1
|
West CW, Garcia-Ramirez DL, Dougherty KJ. Postnatal maturation of serotonergic modulation of spinal RORβ interneurons in the medial deep dorsal horn. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623295. [PMID: 39605347 PMCID: PMC11601448 DOI: 10.1101/2024.11.15.623295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Proprioceptive input is essential for coordinated locomotion and this input must be properly gated to ensure smooth and effective movement. Presynaptic inhibition mediated by GABAergic interneurons provides regulation of sensory afferent feedback. Serotonin not only promotes locomotion, but also modulates feedback from sensory afferents, both directly and indirectly, potentially by acting on the GABAergic interneurons that mediate presynaptic inhibition. Developmental disruptions in presynaptic inhibition can produce deficits in sensorimotor processing. Importantly, both presynaptic inhibition of proprioceptive afferents and serotonergic innervation of the spinal cord become mature and functional after the first postnatal week. However, little is known about the serotonergic receptors involved in the modulation of interneurons mediating presynaptic inhibition and when developmentally their actions mature. Here, we used whole-cell patch clamp recordings in lumbar spinal slices from neonatal and juvenile mice to assess the intrinsic properties and serotonergic modulation of deep dorsal horn GABAergic RORβ interneurons previously shown to mediate presynaptic inhibition of proprioceptive afferents. RORβ interneurons from juvenile cords displayed more mature membrane properties. Further, serotonin increased the excitability of RORβ interneurons via actions at 5-HT 2A , 5-HT 2B/2C , and 5-HT 7 receptors in juvenile but not early neonatal spinal cords. Our findings indicate that deep dorsal horn RORβ interneurons undergo postnatal maturation in both their intrinsic excitability and ability to respond to serotonin, concurrent with the maturation of serotonergic innervation of the dorsal horn. This information can prompt future targeted studies testing relationships between impairments of serotonergic development, proprioceptive processing disorders, and presynaptic inhibition mediated by RORβ interneurons.
Collapse
|
2
|
Mistretta OC, Wood RL, English AW, Alvarez FJ. Air-stepping in the neonatal mouse: a powerful tool for analyzing early stages of rhythmic limb movement development. J Neurophysiol 2024; 131:321-337. [PMID: 38198656 PMCID: PMC11305634 DOI: 10.1152/jn.00227.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
There is a lack of experimental methods in genetically tractable mouse models to analyze the developmental period at which newborns mature weight-bearing locomotion. To overcome this deficit, we introduce methods to study l-3,4-dihydroxyphenylalanine (l-DOPA)-induced air-stepping in mice at postnatal day (P)7 and P10. Air-stepping is a stereotypic rhythmic behavior that resembles mouse walking overground locomotion but without constraints imposed by weight bearing, postural adjustments, or sensory feedback. We propose that air-stepping represents the functional organization of early spinal circuits coordinating limb movements. After subcutaneous injection of l-DOPA (0.5 mg/g), we recorded air-stepping movements in all four limbs and electromyographic (EMG) activity from ankle flexor (tibialis anterior, TA) and extensor (lateral gastrocnemius, LG) muscles. Using DeepLabCut pose estimation, we analyzed rhythmicity and limb coordination. We demonstrate steady rhythmic stepping of similar duration from P7 to P10 but with some fine-tuning of interlimb coordination with age. Hindlimb joints undergo a greater range of flexion at older ages, indicating maturation of flexion-extension cycles as the animal starts to walk. EMG recordings of TA and LG show alternation but with more focused activation particularly in the LG from P7 to P10. We discuss similarities to neonatal rat l-DOPA-induced air-stepping and infant assisted walking. We conclude that limb coordination and muscle activations recorded with this method represent basic spinal cord circuitry for limb control in neonates and pave the way for future investigations on the development of rhythmic limb control in genetic or disease models with correctly or erroneously developing motor circuitry.NEW & NOTEWORTHY We present novel methods to study neonatal air-stepping in newborn mice. These methods allow analyses at the onset of limb coordination during the period in which altricial species like rats, mice, and humans "learn" to walk. The methods will be useful to test a large variety of mutations that serve as models of motor disease in newborns or that are used to probe for specific circuit mechanisms that generate coordinated limb motor output.
