was stimulated by extracellular (Na+ plus leucine). These characteristics identify the expressed amino acid transport activity as system y+L, a transporter that has been implicated in basal membrane transport of cationic amino acids in intestine, kidney and placenta.
Collapse
Affiliation(s)
- S Y Yao
- Membrane Transport Research Group, Department of Physiology, Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
34
|
Novak DA, Matthews JC, Beveridge MJ, Yao SY, Young J, Kilberg MS. Demonstration of system y+L activity on the basal plasma membrane surface of rat placenta and developmentally regulated expression of 4F2HC mRNA. Placenta 1997; 18:643-8. [PMID: 9364599 DOI: 10.1016/s0143-4004(97)90005-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Na(+)-independent cationic amino acid transport in the rat placenta occurs by leucine-sensitive and leucine-insensitive pathways. The ontogeny of these transport mechanisms within the rat placenta has been described recently. To assign the leucine-inhibitable portion of uptake definitively the uptake of [3H]arginine was studied in the presence of both BCH (to inhibit system Bo,+) and varied concentrations of leucine. Uptake of arginine into basal-enriched membrane vesicles derived from rat placenta was, in the presence of sodium, inhibited by micromolar concentrations of leucine, consistent with assignment of this activity to system y+L. In contrast, the majority of arginine uptake into apical-enriched membrane vesicles was leucine insensitive. Messenger RNA derived from rat placenta at days 14, 16, 18 and 20 of gestation was hybridized with full-length rat cDNA probes against NBAT and 4F2HC (thought to encode proteins associated with system bo,+ and y+L activities, respectively). No NBAT mRNA was detected, whereas 4F2HC mRNA was present at all gestational stages, increasing 12-fold over the last third of gestation. It is concluded that system y+L is present in the basal plasma membrane of the rat placenta syncytium and is subject to developmental regulation by a mechanism that alters the steady content of 4F2HC mRNA.
Collapse
Affiliation(s)
- D A Novak
- Department of Pediatrics, University of Florida College of Medicine, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The recent demonstration of multiple high-affinity leucine-sensitive cationic transport systems prompted this investigation of their role in lysine uptake in basal cell membrane. Transport of lysine by basal membrane was saturable at both 22 and 37 degrees C and linear in time to 1 min and 30 sec, respectively. At 22 degrees C, at least two systems were active. The portion of uptake inhibited by the sulphydryl binding reagent N-ethylmaleimide (NEM) but not by leucine in the absence of sodium had a high K(m) and high Vmax and was attributed to system y+. NEM-insensitive uptake was fitted by a one-system model with K(m) (+/- s.e.) of 4 +/- 1 microM and a Vmax of 0.9 +/- 0.1 pmol/mg protein/min. This component was completely inhibited by leucine in the absence of sodium but not by glutamine in the presence of sodium. Therefore, it was attributed to system bo,+. At 37 degrees C, at least three systems were active. For essentially the same reasons as above the NEM inhibitable uptake was attributed to system y+. NEM-insensitive uptake was fitted by a one-system model with K(m) of 26 +/- 7 microM and Vmax of 11.1 +/- 2.8 pmol/mg protein/30 sec. Inhibition studies, however, indicated its heterogeneity. NEM-insensitive saturable uptake was only partially inhibited by either leucine in the absence of sodium (system bo,+) or by glutamine in the presence of sodium (system y+L). It is concluded that the NEM-insensitive portion of lysine uptake at 37 degrees C represents activity of both system bo,+ and the temperature-sensitive system y+L. As a previous investigation indicates, only one of these (system y+L) is present in the more specialized microvillous membrane. The demonstration of functional differences in the high affinity leucine transporters of basal and microvillous membrane in this and our previous investigations suggest that the two membranes possess different transport or modifier proteins.
