1
|
Hessel AL, Monroy JA, Nishikawa KC. Non-cross Bridge Viscoelastic Elements Contribute to Muscle Force and Work During Stretch-Shortening Cycles: Evidence From Whole Muscles and Permeabilized Fibers. Front Physiol 2021; 12:648019. [PMID: 33854441 PMCID: PMC8039322 DOI: 10.3389/fphys.2021.648019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
The sliding filament-swinging cross bridge theory of skeletal muscle contraction provides a reasonable description of muscle properties during isometric contractions at or near maximum isometric force. However, it fails to predict muscle force during dynamic length changes, implying that the model is not complete. Mounting evidence suggests that, along with cross bridges, a Ca2+-sensitive viscoelastic element, likely the titin protein, contributes to muscle force and work. The purpose of this study was to develop a multi-level approach deploying stretch-shortening cycles (SSCs) to test the hypothesis that, along with cross bridges, Ca2+-sensitive viscoelastic elements in sarcomeres contribute to force and work. Using whole soleus muscles from wild type and mdm mice, which carry a small deletion in the N2A region of titin, we measured the activation- and phase-dependence of enhanced force and work during SSCs with and without doublet stimuli. In wild type muscles, a doublet stimulus led to an increase in peak force and work per cycle, with the largest effects occurring for stimulation during the lengthening phase of SSCs. In contrast, mdm muscles showed neither doublet potentiation features, nor phase-dependence of activation. To further distinguish the contributions of cross bridge and non-cross bridge elements, we performed SSCs on permeabilized psoas fiber bundles activated to different levels using either [Ca2+] or [Ca2+] plus the myosin inhibitor 2,3-butanedione monoxime (BDM). Across activation levels ranging from 15 to 100% of maximum isometric force, peak force, and work per cycle were enhanced for fibers in [Ca2+] plus BDM compared to [Ca2+] alone at a corresponding activation level, suggesting a contribution from Ca2+-sensitive, non-cross bridge, viscoelastic elements. Taken together, our results suggest that a tunable viscoelastic element such as titin contributes to: (1) persistence of force at low [Ca2+] in doublet potentiation; (2) phase- and length-dependence of doublet potentiation observed in wild type muscles and the absence of these effects in mdm muscles; and (3) increased peak force and work per cycle in SSCs. We conclude that non-cross bridge viscoelastic elements, likely titin, contribute substantially to muscle force and work, as well as the phase-dependence of these quantities, during dynamic length changes.
Collapse
Affiliation(s)
- Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Jenna A Monroy
- W.M. Keck Science Department, Claremont Colleges, Claremont, CA, United States
| | - Kiisa C Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
2
|
Cankaya AO, Pamuk U, Yucesoy CA. The effects of an activation-dependent increase in titin stiffness on whole muscle properties using finite element modeling. J Biomech 2020; 116:110197. [PMID: 33412436 DOI: 10.1016/j.jbiomech.2020.110197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 11/28/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022]
Abstract
Active state titin's effects have been studied predominantly in sarcomere or muscle fiber segment level and an understanding of its functional effects in the context of a whole muscle, and the mechanism of those is lacking. By representing experimentally observed calcium induced stiffening and actin-titin interaction induced reduced free spring length effects of active state titin in our linked fiber-matrix mesh finite element model, our aim was to study the mechanism of effects and particularly to determine the functionally more effective active state titin model. Isolated EDL muscle of the rat was modeled and three cases were studied: passive state titin (no change in titin constitutive equation in the active state), active state titin-I (constitutive equation involves a higher stiffness in the active state) and active state titin-II (constitutive equation also involves a strain shift coefficient accounting for titin's reduced free spring length). Isometric muscle lengthening was imposed (initial to long length, lm = 28.7 mm to 32.7 mm). Compared to passive state titin, (i) active state titin-I and II elevates muscle total (lm = 32.7 mm: 14% and 29%, respectively) and active (lm = 32.7 mm: 37.5% and 77.4%, respectively) forces, (ii) active state titin-II also shifts muscle's optimum length to a longer length (lm = 29.6 mm), (iii) active state titin-I and II limits sarcomere shortening (lm = 32.7 mm: up to 10% and 20%, respectively). Such shorter sarcomere effect characterizes active state titin's mechanism of effects. These effects become more pronounced and functionally more effective if not only calcium induced stiffening but also a reduced free spring length of titin is accounted for.
Collapse
Affiliation(s)
- Alican O Cankaya
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Uluç Pamuk
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Can A Yucesoy
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
3
|
N2A Titin: Signaling Hub and Mechanical Switch in Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21113974. [PMID: 32492876 PMCID: PMC7312179 DOI: 10.3390/ijms21113974] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Since its belated discovery, our understanding of the giant protein titin has grown exponentially from its humble beginning as a sarcomeric scaffold to recent recognition of its critical mechanical and signaling functions in active muscle. One uniquely useful model to unravel titin’s functions, muscular dystrophy with myositis (mdm), arose spontaneously in mice as a transposon-like LINE repeat insertion that results in a small deletion in the N2A region of titin. This small deletion profoundly affects hypertrophic signaling and muscle mechanics, thereby providing insights into the function of this specific region and the consequences of its dysfunction. The impact of this mutation is profound, affecting diverse aspects of the phenotype including muscle mechanics, developmental hypertrophy, and thermoregulation. In this review, we explore accumulating evidence that points to the N2A region of titin as a dynamic “switch” that is critical for both mechanical and signaling functions in skeletal muscle. Calcium-dependent binding of N2A titin to actin filaments triggers a cascade of changes in titin that affect mechanical properties such as elastic energy storage and return, as well as hypertrophic signaling. The mdm phenotype also points to the existence of as yet unidentified signaling pathways for muscle hypertrophy and thermoregulation, likely involving titin’s PEVK region as well as the N2A signalosome.