Collapse
Affiliation(s)
- Olivia C Mistretta
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| | - Ryan L Wood
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| | - Arthur W English
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| | - Francisco J Alvarez
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
3
|
Olson CS, Ragsdale CW. Toward an Understanding of Octopus Arm Motor Control. Integr Comp Biol 2023; 63:1277-1284. [PMID: 37327080 PMCID: PMC10755184 DOI: 10.1093/icb/icad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Octopuses have the extraordinary ability to control eight prehensile arms with hundreds of suckers. With these highly flexible limbs, they engage in a wide variety of tasks, including hunting, grooming, and exploring their environment. The neural circuitry generating these movements engages every division of the octopus nervous system, from the nerve cords of the arms to the supraesophegeal brain. In this review, the current knowledge on the neural control of octopus arm movements is discussed, highlighting open questions and areas for further study.
Collapse
Affiliation(s)
- Cassady S Olson
- Committee on Computational Neuroscience, University of Chicago, Chicago 60637, USA
| | | |
Collapse
|
4
|
Wyart C, Carbo-Tano M, Cantaut-Belarif Y, Orts-Del'Immagine A, Böhm UL. Cerebrospinal fluid-contacting neurons: multimodal cells with diverse roles in the CNS. Nat Rev Neurosci 2023; 24:540-556. [PMID: 37558908 DOI: 10.1038/s41583-023-00723-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
The cerebrospinal fluid (CSF) is a complex solution that circulates around the CNS, and whose composition changes as a function of an animal's physiological state. Ciliated neurons that are bathed in the CSF - and thus referred to as CSF-contacting neurons (CSF-cNs) - are unusual polymodal interoceptive neurons. As chemoreceptors, CSF-cNs respond to variations in pH and osmolarity and to bacterial metabolites in the CSF. Their activation during infections of the CNS results in secretion of compounds to enhance host survival. As mechanosensory neurons, CSF-cNs operate together with an extracellular proteinaceous polymer known as the Reissner fibre to detect compression during spinal curvature. Once activated, CSF-cNs inhibit motor neurons, premotor excitatory neurons and command neurons to enhance movement speed and stabilize posture. At longer timescales, CSF-cNs instruct morphogenesis throughout life via the release of neuropeptides that act over long distances on skeletal muscle. Finally, recent evidence suggests that mouse CSF-cNs may act as neural stem cells in the spinal cord, inspiring new paths of investigation for repair after injury.
Collapse
Affiliation(s)
- Claire Wyart
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France.
| | - Martin Carbo-Tano
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France
| | | | - Urs L Böhm
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Pocratsky AM, Nascimento F, Özyurt MG, White IJ, Sullivan R, O’Callaghan BJ, Smith CC, Surana S, Beato M, Brownstone RM. Pathophysiology of Dyt1- Tor1a dystonia in mice is mediated by spinal neural circuit dysfunction. Sci Transl Med 2023; 15:eadg3904. [PMID: 37134150 PMCID: PMC7614689 DOI: 10.1126/scitranslmed.adg3904] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/14/2023] [Indexed: 05/05/2023]
Abstract
Dystonia, a neurological disorder defined by abnormal postures and disorganized movements, is considered to be a neural circuit disorder with dysfunction arising within and between multiple brain regions. Given that spinal neural circuits constitute the final pathway for motor control, we sought to determine their contribution to this movement disorder. Focusing on the most common inherited form of dystonia in humans, DYT1-TOR1A, we generated a conditional knockout of the torsin family 1 member A (Tor1a) gene in the mouse spinal cord and dorsal root ganglia (DRG). We found that these mice recapitulated the phenotype of the human condition, developing early-onset generalized torsional dystonia. Motor signs emerged early in the mouse hindlimbs before spreading caudo-rostrally to affect the pelvis, trunk, and forelimbs throughout postnatal maturation. Physiologically, these mice bore the hallmark features of dystonia, including spontaneous contractions at rest and excessive and disorganized contractions, including cocontractions of antagonist muscle groups, during voluntary movements. Spontaneous activity, disorganized motor output, and impaired monosynaptic reflexes, all signs of human dystonia, were recorded from isolated mouse spinal cords from these conditional knockout mice. All components of the monosynaptic reflex arc were affected, including motor neurons. Given that confining the Tor1a conditional knockout to DRG did not lead to early-onset dystonia, we conclude that the pathophysiological substrate of this mouse model of dystonia lies in spinal neural circuits. Together, these data provide new insights into our current understanding of dystonia pathophysiology.