Collapse
Affiliation(s)
- T C Furesz
- Edward Mallinckrodt Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, Missouri 63110, USA
| | | |
Collapse
|
36
|
Ito K, Groudine M. A new member of the cationic amino acid transporter family is preferentially expressed in adult mouse brain. J Biol Chem 1997; 272:26780-6. [PMID: 9334265 DOI: 10.1074/jbc.272.42.26780] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have isolated and characterized a novel member (CAT3) of the cationic amino acid transporter (CAT) family. In oocyte injection assays, CAT3 cRNA exhibited a saturable, sodium ion-independent transport activity with high affinity for L-arginine and L-lysine (Km = 40-60 and 115-165 microM, respectively). Transport of L-arginine was effectively competed only by cationic amino acids in L-form: arginine, lysine, ornithine, and 2,4-diamino-n-butyric acid but not by 2,3-diaminopropionic acid. The presence of L-arginine in the incubation medium stimulated the efflux rate of L-arginine, indicating that CAT3 is subject to trans-stimulation. All these results are consistent with the idea that CAT3, along with CAT1 and CAT2, constitutes the transport activity originally assigned to system y+. Like CAT2, but unlike CAT1, the expression of CAT3 is regulated in a highly tissue-specific manner; when various adult tissues were examined, significant levels of CAT3 transcript were detectable only in brain. In situ hybridization on brain sections revealed that CAT3 transcripts were localized predominantly along the midbrain-thalamus-hypothalamus axis, whereas neither CAT1 nor CAT2 transcripts demonstrated a similar localization. In contrast to its highly localized expression during the primitive streak stage and in the adult stage, CAT3 expression was detected more widely in 13.5 day post-coitum mouse embryos.
Collapse
Affiliation(s)
- K Ito
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA.
| | | |
Collapse
|
37
|
Abstract
Glutamine plays an important role in fetal nutrition. This study explored the transport of [3H]glutamine into apical and basal predominant membrane vesicles derived from rat and human placenta. Na+-dependent glutamine transport was present in both apical and basal predominant vesicles derived from 20- and, to a lesser degree, 14-day gestation rat placenta. Amino-acid transport systems A, ASC-like, B(o,+) (in apical membrane vesicles) and, perhaps, y+L were involved in Na+-dependent glutamine transport. Na+-dependent glutamine uptake into human placental microvillus and basolateral membrane vesicles also occurred via several distinct transport activities. Glutamine transport via system N was not detected in either rat or human placental preparations. Na+-dependent glutamine transport in the rat was more pronounced in basal as compared to apical membrane vesicles. Conversely, in the human preparations, activity was significantly higher in microvillus as compared to basolateral membrane vesicles. It is concluded that Na+-dependent glutamine transport occurs through a variety of transport agencies in both the rat and human placenta. Transport varies with ontogeny and between species.
Collapse
Affiliation(s)
- D A Novak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, USA
| | | |
Collapse
|
38
|
Ferruzza S, Ranaldi G, Di Girolamo M, Sambuy Y. The efflux of lysine from the basolateral membrane of human cultured intestinal cells (Caco-2) occurs by different mechanisms depending on the extracellular availability of amino acids. J Nutr 1997; 127:1183-90. [PMID: 9187634 DOI: 10.1093/jn/127.6.1183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The efflux of the nutritionally essential amino acid, L-lysine from the basolateral (BL) membrane was characterized in human cultured intestinal cells (Caco-2) grown and differentiated on permeable filter supports. Cells were loaded by incubating with 3H-lysine from the apical (AP) side in the absence of sodium (substituted with choline) in the BL medium; under these conditions, cells accumulated lysine in the intracellular soluble pool to 10- to 20-fold the extracellular concentration. L-Lysine efflux in the BL medium was then followed, and initial rates of efflux were calculated under different experimental conditions. L-Lysine efflux exhibited a strong energy dependence. The presence of an inwardly directed gradient of sodium or lithium stimulated lysine efflux; ouabain reduced efflux in both sodium- and lithium-containing medium. When zwitterionic or cationic amino acids were added to the BL medium, L-lysine efflux was strongly stimulated. The most efficient trans-stimulating amino acids were L-leucine > L-methionine = L-ornithine = L-arginine. In the presence of trans-stimulating amino acids in the BL medium, L-lysine efflux exhibited energy independence and was not affected by the presence of a sodium gradient. In addition, the sensitivity, of efflux to N-ethylmaleimide was different in the absence or in the presence of amino acids in the BL medium. These results suggest that different mechanisms may operate in the BL efflux of L-lysine from human intestinal epithelial cells, depending on the extracellular availability of other amino acids, to guarantee optimal bioavailability of this essential amino acid both in the postprandial absorptive period and between meals.
