1
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
2
|
Takeya M, Higashi R, Hashitani H, Nakamura KI, Hayashi T, Nakashima N, Takano M. PDGFRα (+) subepithelial interstitial cells act as a pacemaker to drive smooth muscle of the guinea pig seminal vesicle. J Physiol 2022; 600:1703-1730. [PMID: 35081665 DOI: 10.1113/jp281686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In many visceral smooth muscle organs, spontaneous contractions are electrically driven by non-muscular pacemaker cells. In guinea pig seminal vesicles (SVs), as yet unidentified mucosal cells appear to drive neighbouring smooth muscle cells (SMCs). Two populations of spontaneously active cells are distributed in the SV mucosa. Basal epithelial cells (BECs) generate asynchronous, irregular spontaneous Ca2+ transients and spontaneous transient depolarisations (STDs). In contrast, subepithelial interstitial cells (SICs) develop synchronous Ca2+ oscillations and electrical slow waves. Pancytokeratin-immunoreactive (IR) BECs are located on the apical side of the basement membrane (BM), while platelet-derived growth factor receptor α (PDGFRα)-IR SICs are located on the basal side of the BM. Spontaneous Ca2+ transients in SICs are synchronised with those in SV SMCs. Dye-coupling between SICs and SMCs suggests that SICs act as pacemaker cells to drive the spontaneous contractions of SV smooth muscle. ABSTRACT Smooth muscle cells (SMCs) of the guinea pig seminal vesicle (SV) develop spontaneous phasic contractions, Ca2+ flashes and electrical slow waves in a mucosa dependent manner, thus it was envisaged that pacemaker cells reside in the mucosa. Here, we aimed to identify the pacemaker cells in SV mucosa using intracellular microelectrode and fluorescent Ca2+ imaging techniques. Morphological characteristics of the mucosal pacemaker cells were also investigated using focused ion beam/scanning electron microscopy tomography and fluorescent immunohistochemistry. Two populations of mucosal cells developed spontaneous Ca2+ transients and electrical activity, namely basal epithelial cells (BECs) and subepithelial interstitial cells (SICs). Pancytokeratin-immunoreactive BECs were located on the apical side of the basement membrane (BM) and generated asynchronous, irregular spontaneous Ca2+ transients and spontaneous transient depolarisations (STDs). The spontaneous Ca2+ transients and STDs were not diminished by 10 μM nifedipine but abolished by 10 μM cyclopiazonic acid (CPA). Platelet-derived growth factor receptor α (PDGFRα)-immunoreactive SICs were distributed just beneath the basal side of the BM and developed synchronous Ca2+ oscillations (SCOs) and electrical slow waves, which were suppressed by 3 μM nifedipine and abolished by 10 μM CPA. In SV mucosal preparations in which some smooth muscle bundles remained attached, SICs and residual SMCs developed temporally-correlated spontaneous Ca2+ transients. Neurobiotin injected into SICs spread to not only neighbouring SICs but also to neighbouring SMCs or vice versa. These results suggest that PDGFRα (+) SICs electrotonically drive the spontaneous contractions of SV smooth muscle. Abstract figure legend The seminal vesicles (SVs) of guinea pig generate spontaneous phasic contractions (SPCs). SV smooth muscle cells (SMCs, pink) develop SPCs associated with spontaneous electrical slow waves and Ca2+ flashes, which require the attachment of mucosal layer. Histological examination demonstrated the layer of PDGFRα-immunoreactive subepithelial interstitial cells (SICs, green) underneath of the basement membrane. The SICs spontaneously develop synchronous Ca2+ oscillations and the electrical slow waves, at the frequency corresponding to those of SPCs. The dye-coupling between SICs and SMCs further suggested that the synchronous electrical slow waves in the SICs electrotonically conduct to the SV SMCs via gap junctions (orange). Thus, the SICs appear to act as electrical pacemaker cells driving SPCs of SV. The basal epithelial cells (BECs, brown) also generated asynchronous, irregular spontaneous Ca2+ transients and spontaneous transient depolarisations, although their roles in developing SPCs remains to be explored. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mitsue Takeya
- Division of Integrated Autonomic Function, Department of Physiology, Kurume University School of Medicine, Kurume, Japan
| | - Ryuhei Higashi
- Electron Microscopic Laboratory, Central Research Unit of Kurume University School of Medicine, Kurume, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | | | - Noriyuki Nakashima
- Division of Integrated Autonomic Function, Department of Physiology, Kurume University School of Medicine, Kurume, Japan
| | - Makoto Takano
- Division of Integrated Autonomic Function, Department of Physiology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
3
|
Baker SA, Hwang SJ, Blair PJ, Sireika C, Wei L, Ro S, Ward SM, Sanders KM. Ca 2+ transients in ICC-MY define the basis for the dominance of the corpus in gastric pacemaking. Cell Calcium 2021; 99:102472. [PMID: 34537580 PMCID: PMC8592010 DOI: 10.1016/j.ceca.2021.102472] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/13/2022]
Abstract
Myenteric interstitial cells of Cajal (ICC-MY) generate and actively propagate electrical slow waves in the stomach. Slow wave generation and propagation are altered in gastric motor disorders, such as gastroparesis, and the mechanism for the gradient in slow wave frequency that facilitates proximal to distal propagation of slow waves and normal gastric peristalsis is poorly understood. Slow waves depend upon Ca2+-activated Cl- channels (encoded by Ano1). We characterized Ca2+ signaling in ICC-MY in situ using mice engineered to have cell-specific expression of GCaMP6f in ICC. Ca2+ signaling differed in ICC-MY in corpus and antrum. Localized Ca2+ transients were generated from multiple firing sites and were organized into Ca2+ transient clusters (CTCs). Ca2+ transient refractory periods occurred upon cessation of CTCs, but a relatively higher frequency of Ca2+ transients persisted during the inter-CTC interval in corpus than in antrum ICC-MY. The onset of Ca2+ transients after the refractory period was associated with initiation of the next CTC. Thus, CTCs were initiated at higher frequencies in corpus than in antrum ICC-MY. Initiation and propagation of CTCs (and electrical slow waves) depends upon T-type Ca2+ channels, and durations of CTCs relied upon L-type Ca2+ channels. The durations of CTCs mirrored the durations of slow waves. CTCs and Ca2+ transients between CTCs resulted from release of Ca2+ from intracellular stores and were maintained, in part, by store-operated Ca2+ entry. Our data suggest that Ca2+ release and activation of Ano1 channels both initiate and contribute to the plateau phase of slow waves.
Collapse
Affiliation(s)
- Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA.
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA
| | - Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA
| | - Carlee Sireika
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA.
| |
Collapse
|
4
|
Sando SR, Bhatla N, Lee EL, Horvitz HR. An hourglass circuit motif transforms a motor program via subcellularly localized muscle calcium signaling and contraction. eLife 2021; 10:59341. [PMID: 34212858 PMCID: PMC8331187 DOI: 10.7554/elife.59341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/26/2021] [Indexed: 12/27/2022] Open
Abstract
Neural control of muscle function is fundamental to animal behavior. Many muscles can generate multiple distinct behaviors. Nonetheless, individual muscle cells are generally regarded as the smallest units of motor control. We report that muscle cells can alter behavior by contracting subcellularly. We previously discovered that noxious tastes reverse the net flow of particles through the C. elegans pharynx, a neuromuscular pump, resulting in spitting. We now show that spitting results from the subcellular contraction of the anterior region of the pm3 muscle cell. Subcellularly localized calcium increases accompany this contraction. Spitting is controlled by an ‘hourglass’ circuit motif: parallel neural pathways converge onto a single motor neuron that differentially controls multiple muscles and the critical subcellular muscle compartment. We conclude that subcellular muscle units enable modulatory motor control and propose that subcellular muscle contraction is a fundamental mechanism by which neurons can reshape behavior.
Collapse
Affiliation(s)
- Steven R Sando
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Nikhil Bhatla
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Miller Institute, Helen Wills Neuroscience Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Eugene Lq Lee
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - H Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
5
|
Wang H, Ma D, Zhu X, Liu P, Li S, Yu B, Yang H. Nimodipine inhibits intestinal and aortic smooth muscle contraction by regulating Ca 2+-activated Cl - channels. Toxicol Appl Pharmacol 2021; 421:115543. [PMID: 33872679 DOI: 10.1016/j.taap.2021.115543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022]
Abstract
Nimodipine is a clinically used dihydropyridine L-type calcium channel antagonist that effectively inhibits transmembrane Ca2+ influx following the depolarization of smooth muscle cells, but the detailed effect on smooth muscle contraction is not fully understood. Ca2+-activated Cl- channels (CaCCs) in vascular smooth muscle cells (VSMCs) may regulate vascular contractility. We found that nimodipine can inhibit transmembrane protein 16A (TMEM16A) activity in a concentration-dependent manner by cell-based fluorescence-quenching assay and short-circuit current analysis, with an IC50 value of ~5 μM. Short-circuit current analysis also showed that nimodipine prevented Ca2+-activated Cl- current in both HT-29 cells and mouse colonic epithelia accompanied by significantly decreased cytoplasmic Ca2+ concentrations. In the absence of extracellular Ca2+, nimodipine still exhibited an inhibitory effect on TMEM16A/CaCCs. Additionally, the application of nimodipine to CFTR-expressing FRT cells and mouse colonic mucosa resulted in mild activation of CFTR-mediated Cl- currents. Nimodipine inhibited basolateral CCh-activated K+ channel activity with no effect on Na+/K+-ATPase activity. Evaluation of intestinal smooth muscle contraction showed that nimodipine inhibits intestinal smooth muscle contractility and frequency, with an activity pattern that was similar to that of non-specific inhibitors of CaCCs. In aortic smooth muscle, the expression of TMEM16A in thoracic aorta is higher than that in abdominal aorta, corresponding to stronger maximum contractility in thoracic aorta smooth muscle stimulated by phenylephrine (PE) and Eact. Nimodipine completely inhibited the contraction of aortic smooth muscle stimulated by Eact, and partially inhibited the contraction stimulated by PE. In summary, the results indicate that nimodipine effectively inhibits TMEM16A/CaCCs by reduction transmembrane Ca2+ influx and directly interacting with TMEM16A, explaining the mechanisms of nimodipine relaxation of intestinal and aortic smooth muscle contraction and providing new targets for pharmacological applications.
Collapse
MESH Headings
- Animals
- Anoctamin-1/antagonists & inhibitors
- Anoctamin-1/metabolism
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Calcium Channel Blockers/toxicity
- Calcium Signaling/drug effects
- HT29 Cells
- Humans
- Ileum/drug effects
- Ileum/metabolism
- In Vitro Techniques
- Male
- Mice, Inbred C57BL
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nimodipine/toxicity
- Rats
- Rats, Sprague-Dawley
- Vasoconstriction/drug effects
- Mice
Collapse
Affiliation(s)
- Hao Wang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian 116000, PR China; Laboratory medical college, Jilin Medical University, Jilin 132013, PR China
| | - Di Ma
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian 116000, PR China
| | - Xiaojuan Zhu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian 116000, PR China
| | - Panyue Liu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian 116000, PR China
| | - Shuai Li
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian 116000, PR China
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian 116000, PR China.