Collapse
Affiliation(s)
- Amanda M. Pocratsky
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Filipe Nascimento
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - M. Görkem Özyurt
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London; London, WC1E 6BT, UK
| | - Roisin Sullivan
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Benjamin J. O’Callaghan
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Calvin C. Smith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London; London, WC1E 6BT, UK
| | - Marco Beato
- Department of Neuroscience, Physiology, and Pharmacology, University College London; London, WC1E 6BT, UK
| | - Robert M. Brownstone
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London; London, WC1N 3BG, UK
| |
Collapse
|
6
|
Özyurt MG, Ojeda-Alonso J, Beato M, Nascimento F. In vitro longitudinal lumbar spinal cord preparations to study sensory and recurrent motor microcircuits of juvenile mice. J Neurophysiol 2022; 128:711-726. [PMID: 35946796 PMCID: PMC9485001 DOI: 10.1152/jn.00184.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro spinal cord preparations have been extensively used to study microcircuits involved in the control of movement. By allowing precise control of experimental conditions coupled with state-of-the-art genetics, imaging, and electrophysiological techniques, isolated spinal cords from mice have been an essential tool in detailing the identity, connectivity, and function of spinal networks. The majority of the research has arisen from in vitro spinal cords of neonatal mice, which are still undergoing important postnatal maturation. Studies from adults have been attempted in transverse slices, however, these have been quite challenging due to the poor motoneuron accessibility and viability, as well as the extensive damage to the motoneuron dendritic trees. In this work, we describe two types of coronal spinal cord preparations with either the ventral or the dorsal horn ablated, obtained from mice of different postnatal ages, spanning from preweaned to 1 mo old. These semi-intact preparations allow recordings of sensory-afferent and motor-efferent responses from lumbar motoneurons using whole cell patch-clamp electrophysiology. We provide details of the slicing procedure and discuss the feasibility of whole cell recordings. The in vitro dorsal and ventral horn-ablated spinal cord preparations described here are a useful tool to study spinal motor circuits in young mice that have reached the adult stages of locomotor development.NEW & NOTEWORTHY In the past 20 years, most of the research into the mammalian spinal circuitry has been limited to in vitro preparations from embryonic and neonatal mice. We describe two in vitro longitudinal lumbar spinal cord preparations from juvenile mice that allow the study of motoneuron properties and respective afferent or efferent spinal circuits through whole cell patch clamp. These preparations will be useful to those interested in the study of microcircuits at mature stages of motor development.