Collapse
Affiliation(s)
- S Ferruzza
- Istituto Nazionale della Nutrizione, Rome, Italy
| | | | | | | |
Collapse
|
39
|
Devés R, Angelo S. Changes in membrane and surface potential explain the opposite effects of low ionic strength on the two lysine transporters of human erythrocytes. J Biol Chem 1996; 271:32034-9. [PMID: 8943253 DOI: 10.1074/jbc.271.50.32034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The sucrose-induced stimulation of lysine influx in human erythrocytes has been attributed to the removal of a competitive inhibition exerted by Na+ on system y+ (Young, J. D., Fincham, D. A., and Harvey, C. M. (1991) Biochim. Biophys. Acta 1070, 111-118). We have reexamined this phenomenon separating the contribution of the two cationic amino acid transporters present in these cells (system y+ and system y+L). NaCl replacement with sucrose increased influx through system y+L, but decreased influx through system y+. We conclude that 1) the inhibition of system y+ is a response to the membrane depolarization that results from chloride removal, and 2) the stimulation of system y+L is due to the enhancement of the negative surface potential. Consistently, lysine influx through system y+L (in sucrose medium) was reduced by Na+, K+, Li+, and choline (K0.5 = 25-34 mM), the effect reaching a maximum at 35-40% of the original flux. Divalent cations (Ca2+ and Mg2+) were also inhibitory, but lower concentrations were required (K0.5 1.1-1.8 mM). The finding that sucrose stimulates uptake through changes in the surface potential explains similar effects observed in other cells with various cationic substrates.
Collapse
Affiliation(s)
- R Devés
- Department of Physiology and Biophysics, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | |
Collapse
|
40
|
Temple CS, Bailey PD, Bronk JR, Boyd CA. A model for the kinetics of neutral and anionic dipeptide-proton cotransport by the apical membrane of rat kidney cortex. J Physiol 1996; 494 ( Pt 3):795-808. [PMID: 8865075 PMCID: PMC1160678 DOI: 10.1113/jphysiol.1996.sp021533] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Kinetics of influx (mediated through peptide-proton cotransport) of two labelled dipeptides has been studied in apical membrane vesicles isolated from rat renal cortex. The substrates (neutral D-Phe-L-Ala and anionic D-Phe-L-Glu) have previously been shown to be transported through a single system but with different stoichiometry of proton coupling. 2. The initial rate of influx of both peptides was determined under a set of defined conditions allowing extravesicular pH, intravesicular pH, transmembrane pH and membrane potential (Em) to be varied systemically and independently. From this data the kinetic constants K(m) and Vmax were derived for each condition. Very substantial effects of pH, pH gradient and membrane potential were found; there were consistent quantitative differences when the substrates were compared. 3. Efflux of the two peptides from preloaded vesicles was also determined. At pH 5.5 (intra- and extravesicular), but not at pH 7.4, the rate constants for efflux of the two peptides were similar and addition to the extravesicular medium of unlabelled D-Phe-L-Glu (but not D-Phe-L-Ala) trans-stimulated efflux of both peptides to a similar extent; the extent of this trans-stimulation was insensitive to alterations in membrane potential. 4. A model based on a combination of classical carrier theory (the carrier being negatively charged) and of two sequential protonation steps (both to external sites predicted to be in the membrane electrical field) is described. Qualitatively this adequately accounts for all the observations made and allows for the dependence of the stoichiometry of proton-peptide coupling on the net charge carried by the substrate. Quantitatively a 50-fold greater rate of reorientation of the free carrier when unprotonated is predicted to be responsible for the coupling of proton and peptide transport. 5. Our results and the model are discussed with respect to the recently elucidated primary structure of mammalian peptide transporters.