Collapse
|
4
|
Abstract
Muscle has conventionally been viewed as a motor that converts chemical to kinetic energy in series with a passive spring, but new insights emerge when muscle is viewed as a composite material whose elastic elements are tuned by activation. New evidence demonstrates that calcium-dependent binding of N2A titin to actin increases titin stiffness in active skeletal muscles, which explains many long-standing enigmas of muscle physiology.
Collapse
Affiliation(s)
- Kiisa Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
5
|
Rassier DE. Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells. Am J Physiol Cell Physiol 2017; 313:C134-C145. [PMID: 28539306 DOI: 10.1152/ajpcell.00050.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/22/2022]
Abstract
Muscle contraction is commonly associated with the cross-bridge and sliding filament theories, which have received strong support from experiments conducted over the years in different laboratories. However, there are studies that cannot be readily explained by the theories, showing 1) a plateau of the force-length relation extended beyond optimal filament overlap, and forces produced at long sarcomere lengths that are higher than those predicted by the sliding filament theory; 2) passive forces at long sarcomere lengths that can be modulated by activation and Ca2+, which changes the force-length relation; and 3) an unexplained high force produced during and after stretch of activated muscle fibers. Some of these studies even propose "new theories of contraction." While some of these observations deserve evaluation, many of these studies present data that lack a rigorous control and experiments that cannot be repeated in other laboratories. This article reviews these issues, looking into studies that have used intact and permeabilized fibers, myofibrils, isolated sarcomeres, and half-sarcomeres. A common mechanism associated with sarcomere and half-sarcomere length nonuniformities and a Ca2+-induced increase in the stiffness of titin is proposed to explain observations that derive from these studies.
Collapse
Affiliation(s)
- Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Shalabi N, Cornachione A, de Souza Leite F, Vengallatore S, Rassier DE. Residual force enhancement is regulated by titin in skeletal and cardiac myofibrils. J Physiol 2017; 595:2085-2098. [PMID: 28028799 DOI: 10.1113/jp272983] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/12/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS When a skeletal muscle is stretched while it contracts, the muscle produces a relatively higher force than the force from an isometric contraction at the same length: a phenomenon referred to as residual force enhancement. Residual force enhancement is puzzling because it cannot be directly explained by the classical force-length relationship and the sliding filament theory of contraction, the main paradigms in the muscle field. We used custom-built instruments to measure residual force enhancement in skeletal myofibrils, and, for the first time, in cardiac myofibrils. Our data report that residual force enhancement is present in skeletal muscles, but not cardiac muscles, and is regulated by the different isoforms of the titin protein filaments. ABSTRACT When a skeletal muscle contracts isometrically, the muscle produces a force that is relative to the final isometric sarcomere length (SL). However, when the same final SL is reached by stretching the muscle while it contracts, the muscle produces a relatively higher force: a phenomenon commonly referred to as residual force enhancement. In this study, we investigated residual force enhancement in rabbit skeletal psoas myofibrils and, for the first time, cardiac papillary myofibrils. A custom-built atomic force microscope was used in experiments that stretched myofibrils before and after inhibiting myosin and actin interactions to determine whether the different cardiac and skeletal titin isoforms regulate residual force enhancement. At SLs ranging from 2.24 to 3.13 μm, the skeletal myofibrils enhanced the force by an average of 9.0%, and by 29.5% after hindering myosin and actin interactions. At SLs ranging from 1.80 to 2.29 μm, the cardiac myofibrils did not enhance the force before or after hindering myosin and actin interactions. We conclude that residual force enhancement is present only in skeletal muscles and is dependent on the titin isoforms.
Collapse
Affiliation(s)
- Nabil Shalabi
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 2K6
| | - Anabelle Cornachione
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, Quebec, Canada, H2W 1S4
| | - Felipe de Souza Leite
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, Quebec, Canada, H2W 1S4
| | - Srikar Vengallatore
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 2K6
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, Quebec, Canada, H2W 1S4
| |
Collapse
|
7
|
Colombini B, Nocella M, Bagni MA. Non-crossbridge stiffness in active muscle fibres. ACTA ACUST UNITED AC 2016; 219:153-60. [PMID: 26792325 DOI: 10.1242/jeb.124370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stretching of an activated skeletal muscle induces a transient tension increase followed by a period during which the tension remains elevated well above the isometric level at an almost constant value. This excess of tension in response to stretching has been called 'static tension' and attributed to an increase in fibre stiffness above the resting value, named 'static stiffness'. This observation was originally made, by our group, in frog intact muscle fibres and has been confirmed more recently, by us, in mammalian intact fibres. Following stimulation, fibre stiffness starts to increase during the latent period well before crossbridge force generation and it is present throughout the whole contraction in both single twitches and tetani. Static stiffness is dependent on sarcomere length in a different way from crossbridge force and is independent of stretching amplitude and velocity. Static stiffness follows a time course which is distinct from that of active force and very similar to the myoplasmic calcium concentration time course. We therefore hypothesize that static stiffness is due to a calcium-dependent stiffening of a non-crossbridge sarcomere structure, such as the titin filament. According to this hypothesis, titin, in addition to its well-recognized role in determining the muscle passive tension, could have a role during muscle activity.