Collapse
Affiliation(s)
- Mustafa Görkem Özyurt
- 1Department of Neuroscience Physiology and Pharmacology (NPP), grid.83440.3bUniversity College London, London, United Kingdom,2Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Julia Ojeda-Alonso
- 1Department of Neuroscience Physiology and Pharmacology (NPP), grid.83440.3bUniversity College London, London, United Kingdom
| | - Marco Beato
- 1Department of Neuroscience Physiology and Pharmacology (NPP), grid.83440.3bUniversity College London, London, United Kingdom
| | - Filipe Nascimento
- 1Department of Neuroscience Physiology and Pharmacology (NPP), grid.83440.3bUniversity College London, London, United Kingdom,2Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
7
|
Hachoumi L, Sillar KT. Developmental stage-dependent switching in the neuromodulation of vertebrate locomotor central pattern generator networks. Dev Neurobiol 2019; 80:42-57. [PMID: 31705739 DOI: 10.1002/dneu.22725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/24/2019] [Accepted: 11/05/2019] [Indexed: 12/27/2022]
Abstract
Neuromodulation plays important and stage-dependent roles in regulating locomotor central pattern (CPG) outputs during vertebrate motor system development. Dopamine, serotonin and nitric oxide are three neuromodulators that potently influence CPG outputs in the development of Xenopus frog tadpole locomotion. However, their roles switch from predominantly inhibitory early in development to mainly excitatory at later stages. In this review, we compare the stage-dependent switching in neuromodulation in Xenopus with other vertebrate systems, notably the mouse and the zebrafish, and highlight features that appear to be phylogenetically conserved.
Collapse
Affiliation(s)
- Lamia Hachoumi
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Keith T Sillar
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
8
|
Orexinergic Modulation of Spinal Motor Activity in the Neonatal Mouse Spinal Cord. eNeuro 2018; 5:eN-NWR-0226-18. [PMID: 30417080 PMCID: PMC6223113 DOI: 10.1523/eneuro.0226-18.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 11/21/2022] Open
Abstract
The role of orexin during development, and especially in terms of spinal cord function, is not well understood. It is for this reason that we focused on the network actions of orexin during the first week of development. We found that orexinergic fibers were present in the lumbar spinal cord of postnatal day 0 (P0) to P3 mice. The fibers were expressed mainly in the dorsal horn, but occasional fibers were observed in the ventral horn. Both orexin (OX) A and OXB increased the motoneurons (MNs) tonic neurogram discharge. However, only OXA was found to significantly increase spontaneous bursting activity and the frequency of fictive locomotor bursts. We show that OXA is able to act directly on MNs. To test the contribution of the recurrent MN collaterals, we blocked the nicotinic cholinergic drive and observed that OXA retained its ability to increase fictive locomotor activity. Additionally, we recorded neurograms from ventral lateral funiculi, where OXA had no effect on population discharge. These effects were also confirmed by recording from descending commissural interneurons via patch recordings. The loci of the effects of OXA were further investigated in a dorsal horn-removed preparation where OXA also shows an increase in the discharge from ventral root neurograms but no increase in the frequency of spontaneous or fictive locomotion burst activity. In summary, multiple lines of evidence from our work demonstrate the robust effects of orexins on spinal cord networks and MNs at the time of birth.
Collapse
|
9
|
Abstract
The adult decerebrate mouse model (a mouse with the cerebrum removed) enables the study of sensory-motor integration and motor output from the spinal cord for several hours without compromising these functions with anesthesia. For example, the decerebrate mouse is ideal for examining locomotor behavior using intracellular recording approaches, which would not be possible using current anesthetized preparations. This protocol describes the steps required to achieve a low-blood-loss decerebration in the mouse and approaches for recording signals from spinal cord neurons with a focus on motoneurons. The protocol also describes an example application for the protocol: the evocation of spontaneous and actively driven stepping, including optimization of these behaviors in decerebrate mice. The time taken to prepare the animal and perform a decerebration takes ∼2 h, and the mice are viable for up to 3-8 h, which is ample time to perform most short-term procedures. These protocols can be modified for those interested in cardiovascular or respiratory function in addition to motor function and can be performed by trainees with some previous experience in animal surgery.