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian 116000, PR China.
| |
Collapse
|
6
|
Chevalier NR, Ammouche Y, Gomis A, Teyssaire C, de Santa Barbara P, Faure S. Shifting into high gear: how interstitial cells of Cajal change the motility pattern of the developing intestine. Am J Physiol Gastrointest Liver Physiol 2020; 319:G519-G528. [PMID: 32877218 DOI: 10.1152/ajpgi.00112.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first contractile waves in the developing embryonic gut are purely myogenic; they only involve smooth muscle. Here, we provide evidence for a transition from smooth muscle to interstitial cell of Cajal (ICC)-driven contractile waves in the developing chicken gut. In situ hybridization staining for anoctamin-1 (ANO1), a known ICC marker, shows that ICCs are already present throughout the gut, as from embryonic day (E)7. We devised a protocol to reveal ICC oscillatory and propagative calcium activity in embryonic gut whole mount and found that the first steady calcium oscillations in ICCs occur on (E14). We show that the activation of ICCs leads to an increase in contractile wave frequency, regularity, directionality, and velocity between E12 and E14. We finally demonstrate that application of the c-KIT antagonist imatinib mesylate in organ culture specifically depletes the ICC network and inhibits the transition to a regular rhythmic wave pattern. We compare our findings to existing results in the mouse and predict that a similar transition should take place in the human fetus between 12 and 14 wk of development. Together, our results point to an abrupt physiological transition from smooth muscle mesenchyme self-initiating waves to ICC-driven motility in the fetus and clarify the contribution of ICCs to the contractile wave pattern.NEW & NOTEWORTHY We reveal a sharp transition from smooth muscle to interstitial cell of Cajal (ICC)-driven motility in the chicken embryo, leading to higher-frequency, more rhythmic contractile waves. We predict the transition to happen between 12 and 14 embryonic wk in humans. We image for the first time the onset of ICC activity in an embryonic gut by calcium imaging. We show the first KIT and anoctamin-1 (ANO1) in situ hybridization micrographs in the embryonic chicken gut.
Collapse
Affiliation(s)
- Nicolas R Chevalier
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Sorbonne Paris Cité, 75013 Paris, France
| | - Yanis Ammouche
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Sorbonne Paris Cité, 75013 Paris, France
| | - Anthony Gomis
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Sorbonne Paris Cité, 75013 Paris, France
| | - Clémence Teyssaire
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Sorbonne Paris Cité, 75013 Paris, France
| | | | - Sandrine Faure
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
7
|
Parsons SP, Huizinga JD. A myogenic motor pattern in mice lacking myenteric interstitial cells of Cajal explained by a second coupled oscillator network. Am J Physiol Gastrointest Liver Physiol 2020; 318:G225-G243. [PMID: 31813235 PMCID: PMC7052571 DOI: 10.1152/ajpgi.00311.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interstitial cells of Cajal associated with the myenteric plexus (ICC-MP) are a network of coupled oscillators in the small intestine that generate rhythmic electrical phase waves leading to corresponding waves of contraction, yet rhythmic action potentials and intercellular calcium waves have been recorded from c-kit-mutant mice that lack the ICC-MP, suggesting that there may be a second pacemaker network. The gap junction blocker carbenoxolone induced a "pinstripe" motor pattern consisting of rhythmic "stripes" of contraction that appeared simultaneously across the intestine with a period of ~4 s. The infinite velocity of these stripes suggested they were generated by a coupled oscillator network, which we call X. In c-kit mutants rhythmic contraction waves with the period of X traveled the length of the intestine, before the induction of the pinstripe pattern by carbenoxolone. Thus X is not the ICC-MP and appears to operate under physiological conditions, a fact that could explain the viability of these mice. Individual stripes consisted of a complex pattern of bands of contraction and distension, and between stripes there could be slide waves and v waves of contraction. We hypothesized that these phenomena result from an interaction between X and the circular muscle that acts as a damped oscillator. A mathematical model of two chains of coupled Fitzhugh-Nagumo systems, representing X and circular muscle, supported this hypothesis. The presence of a second coupled oscillator network in the small intestine underlines the complexity of motor pattern generation in the gut.NEW & NOTEWORTHY Physiological experiments and a mathematical model indicate a coupled oscillator network in the small intestine in addition to the c-kit-expressing myenteric interstitial cells of Cajal. This network interacts with the circular muscle, which itself acts as a system of damped oscillators, to generate physiological contraction waves in c-kit (W) mutant mice.
Collapse
Affiliation(s)
- Sean P. Parsons
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jan D. Huizinga
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Sarcoplasmic reticulum and calcium signaling in muscle cells: Homeostasis and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 350:197-264. [PMID: 32138900 DOI: 10.1016/bs.ircmb.2019.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sarco/endoplasmic reticulum is an extensive, dynamic and heterogeneous membranous network that fulfills multiple homeostatic functions. Among them, it compartmentalizes, stores and releases calcium within the intracellular space. In the case of muscle cells, calcium released from the sarco/endoplasmic reticulum in the vicinity of the contractile machinery induces cell contraction. Furthermore, sarco/endoplasmic reticulum-derived calcium also regulates gene transcription in the nucleus, energy metabolism in mitochondria and cytosolic signaling pathways. These diverse and overlapping processes require a highly complex fine-tuning that the sarco/endoplasmic reticulum provides by means of its numerous tubules and cisternae, specialized domains and contacts with other organelles. The sarco/endoplasmic reticulum also possesses a rich calcium-handling machinery, functionally coupled to both contraction-inducing stimuli and the contractile apparatus. Such is the importance of the sarco/endoplasmic reticulum for muscle cell physiology, that alterations in its structure, function or its calcium-handling machinery are intimately associated with the development of cardiometabolic diseases. Cardiac hypertrophy, insulin resistance and arterial hypertension are age-related pathologies with a common mechanism at the muscle cell level: the accumulation of damaged proteins at the sarco/endoplasmic reticulum induces a stress response condition termed endoplasmic reticulum stress, which impairs proper organelle function, ultimately leading to pathogenesis.
Collapse
|
9
|
Sanders KM. Spontaneous Electrical Activity and Rhythmicity in Gastrointestinal Smooth Muscles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:3-46. [PMID: 31183821 PMCID: PMC7035145 DOI: 10.1007/978-981-13-5895-1_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastrointestinal (GI) tract has multifold tasks of ingesting, processing, and assimilating nutrients and disposing of wastes at appropriate times. These tasks are facilitated by several stereotypical motor patterns that build upon the intrinsic rhythmicity of the smooth muscles that generate phasic contractions in many regions of the gut. Phasic contractions result from a cyclical depolarization/repolarization cycle, known as electrical slow waves, which result from intrinsic pacemaker activity. Interstitial cells of Cajal (ICC) are electrically coupled to smooth muscle cells (SMCs) and generate and propagate pacemaker activity and slow waves. The mechanism of slow waves is dependent upon specialized conductances expressed by pacemaker ICC. The primary conductances responsible for slow waves in mice are Ano1, Ca2+-activated Cl- channels (CaCCs), and CaV3.2, T-type, voltage-dependent Ca2+ channels. Release of Ca2+ from intracellular stores in ICC appears to be the initiator of pacemaker depolarizations, activation of T-type current provides voltage-dependent Ca2+ entry into ICC, as slow waves propagate through ICC networks, and Ca2+-induced Ca2+ release and activation of Ano1 in ICC amplifies slow wave depolarizations. Slow waves conduct to coupled SMCs, and depolarization elicited by these events enhances the open-probability of L-type voltage-dependent Ca2+ channels, promotes Ca2+ entry, and initiates contraction. Phasic contractions timed by the occurrence of slow waves provide the basis for motility patterns such as gastric peristalsis and segmentation. This chapter discusses the properties of ICC and proposed mechanism of electrical rhythmicity in GI muscles.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
10
|
Kaji N, Nakayama S, Horiguchi K, Iino S, Ozaki H, Hori M. Disruption of the pacemaker activity of interstitial cells of Cajal via nitric oxide contributes to postoperative ileus. Neurogastroenterol Motil 2018; 30. [PMID: 29542843 DOI: 10.1111/nmo.13334] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/11/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Interstitial cells of Cajal (ICC) serve as intestinal pacemakers. Postoperative ileus (POI) is a gastrointestinal motility disorder that occurs following abdominal surgery, which is caused by inflammation-induced dysfunction of smooth muscles and enteric neurons. However, the participation of ICC in POI is not well understood. In this study, we investigated the functional changes of ICC in a mouse model of POI. METHODS Intestinal manipulation (IM) was performed to induce POI. At 24 h or 48 h after IM, the field potential of the intestinal tunica muscularis was investigated. Tissues were also examined by immunohistochemistry and electron microscopic analysis. KEY RESULTS Gastrointestinal transit was significantly decreased with intestinal tunica muscularis inflammation at 24 h after IM, which was ameliorated at 48 h after IM. The generation and propagation of pacemaker potentials were disrupted at 24 h after IM and recovered to the control level at 48 h after IM. ICC networks, detected by c-Kit immunoreactivity, were remarkably disrupted at 24 h after IM. Electron microscopic analysis revealed abnormal vacuoles in the ICC cytoplasm. Interestingly, the ICC networks recovered at 48 h after IM. Administration of aminoguanidine, an inducible nitric oxide synthase inhibitor, suppressed the disruption of ICC networks. Ileal smooth muscle tissue cultured in the presence of nitric oxide donor, showed disrupted ICC networks. CONCLUSIONS AND INFERENCES The generation and propagation of pacemaker potentials by ICC are disrupted via nitric oxide after IM, and this disruption may contribute to POI. When inflammation is ameliorated, ICC can recover their pacemaker function.
Collapse
Affiliation(s)
- N Kaji
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - S Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Horiguchi
- Division of Anatomy and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - S Iino
- Division of Anatomy and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - H Ozaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - M Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Park CG, Wu MJ, Hong C, Jo JY, Jiao HY, Park H, Jun JY, Choi S. Regulation of Intracellular Calcium by Endoplasmic Reticulum Proteins in Small Intestinal Interstitial Cells of Cajal. J Neurogastroenterol Motil 2018; 24:128-137. [PMID: 28774158 PMCID: PMC5753911 DOI: 10.5056/jnm16212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/13/2017] [Accepted: 04/07/2017] [Indexed: 12/23/2022] Open
Abstract
Background/Aims We investigated the role of representative endoplasmic reticulum proteins, stromal interaction molecule 1 (STIM1), and store-operated calcium entry-associated regulatory factor (SARAF) in pacemaker activity in cultured interstitial cells of Cajal (ICCs) isolated from mouse small intestine. Methods The whole-cell patch clamp technique applied for intracellular calcium ions ([Ca2+]i) analysis with STIM1 or SARAF overexpressed cultured ICCs from mouse small intestine. Results In the current-clamping mode, cultured ICCs displayed spontaneous pacemaker potentials. External carbachol exposure produced tonic membrane depolarization in the current-clamp mode, which recovered within a few seconds into normal pacemaker potentials. In STIM1-overexpressing cultured ICCs pacemaker potential frequency was increased, and in SARAF-overexpressing ICCs pacemaker potential frequency was strongly inhibited. The application of gadolinium (a non-selective cation channel inhibitor) or a Ca2+-free solution to understand Orai channel involvement abolished the generation of pacemaker potentials. When recording intracellular Ca2+ concentration with Fluo 3-AM, STIM1-overexpressing ICCs showed an increased number of spontaneous intracellular Ca2+ oscillations. However, SARAF-overexpressing ICCs showed fewer spontaneous intracellular Ca2+ oscillations. Conclusion Endoplasmic reticulum proteins modulated the frequency of pacemaker activity in ICCs, and levels of STIM1 and SARAF may determine slow wave patterns in the gastrointestinal tract.