Collapse
Affiliation(s)
- Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Viale G.B. Morgagni 63, 50134 Florence, Italy
| | - Marta Nocella
- Department of Experimental and Clinical Medicine, University of Florence, Viale G.B. Morgagni 63, 50134 Florence, Italy
| | - Maria Angela Bagni
- Department of Experimental and Clinical Medicine, University of Florence, Viale G.B. Morgagni 63, 50134 Florence, Italy
| |
Collapse
|
8
|
Rassier DE, Leite FS, Nocella M, Cornachione AS, Colombini B, Bagni MA. Non-crossbridge forces in activated striated muscles: a titin dependent mechanism of regulation? J Muscle Res Cell Motil 2014; 36:37-45. [PMID: 25421125 DOI: 10.1007/s10974-014-9397-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/29/2014] [Indexed: 11/30/2022]
Abstract
When skeletal muscles are stretched during activation in the absence of myosin-actin interactions, the force increases significantly. The force remains elevated throughout the activation period. The mechanism behind this non-crossbridge force, referred to as static tension, is unknown and generates debate in the literature. It has been suggested that the static tension is caused by Ca(2+)-induced changes in the properties of titin molecules that happens during activation and stretch, but a comprehensive evaluation of such possibility is still lacking. This paper reviews the general characteristics of the static tension, and evaluates the proposed mechanism by which titin may change the force upon stretch. Evidence is presented suggesting that an increase in intracellular Ca(2+) concentration leads to Ca(2+) binding to the PEVK region of titin. Such binding increases titin stiffness, which increases the overall sarcomere stiffness and causes the static tension. If this form of Ca(2+)-induced increase in titin stiffness is confirmed in future studies, it may have large implications for understating of the basic mechanisms of muscle contraction.
Collapse
Affiliation(s)
- Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada,
| | | | | | | | | | | |
Collapse
|
9
|
Nocella M, Cecchi G, Bagni MA, Colombini B. Force enhancement after stretch in mammalian muscle fiber: no evidence of cross-bridge involvement. Am J Physiol Cell Physiol 2014; 307:C1123-9. [PMID: 25298425 DOI: 10.1152/ajpcell.00290.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stretching of activated skeletal muscles induces a force increase above the isometric level persisting after stretch, known as residual force enhancement (RFE). RFE has been extensively studied; nevertheless, its mechanism remains debated. Unlike previous RFE studies, here the excess of force after stretch, termed static tension (ST), was investigated with fast stretches (amplitude: 3-4% sarcomere length; duration: 0.6 ms) applied at low tension during the tetanus rise in fiber bundles from flexor digitorum brevis (FDB) mouse muscle at 30°C. ST was measured at sarcomere length between 2.6 and 4.4 μm in normal and N-benzyl-p-toluene sulphonamide (BTS)-added (10 μM) Tyrode solution. The results showed that ST has the same characteristics and it is equivalent to RFE. ST increased with sarcomere length, reached a peak at 3.5 μm, and decreased to zero at ∼4.5 μm. At 4 μm, where active force was zero, ST was still 50% of maximum. BTS reduced force by ∼75% but had almost no effect on ST. Following stimulation, ST developed earlier than force, with a time course similar to internal Ca(2+) concentration: it was present 1 ms after the stimulus, at zero active force, and peaked at ∼3-ms delay. At 2.7 μm, activation increased the passive sarcomere stiffness by a factor of ∼7 compared with the relaxed state All our data indicate that ST, or RFE, is independent of the cross-bridge presence and it is due to the Ca(2+)-induced stiffening of a sarcomeric structure identifiable with titin.
Collapse
Affiliation(s)
- Marta Nocella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; and Interuniversity Institute of Myology, Italy
| | - Giovanni Cecchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; and Interuniversity Institute of Myology, Italy
| | - Maria Angela Bagni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; and Interuniversity Institute of Myology, Italy
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; and Interuniversity Institute of Myology, Italy
| |
Collapse
|
10
|
Lima RTD, Farinatti P, Monteiro W, Oliveira CGD. Variation in isometric force after active shortening and lengthening and their mechanisms: a review. FISIOTERAPIA EM MOVIMENTO 2014. [DOI: 10.1590/0103-5150.027.001.ar02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction The isometric force history dependence of skeletal muscle has been studied along the last one hundred years. Several theories have been formulated to explain and establish the causes of the phenomenon, but not successfully, as they have not been fully accepted and demonstrated, and much controversy on such a subject still remains. Objective To present a systematic literature review on the dynamics of the mechanisms of force depression and force enhancement after active shortening and lengthening, respectively, identifying the key variables involved in the phenomenon, and to date to present the main theories and hypothesis developed trying to explaining it. Method The procedure of literature searching complied the major databases, including articles either, those which directly investigated the phenomena of force depression and force enhancement or those which presented possible causes and mechanisms associated with their respective events, from the earliest studies published until the year of 2010. Results 97 references were found according to the criteria used. Conclusion Based on this review, it is suggested that the theory of stress inhibition of actin-myosin cross-bridges is that better explain the phenomenon of force depression. Whereas regarding the force enhancement phenomenon, one theory have been well accepted, the increased number of actin-myosin cross-bridges in strong binding state influenced by the recruitment of passive elastic components, which hole is attributed to the titin filament.
Collapse
Affiliation(s)
| | - Paulo Farinatti
- Freedom University of Brussels; UERJ; Salgado de Oliveira University, Brasil
| | - Walace Monteiro
- Gama Filho University; UERJ; Salgado de Oliveira University, Brasil
| | | |
Collapse
|
11
|
Offer G, Ranatunga K. A cross-bridge cycle with two tension-generating steps simulates skeletal muscle mechanics. Biophys J 2013; 105:928-40. [PMID: 23972845 PMCID: PMC3752108 DOI: 10.1016/j.bpj.2013.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022] Open
Abstract
We examined whether cross-bridge cycle models with one or two tension-generating steps can account for the force-velocity relation of and tension response to length steps of frog skeletal muscle. Transition-state theory defined the strain dependence of the rate constants. The filament stiffness was non-Hookean. Models were refined against experimental data by simulated annealing and downhill simplex runs. Models with one tension-generating step were rejected, as they had a low efficiency and fitted the experimental data relatively poorly. The best model with two tension-generating steps (stroke distances 5.6 and 4.6 nm) and a cross-bridge stiffness of 1.7 pN/nm gave a good account of the experimental data. The two tensing steps allow an efficiency of up to 38% during shortening. In an isometric contraction, 54.7% of the attached heads were in a pre-tension-generating state, 44.5% of the attached heads had undergone the first tension-generating step, and only 0.8% had undergone both tension-generating steps; they bore 34%, 64%, and 2%, respectively, of the isometric tension. During slow shortening, the second tensing step made a greater contribution. During lengthening, up to 93% of the attached heads were in a pre-tension-generating state yet bore elevated tension by being dragged to high strains before detaching.