Collapse
|
10
|
Momose-Sato Y, Sato K. Development of Spontaneous Activity in the Avian Hindbrain. Front Neural Circuits 2016; 10:63. [PMID: 27570506 PMCID: PMC4981603 DOI: 10.3389/fncir.2016.00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/29/2016] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity in the developing central nervous system occurs before the brain responds to external sensory inputs, and appears in the hindbrain and spinal cord as rhythmic electrical discharges of cranial and spinal nerves. This spontaneous activity recruits a large population of neurons and propagates like a wave over a wide region of the central nervous system. Here, we review spontaneous activity in the chick hindbrain by focusing on this large-scale synchronized activity. Asynchronous activity that is expressed earlier than the above mentioned synchronized activity and activity originating in midline serotonergic neurons are also briefly mentioned.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University Yokohama, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University Tokyo, Japan
| |
Collapse
|
11
|
Medelin M, Rancic V, Cellot G, Laishram J, Veeraraghavan P, Rossi C, Muzio L, Sivilotti L, Ballerini L. Altered development in GABA co-release shapes glycinergic synaptic currents in cultured spinal slices of the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. J Physiol 2016; 594:3827-40. [PMID: 27098371 DOI: 10.1113/jp272382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Increased environmental risk factors in conjunction with genetic susceptibility have been proposed with respect to the remarkable variations in mortality in amyotrophic lateral sclerosis (ALS). In vitro models allow the investigation of the genetically modified counter-regulator of motoneuron toxicity and may help in addressing ALS therapy. Spinal organotypic slice cultures from a mutant form of human superoxide dismutase 1 (SOD1G93A) mouse model of ALS allow the detection of altered glycinergic inhibition in spinal microcircuits. This altered inhibition improved spinal cord excitability, affecting motor outputs in early SOD1(G93A) pathogenesis. ABSTRACT Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurological disease characterized by a progressive degeneration of motoneurons (MNs). In a previous study, we developed organotypic spinal cultures from an ALS mouse model expressing a mutant form of human superoxide dismutase 1 (SOD1(G93A) ). We reported the presence of a significant synaptic rearrangement expressed by these embryonic cultured networks, which may lead to the altered development of spinal synaptic signalling, which is potentially linked to the adult disease phenotype. Recent studies on the same ALS mouse model reported a selective loss of glycinergic innervation in cultured MNs, suggestive of a contribution of synaptic inhibition to MN dysfunction and degeneration. In the present study, we further exploit organotypic cultures from wild-type and SOD1(G93A) mice to investigate the development of glycine-receptor-mediated synaptic currents recorded from the interneurons of the premotor ventral circuits. We performed single cell electrophysiology, immunocytochemistry and confocal microscopy and suggest that GABA co-release may speed the decay of glycine responses altering both temporal precision and signal integration in SOD1(G93A) developing networks at the postsynaptic site. Our hypothesis is supported by the finding of an increased MN bursting activity in immature SOD1(G93A) spinal cords and by immunofluorescence microscopy detection of a longer persistence of GABA in SOD1(G93A) glycinergic terminals in cultured and ex vivo spinal slices.