Collapse
Affiliation(s)
- C S Temple
- Department of Human Anatomy, University of Oxford, UK
| | | | | | | |
Collapse
|
41
|
Chillarón J, Estévez R, Mora C, Wagner CA, Suessbrich H, Lang F, Gelpí JL, Testar X, Busch AE, Zorzano A, Palacín M. Obligatory amino acid exchange via systems bo,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. J Biol Chem 1996; 271:17761-70. [PMID: 8663357 DOI: 10.1074/jbc.271.30.17761] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mutations in the rBAT gene cause type I cystinuria, a common inherited aminoaciduria of cystine and dibasic amino acids due to their defective renal and intestinal reabsorption (Calonge, M. J., Gasparini, P., Chillarón, J., Chillón, M., Gallucci, M., Rousaud, F., Zelante, L., Testar, X., Dallapiccola, B., Di Silverio, F., Barceló, P., Estivill, X., Zorzano, A., Nunes, V., and Palacín, M. (1994) Nat. Genet. 6, 420-426; Calonge, M. J., Volipini, V., Bisceglia, L., Rousaud, F., De Sanctis, L., Beccia, E., Zelante, L., Testar, X., Zorzano, A., Estivill, X., Gasparini, P., Nunes, V., and Palacín, M.(1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9667-9671). One important question that remains to be clarified is how the apparently non-concentrative system bo,+-like, associated with rBAT expression, participates in the active renal reabsorption of these amino acids. Several studies have demonstrated exchange of amino acids induced by rBAT in Xenopus oocytes. Here we offer evidence that system bo,+-like is an obligatory amino acid exchanger in oocytes and in the "renal proximal tubular" cell line OK. System bo, +-like showed a 1:1 stoichiometry of exchange, and the hetero-exchange dibasic (inward) with neutral (outward) amino acids were favored in oocytes. Obligatory exchange of amino acids via system bo,+-like fully explained the amino acid-induced current in rBAT-injected oocytes. Exchange via system bo,+-like is coupled enough to ensure a specific accumulation of substrates until the complete replacement of the internal oocyte substrates. Due to structural and functional analogies of the cell surface antigen 4F2hc to rBAT, we tested for amino acid exchange via system y+L-like. 4F2hc-injected oocytes accumulated substrates to a level higher than CAT1-injected oocytes (i.e. oocytes expressing system y+) and showed exchange of amino acids with the substrate specificity of system y+L and L-leucine-induced outward currents in the absence of extracellular sodium. In contrast to L-arginine, system y+L-like did not mediate measurable L-leucine efflux from the oocyte. We propose a role of systems bo,+-like and y+L-like in the renal reabsorption of cystine and dibasic amino acids that is based on their active tertiary transport mechanism and on the apical and basolateral localization of rBAT and 4F2hc, respectively, in the epithelial cells of the proximal tubule of the nephron.
Collapse
Affiliation(s)
- J Chillarón
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda, Diagonal 645, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu Z, Harvey WR. Arginine uptake through a novel cationic amino acid:K+ symporter, System R+, in brush border membrane vesicles from larval Manduca sexta midgut. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1282:25-31. [PMID: 8679656 DOI: 10.1016/0005-2736(96)00034-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A concentrative uptake of arginine into brush border membrane vesicles (BBMV) from the midgut of Manduca sexta larvae was driven by an inwardly directed K+ gradient. The pH-dependence of the initial rate of arginine uptake between pH 7 and 10.5 paralleled the titration curve of the amino acid, suggesting that cationic arginine is the principal ionic form that is transported. In the presence of K+, at pH 7.4, arginine uptake was cis-inhibited and trans-stimulated by arginine and lysine but not by any other naturally occurring amino acids; it was also cis-inhibited by homoarginine and ornithine. Taken together, these data argue that arginine, lysine and their analogues share a cationic amino acid:K+ symporter (cotransporter), which we will designate as System R+. This novel symporter has a substrate spectrum similar to that of the uniporter, System y+, in that it accepts arginine+, lysine+, homoarginine+ and ornithine+ and rejects histidine. However, it differs from y+ in that it is cation-dependent and is almost inactive at pH 5.5.