Collapse
Affiliation(s)
- Gerald Offer
- Muscle Contraction Group, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - K.W. Ranatunga
- Muscle Contraction Group, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Rassier DE. Residual force enhancement in skeletal muscles: one sarcomere after the other. J Muscle Res Cell Motil 2012; 33:155-65. [DOI: 10.1007/s10974-012-9308-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/05/2012] [Indexed: 11/30/2022]
|
13
|
Rassier DE. The mechanisms of the residual force enhancement after stretch of skeletal muscle: non-uniformity in half-sarcomeres and stiffness of titin. Proc Biol Sci 2012; 279:2705-13. [PMID: 22535786 DOI: 10.1098/rspb.2012.0467] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When activated skeletal muscles are stretched, the force increases significantly. After the stretch, the force decreases and reaches a steady-state level that is higher than the force produced at the corresponding length during purely isometric contractions. This phenomenon, referred to as residual force enhancement, has been observed for more than 50 years, but the mechanism remains elusive, generating considerable debate in the literature. This paper reviews studies performed with single muscle fibres, myofibrils and sarcomeres to investigate the mechanisms of the stretch-induced force enhancement. First, the paper summarizes the characteristics of force enhancement and early hypotheses associated with non-uniformity of sarcomere length. Then, it reviews new evidence suggesting that force enhancement can also be associated with sarcomeric structures. Finally, this paper proposes that force enhancement is caused by: (i) half-sarcomere non-uniformities that will affect the levels of passive forces and overlap between myosin and actin filaments, and (ii) a Ca(2+)-induced stiffness of titin molecules. These mechanisms are compatible with most observations in the literature, and can be tested directly with emerging technologies in the near future.
Collapse
Affiliation(s)
- Dilson E Rassier
- Departments of Kinesiology and Physical Education, Physics and Physiology, McGill University, Montreal (PQ), Canada.
| |
Collapse
|
14
|
Non-crossbridge calcium-dependent stiffness in slow and fast skeletal fibres from mouse muscle. J Muscle Res Cell Motil 2011; 32:403-9. [DOI: 10.1007/s10974-011-9274-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
|
15
|
Campbell SG, Campbell KS. Mechanisms Of Residual Force Enhancement In Skeletal Muscle: Insights From Experiments And Mathematical Models. Biophys Rev 2011; 3:199-207. [PMID: 22180761 DOI: 10.1007/s12551-011-0059-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A skeletal muscle that is stretched while contracting will produce more force at steady state than if it is stretched passively and then stimulated to contract. This phenomenon is known as residual force enhancement and has been widely studied since its description more than sixty years ago. The idea that the mechanical properties of a muscle are governed not just by its present length but also by its length at earlier time points has far reaching implications since muscles stretch and shorten routinely in normal use. In this review, we present the experimental and theoretical advances that have been made toward understanding the mechanisms that underlie residual force enhancement. In the past ten years, experiments and models have focused on essentially three candidate mechanisms for residual force enhancement: (half-) sarcomere inhomogeneity, activity of so-called 'passive' mechanical elements in the sarcomere (titin), and the intrinsic properties of myosin crossbridges. Evidence, both computational and experimental, is accumulating for each of these mechanisms such that a final description of the phenomenon seems attainable in the near future. We conclude that computational models that incorporate more than one putative mechanism may ultimately facilitate reconciliation of the growing number of ideas and experimental data in this field.
Collapse
Affiliation(s)
- Stuart G Campbell
- Department of Physiology and the Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
16
|
Schoffstall B, LaBarbera VA, Brunet NM, Gavino BJ, Herring L, Heshmati S, Kraft BH, Inchausti V, Meyer NL, Moonoo D, Takeda AK, Chase PB. Interaction between troponin and myosin enhances contractile activity of myosin in cardiac muscle. DNA Cell Biol 2011; 30:653-9. [PMID: 21438758 DOI: 10.1089/dna.2010.1163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ca(2+) signaling in striated muscle cells is critically dependent upon thin filament proteins tropomyosin (Tm) and troponin (Tn) to regulate mechanical output. Using in vitro measurements of contractility, we demonstrate that even in the absence of actin and Tm, human cardiac Tn (cTn) enhances heavy meromyosin MgATPase activity by up to 2.5-fold in solution. In addition, cTn without Tm significantly increases, or superactivates sliding speed of filamentous actin (F-actin) in skeletal motility assays by at least 12%, depending upon [cTn]. cTn alone enhances skeletal heavy meromyosin's MgATPase in a concentration-dependent manner and with sub-micromolar affinity. cTn-mediated increases in myosin ATPase may be the cause of superactivation of maximum Ca(2+)-activated regulated thin filament sliding speed in motility assays relative to unregulated skeletal F-actin. To specifically relate this classical superactivation to cardiac muscle, we demonstrate the same response using motility assays where only cardiac proteins were used, where regulated cardiac thin filament sliding speeds with cardiac myosin are >50% faster than unregulated cardiac F-actin. We additionally demonstrate that the COOH-terminal mobile domain of cTnI is not required for this interaction or functional enhancement of myosin activity. Our results provide strong evidence that the interaction between cTn and myosin is responsible for enhancement of cross-bridge kinetics when myosin binds in the vicinity of Tn on thin filaments. These data imply a novel and functionally significant molecular interaction that may provide new insights into Ca(2+) activation in cardiac muscle cells.