Collapse
Affiliation(s)
- Chan Guk Park
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Mei Jin Wu
- Department of Medicine, Graduate School, Chosun University, Gwangju, Korea
| | - Chansik Hong
- Department of Medicine, Graduate School, Chosun University, Gwangju, Korea
| | - Ju Yeon Jo
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Han Yi Jiao
- Department of Medicine, Graduate School, Chosun University, Gwangju, Korea
| | - Hyun Park
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Jae Yeoul Jun
- Department of Medicine, Graduate School, Chosun University, Gwangju, Korea
| | - Seok Choi
- Department of Medicine, Graduate School, Chosun University, Gwangju, Korea
| |
Collapse
|
12
|
Hong NR, Park HS, Ahn TS, Kim HJ, Ha KT, Kim BJ. Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine. J Ginseng Res 2015; 39:314-21. [PMID: 26869823 PMCID: PMC4593795 DOI: 10.1016/j.jgr.2015.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/19/2015] [Accepted: 02/25/2015] [Indexed: 11/30/2022] Open
Abstract
Background Ginseng belongs to the genus Panax. Its main active ingredients are the ginsenosides. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal (GI) tract. To understand the effects of ginsenoside Re (GRe) on GI motility, the authors investigated its effects on the pacemaker activity of ICCs of the murine small intestine. Methods Interstitial cells of Cajal were dissociated from mouse small intestines by enzymatic digestion. The whole-cell patch clamp configuration was used to record pacemaker potentials in cultured ICCs. Changes in cyclic guanosine monophosphate (cGMP) content induced by GRe were investigated. Results Ginsenoside Re (20–40μM) decreased the amplitude and frequency of ICC pacemaker activity in a concentration-dependent manner. This action was blocked by guanosine 5′-[β-thio]diphosphate [a guanosine-5'-triphosphate (GTP)-binding protein inhibitor] and by glibenclamide [an adenosine triphosphate (ATP)-sensitive K+ channel blocker]. To study the GRe-induced signaling pathway in ICCs, the effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) and RP-8-CPT-cGMPS (a protein kinase G inhibitor) were examined. Both inhibitors blocked the inhibitory effect of GRe on ICC pacemaker activity. L-NG-nitroarginine methyl ester (100μM), which is a nonselective nitric oxide synthase (NOS) inhibitor, blocked the effects of GRe on ICC pacemaker activity and GRe-stimulated cGMP production in ICCs. Conclusion In cultured murine ICCs, GRe inhibits the pacemaker activity of ICCs via the ATP-sensitive potassium (K+) channel and the cGMP/NO-dependent pathway. Ginsenoside Re may be a basis for developing novel spasmolytic agents to prevent or alleviate GI motility dysfunction.
Collapse
Affiliation(s)
- Noo Ri Hong
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Hyun Soo Park
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Tae Seok Ahn
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Ki-Tae Ha
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Korea; Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Korea
| |
Collapse
|
13
|
Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev 2014; 94:859-907. [PMID: 24987007 DOI: 10.1152/physrev.00037.2013] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
14
|
Singh RD, Gibbons SJ, Saravanaperumal SA, Du P, Hennig GW, Eisenman ST, Mazzone A, Hayashi Y, Cao C, Stoltz GJ, Ordog T, Rock JR, Harfe BD, Szurszewski JH, Farrugia G. Ano1, a Ca2+-activated Cl- channel, coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal. J Physiol 2014; 592:4051-68. [PMID: 25063822 DOI: 10.1113/jphysiol.2014.277152] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interstitial cells of Cajal (ICC) are pacemaker cells that generate electrical activity to drive contractility in the gastrointestinal tract via ion channels. Ano1 (Tmem16a), a Ca(2+)-activated Cl(-) channel, is an ion channel expressed in ICC. Genetic deletion of Ano1 in mice resulted in loss of slow waves in smooth muscle of small intestine. In this study, we show that Ano1 is required to maintain coordinated Ca(2+) transients between myenteric ICC (ICC-MY) of small intestine. First, we found spontaneous Ca(2+) transients in ICC-MY in both Ano1 WT and knockout (KO) mice. However, Ca(2+) transients within the ICC-MY network in Ano1 KO mice were uncoordinated, while ICC-MY Ca(2+) transients in Ano1 WT mice were rhythmic and coordinated. To confirm the role of Ano1 in the loss of Ca(2+) transient coordination, we used pharmacological inhibitors of Ano1 activity and shRNA-mediated knock down of Ano1 expression in organotypic cultures of Ano1 WT small intestine. Coordinated Ca(2+) transients became uncoordinated using both these approaches, supporting the conclusion that Ano1 is required to maintain coordination/rhythmicity of Ca(2+) transients. We next determined the effect on smooth muscle contractility using spatiotemporal maps of contractile activity in Ano1 KO and WT tissues. Significantly decreased contractility that appeared to be non-rhythmic and uncoordinated was observed in Ano1 KO jejunum. In conclusion, Ano1 has a previously unidentified role in the regulation of coordinated gastrointestinal smooth muscle function through coordination of Ca(2+) transients in ICC-MY.
Collapse
Affiliation(s)
- Raman Deep Singh
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Simon J Gibbons
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | | | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Seth T Eisenman
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Amelia Mazzone
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Yujiro Hayashi
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Chike Cao
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Gary J Stoltz
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Jason R Rock
- Department of Anatomy, UCSF School of Medicine, San Francisco, CA, USA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Joseph H Szurszewski
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Gianrico Farrugia
- Department of Physiology and Biomedical Engineering Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Effects of ginsenoside Re on rat jejunal contractility. J Nat Med 2014; 68:530-8. [DOI: 10.1007/s11418-014-0831-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
|
16
|
Si X, Huang L, Gong Y, Lu J, Lin L. Role of calcium in activation of hyperpolarization-activated cyclic nucleotide-gated channels caused by cholecystokinin octapeptide in interstitial cells of cajal. Digestion 2012; 85:266-75. [PMID: 22538231 DOI: 10.1159/000337077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/07/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate pacemaker activity in some cardiac cells and neurons. Little is known about the effects of cholecystokinin octapeptide (CCK-8) on HCN channels and excitability of murine interstitial cells of Cajal (ICCs). METHODS In the present study, the effects and mechanisms of CCK-8 on HCN channels were investigated by measuring mechanical contraction of smooth muscle strips and ionic channels of ICCs in murine gastric antrum. RESULTS Sulfated CCK-8 (CCK-8S) was used, and we found that CCK-8S increased the contraction of smooth muscle strips in the gastric antrum, which could be suppressed by specific HCN channel blockers CsCl and ZD7288. Extracellular calcium could also intensify the contraction. Under the same conditions, when antral strips were exposed to calcium ion (Ca²⁺)-free solution, no significant changes could be recorded with CCK-8S or ZD7288. Isolated ICCs from the murine gastric antrum identified by specific c-Kit antibody primers were chosen for electrophysiological recordings. HCN current (I(h)) of cultured ICCs was studied by whole-cell patch clamp techniques. A spontaneous transient inward current was recorded in ICCs, which could be inhibited by addition of CsCl and ZD7288; the current proved to be I(h). CCK-8S-facilitated I(h) in cultured ICCs could be inhibited by CsCl and ZD7288. When cultured ICCs were exposed to Ca²⁺-free solution, no significant changes could be recorded by application of CCK-8S on I(h), which proved extracellular calcium might have an excitatory effect on HCN channels. CONCLUSION We demonstrate that HCN channels are present in ICCs in the murine gastric antrum; they might be an important regulator of ICC excitability and pacemaker activity and are strongly affected by CCK-8S. Extracellular calcium might be a trigger in the activation of HCN channels caused by CCK-8S in cultured ICCs.
Collapse
Affiliation(s)
- Xinmin Si
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China.
| | | | | | | | | |
Collapse
|
17
|
Lowie BJ, Wang XY, White EJ, Huizinga JD. On the origin of rhythmic calcium transients in the ICC-MP of the mouse small intestine. Am J Physiol Gastrointest Liver Physiol 2011; 301:G835-45. [PMID: 21836058 DOI: 10.1152/ajpgi.00077.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interstitial cells of Cajal associated with the myenteric plexus (ICC-MP) are pacemaker cells of the small intestine, producing the characteristic omnipresent electrical slow waves, which orchestrate peristaltic motor activity and are associated with rhythmic intracellular calcium oscillations. Our objective was to elucidate the origins of the calcium transients. We hypothesized that calcium oscillations in the ICC-MP are primarily regulated by the sarcoplasmic reticulum (SR) calcium release system. With the use of calcium imaging, study of the effect of T-type calcium channel blocker mibefradil revealed that T-type channels did not play a major role in generating the calcium transients. 2-Aminoethoxydiphenyl borate, an inositol 1,4,5 trisphosphate receptor (IP(3)R) inhibitor, and U73122, a phospholipase C inhibitor, both drastically decreased the frequency of calcium oscillations, suggesting a major role of IP(3) and IP(3)-induced calcium release from the SR. Immunohistochemistry proved the expression of IP(3)R type I (IP(3)R-I), but not type II (IP(3)R-II) and type III (IP(3)R-III) in ICC-MP, indicating the involvement of the IP(3)R-I subtype in calcium release from the SR. Cyclopiazonic acid, a SR/endoplasmic reticulum calcium ATPase pump inhibitor, strongly reduced or abolished calcium oscillations. The Na-Ca exchanger (NCX) in reverse mode is likely involved in refilling the SR because the NCX inhibitor KB-R7943 markedly reduced the frequency of calcium oscillations. Immunohistochemistry revealed 100% colocalization of NCX and c-Kit in ICC-MP. Testing a mitochondrial NCX inhibitor, we were unable to show an essential role for mitochondria in regulating calcium oscillations in the ICC-MP. In summary, ongoing IP(3) synthesis and IP(3)-induced calcium release from the SR, via the IP(3)R-I, are the major drivers of the calcium transients associated with ICC pacemaker activity. This suggests that a biochemical clock intrinsic to ICC determines the pacemaker frequency, which is likely directly linked to kinetics of the IP(3)-activated SR calcium channel and IP(3) metabolism.
Collapse
Affiliation(s)
- Bobbi-Jo Lowie
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
18
|
Serotonin augments gut pacemaker activity via 5-HT3 receptors. PLoS One 2011; 6:e24928. [PMID: 21949791 PMCID: PMC3174222 DOI: 10.1371/journal.pone.0024928] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/19/2011] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-hydroxytryptamine: 5-HT) affects numerous functions in the gut, such as secretion, muscle contraction, and enteric nervous activity, and therefore to clarify details of 5-HT's actions leads to good therapeutic strategies for gut functional disorders. The role of interstitial cells of Cajal (ICC), as pacemaker cells, has been recognised relatively recently. We thus investigated 5-HT actions on ICC pacemaker activity. Muscle preparations with myenteric plexus were isolated from the murine ileum. Spatio-temporal measurements of intracellular Ca(2+) and electric activities in ICC were performed by employing fluorescent Ca(2+) imaging and microelectrode array (MEA) systems, respectively. Dihydropyridine (DHP) Ca(2+) antagonists and tetrodotoxin (TTX) were applied to suppress smooth muscle and nerve activities, respectively. 5-HT significantly enhanced spontaneous Ca(2+) oscillations that are considered to underlie electric pacemaker activity in ICC. LY-278584, a 5-HT(3) receptor antagonist suppressed spontaneous Ca(2+) activity in ICC, while 2-methylserotonin (2-Me-5-HT), a 5-HT(3) receptor agonist, restored it. GR113808, a selective antagonist for 5-HT(4), and O-methyl-5-HT (O-Me-5-HT), a non-selective 5-HT receptor agonist lacking affinity for 5-HT(3) receptors, had little effect on ICC Ca(2+) activity. In MEA measurements of ICC electric activity, 5-HT and 2-Me-5-HT caused excitatory effects. RT-PCR and immunostaining confirmed expression of 5-HT(3) receptors in ICC. The results indicate that 5-HT augments ICC pacemaker activity via 5-HT(3) receptors. ICC appear to be a promising target for treatment of functional motility disorders of the gut, for example, irritable bowel syndrome.