Collapse
Affiliation(s)
- Z Liu
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
43
|
Forray MI, Angelo S, Boyd CA, Devés R. Transport of nitric oxide synthase inhibitors through cationic amino acid carriers in human erythrocytes. Biochem Pharmacol 1995; 50:1963-8. [PMID: 8849321 DOI: 10.1016/0006-2952(95)02090-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The interaction of arginine analogues, which are known to inhibit nitric oxide synthase, with two cationic amino acid transporters of human erythrocytes (systems y+ and y+L) was studied. Arginine and relevant analogues [NG-monomethyl-L-arginine (L-NMMA); NG-monomethyl-D-arginine (D-NMMA) and NG-nitro-L-arginine (L-NOARG)] were found to inhibit labeled lysine influx into intact erythrocytes. As expected, the pattern of inhibition reflected the contribution of the two distinct transport systems. All analogues showed a higher affinity for system y+L than for system y+. The half-saturation (inhibition) constants estimated for systems y+ and y+L (+/- SEM) were (microM): L-arginine, 55.7 +/- 5.4 and 2.4 +/- 0.1; L-NMMA, 151 +/- 13 and 7.5 +/- 0.5; D-NMMA, 2660 +/- 404 and 269 +/- 25; L-NOARG, 9414 +/- 169 and 594 +/- 35. The transport properties of the analogues were investigated using an assay based on the trans-stimulation of lysine efflux. The addition of saturating concentrations of unlabeled analogues to the external medium stimulated efflux of labeled lysine through systems y+L and y+, showing that the analogues can enter the cell through these pathways.
Collapse
Affiliation(s)
- M I Forray
- Department of Physiology and Biophysics, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
44
|
Bröer S, Bröer A, Hamprecht B. The 4F2hc surface antigen is necessary for expression of system L-like neutral amino acid-transport activity in C6-BU-1 rat glioma cells: evidence from expression studies in Xenopus laevis oocytes. Biochem J 1995; 312 ( Pt 3):863-70. [PMID: 8554532 PMCID: PMC1136194 DOI: 10.1042/bj3120863] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mammalian cells possess a variety of amino acid-transport systems with overlapping substrate specificity. System L is one of the major amino acid-transport systems in all non-epithelial cells. Its molecular structure is not known. To clone the neutral amino acid-transporter system L, we followed an expression cloning strategy using Xenopus laevis oocytes. A cDNA library derived from C6-BU-1 rat glioma cells was used as a source, because high expression of system L activity could be demonstrated with polyadenylated RNA isolated from these cells, when injected into Xenopus laevis oocytes [Bröer, Bröer and Hamprecht (1994) Biochim. Biophys. Acta 1192, 95-100]. A single clone (ILAT) was identified, the sense cRNA of which, on injection into Xenopus laevis oocytes, stimulated sodium-independent isoleucine transport by about 100-fold. Further characterization revealed that transport of cationic amino acids was also stimulated. Sequencing of the cDNA showed that the identified clone is the heavy chain of the rat 4F2 surface antigen, a marker of tumour cells and activated lymphocytes. Uptake of neutral and cationic amino acids was not stimulated by the presence of Na+ ions. Antisense cRNA transcribed from this clone or antisense oligonucleotides, when co-injected with polyadenylated RNA from C6-BU-1 rat glioma cells, completely suppressed system L-like isoleucine-transport activity. We conclude that ILAT is necessary for expression of system L-like amino acid-transport activity by polyadenylated RNA from C6-BU-1 rat glioma cells.
Collapse
Affiliation(s)
- S Bröer
- Physiologisch-Chemisches Institut der Universität, Tübingen, Germany
| | | | | |
Collapse
|
45
|
Temple CS, Bronk JR, Bailey PD, Boyd CA. Substrate-charge dependence of stoichiometry shows membrane potential is the driving force for proton-peptide cotransport in rat renal cortex. Pflugers Arch 1995; 430:825-9. [PMID: 7478939 DOI: 10.1007/bf00386182] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The proton dependence of the transport of three labelled, hydrolysis-resistant synthetic dipeptides carrying a net charge of -1, 0 or +1 has been investigated in a brush border membrane vesicle preparation obtained from rat renal cortex. Cross-inhibition studies are consistent with the transport of all peptides studied being through a single system. The extent and time course of uptake in response to an inwardly directed electrochemical gradient of protons differed for each peptide. For the cationic peptide D-Phe-L-Lys this gradient did not stimulate the initial rate of uptake, while for the neutral dipeptide D-Phe-L-Ala and the anionic peptide D-Phe-L-Glu stimulation was observed. However, the effect on D-Phe-L-Glu was more marked than that on D-Phe-L-Ala and the proton activation differed for these two peptides. The calculated Hill coefficients for the two proton-dependent peptides were 1.14 +/- 0.16 and 2.15 +/- 0.10 for D-Phe-L-Ala and D-Phe-L-Glu, respectively, providing evidence that the stoichiometry of proton:peptide cotransport is different for each peptide (0:1, 1:1 and 2:1 for D-Phe-L-Lys, D-Phe-L-Ala and D-Phe-L-Glu respectively); studies on energetics are compatible with this conclusion. The physiological and molecular implications of this model are discussed, as are the applicability of the conclusions to secondary active transport systems more generally.