Collapse
|
17
|
Yagi N. Mechanism of latency relaxation in frog skeletal muscle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:180-6. [PMID: 20969887 DOI: 10.1016/j.pbiomolbio.2010.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/22/2010] [Accepted: 10/12/2010] [Indexed: 01/02/2023]
Abstract
The latency relaxation is a small drop of tension before skeletal muscle begins to develop active tension. This phenomenon was found nearly one century ago but its origin has not been clarified. In this review, the hypotheses for its mechanism are discussed in terms of the recent experimental results using X-ray diffraction. The latency relaxation takes place almost simultaneously as the structural change of the regulatory protein troponin, an unspecified structural change of the thick filament, and increase in stiffness. It seems difficult to associate all of these with the latency relaxation by assuming a simple mechanism.
Collapse
Affiliation(s)
- N Yagi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, Japan.
| |
Collapse
|
18
|
Colombini B, Benelli G, Nocella M, Musarò A, Cecchi G, Bagni MA. Mechanical properties of intact single fibres from wild-type and MLC/mIgf-1 transgenic mouse muscle. J Muscle Res Cell Motil 2010; 30:199-207. [PMID: 19731048 DOI: 10.1007/s10974-009-9187-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 08/14/2009] [Indexed: 12/20/2022]
Abstract
The effects of overexpression of the local form of insulin like growth factor-1 (mIgf-1) on skeletal muscle were investigated by comparing the mechanical properties of single intact fibres from the flexor digitorum brevis of wild-type (WT) and (MLC/mIgf-1) transgenic mice (TG)at 21-24 degrees C. Isolated single fibres were clean enough to measure accurately the sarcomere length. The parameters investigated were: tetanic absolute and specific force, the force-velocity relationship, and the sarcomere length-tension relationship. In addition, we investigated the properties of the "static stiffness", a non-crossbridge Ca(2+)-dependent increase of fibre stiffness previously found in frog muscle. Both average cross-sectional area and tetanic force almost doubled in TG fibres, so that specific force was the same in both preparation: 312 +/- 20 and 344 +/- 34 kN m(-2) in WT and TG fibres, respectively. None of the relative force-velocity parameters was altered by Igf-1 overexpression, however, V(max) (8-10 l(0) s(-1)) was greater than previously reported in whole muscles. The sarcomere length-tension relationship was the same in TG and WT fibres showing the classical shape with a plateau region between 2.28 and 2.52 microm and a linear descending limb. The static stiffness was present in both WT and TG fibres and showed similar characteristics to that of frog skeletal muscle. In contrast to the other parameters, static stiffness in TG fibres was about 24% smaller than in WT fibres suggesting a possible effect of Igf-1 overexpression on its mechanism.
Collapse
Affiliation(s)
- Barbara Colombini
- Dipartimento di Scienze Fisiologiche and Istituto Interuniversitario di Miologia, Università degli Studi di Firenze, Florence, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
In this study, we investigated the effects of activation and stretch on the passive force-sarcomere length relationship in skeletal muscle. Single fibres from the lumbrical muscle of frogs were placed at varying sarcomere lengths on the descending limb of the force-sarcomere length relationship, and tetanic contractions, active stretches and passive stretches (amplitudes of ca 10% of fibre length at a speed of 40% fibre length/s) were performed. The passive forces following stretch of an activated fibre were higher than the forces measured after isometric contractions or after stretches of a passive fibre at the corresponding sarcomere length. This effect was more pronounced at increased sarcomere lengths, and the passive force-sarcomere length relationship following active stretch was shifted upwards on the force axis compared with the corresponding relationship obtained following isometric contractions or passive stretches. These results provide strong evidence for an increase in passive force that is mediated by a length-dependent combination of stretch and activation, while activation or stretch alone does not produce this effect. Based on these results and recently published findings of the effects of Ca2+ on titin stiffness, we propose that the observed increase in passive force is caused by the molecular spring titin.
Collapse
Affiliation(s)
- Dilson E Rassier
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive, Calgary AB, Canada T2N 1N4.
| | | | | |
Collapse
|
20
|
Colombini B, Bagni MA, Berlinguer Palmini R, Cecchi G. Crossbridge formation detected by stiffness measurements in single muscle fibres. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 565:127-40; discussion 140, 371-7. [PMID: 16106971 DOI: 10.1007/0-387-24990-7_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Barbara Colombini
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, Florence I-50134, Italy
| | | | | | | |
Collapse
|
21
|
Rassier DE, Herzog W. Relationship between force and stiffness in muscle fibers after stretch. J Appl Physiol (1985) 2005; 99:1769-75. [PMID: 16002777 DOI: 10.1152/japplphysiol.00010.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to evaluate the relationship between force and stiffness after stretch of activated fibers, while simultaneously changing contractility by interfering with the cross-bridge kinetics and muscle activation. Single fibers dissected from lumbrical muscles of frogs were placed at a length 20% longer than the plateau of the force-length relationship, activated, and stretched by 5 and 10% of fiber length (speed: 40% fiber length/s). Experiments were conducted with maximal and submaximal stimulation in Ringer solution and with the addition of 2 and 5 mM of the myosin inhibitor 2,3-butanedione monoxime (BDM) to the solution. The steady-state force after stretch of an activated fiber was higher than the isometric force produced at the corresponding length in all conditions investigated. Lowering the frequency of stimulation decreased the force and stiffness during isometric contractions, but it did not change force enhancement and stiffness enhancement after stretch. Administration of BDM decreased the force and stiffness during isometric contractions, but it increased the force enhancement and stiffness enhancement after stretch. The relationship between force enhancement and stiffness suggests that the increase in force after stretch may be caused by an increase in the proportion of cross bridges attached to actin. Because BDM places cross bridges in a weakly bound, pre-powerstroke state, our results further suggest that force enhancement is partially associated with a recruitment of weakly bound cross bridges into a strongly bound state.