Collapse
|
19
|
Huizinga JD, Lammers WJEP, Mikkelsen HB, Zhu Y, Wang XY. Toward a concept of stretch coupling in smooth muscle: a thesis by Lars Thuneberg on contractile activity in neonatal interstitial cells of Cajal. Anat Rec (Hoboken) 2010; 293:1543-52. [PMID: 20687173 DOI: 10.1002/ar.21214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hypothesis was put forward by Thuneberg that rhythmically contracting interstitial cells of Cajal (ICC) were sensing stretch of the musculature and that this information was transmitted to smooth muscle cells via peg and socket contacts. The present study provides the evidence for the contractile nature of ICC as perceived by Thuneberg. The contractile activity is shown by video frame subtraction and by tracking areas of interest in sequential video frames. Thuneberg used neonatal ICC in culture maintained between two coverslips thereby allowing growth factors to quickly reach optimal concentrations. Contractions of ICC were seen to precede smooth muscle contractions. In addition, strong contractions were observed solely in branches of ICC. It is hoped that this communication will stimulate discussion about the contractile nature of ICC and that this phenomenon will eventually find its place amongst the physiological properties of the ICC networks of the gut musculature.
Collapse
Affiliation(s)
- Jan D Huizinga
- Farncombe Family Intestinal Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | |
Collapse
|
20
|
Takaki M, Suzuki H, Nakayama S. Recent advances in studies of spontaneous activity in smooth muscle: ubiquitous pacemaker cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 102:129-35. [PMID: 20553741 DOI: 10.1016/j.pbiomolbio.2010.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 05/19/2010] [Indexed: 02/08/2023]
Abstract
The general and specific properties of pacemaker cells, including Kit-negative cells, that are distributed in gastrointestinal, urethral and uterine smooth muscle tissues, are discussed herein. In intestinal tissues, interstitial cells of Cajal (ICC) are heterogeneous in both their forms and roles. ICC distributed in the myenteric layer (ICC-MY) act as primary pacemaker cells for intestinal mechanical and electrical activity. ICC distributed in muscle bundles play a role as mediators of signals from autonomic nerves to smooth muscle cells. A group of ICC also appears to act as a stretch sensor. Intracellular Ca2+ dynamics play a crucial role in ICC-MY pacemaking; intracellular Ca2+ ([Ca2+](i)) oscillations periodically activate plasmalemmal Ca2+-activated ion channels, such as Ca2+-activated Cl(-) channels and/or non-selective cation channels, although the relative contributions of these channels are not defined. With respect to gut motility, both the ICC network and enteric nervous system, including excitatory and inhibitory enteric neurons, play an essential role in producing highly coordinated peristalsis.
Collapse
Affiliation(s)
- Miyako Takaki
- Department of Physiology II, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan.
| | | | | |
Collapse
|
21
|
d'antonio C, Wang B, McKay C, Huizinga JD. Substance P activates a non-selective cation channel in murine pacemaker ICC. Neurogastroenterol Motil 2009; 21:985-e79. [PMID: 19413679 DOI: 10.1111/j.1365-2982.2009.01318.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interstitial cells of Cajal (ICC) associated with Auerbach's plexus in the small intestine, provide pacemaker activity to orchestrate peristalsis and mixing. Despite the close apposition between ICC and enteric nerves, little is known about the neural regulation of pacemaker activity. The present study pursues the hypothesis that substance P can affect pacemaker activity through action on non-selective cation channels. Cell-attached and inside-out patch clamp studies were performed on isolated ICC in short-term cultures that provided evidence that substance P increases open probability or initiates activity in non-selective cation channels in ICC. The single-channel conductance is approximately 25 pS and in the on-cell configuration the activity can occur in a rhythmic fashion. Patches contained 1-10 channels and were most often accompanied by a approximately 12 pS chloride channel that was also activated by substance P. In a recently developed preparation that allows patch clamping in ICC in their natural environment within tissue, i.e. in situ, the presence of the channel and substance P activation was confirmed. The non-selective cation channel is one of the channels that initiate intestinal pacemaker activity and the present study provides further single-channel data on this critical channel. Because of the close proximity of enteric motor and sensory nerves to ICC, these data provide a potential mechanism underlying neural regulation of pacemaker activity. The data also indicate that neurokinergic pharmacology is a promising avenue for excitation of the intestinal pacemaker system.
Collapse
Affiliation(s)
- C d'antonio
- Farncombe Family Digestive Health Research Institute, Department of Medicine, Health Science Center, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Nakayama S, Ohishi R, Sawamura K, Watanabe K, Hirose K. Microelectrode array evaluation of gut pacemaker activity in wild-type and W/W(v) mice. Biosens Bioelectron 2009; 25:61-7. [PMID: 19576758 DOI: 10.1016/j.bios.2009.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 02/07/2023]
Abstract
Interstitial cells of Cajal in the myenteric plexus region (ICC-MyP) form a network and generate basal pacemaking electrical activity. This morphological feature leads us to believe that these cells may be essential for the coordinating actions of gastrointestinal (GI) motility. We aim to propose a new method for functional assessment of ICC electrical activity and its network. Field potentials in a approximately 1 mm(2) region were simultaneously measured using an 8x8 microelectrode array (MEA) with a polar distance of 150 microm. The extracellular solution contained nifedipine and tetrodotoxin (TTX) to suppress activities of smooth muscle cells and neurons, respectively. We compared spatial electrical activities between ileal muscle preparations from wild-type (WT) and W/W(v) mice. In spatio-temporal analyses, basal electrical activities were well synchronized with a propagation delay in WT, while those in W/W(v) were small in amplitude and irregular in occurrence. The power spectrum in WT had a prominent peak corresponding to the frequency of ICC-MyP pacemaker activity, while that of W/W(v) lacked it. Consequently, the ratio of the spectral power in 9.4-27.0 cpm was significantly larger in WT than in W/W(v). In conclusion, MEA measurements demonstrated that the network-forming ICC-MyP not only generates but also coordinates basal electrical activities. Disorders of GI motility based on morphological and functional impairments of ICC network with the range of several hundreds of micrometers, could be uncovered in future extensive studies.
Collapse
Affiliation(s)
- Shinsuke Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Smooth muscle cell (SMC) contraction is controlled by the Ca2+ and Rho kinase signalling pathways. While the SMC Rho kinase system seems to be reasonably constant, there is enormous variation with regard to the mechanisms responsible for generating Ca2+ signals. One way of dealing with this diversity is to consider how this system has been adapted to control different SMC functions. Phasic SMCs (vas deferens, uterus and bladder) rely on membrane depolarization to drive Ca2+ influx across the plasma membrane. This depolarization can be induced by neurotransmitters or through the operation of a membrane oscillator. Many tonic SMCs (vascular, airway and corpus cavernosum) are driven by a cytosolic Ca2+ oscillator that generates periodic pulses of Ca2+. A similar oscillator is present in pacemaker cells such as the interstitial cells of Cajal (ICCs) and atypical SMCs that control other tonic SMCs (gastrointestinal, urethra, ureter). The changes in membrane potential induced by these cytosolic oscillators does not drive contraction directly but it functions to couple together individual oscillators to provide the synchronization that is a characteristic feature of many tonic SMCs.
Collapse
|
24
|
Hashitani H, Hayase M, Suzuki H. Effects of imatinib mesylate on spontaneous electrical and mechanical activity in smooth muscle of the guinea-pig stomach. Br J Pharmacol 2008; 154:451-9. [PMID: 18414381 DOI: 10.1038/bjp.2008.91] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Effects of imatinib mesylate, a Kit receptor tyrosine kinase inhibitor, on spontaneous activity of interstitial cells of Cajal (ICC) and smooth muscles in the stomach were investigated. EXPERIMENTAL APPROACH Effects of imatinib on spontaneous electrical and mechanical activity were investigated by measuring changes in the membrane potential and tension recorded from smooth muscles of the guinea-pig stomach. Its effects on spontaneous changes in intracellular concentration of Ca(2+) ([Ca(2+)](i)) (Ca(2+) transients) were also examined in fura-2-loaded preparations. KEY RESULTS Imatinib (1-10 microM) suppressed spontaneous contractions and Ca(2+) transients. Simultaneous recordings of electrical and mechanical activity demonstrated that imatinib (1 microM) reduced the amplitude of spontaneous contractions without suppressing corresponding slow waves. In the presence of nifedipine (1 microM), imatinib (10 microM) reduced the duration of slow waves and follower potentials in the antrum and accelerated their generation, but had little affect on their amplitude. In contrast, imatinib reduced the amplitude of antral slow potentials and slow waves in the corpus. CONCLUSIONS AND IMPLICATIONS Imatinib may suppress spontaneous contractions of gastric smooth muscles by inhibiting pathways that increase [Ca(2+)](i) in smooth muscles rather than by specifically inhibiting the activity of ICC. A high concentration of imatinib (10 microM) reduced the duration of slow waves or follower potentials in the antrum, which reflect activity of ICC distributed in the myenteric layers (ICC-MY), and suppressed antral slow potentials or corporal slow waves, which reflect activity of ICC within the muscle bundles (ICC-IM), presumably by inhibiting intracellular Ca(2+) handling.
Collapse
Affiliation(s)
- H Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | | | | |
Collapse
|
25
|
Zhu Y, Huizinga JD. Nitric oxide decreases the excitability of interstitial cells of Cajal through activation of the BK channel. J Cell Mol Med 2008; 12:1718-27. [PMID: 18194464 PMCID: PMC3918088 DOI: 10.1111/j.1582-4934.2008.00217.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Nitrergic nerves are structurally and functionally associated with ICC. To further understand mechanisms of communication, the hypothesis was investigated that NO might affect large conductance K channels. To that end, we searched for IbTX-sensitive currents in ICC obtained through explant cultures from the mouse small intestine and studied effects of the NOS inhibitor omega N-nitro-L-arginine (LNNA) and the NO donor sodium nitroprusside (SNP). IbTX-sensitive currents acquired in the whole-cell configuration through nystatin perforated patches exhibited high noise levels but relatively low amplitude, whereas currents obtained in the conventional whole-cell configuration exhibited less noise and higher amplitudes; depolarization from -80 to + 40 mV evoked 357 +/- 159 pA current in the nystatin perforated patch configuration and 1075 +/- 597 pA using the conventional whole-cell configuration. Immunohistochemistry showed that ICC associated with ganglia and Auerbach's plexus nerve fibers were immunoreactive to BK antibodies. The IbTX-sensitive currents were increased by SNP and inhibited by LNNA. BK blockers suppressed spontaneous transit outward currents in ICC. After block of BK currents, or before these currents became prominent, calcium currents were activated by depolarization in the same cells. Their peak amplitude occurred at -25 mV and the currents were increased with increasing extracellular calcium and inhibited by cobalt. The hypothesis is warranted that nitrergic innervation inhibits ICC excitability in part through activation of BK channels. In addition, NO is an intracellular regulator of ICC excitability.