Collapse
Affiliation(s)
- C S Temple
- Department of Human Anatomy, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | |
Collapse
|
46
|
Boyd CA. Intestinal oligopeptide transport. Proc Nutr Soc 1995; 54:519-23. [PMID: 8524898 DOI: 10.1079/pns19950020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- C A Boyd
- Department of Human Anatomy, University of Oxford
| |
Collapse
|
47
|
Abstract
Normal fetal growth and development depend on a continuous supply of amino acids from the mother to the fetus. The placenta is responsible for the transfer of amino acids between the two circulations. The human placenta is hemomonochorial, meaning that the maternal and fetal circulations are separated by a single layer of polarized epithelium called the syncytiotrophoblast, which is in direct contact with maternal blood. Transport proteins located in the microvillous and basal membranes of the syncytiotrophoblast are the principal mechanism for transfer from maternal blood to fetal blood. Knowledge of the function and regulation of syncytiotrophoblast amino acid transporters is of great importance in understanding the mechanism of placental transport and potentially improving fetal and newborn outcomes. The development of methods for the isolation of microvillous and basal membrane vesicles from human placenta over the past two decades has contributed greatly to this understanding. Now a primary cultured trophoblast model is available to study amino acid transport and regulation as the cells differentiate. The types of amino acid transporters and their distribution between the syncytiotrophoblast microvillous and basal membranes are somewhat unique compared with other polarized epithelia. These differences may reflect the unusual circumstance of this epithelium that is exposed to blood on both sides. The current state of knowledge as to the types of transport systems present in syncytiotrophoblast, their regulation, and the effects of maternal consumption of drugs on transport are discussed.
Collapse
Affiliation(s)
- A J Moe
- Edward Mallinkrodt Department of Pediatrics, Children's Hospital, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
48
|
Affiliation(s)
- D Meredith
- Department of Human Anatomy, University of Oxford, UK
| | | |
Collapse
|
49
|
Furesz TC, Moe AJ, Smith CH. Lysine uptake by human placental microvillous membrane: comparison of system y+ with basal membrane. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:C755-61. [PMID: 7534987 DOI: 10.1152/ajpcell.1995.268.3.c755] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transport of lysine by microvillous membranes was investigated by characterization of L-[3H]lysine uptake in membrane vesicles isolated from human placentas. At least one Na(+)-independent system was observed at 22 degrees C and two systems at 37 degrees C. Lysine concentration dependence data were fit by a one- or two-system model with a Michaelis-Menten constant (Km) of 124 +/- 28 microM and a maximum velocity (Vmax) of 33.1 +/- 7.7 pmol.mg protein-1.min-1 at 22 degrees C and with Km values of 1 +/- 0.6 and 245 +/- 51 microM and Vmax values of 0.14 +/- 0.07 and 45.8 +/- 8.7 pmol.mg protein-1.30 s-1 at 37 degrees C. In the presence of N-ethylmaleimide, the uptake (37 degrees C) data were fit by a one-system model with kinetic parameters similar to the lower Km system. Uptake of L-lysine in the absence of Na+ was inhibited completely by L-arginine, L-histidine, and L-homoarginine. In the presence of Na+, uptake was inhibited completely by these same three amino acids and L-leucine but only partially by other neutral amino acids. To compare directly microvillous and basal membrane from the same placenta, we examined the inhibition of 20 microM lysine uptake in the presence of Na+. Inhibition by L-leucine was similar in the two membranes. However, L-homoserine, L-alanine, and L-phenylalanine over a wide concentration range inhibited substantially less in microvillous (at both temperatures) than in basal membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T C Furesz
- Edward Mallinckrodt Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, Missouri 63110
| | | | | |
Collapse
|