Collapse
Affiliation(s)
- Dilson E Rassier
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 Univ. Dr., Calgary, AB, Canada T2N 1N4.
| | | |
Collapse
|
22
|
Bagni MA, Cecchi G, Colombini B. Crossbridge properties investigated by fast ramp stretching of activated frog muscle fibres. J Physiol 2005; 565:261-8. [PMID: 15774512 PMCID: PMC1464507 DOI: 10.1113/jphysiol.2005.085209] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Very fast ramp stretches at 9.5-33 sarcomere lengths s(-1) (l0 s(-1)) stretching speed, 16-25 nm per half-sarcomere (nm hs(-1)) amplitude were applied to activated intact frog muscle fibres at tetanus plateau, during the tetanus rise, during the isometric phase of relaxation and during isotonic shortening. Stretches produced an almost linear tension increase above the isometric level up to a peak, and fell to a lower value in spite of continued stretching, indicating that the fibre became suddenly very compliant. This suggests that peak tension (critical tension, P(c)) represents the tension at which crossbridges are forcibly detached by the stretch. The ratio of P(c) to the isometric tension at tetanus plateau (P0) was 2.37 +/- 0.12 (S.E.M.). This ratio did not change significantly at lower tension (P) during the tetanus rise but decreased with time during the relaxation and increased with speed during isotonic shortening. At tetanus plateau P(c) occurred when sarcomere elongation attained a critical length (L(c)) of 10.98 +/- 0.13 nm hs(-1), independently of the stretching speed. L(c) remained constant during the tetanus rise but decreased on the relaxation and increased during isotonic shortening. Length-clamp experiments on the relaxation showed that the lower values of P(c)/P ratio and L(c), were both due to the slow sarcomere stretching occurring during this phase. Our data show that P(c) can be used as a measure of crossbridge number, while L(c) is a measure of crossbridge mean extension. Accordingly, for a given tension, crossbridges on the isometric relaxation are fewer than during the rise, develop a greater individual force and have a greater mean extension, while during isotonic shortening crossbridges are in a greater number but develop a smaller individual force and have a smaller extension.
Collapse
Affiliation(s)
- M Angela Bagni
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Italy
| | | | | |
Collapse
|
23
|
Smith NP, Barclay CJ, Loiselle DS. The efficiency of muscle contraction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 88:1-58. [PMID: 15561300 DOI: 10.1016/j.pbiomolbio.2003.11.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When a muscle contracts and shortens against a load, it performs work. The performance of work is fuelled by the expenditure of metabolic energy, more properly quantified as enthalpy (i.e., heat plus work). The ratio of work performed to enthalpy produced provides one measure of efficiency. However, if the primary interest is in the efficiency of the actomyosin cross-bridges, then the metabolic overheads associated with basal metabolism and excitation-contraction coupling, together with those of subsequent metabolic recovery process, must be subtracted from the total heat and work observed. By comparing the cross-bridge work component of the remainder to the Gibbs free energy of hydrolysis of ATP, a measure of thermodynamic efficiency is achieved. We describe and quantify this partitioning process, providing estimates of the efficiencies of selected steps, while discussing the errors that can arise in the process of quantification. The dependence of efficiency on animal species, fibre-type, temperature, and contractile velocity is considered. The effect of contractile velocity on energetics is further examined using a two-state, Huxley-style, mathematical model of cross-bridge cycling that incorporates filament compliance. Simulations suggest only a modest effect of filament compliance on peak efficiency, but progressively larger gains (vis-à-vis the rigid filament case) as contractile velocity approaches Vmax. This effect is attributed primarily to a reduction in the component of energy loss arising from detachment of cross-bridge heads at non-zero strain.
Collapse
Affiliation(s)
- Nicholas P Smith
- Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
24
|
Fujita H, Labeit D, Gerull B, Labeit S, Granzier HL. Titin isoform-dependent effect of calcium on passive myocardial tension. Am J Physiol Heart Circ Physiol 2005; 287:H2528-34. [PMID: 15548726 DOI: 10.1152/ajpheart.00553.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the effects of Ca2+ on titin (connectin)-based passive tension in skinned myocardium expressing either predominantly N2B titin (rat right ventricle, RRV) or predominantly N2BA titin (bovine left atrium, BLA). Actomyosin-based tension was abolished to undetectably low levels by selectively removing the thin filaments with a Ca2+-insensitive gelsolin fragment (FX-45). Myocardium was stretched in the presence and absence of Ca2+, and passive tension was measured. Ca2+ significantly increased passive tension during and after stretch in the BLA. The increase was insensitive to the actomyosin inhibitor 2,3-butanedione 2-monoxime, supporting the conclusion that the effect is titin based. Passive tension did not respond to calcium in the RRV, indicating that passive tension developed by N2B titin is calcium insensitive. Western blot analysis and immunofluorescence studies indicated that N2BA titin expresses E-rich PEVK motifs, whereas they are absent from N2B titin, supporting earlier single molecule studies that reported that E-rich motifs are required for calcium sensitivity. We conclude that calcium affects passive myocardial tension in a titin isoform-dependent manner.