Collapse
Affiliation(s)
- Yaohui Zhu
- McMaster University, Intestinal Disease Research Programme, Department of Medicine, Hamilton, Ontario, Canada
| | | |
Collapse
|
26
|
Nakayama S, Kajioka S, Goto K, Takaki M, Liu HN. Calcium-associated mechanisms in gut pacemaker activity. J Cell Mol Med 2008; 11:958-68. [PMID: 17979877 PMCID: PMC4401267 DOI: 10.1111/j.1582-4934.2007.00107.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A considerable body of evidence has revealed that interstitial cells of Cajal (ICC), identified with c-Kit-immunoreactivity, act as gut pacemaker cells, with spontaneous Ca2+ activity in ICC as the probable primary mechanism. Namely, intracellular (cytosolic) Ca2+ oscillations in ICC periodically activate plasmalemmal Ca2+-dependent ion channels and thereby generate pacemaker potentials. This review will, thus, focus on Ca2+-associated mechanisms in ICC in the gastrointestinal (GI) tract, including auxiliary organs.
Collapse
Affiliation(s)
- Shinsuke Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
27
|
Lang RJ, Hashitani H, Tonta MA, Parkington HC, Suzuki H. Spontaneous electrical and Ca2+ signals in typical and atypical smooth muscle cells and interstitial cell of Cajal-like cells of mouse renal pelvis. J Physiol 2007; 583:1049-68. [PMID: 17656432 PMCID: PMC2277191 DOI: 10.1113/jphysiol.2007.137034] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Electrical rhythmicity in the renal pelvis provides the fundamental drive for the peristaltic contractions that propel urine from the kidney to bladder for storage until micturition. Although atypical smooth muscles (ASMCs) within the most proximal regions of the renal pelvis have long been implicated as the pacemaker cells, the presence of a sparsely distributed population of rhythmically active Kit-positive interstitial cells of Cajal-like cells (ICC-LCs) have confounded our understanding of pelviureteric peristalsis. We have recorded the electrical activity and separately visualized changes in intracellular Ca(2+) concentration in typical smooth muscle cells (TSMCs), ASMCs and ICC-LCs using intracellular microelectrodes and a fluorescent Ca(2+) indicator, fluo-4. Nifedipine (1-10 microm)-sensitive driven action potentials and Ca(2+) waves (frequency 6-15 min(-1)) propagated through the TSMC layer at a velocity of 1-2 mm s(-1). High frequency (10-40 min(-1)) Ca(2+) transients and spontaneous transient depolarizations (STDs) were recorded in ASMCs in the absence or presence of 1 microm nifedipine. ICC-LCs displayed low frequency (1-3 min(-1)) Ca(2+) transients which we speculated arose from cells that displayed action potentials with long plateaus (2-5 s). Neither electrical activity propagated over distances > 50 microm. In 1 microm nifedipine, ASMCs or ICC-LCs separated by < 30 microm displayed some synchronicity in their Ca(2+) transient discharge suggesting that they may well be acting as 'point sources' of excitation to the TSMC layer. We speculate that ASMCs act as the primary pacemaker in the renal pelvis while ICC-LCs play a supportive role, but can take over pacemaking in the absence of the proximal pacemaker drive.
Collapse
Affiliation(s)
- Richard J Lang
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | | | |
Collapse
|
28
|
Hashitani H, Suzuki H. Properties of spontaneous Ca2+ transients recorded from interstitial cells of Cajal-like cells of the rabbit urethra in situ. J Physiol 2007; 583:505-19. [PMID: 17615099 PMCID: PMC2277017 DOI: 10.1113/jphysiol.2007.136697] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interstitial cells of Cajal-like cells (ICC-LCs) in the urethra may act as electrical pacemakers of spontaneous contractions. However, their properties in situ and their interaction with neighbouring urethral smooth muscle cells (USMCs) remain to be elucidated. To further explore the physiological role of ICC-LCs, spontaneous changes in [Ca(2+)](i) (Ca(2+) transients) were visualized in fluo-4 loaded preparations of rabbit urethral smooth muscle. ICC-LCs were sparsely distributed, rather than forming an extensive network. Ca(2+) transients in ICC-LCs had a lower frequency and a longer half-width than those of USMCs. ICC-LCs often exhibited Ca(2+) transients synchronously with each other, but did not often show a close temporal relationship with Ca(2+) transients in USMCs. Nicardipine (1 microm) suppressed Ca(2+) transients in USMCs but not in ICC-LCs. Ca(2+) transients in ICC-LCs were abolished by cyclopiazonic acid (10 microm), ryanodine (50 microm) and caffeine (10 mm) or by removing extracellular Ca(2+), and inhibited by 2-aminoethoxydiphenyl borate (50 microm) and 3-morpholino-sydnonimine (SIN-1; 10 microm), but facilitated by increasing extracellular Ca(2+) or phenylephrine (1-10 microm). These results indicated that Ca(2+) transients in urethral ICC-LCs in situ rely on both Ca(2+) release from intracellular Ca(2+) stores and Ca(2+) influx through non-L-type Ca(2+) channel pathways. ICC-LCs may not act as a coordinated pacemaker electrical network as do ICC in the gastrointestinal (GI) tract. Rather they may randomly increase excitability of USMCs to maintain the tone of urethral smooth muscles.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Animals
- Boron Compounds/pharmacology
- Caffeine/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Calcium-Transporting ATPases/antagonists & inhibitors
- Calcium-Transporting ATPases/metabolism
- Enzyme Inhibitors/pharmacology
- Indoles/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors/drug effects
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Male
- Membrane Potentials
- Molsidomine/analogs & derivatives
- Molsidomine/pharmacology
- Muscle Contraction/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Nicardipine/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Phenylephrine/pharmacology
- Rabbits
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/metabolism
- Ryanodine/pharmacology
- Ryanodine Receptor Calcium Release Channel/drug effects
- Ryanodine Receptor Calcium Release Channel/metabolism
- Time Factors
- Urethra/cytology
- Urethra/drug effects
- Urethra/enzymology
- Urethra/metabolism
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Regulatory Cell Physiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| | | |
Collapse
|
29
|
Zhu Y, Ye J, Huizinga JD. Clotrimazole-sensitive K+ currents regulate pacemaker activity in interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1715-25. [PMID: 17347448 DOI: 10.1152/ajpgi.00524.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interstitial cells of Cajal (ICC) are pacemaker cells for gut peristaltic motor activity. Compared with cardiac pacemaker cells, little is known about mechanisms that regulate ICC excitability. The objective of the present study was to investigate a potential role for clotrimazole (CTL)-sensitive K currents (I(CTL)) in the regulation of ICC excitability and pacemaker activity. ICC were studied in situ and in short-term culture by using the whole cell patch-clamp configuration. In situ, ICC exhibited spontaneous transient inward currents followed by transient outward currents. CTL blocked outward currents, thereby increasing the net inward currents, and depolarized ICC, thereby establishing CTL-sensitive channels as regulators of ICC pacemaker activity. In short-term culture, a I(CTL) was identified that showed increased conductance when depolarized from the resting membrane potential to 0 mV and subsequent inward rectification at further depolarized potentials. The I(CTL) markedly increased with increasing intracellular calcium and was insensitive to the ether-à-go-go-related K channel blocker E-4031 and the large-conductance calcium-activated K channel blocker iberiotoxin. I(CTL) contributed 3-9 nS to the whole cell conductance at 0 mV membrane potential under physiological conditions; it was fast activating (tau = 88 ms), showed little time-dependent inactivation, and exhibited a deactivation time constant of 38 ms. The nitric oxide donor sodium nitroprusside (SNP) increased I(CTL). Single-channel activity, activated by calcium and SNP, was inhibited by CTL, with a single-channel conductance of approximately 38 pS. In summary, ICC generate a I(CTL) on depolarization through an intermediate-conductance calcium-activated K channel that regulates pacemaker activity and ICC excitability.
Collapse
Affiliation(s)
- Yaohui Zhu
- McMaster Univ., HSC-3N5C, 1200 Main St. West, Hamilton, ON L8N 3Z5, Canada
| | | | | |
Collapse
|
30
|
Ito-Dufros Y, Funakoshi Y, Uehara A, Oishi K. In vitro development of gut-like tissue demonstrating rhythmic contractions from embryonic mouse intestinal cells. Neurogastroenterol Motil 2007; 19:288-300. [PMID: 17391245 DOI: 10.1111/j.1365-2982.2006.00895.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rhythmic motility of the intestine is regulated by the interstitial cells of Cajal (ICC) and the enteric nervous system. Rhythmic motility is considered to occur after the differentiation of mesenchymal progenitor cells into ICC during the late embryonic period. In this study, we successfully reconstructed a gut-like tissue demonstrating rhythmic contractions by culturing dispersed cells enzymatically isolated from the mouse intestine during the mid-embryonic period. These intestinal cells were reconstituted into a collagen gel at high density, made to proliferate considerably, and grew into a gut-like tissue after 1 week of culturing. The reconstituted tissue showed rhythmic contractions and stained positive for the specific marker proteins of neurones and ICC, PGP9.5 and c-Kit. The tissue also demonstrated network formation by developing nerve cells and ICC. Moreover, in the presence of nifedipine, c-Kit-immunopositive cells showed spontaneous Ca(2+) oscillation, which is considered to be coupled to the electrical activity that corresponds to slow waves. Therefore, this culture system may be of use in elucidating the developmental mechanisms of gastrointestinal motility.
Collapse
Affiliation(s)
- Y Ito-Dufros
- Department of Pharmacology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan.
| | | | | | | |
Collapse
|
31
|
Lentle RG, Janssen PWM, Asvarujanon P, Chambers P, Stafford KJ, Hemar Y. High definition mapping of circular and longitudinal motility in the terminal ileum of the brushtail possum Trichosurus vulpecula with watery and viscous perfusates. J Comp Physiol B 2007; 177:543-56. [PMID: 17342493 DOI: 10.1007/s00360-007-0153-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 02/08/2007] [Accepted: 02/12/2007] [Indexed: 12/15/2022]
Abstract
Longitudinal and radial movements during spontaneous contractions of isolated segments of terminal ileum of the brushtail possum, a species of arboreal folivore, were studied using high definition spatiotemporal maps. Segments obtained from specimens were continuously perfused with solutions of various apparent viscosities at 3 cm and 5 cm hydrostatic pressure. A series of sustained tetrodotoxin-sensitive peristaltic events occurred during perfusion. The leading edge of each peristaltic event progressed by a succession of rhythmic surges of circular contraction with concerted concurrent phasic longitudinal contractions. Three types of peristaltic event were observed, with differing durations of occlusion and patterns of cyclic, in phase, circular and longitudinal contractions. Each peristaltic event was preceded by a change of shade on the D map that indicated circumferential dilatation. Differences in the slopes of these phasic shade changes from those occurring during peristalsis indicate that this distension is passive and likely results from aboral displacement of fluid. Tetradotoxin insensitive longitudinal contraction waves of frequency 9.2 min(-1) occurred during and in the absence of peristalsis, originating at a variety of sites, and propagating either in an orad or aborad direction but predominantly in the latter. Perfusion with 1% guar gum, at 5 cm hydrostatic pressure caused the lumen to become distended and the generation of peristaltic events to cease pending reduction of the hydrostatic head to 3 cm but longitudinal contractile activity was preserved. Neither the frequencies nor the rates of progression of circular and longitudinal contractile events, nor the temporal coordination between these events, varied with the apparent viscosity of the perfusate or altered in a manner that could facilitate mixing.