Collapse
Affiliation(s)
- Hideaki Fujita
- Dept. of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State Univ., Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
25
|
Bagni MA, Colombini B, Colomo F, Berlinguer Palmini R, Cecchi G. Non cross-bridge stiffness in skeletal muscle fibres at rest and during activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 565:141-54; discussion 155, 371-7. [PMID: 16106972 DOI: 10.1007/0-387-24990-7_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Maria Angela Bagni
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni, 63,I-50134, Firenze, Italy
| | | | | | | | | |
Collapse
|
26
|
Granzier HL, Labeit S. Titin and its associated proteins: the third myofilament system of the sarcomere. ADVANCES IN PROTEIN CHEMISTRY 2005; 71:89-119. [PMID: 16230110 DOI: 10.1016/s0065-3233(04)71003-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Henk L Granzier
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington, USA
| | | |
Collapse
|
27
|
Rassier DE, Herzog W. Active force inhibition and stretch-induced force enhancement in frog muscle treated with BDM. J Appl Physiol (1985) 2004; 97:1395-400. [PMID: 15194676 DOI: 10.1152/japplphysiol.00377.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is evidence that the stretch-induced residual force enhancement observed in skeletal muscles is associated with 1) cross-bridge dynamics and 2) an increase in passive force. The purpose of this study was to characterize the total and passive force enhancement and to evaluate whether these phenomena may be associated with a slow detachment of cross bridges. Single fibers from frog lumbrical muscles were placed at a length 20% longer than the plateau of the force-length relationship, and active and passive stretches (amplitudes of 5 and 10% of fiber length and at a speed of 40% fiber length/s) were performed. Experiments were conducted in Ringer solution and with the addition of 2, 5, and 10 mM of 2,3-butanedione monoxime (BDM), a cross-bridge inhibitor. The steady-state active and passive isometric forces after stretch of an activated fiber were higher than the corresponding forces measured after isometric contractions or passive stretches. BDM decreased the absolute isometric force and increased the total force enhancement in all conditions investigated. These results suggest that total force enhancement is directly associated with cross-bridge kinetics. Addition of 2 mM BDM did not change the passive force enhancement after 5 and 10% stretches. Addition of 5 and 10 mM did not change (5% stretches) or increased (10% stretches) the passive force enhancement. Increasing stretch amplitudes and increasing concentrations of BDM caused relaxation after stretch to be slower, and because passive force enhancement is increased at the greatest stretch amplitudes and the highest BDM concentrations, it appears that passive force enhancement may be related to slow-detaching cross bridges.
Collapse
Affiliation(s)
- Dilson E Rassier
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Dr., Calgary, AB, Canada T2N 1N4
| | | |
Collapse
|
28
|
Bagni MA, Colombini B, Colomo F, Geiger P, Berlinguer Palmini R, Cecchi G. Force response to stretches in activated frog muscle fibres at low tension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 538:429-38; discussion 438-9. [PMID: 15098689 DOI: 10.1007/978-1-4419-9029-7_40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- M Angela Bagni
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni, 63, I-50134, Firenze, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
When a skeletal muscle that is actively producing force is shortened or stretched, the resulting steady-state isometric force after the dynamic phase is smaller or greater, respectively, than the purely isometric force obtained at the corresponding final length. The cross-bridge model of muscle contraction does not readily explain this history dependence of force production. The most accepted proposal to explain both, force depression after shortening and force enhancement after stretch, is a nonuniform behavior of sarcomeres that develops during and after length changes. This hypothesis is based on the idea of instability of sarcomere lengths on the descending limb of the force-length relationship. However, recent evidence suggests that skeletal muscles may be stable over the entire range of active force production, including the descending limb of the force-length relationship. The purpose of this review was to critically evaluate hypotheses aimed at explaining the history dependence of force production and to provide some novel insight into the possible mechanisms underlying these phenomena. It is concluded that the sarcomere nonuniformity hypothesis cannot always explain the total force enhancement observed after stretch and likely does not cause all of the force depression after shortening. There is evidence that force depression after shortening is associated with a reduction in the proportion of attached cross bridges, which, in turn, might be related to a stress-induced inhibition of cross-bridge attachment in the myofilament overlap zone. Furthermore, we suggest that force enhancement is not associated with instability of sarcomeres on the descending limb of the force-length relationship and that force enhancement has an active and a passive component. Force depression after shortening and force enhancement after stretch are likely to have different origins.
Collapse
Affiliation(s)
- Dilson E Rassier
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | |
Collapse
|
30
|
Bagni MA, Colombini B, Geiger P, Berlinguer Palmini R, Cecchi G. Non-cross-bridge calcium-dependent stiffness in frog muscle fibers. Am J Physiol Cell Physiol 2004; 286:C1353-7. [PMID: 14749216 DOI: 10.1152/ajpcell.00493.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At the end of the force transient elicited by a fast stretch applied to an activated frog muscle fiber, the force settles to a steady level exceeding the isometric level preceding the stretch. We showed previously that this excess of tension, referred to as "static tension," is due to the elongation of some elastic sarcomere structure, outside the cross bridges. The stiffness of this structure, "static stiffness," increased upon stimulation following a time course well distinct from tension and roughly similar to intracellular Ca(2+) concentration. In the experiments reported here, we investigated the possible role of Ca(2+) in static stiffness by comparing static stiffness measurements in the presence of Ca(2+) release inhibitors (D600, Dantrolene, (2)H(2)O) and cross-bridge formation inhibitors [2,3-butanedione monoxime (BDM), hypertonicity]. Both series of agents inhibited tension; however, only D600, Dantrolene, and (2)H(2)O decreased at the same time static stiffness, whereas BDM and hypertonicity left static stiffness unaltered. These results indicate that Ca(2+), in addition to promoting cross-bridge formation, increases the stiffness of an (unidentified) elastic structure of the sarcomere. This stiffness increase may help in maintaining the sarcomere length uniformity under conditions of instability.
Collapse
Affiliation(s)
- M A Bagni
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, 50134 Florence, Italy.
| | | | | | | | | |
Collapse
|
31
|
Labeit D, Watanabe K, Witt C, Fujita H, Wu Y, Lahmers S, Funck T, Labeit S, Granzier H. Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci U S A 2003; 100:13716-21. [PMID: 14593205 PMCID: PMC263879 DOI: 10.1073/pnas.2235652100] [Citation(s) in RCA: 304] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Indexed: 11/18/2022] Open
Abstract
Titin (also known as connectin) is a giant protein with a wide range of cellular functions, including providing muscle cells with elasticity. Its physiological extension is largely derived from the PEVK segment, rich in proline (P), glutamate (E), valine (V), and lysine (K) residues. We studied recombinant PEVK molecules containing the two conserved elements: approximately 28-residue PEVK repeats and E-rich motifs. Single molecule experiments revealed that calcium-induced conformational changes reduce the bending rigidity of the PEVK fragments, and site-directed mutagenesis identified four glutamate residues in the E-rich motif that was studied (exon 129), as critical for this process. Experiments with muscle fibers showed that titin-based tension is calcium responsive. We propose that the PEVK segment contains E-rich motifs that render titin a calcium-dependent molecular spring that adapts to the physiological state of the cell.