Collapse
Affiliation(s)
- Roger G Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | | | | | | | | |
Collapse
|
32
|
Choi S, Yeum CH, Chang IY, You HJ, Park JS, Jeong HS, So I, Kim KW, Jun JY. Activating of ATP-dependent K+ channels comprised of K(ir) 6.2 and SUR 2B by PGE2 through EP2 receptor in cultured interstitial cells of Cajal from murine small intestine. Cell Physiol Biochem 2007; 18:187-98. [PMID: 17167224 DOI: 10.1159/000097516] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2006] [Indexed: 11/19/2022] Open
Abstract
The interstitial cells of Cajal (ICC) are pacemaker cells in gastrointestinal tract and generate an electrical rhythm in gastrointestinal muscles. We investigated the possibility that PGE(2) might affect the electrical properties of cultured ICC by activating ATP-dependent K(+) channels and, the EP receptor subtypes and the subunits of ATP-dependent K(+) channels involved in these activities were identified. In addition, the regulation of intracellular Ca(2+) ([Ca(2+)](i)) mobilization may be involved the action of PGE(2) on ICC. Treatments of ICC with PGE(2) inhibited electrical pacemaker activities in the same manner as pinacidil, an ATP-dependent K(+) channel opener and PGE(2) had only a dose-dependent effect. Using RT-PCR technique, we found that ATP-dependent K(+) channels exist in ICC and that these are composed of K(ir) 6.2 and SUR 2B subunits. To characterize the specific membrane EP receptor subtypes in ICC, EP receptor agonists and RT-PCR were used: Butaprost (an EP(2) receptor agonist) showed the actions on pacemaker currents in the same manner as PGE(2). However sulprostone (a mixed EP(1) and EP(3) agonist) had no effects. In addition, RT-PCR results indicated the presence of the EP(2) receptor in ICC. To investigate cAMP involvement in the effects of PGE(2) on ICCs, SQ-22536 (an inhibitor of adenylate cyclase) and cAMP assays were used. SQ-22536 did not affect the effect of PGE(2) on pacemaker currents, and PGE(2) did not stimulate cAMP production. Also, we found PGE(2) inhibited the spontaneous [Ca(2+)](i) oscillations in cultured ICC. These observations indicate that PGE(2) alters pacemaker currents by activating the ATP-dependent K(+) channels comprised of K(ir) 6.2-SUR 2B in ICC and this action of PGE(2) are through EP(2) receptor subtype and also the activation of ATP-dependent K(+) channels involves intracellular Ca(2+) mobilization.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/agonists
- ATP-Binding Cassette Transporters/analysis
- ATP-Binding Cassette Transporters/genetics
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Adenosine Triphosphate/metabolism
- Adenylyl Cyclase Inhibitors
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Animals
- Calcium/metabolism
- Cells, Cultured
- Dinoprostone/pharmacology
- Dose-Response Relationship, Drug
- Electrophysiology
- Female
- Intestine, Small/chemistry
- Intestine, Small/cytology
- Intestine, Small/drug effects
- Male
- Membrane Potentials
- Mice
- Mice, Inbred BALB C
- Potassium Channels/agonists
- Potassium Channels/analysis
- Potassium Channels/genetics
- Potassium Channels, Inwardly Rectifying/agonists
- Potassium Channels, Inwardly Rectifying/analysis
- Potassium Channels, Inwardly Rectifying/genetics
- Receptors, Drug/agonists
- Receptors, Drug/analysis
- Receptors, Drug/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP2 Subtype
- Sulfonylurea Receptors
Collapse
Affiliation(s)
- Seok Choi
- Department of Physiology, College of Medicine, Chosun University, 375 Seosuk-dong, Gwangju, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lavoie B, Balemba OB, Nelson MT, Ward SM, Mawe GM. Morphological and physiological evidence for interstitial cell of Cajal-like cells in the guinea pig gallbladder. J Physiol 2007; 579:487-501. [PMID: 17204499 PMCID: PMC2075389 DOI: 10.1113/jphysiol.2006.122861] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gallbladder smooth muscle (GBSM) exhibits spontaneous rhythmic electrical activity, but the origin and propagation of this activity are not understood. We used morphological and physiological approaches to determine whether interstitial cells of Cajal (ICC) are present in the guinea pig extrahepatic biliary tree. Light microscopic studies involving Kit tyrosine kinase immunohistochemistry and laser confocal imaging of Ca(2+) transients revealed ICC-like cells in the gallbladder. One type of ICC-like cell had elongated cell bodies with one or two primary processes and was observed mainly along GBSM bundles and nerve fibres. The other type comprised multipolar cells that were located at the origin and intersection of muscle bundles. Electron microscopy revealed ICC-like cells that were rich in mitochondria, caveolae and smooth endoplasmic reticulum and formed close appositions between themselves and with GBSM cells. Rhythmic Ca(2+) flashes, which represent Ca(2+) influx during action potentials, were synchronized in any given GBSM bundle and associated ICC-like cells. Gap junction uncouplers (1-octanol, carbenoxolone, 18beta-glycyrrhetinic acid and connexin mimetic peptide) eliminated or greatly reduced Ca(2+) flashes in GBSM, but they persisted in ICC-like cells, whereas the Kit tyrosine kinase inhibitor, imanitib mesylate, eliminated or reduced action potentials and Ca(2+) flashes in both cell types, as well as associated tissue contractions. This study provides morphological and physiological evidence for the existence of ICC-like cells in the gallbladder and presents data supporting electrical coupling between ICC-like and GBSM cells. The results support a role for ICC-like cells in the generation and propagation of spontaneous rhythmicity, and hence, the excitability of gallbladder.
Collapse
Affiliation(s)
- Brigitte Lavoie
- Department of Anatomy, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
34
|
Hotta A, Okada N, Suzuki H. Mibefradil-sensitive component involved in the plateau potential in submucosal interstitial cells of the murine proximal colon. Biochem Biophys Res Commun 2006; 353:170-6. [PMID: 17174936 DOI: 10.1016/j.bbrc.2006.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 12/01/2006] [Indexed: 11/15/2022]
Abstract
Submucosal interstitial cells of Cajal (ICC(SM)) produce plateau potentials comprised of initial fast and subsequent plateau components. The possible involvement of voltage-dependent Ca(2+) channels in plateau potentials was examined in ICC(SM) of the murine proximal colon. Increases in external K(+) concentration ([K(+)](o)) changed the rise rate of the initial component in a biphasic way, an increase in 10.6 or 15.3mM [K(+)](o) and a decrease in 20.0mM [K(+)](o). The rise rate of plateau potentials was significantly reduced by the application of 3 microM mibefradil or 100 microM Ni(2+) but not by 0.3 microM nifedipine. The inhibitory effect of mibefradil on the rise rate of plateau potentials was concentration-dependent with an IC(50) value of 1.0 microM. In conclusion, the initial phase of plateau potentials is partly due to the activation of T-type Ca(2+) channel in ICC(SM) from the murine proximal colon.
Collapse
Affiliation(s)
- Aya Hotta
- Department of Regulatory Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | | | | |
Collapse
|
35
|
Nakayama S, Shimono K, Liu HN, Jiko H, Katayama N, Tomita T, Goto K. Pacemaker phase shift in the absence of neural activity in guinea-pig stomach: a microelectrode array study. J Physiol 2006; 576:727-38. [PMID: 16990400 PMCID: PMC1890421 DOI: 10.1113/jphysiol.2006.118893] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) motility is well organized. GI muscles act as a functional syncytium to achieve physiological functions under the control of neurones and pacemaker cells, which generate basal spontaneous pacemaker electrical activity. To date, it is unclear how spontaneous electrical activities are coupled, especially within a micrometre range. Here, using a microelectrode array, we show a spatio-temporal analysis of GI spontaneous electrical activity. The muscle preparations were isolated from guinea-pig stomach, and fixed in a chamber with an array of 8 x 8 planar multielectrodes (with 300 microm in interpolar distance). The electrical activities (field potentials) were simultaneously recorded through a multichannel amplifier system after high-pass filtering at 0.1 Hz. Dihydropyridine Ca(2+) channel antagonists are known to differentiate the electrical pacemaker activity of interstitial cells of Cajal (ICCs) by suppressing smooth muscle activity. In the presence of nifedipine, we observed spontaneous electrical activities that were well synchronized over the array area, but had a clear phase shift depending on the distance. The additional application of tetrodotoxin (TTX) had little effect on the properties of the electrical activity. Furthermore, by constructing field potential images, we visualized the synchronization of pacemaker electrical activities resolving phase shifts that were measurable over several hundred micrometres. The results imply a phase modulation mechanism other than neural activity, and we postulate that this mechanism enables smooth GI motility. In addition, some preparations clearly showed plasticity of the pacemaker phase shift.
Collapse
Affiliation(s)
- Shinsuke Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Park KJ, Hennig GW, Lee HT, Spencer NJ, Ward SM, Smith TK, Sanders KM. Spatial and temporal mapping of pacemaker activity in interstitial cells of Cajal in mouse ileum in situ. Am J Physiol Cell Physiol 2005; 290:C1411-27. [PMID: 16381798 DOI: 10.1152/ajpcell.00447.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spontaneous electrical pacemaker activity occurs in tunica muscularis of the gastrointestinal tract and drives phasic contractions. Interstitial cells of Cajal (ICC) are the pacemaker cells that generate and propagate electrical slow waves. We used Ca(2+) imaging to visualize spontaneous rhythmicity in ICC in the myenteric region (ICC-MY) of the murine small intestine. ICC-MY, verified by colabeling with Kit antibody, displayed regular Ca(2+) transients that occurred after electrical slow waves. ICC-MY formed networks, and Ca(2+) transient wave fronts propagated through the ICC-MY networks at approximately 2 mm/s and activated attached longitudinal muscle fibers. Nicardipine blocked Ca(2+) transients in LM but had no visible effect on the transients in ICC-MY. beta-Glycyrrhetinic acid reduced the coherence of propagation, causing single cells to pace independently. Thus, virtually all ICC-MYs are spontaneously active, but normal activity is organized into propagating wave fronts. Inhibitors of dihydropyridine-resistant Ca(2+) entry (Ni(2+) and mibefradil) and elevated external K(+) reduced the coherence and velocity of propagation, eventually blocking all activity. The mitochondrial uncouplers, FCCP, and antimycin and the inositol 1,4,5-trisphosphate receptor-inhibitory drug, 2-aminoethoxydiphenyl borate, abolished rhythmic Ca(2+) transients in ICC-MY. These data show that global Ca(2+) transients in ICC-MYs are a reporter of electrical slow waves in gastrointestinal muscles. Imaging of ICC networks provides a unique multicellular view of pacemaker activity. The activity of ICC-MY is driven by intracellular Ca(2+) handling mechanisms and entrained by voltage-dependent Ca(2+) entry and coupling of cells via gap junctions.
Collapse
Affiliation(s)
- Kyu Joo Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Hashitani H, Garcia-Londoño AP, Hirst GDS, Edwards FR. Atypical slow waves generated in gastric corpus provide dominant pacemaker activity in guinea pig stomach. J Physiol 2005; 569:459-65. [PMID: 16223760 PMCID: PMC1464236 DOI: 10.1113/jphysiol.2005.097907] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
When intracellular recordings were made from the circular layer of the intact muscular wall of the isolated guinea pig gastric corpus, an ongoing regular high frequency discharge of slow waves was detected even though this region lacked myenteric interstitial cells. When slow waves were recorded from preparations consisting of both the antrum and the corpus, slow waves of identical frequency, but with different shapes, were generated in the two regions. Corporal slow waves could be distinguished from antral slow waves by their time courses and amplitudes. Corporal slow waves, like antral slow waves, were abolished by buffering the internal concentration of calcium ions, [Ca2+]i, to low levels, or by caffeine, 2-aminoethoxydiphenyl borate or the chloride channel blocker DIDS. Corporal preparations demonstrated an ongoing discharge of unitary potentials, as has been found in all other tissues containing interstitial cells. The experiments show that the corpus provides the dominant pacemaker activity which entrains activity in other regions of the stomach and it is suggested that this activity is generated by corporal intramuscular interstitial cells.
Collapse
Affiliation(s)
- Hikaru Hashitani
- Division of Neuroscience, John Curtin School of Medical Research, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
38
|
Featherstone NC, Jesudason EC, Connell MG, Fernig DG, Wray S, Losty PD, Burdyga TV. Spontaneous Propagating Calcium Waves Underpin Airway Peristalsis in Embryonic Rat Lung. Am J Respir Cell Mol Biol 2005; 33:153-60. [PMID: 15891108 DOI: 10.1165/rcmb.2005-0137oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prenatal airways from diverse species exhibit spontaneous peristaltic contractions (airway peristalsis). These contractile waves appear coupled to and may function to regulate prenatal lung growth. They are unaffected by atropine or tetrodotoxin but abolished by nifedipine. Nevertheless, the mechanisms by which these contractile waves are generated, regulated, and propagated remain obscure. Using calcium imaging and whole embryonic lung organ culture, we demonstrate for the first time that peristalsis of the embryonic airway is driven by spontaneous, regenerative, temperature-sensitive calcium (Ca2+) waves. These Ca2+ waves propagate between individual airway smooth muscle cells coupled via gap junctions, are likely to be action potential-mediated, and are dependent on not only extracellular calcium entry via L-type voltage-gated channels but also intracellular Ca2+ stores. Thus, if airway peristalsis regulates lung growth, these findings mean that airway smooth muscle Ca2+ waves in turn regulate prenatal lung morphogenesis.
Collapse
Affiliation(s)
- Neil C Featherstone
- Division of Child Health, Royal Liverpool Children's Hospital (Alder Hey), School of Biological Sciences, University of Liverpool, Liverpool L69 3BX, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Liu HN, Ohya S, Furuzono S, Wang J, Imaizumi Y, Nakayama S. Co-contribution of IP3R and Ca2+ influx pathways to pacemaker Ca2+ activity in stomach ICC. J Biol Rhythms 2005; 20:15-26. [PMID: 15654067 DOI: 10.1177/0748730404269572] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intracellular Ca2+ oscillations in interstitial cells of Cajal (ICCs) are thought to be the primary pacemaker activity in the gut. In the present study, the authors prepared small tissues of 100-to 300-microm diameter (cell cluster preparation) from the stomach smooth muscle (including the myenteric plexus) of mice by enzymatic and mechanical treatments. After 2 to 4 days of culture, the intracellular Ca2+ concentration ([Ca2+]i) was measured. In the presence of nifedipine, a dihydropyridine Ca2+ channel antagonist, spontaneous [Ca2+]i oscillations were observed within limited regions showing positive c-Kitimmunoreactivity, a maker for ICCs. In the majority of cell cluster preparations with multiple regions of [Ca2+]i oscillations, [Ca2+]i oscillated synchronously in the same phase. A small number of cell clusters (8 of 53) showed multiple regions of [Ca2+]i oscillations synchronized but with a considerable phase shift. Neither tetrodotoxin (250 nM) nor atropine (10 microM) significantly affected [Ca2+]i oscillations in the presence of nifedipine. Low concentrations (40 microM) of Ni2+ had little effect on the spontaneous [Ca2+]i oscillation, but SK&F96365 (40 microM) and Cd2+ (120 microM) terminated it. Applications of either 2-aminoethoxydiphenyl borate (10 microM) or xestosponginC(10 microM) completely and rather rapidly (approximately 2 min) abolished the spontaneous [Ca2+]i oscillations. The results suggest that pacemaker [Ca2+]i oscillations in ICCs are produced by close interaction of intracellular Ca2+ release channels, especially inositol 1,4,5-trisphosphate receptor (InsP3R) and Ca2+ influx pathways, presumably corresponding to store-operated type channels. Reverse transcription polymerase chain reaction examinations revealed expression of TRPC2, 4, and 6, as well as InsP3R1 and 2 in ICCs.
Collapse
Affiliation(s)
- Hong-Nian Liu
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Liu HN, Ohya S, Wang J, Imaizumi Y, Nakayama S. Involvement of ryanodine receptors in pacemaker Ca2+ oscillation in murine gastric ICC. Biochem Biophys Res Commun 2005; 328:640-6. [PMID: 15694396 DOI: 10.1016/j.bbrc.2005.01.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Indexed: 11/19/2022]
Abstract
Using a cell cluster preparation from the stomach smooth muscle tissue of mice, we measured intracellular Ca(2+) oscillations in interstitial cells of Cajal (ICCs) in the presence of nifedipine. Pacemaker [Ca(2+)](i) activity in ICCs was significantly suppressed by caffeine application and restored after washout. Application of either ryanodine or FK-506 terminated the pacemaker [Ca(2+)](i) activity irreversibly. Immunostaining of smooth muscle tissue showed that c-Kit-immunopositive cells (that form network-like structure cells in the myenteric plexus, equivalent to ICCs) clearly express ryanodine receptors (RyR). RT-PCR revealed that ICCs (identified with c-Kit-immunoreactivity) predominantly express type 3 RyR (RyR3). Furthermore, the FK-binding proteins 12 and 12.6, both of which would interact with RyR3, were detected. In conclusion, we provide first evidence for the essential contribution of RyR to generating pacemaker activity in gastric motility. Similar mechanisms might account for spontaneous rhythmicity seen in smooth muscle tissues distributed in the autonomic nervous system.
Collapse
Affiliation(s)
- Hong-Nian Liu
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | |
Collapse
|
41
|
Shimojima N, Nakaki T, Morikawa Y, Hoshino K, Kitajima M. Imatinib blocks spontaneous mechanical activities in the adult mouse small intestine: possible inhibition of c-Kit signaling. Pharmacology 2005; 74:95-9. [PMID: 15722647 DOI: 10.1159/000084021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 12/24/2004] [Indexed: 01/29/2023]
Abstract
Interstitial cells of Cajal (ICCs) are postulated to serve as pacemakers that physiologically generate electrical slow waves in the gastrointestinal tract. Imatinib is a novel and potent inhibitor of c-Kit tyrosine kinase and a new therapeutic agent for gastrointestinal stromal tumors (GIST) which presumably arise from ICCs. The effects of imatinib on the basal rhythmic mechanical activities of small intestinal circular muscles were investigated in ring preparations of the gut. The small intestinal rings of BALB/c mice exhibited spontaneous contractile activity at a rate of 40.8 +/- 4.9 contractions/min. Imatinib (1- 81 micromol/l) dose-dependently abolished spontaneous contractile activity in the 9- to 27-micromol/l concentration range. Contraction was restored by washing imatinib out with a fresh buffer. High K(+)-induced contraction was not affected by imatinib, suggesting that the drug does not have nonspecific inhibitory actions on the smooth muscles. The small intestinal rings of adult W/W(v)mice, which lack a functional c-Kit activity,exhibited only small and irregular spontaneous contractions. These results demonstrate that imatinib affects bowel contractions, and suggest that the c-Kit signaling of ICCs plays an essential role in the spontaneous movements in circular muscles of the mouse small intestine.
Collapse
Affiliation(s)
- Naoki Shimojima
- Division of Pediatric Surgery, Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
42
|
Morino H, Ataka K, Ito M, Kuge T. Wood creosote inhibits calcium mobilization in Guinea pig colonic smooth muscle. Biol Pharm Bull 2005; 27:1046-51. [PMID: 15256738 DOI: 10.1248/bpb.27.1046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wood creosote, a mixture of simple phenolic compounds, has long been used as an herbal antidiarrheal medicine. Previous studies have shown that wood creosote has antimotility activity on the gastrointestinal (GI) tract, although its mechanism of action is not completely understood. The in vitro efficacy of wood creosote on calcium mobilization in guinea pig colonic smooth muscle was evaluated using a digital video camera system mounted on an inverted fluorescence microscope. The effects of wood creosote on spontaneous periodic increases in the free cytosolic calcium concentration ([Ca(2+)](i)), acetylcholine (ACh)-enhanced periodic increases in [Ca(2+)](i), and tetrodotoxin- or nifedipine-resistant spontaneous periodic increases in [Ca(2+)](i) were evaluated. Wood creosote decreased the amplitude of spontaneous (IC(50)=21 microg/ml) and ACh-enhanced (IC(50)=40 microg/ml) periodic increases in [Ca(2+)](i) in guinea pig colonic smooth muscle. Wood creosote also decreased the amplitude of both tetrodotoxin- and nifedipine-resistant spontaneous periodic increases in [Ca(2+)](i). These results suggest that antimotility activity through inhibition of Ca(2+) mobilization in the GI tract is at least partially responsible for the antidiarrheal activity of wood creosote. Wood creosote may exert its antimotility effect, at least in part, on network regions of interstitial cells of Cajal, which act as pacemaker cells and mediators of neurotransmission in the GI tract.
Collapse
|
43
|
Furuzono S, Nakayama S, Imaizumi Y. Purinergic modulation of pacemaker Ca2+ activity in interstitial cells of Cajal. Neuropharmacology 2004; 48:264-73. [PMID: 15695165 DOI: 10.1016/j.neuropharm.2004.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/04/2004] [Accepted: 10/15/2004] [Indexed: 01/21/2023]
Abstract
Purinoceptors are widely distributed throughout the body, and are thought to have important contributions to numerous functions. In this study, we characterised the contribution of purinoceptors to the mechanisms underlying spontaneous rhythmicity of the gastro-intestinal tracts. Using cell cluster preparations (100-200 microm diameter) obtained from murine ileum, we measured spontaneous intracellular Ca2+([Ca2+]i) oscillations in the presence of nifedipine, as an index of pacemaker [Ca2+]i activity in interstitial cells of Cajal (ICCs, c-Kit-immunopositive cells), the pacemaker cells for gastrointestinal motility. This small preparation also contained smooth muscle and enteric neurones. Using various purinoceptor agonists and an antagonist, we characterised both TTX-sensitive and insensitive modulations of pacemaker [Ca2+]i activity in ICCs. Continuous application of either ATP, ATPgammaS, suramin or alpha,beta-methylene ATP (alpha,beta-meATP) suppressed pacemaker [Ca2+]i activity. The inhibitory effect of alpha,beta-meATP was completely abolished by a prior application of TTX. On the other hand, even in the presence of TTX, continuous application of 2-methylthio ATP (2-MeSATP) at concentrations greater than 30 microM caused a prompt rise followed by a slow decline of the baseline [Ca2+]i, and pacemaker [Ca2+]i oscillations were gradually suppressed during the decline. Neither UTP nor alpha,beta-meATP at high concentrations (30-100 microM) produced a similar [Ca2+]i response. These results suggest that the TTX-resistant, direct purinergic modulation of pacemaker [Ca2+]i activity in ICCs is mediated via P2X purinoceptors distinct from those involved in TTX-sensitive modulation. The slow decline may be attributed to desensitisation of these purinoceptors. The possible involvement of other purinoceptors is also discussed.