Collapse
Affiliation(s)
- Dietmar Labeit
- Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Mannheim, 68167 Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bagni MA, Cecchi G, Colombini B, Colomo F. A non-cross-bridge stiffness in activated frog muscle fibers. Biophys J 2002; 82:3118-27. [PMID: 12023235 PMCID: PMC1302100 DOI: 10.1016/s0006-3495(02)75653-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Force responses to fast ramp stretches of various amplitude and velocity, applied during tetanic contractions, were measured in single intact fibers from frog tibialis anterior muscle. Experiments were performed at 14 degrees C at approximately 2.1 microm sarcomere length on fibers bathed in Ringer's solution containing various concentrations of 2,3-butanedione monoxime (BDM) to greatly reduce the isometric tension. The fast tension transient produced by the stretch was followed by a period, lasting until relaxation, during which the tension remained constant to a value that greatly exceeded the isometric tension. The excess of tension was termed "static tension," and the ratio between the force and the accompanying sarcomere length change was termed "static stiffness." The static stiffness was independent of the active tension developed by the fiber, and independent of stretch amplitude and stretching velocity in the whole range tested; it increased with sarcomere length in the range 2.1-2.8 microm, to decrease again at longer lengths. Static stiffness increased well ahead of tension during the tetanus rise, and fell ahead of tension during relaxation. These results suggest that activation increased the stiffness of some sarcomeric structure(s) outside the cross-bridges.
Collapse
Affiliation(s)
- Maria A Bagni
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, I-50134 Firenze, Italy.
| | | | | | | |
Collapse
|
33
|
Abstract
Permeabilized rat soleus muscle fibers were subjected to repeated triangular length changes (paired ramp stretches/releases, 0.03 l(0), +/- 0.1 l(0) s(-1) imposed under sarcomere length control) to investigate whether the rate of stiffness recovery after movement increased with the level of Ca(2+) activation. Actively contracting fibers exhibited a characteristic tension response to stretch: tension rose sharply during the initial phase of the movement before dropping slightly to a plateau, which was maintained during the remainder of the stretch. When the fibers were stretched twice, the initial phase of the response was reduced by an amount that depended on both the level of Ca(2+) activation and the elapsed time since the first movement. Detailed analysis revealed three new and important findings. 1) The rates of stiffness and tension recovery and 2) the relative height of the tension plateau each increased with the level of Ca(2+) activation. 3) The tension plateau developed more quickly during the second stretch at high free Ca(2+) concentrations than at low. These findings are consistent with a cross-bridge mechanism but suggest that the rate of the force-generating power-stroke increases with the intracellular Ca(2+) concentration and cross-bridge strain.
Collapse
Affiliation(s)
- Kenneth S Campbell
- Department of Physiology, University of Wisconsin-Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
34
|
Watanabe K, Muhle-Goll C, Kellermayer MSZ, Labeit S, Granzier H. Different molecular mechanics displayed by titin's constitutively and differentially expressed tandem Ig segments. J Struct Biol 2002; 137:248-58. [PMID: 12064950 DOI: 10.1006/jsbi.2002.4458] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Titin is a giant elastic protein responsible for passive force generated by the stretched striated-muscle sarcomere. Passive force develops in titin's extensible region which consists of the PEVK segment in series with tandemly arranged immunoglobulin (Ig)-like domains. Here we studied the mechanics of tandem Ig segments from the differentially spliced (I65-70) and constitutive (I91-98) regions by using an atomic force microscope specialized for stretching single molecules. The mechanical stability of I65-70 domains was found to be different from that of I91-98 domains. In the range of stretch rates studied (0.05-1.00 microm/s) lower average domain unfolding forces for I65-70 were associated with a weaker stretch-rate dependence of the unfolding force, suggesting that the differences in the mechanical stabilities of the segments derive from differences in the zero force unfolding rate (K(0)(u)) and the characteristic distance (location of the barrier) along the unfolding reaction coordinate (DeltaX(u)). No effect of calcium was found on unfolding forces and persistence length of unfolded domains. To explore the structural basis of the differences in mechanical stabilities of the two fragment types, we compared the amino acid sequence of I65-70 domains with that of I91-98 domains and by using homology modeling analyzed how sequence variations may affect folding free energies. Simulations suggest that differences in domain stability are unlikely to be caused by variation in the number of hydrogen bonds between the force-bearing beta-strands at the domain's N- and C-termini. Rather, they may be due to differences in hydrophobic contacts and strand orientations.
Collapse
Affiliation(s)
- Kaori Watanabe
- VCAPP, Washington State University, Pullman, Washington 99164-6520, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
The filament lattice of striated muscle is an overlapping hexagonal array of thick and thin filaments within which muscle contraction takes place. Its structure can be studied by electron microscopy or X-ray diffraction. With the latter technique, structural changes can be monitored during contraction and other physiological conditions. The lattice of intact muscle fibers can change size through osmotic swelling or shrinking or by changing the sarcomere length of the muscle. Similarly, muscle fibers that have been chemically or mechanically skinned can be compressed with bathing solutions containing very large inert polymeric molecules. The effects of lattice change on muscle contraction in vertebrate skeletal and cardiac muscle and in invertebrate striated muscle are reviewed. The force developed, the speed of shortening, and stiffness are compared with structural changes occurring within the lattice. Radial forces between the filaments in the lattice, which can include electrostatic, Van der Waals, entropic, structural, and cross bridge, are assessed for their contributions to lattice stability and to the contraction process.
Collapse
Affiliation(s)
- B M Millman
- Physics Department, University of Guelph, Ontario, Canada
| |
Collapse
|