Collapse
Affiliation(s)
- Shinji Furuzono
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | | | | |
Collapse
|
44
|
Goto K, Matsuoka S, Noma A. Two types of spontaneous depolarizations in the interstitial cells freshly prepared from the murine small intestine. J Physiol 2004; 559:411-22. [PMID: 15235097 PMCID: PMC1665116 DOI: 10.1113/jphysiol.2004.063875] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To explore the electrophysiological properties of the interstitial cells of Cajal (ICCs) and fibroblast-like cells (FLCs), we developed a new preparation by treating the murine small intestine with collagenase. This thin muscle layer preparation contained at least two types of interstitial cells around the enteric nerve bundles, and the cluster of smooth muscle cells displayed a rhythmic contraction. We morphologically identified ICCs and FLCs and conducted patch clamp experiments on each type of cell. The c-kit-positive CD34-negative ICCs showed spontaneous and rhythmic potential fluctuations, and a large transient inward current was evoked by depolarization under voltage clamp conditions. Once the inward current was triggered, it took a regenerative time course and lasted approximately 500 ms. The current was inactivated by continuous depolarization, and by removal of external Ca2+. The application of acetylcholine (ACh) prolonged the duration of spontaneous depolarization as well as the depolarization-induced inward current. This inward current showed a reversal potential of around +3 mV and was considered to be due to non-selective cation channels. The c-kit-negative CD34-positive FLCs showed irregular or regular potential fluctuations, and spontaneous outward current was observed under voltage clamp conditions. This outward current showed a reversal potential of around -80 mV and might be classified as a potassium current. We failed to observe major time- and voltage-dependent currents except the above two currents in the interstitial cells.
Collapse
Affiliation(s)
- Kazunori Goto
- Department of Physiology, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
45
|
Hashitani H, Yanai Y, Suzuki H. Role of interstitial cells and gap junctions in the transmission of spontaneous Ca2+ signals in detrusor smooth muscles of the guinea-pig urinary bladder. J Physiol 2004; 559:567-81. [PMID: 15235094 PMCID: PMC1665119 DOI: 10.1113/jphysiol.2004.065136] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To investigate mechanisms underlying the transmission of spontaneous Ca2+ signals in the bladder, changes in intracellular concentrations of Ca2+ ([Ca2+]i) were visualized in isolated detrusor smooth muscle bundles of the guinea-pig urinary bladder loaded with a fluorescent Ca2+ indicator, fura-PE3 or fluo-4. Spontaneous increases in [Ca2+]i (Ca2+ transients) preferentially originated along the boundary of muscle bundles and then spread to the other boundary (Ca2+ waves). The synchronicity of Ca2+ waves across the bundles was disrupted by 18beta-glycyrrhetinic acid (18beta-GA, 40 microm), carbenoxolone (30 microm) or 2-aminoethoxydiphenylborate (2-APB, 50-100 microm), while CPA (10 microm), ryanodine (100 microm), xestospongin C (3 microm) and U-73122 (10 microm) had no effect. Intracellular recordings using two independent microelectrodes demonstrated that 2-APB (100 microm) blocked electrical coupling between detrusor smooth muscle cells. Nifedipine (10 microm) but not nominal Ca2+-free solution diminished the synchronicity of Ca2+ waves before preventing their generation. Staining for c-kit identified interstitial cells (IC) located along both boundaries of muscle bundles. IC were also scattered amongst smooth muscle cells and were more dominantly distributed in connective tissue between muscle bundles. IC generated nifedipine-resistant spontaneous Ca2+ transients, which occurred independently of those of smooth muscles. In conclusion, the propagation of Ca2+ transients in the bladder appears to be exclusively mediated by the spread of action potentials through gap junctions being facilitated by the regenerative nature of L-type Ca2+ channels, without significant contribution of intracellular Ca2+ stores. IC in the bladder may modulate the transmission of Ca2+ transients originating from smooth muscle cells rather than being the pacemaker of spontaneous activity.
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Physiology, Nagoya City University Medical School, Nagoya 467-8601, Japan.
| | | | | |
Collapse
|
46
|
Huizinga JD, Golden CM, Zhu Y, White EJ. Ion channels in interstitial cells of Cajal as targets for neurotransmitter action. Neurogastroenterol Motil 2004; 16 Suppl 1:106-11. [PMID: 15066014 DOI: 10.1111/j.1743-3150.2004.00484.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interstitial cells of Cajal (ICC) are involved in generation of gut pacemaker activity, neurotransmission and stretch sensation. Pacemaker ICC exhibit spontaneous cyclic calcium oscillations that are in synchrony with its pacemaker activity. The spontaneous rhythmic inward currents in ICC that underlie gut pacemaker activity are linked to this calcium oscillation. It is probable that more than one type of channel contributes to the inward current with a high conductance chloride channel and a nonselective cation channel being the main candidates. The activation of these channels is linked to intracellular calcium cycling mechanism and involves inositol 1,4,5-trisphosphate (IP3)-mediated calcium release from the sarcoplasmic reticulum, and calcium uptake into mitochondria. This ion channel activity is modulated by signalling through neurotransmitter receptors, including the NK1 receptor. This finding and the presence of other neurotransmitter receptor mRNA transcripts indicates that ion channels in ICC are targets for neurotransmitter action. The ether-a-go-go-related (ERG) K channel is probably the most important K channel contributing to the resting membrane potential and excitability of the ICC. Many ion channels in ICC are regulated by second messenger systems which makes them highly susceptible to neurotransmitter modulation.
Collapse
Affiliation(s)
- J D Huizinga
- Intestinal Disease Research Programme, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
47
|
Abstract
Interstitial cells of Cajal (ICC) pace gastrointestinal muscle by initiating slow waves in both muscle layers and appear to be preferred sites for reception of neurotransmitters. ICC of the myenteric plexus (ICC-MP) pace stomach and small intestine, while intramuscular ICC (ICC-IM) receive nerve messages. Recently, ICC-IM have been found to provide regenerative responses to and amplification of pacing messages from ICC-MP, at least in some systems. This review will examine the assumption that gap junctions provide low-resistance contacts for pacing. Structural and functional evidence will be evaluated. Structural, theoretical and experimental difficulties with the gap junctions hypothesis for pacing will be considered. So far little direct evidence about the role of gap junctions in neurotransmission exists, although a structural basis exists. Alternate possibilities for transmission of ICC pacing and neural messages will be examined and suggestions for future research made.
Collapse
Affiliation(s)
- E E Daniel
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
48
|
Boddy G, Bong A, Cho W, Daniel EE. ICC pacing mechanisms in intact mouse intestine differ from those in cultured or dissected intestine. Am J Physiol Gastrointest Liver Physiol 2004; 286:G653-62. [PMID: 14656713 DOI: 10.1152/ajpgi.00382.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pacing of mouse intestine is driven by spontaneous activity of a network of interstitial cells of Cajal in the myenteric plexus (ICC-MP). So far, highly dissected circular muscle (CM) strips from control and mutant mice lacking ICC-MP and isolated, cultured ICC from newborn control mice were used to analyze its properties. Using intact circular and longitudinal segments of intestine, we recently reported that there were both significant similarities and differences between pacing studied in segments and from isolated, dissected tissues. Here, we report additional similarities and differences in our model from those in highly reduced systems. Similar to cultured or dissected intestine, blockade of sarcoplasmic-endoplasmic reticulum Ca(2+) pumps with thapsigargin or cyclopiazonic acid reduced pacing frequency, but thapsigargin was less effective than in isolated, cultured ICC. Moreover, inhibition of inositol 1,4,5-trisphosphate (IP(3)) receptors with xestospongin C, a putative inhibitor of IP(3) receptors, failed to affect pacing but successfully blocked increased pacing frequency by phorbol ester. 2-Aminoethoxy-diphenylborate, a putative blocker of IP(3)-mediated calcium release, caused a significant decrease in the amplitude and frequency of contractions. The mitochondrial uncoupler carbonyl cyanide p-trifluormethoxyphenylhydrazone blocked pacing and KCl-induced contractions at a concentration of 1 microM. The cyclic nucleotide agonists sodium nitroprusside (SNP), forskolin, and 8-bromo-cGMP inhibited pacing in CM. In longitudinal muscle (LM), SNP and forskolin had little effect on pacing. Furthermore, dibutyryl-cAMP did not affect pacing in CM or LM. These results suggest that pacing in intact intestine is under partly similar regulatory control as in more reduced systems. However, pacing in intact intestine is not affected by xestospongin C, which abolishes pacing in isolated, cultured ICC and exhibits attenuated responses to thapsigargin. Also, major differences between LM and CM suggest a separate pacemaker may drive LM.
Collapse
Affiliation(s)
- Geoffrey Boddy
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7Canada
| | | | | | | |
Collapse
|
49
|
Abstract
The major cell types regulating gut motility include enteric neurones, interstitial cells of Cajal (ICC) and their effector smooth muscle cells. These cells are arranged conveniently in nested layers through the gut wall. Our knowledge of how many of these cells in each layer are integrated to produce the various patterns of motility is largely unknown. So far, much of our knowledge of gut motility has usually been obtained by examining point sources of activity (e.g. intracellular recordings from enteric neurones, ICC and smooth muscle cells), rather than the spread of activity through these spatially distributed nerve and ICC networks, or smooth muscle syncitia. Our understanding of how these cells are integrated to produce gut movements would be greatly enhanced if we could image the activity in many of these cells in each layer, or many cells in several layers, simultaneously. Calcium (Ca2+) is a major signalling and regulatory molecule in most cells. In fact, electrical excitability in enteric neurones, ICC and smooth muscle is associated with robust rises in intracellular Ca2+ that long outlast the electrical events (e.g. action potentials in neurones and smooth muscle) that gave rise to them. These prolonged Ca2+ responses, together with the development of several high quality Ca2+ indicators, has provided a unique opportunity to image many cells in intact tissues simultaneously using ICCD video-rate cameras along with conventional microscopy. However, confocal microscopy has also been used, and has several advantages over the above systems. These include reduced photo-toxicity and bleaching and the elimination of out of focus light from different layers within the tissue. So far, despite some limitations with the calcium imaging techniques, the spread of activity through the two layers of smooth muscle, ICC networks and myenteric neurones in intact preparations, or cultured myenteric neuronal networks, is beginning to yield exciting new data about how these different cells interact and process information.
Collapse
Affiliation(s)
- J Tack
- Center for Gastroenterological Research, Catholic University of Leuven, Leuven, Belgium
| | | |
Collapse
|
50
|
Nakayama S, Ohya S, Imaizumi Y. [Investigation into gastrointestinal pacemaker mechanism using cultured cell cluster preparation]. Nihon Yakurigaku Zasshi 2004; 123:149-54. [PMID: 14993726 DOI: 10.1254/fpj.123.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gastrointestinal tract motility is driven by pacemaker depolarization referred to slow waves. In order to investigate mechanisms underlying the spontaneous rhythmicity, we have developed a cell cluster preparation. Cell clusters were enzymatically isolated from the muscle layers of mouse small intestine and cultured for several days. They include smooth muscle, enteric neurons and c-Kit-immunopositive cells (interstitial cells of Cajal: ICC), and preserve spontaneous mechanical and electrical activities. A characteristic feature of the pacemaker potential is resistance to dihydropyridine (DHP) Ca(2+) antagonist. In the presence of nifedipine, a DHP Ca(2+) antagonist, spontaneous intracellular Ca(2+) ([Ca(2+)](i)) oscillation was recorded from c-Kit-immunopositive cells in the cell cluster preparation. The [Ca(2+)](i) oscillation seen in ICC was terminated by applications of drugs affecting ryanodine receptors as well as those for InsP(3) receptors and TRP family channels. It is considered that these intracellular Ca(2+) release channels and the Ca(2+) influx pathway from the extracellular space cooperate to produce pacemaker activity in the gastrointestinal tract.
Collapse
Affiliation(s)
- Shinsuke Nakayama
- Department of Cell Physiology, Graduate School of Medicine, Nagoya, Japan
| | | | | |
Collapse
|