Collapse
Affiliation(s)
- Manuela Medelin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Vladimir Rancic
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giada Cellot
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Jummi Laishram
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Chiara Rossi
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Luca Muzio
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - Laura Ballerini
- Department of Life Sciences, University of Trieste, Trieste, Italy.,International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
| |
Collapse
|
12
|
Abstract
Neural networks that can generate rhythmic motor output in the absence of sensory feedback, commonly called central pattern generators (CPGs), are involved in many vital functions such as locomotion or respiration. In certain circumstances, these neural networks must interact to produce coordinated motor behavior adapted to environmental constraints and to satisfy the basic needs of an organism. In this context, we recently reported the existence of an ascending excitatory influence from lumbar locomotor CPG circuitry to the medullary respiratory networks that is able to depolarize neurons of the parafacial respiratory group during fictive locomotion and to subsequently induce an increased respiratory rhythmicity (Le Gal et al., 2014b). Here, using an isolated in vitro brainstem-spinal cord preparation from neonatal rat in which the respiratory and the locomotor networks remain intact, we show that during fictive locomotion induced either pharmacologically or by sacrocaudal afferent stimulation, the activity of both thoracolumbar expiratory motoneurons and interneurons is rhythmically modulated with the locomotor activity. Completely absent in spinal inspiratory cells, this rhythmic pattern is highly correlated with the hindlimb ipsilateral flexor activities. Furthermore, silencing brainstem neural circuits by pharmacological manipulation revealed that this locomotor-related drive to expiratory motoneurons is solely dependent on propriospinal pathways. Together these data provide the first evidence in the newborn rat spinal cord for the existence of bimodal respiratory-locomotor motoneurons and interneurons onto which both central efferent expiratory and locomotor drives converge, presumably facilitating the coordination between the rhythmogenic networks responsible for two different motor functions. Significance statement: In freely moving animals, distant regions of the brain and spinal cord controlling distinct motor acts must interact to produce the best adapted behavioral response to environmental constraints. In this context, it is well established that locomotion and respiration must to be tightly coordinated to reduce muscular interferences and facilitate breathing rate acceleration during exercise. Here, using electrophysiological recordings in an isolated in vitro brainstem-spinal cord preparation from neonatal rat, we report that the locomotor-related signal produced by the lumbar central pattern generator for locomotion selectively modulates the intracellular activity of spinal respiratory neurons engaged in expiration. Our results thus contribute to our understanding of the cellular bases for coordinating the rhythmic neural circuitry responsible for different behaviors.
Collapse
|
13
|
Momose-Sato Y, Sato K, Kamino K. Monitoring Population Membrane Potential Signals During Development of the Vertebrate Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:213-42. [DOI: 10.1007/978-3-319-17641-3_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Rybak IA, Shevtsova NA, Kiehn O. Modelling genetic reorganization in the mouse spinal cord affecting left-right coordination during locomotion. J Physiol 2013; 591:5491-508. [PMID: 24081162 DOI: 10.1113/jphysiol.2013.261115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The spinal neural circuit contains inhibitory (CINi) and excitatory (CINe) commissural interneurons with axons crossing the mid-line. Direction of these axons to the other side of the cord is controlled by axon guidance molecules, such as Netrin-1 and DCC. The cord also contains glutamatergic interneurons, whose axon guidance involves the EphA4 receptor. In EphA4 knockout (KO) and Netrin-1 KO mice, the normal left-right alternating pattern is replaced with a synchronized hopping gait, and the cord of DCC KO mice exhibits uncoordinated left and right oscillations. To investigate the effects of these genetic transformations, we used a computational model of the spinal circuits containing left and right rhythm-generating neuron populations (RGs), each with a subpopulation of EphA4-positive neurons, and CINi and CINe populations mediating mutual inhibition and excitation between the left and right RGs. In the EphA4 KO circuits, half of the EphA4-positive axons crossed the mid-line and excited the contralateral RG neurons. In the Netrin-1 KO model, the number of contralateral CINi projections was significantly reduced, while in the DCC KO model, the numbers of both CINi and CINe connections were reduced. In our simulations, the EphA4 and Netrin-1 KO circuits switched from the left-right alternating pattern to a synchronized hopping pattern, and the DCC KO network exhibited uncoordinated left-right activity. The amplification of inhibitory interactions re-established an alternating pattern in the EphA4 and DCC KO circuits, but not in the Netrin-1 KO network. The model reproduces the genetic transformations and provides insights into the organization of the spinal locomotor network.
Collapse
Affiliation(s)
- Ilya A Rybak
- I. A. Rybak: Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | | | |
Collapse
|
15
|
Momose-Sato Y, Sato K. Large-scale synchronized activity in the embryonic brainstem and spinal cord. Front Cell Neurosci 2013; 7:36. [PMID: 23596392 PMCID: PMC3625830 DOI: 10.3389/fncel.2013.00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 03/20/2013] [Indexed: 01/09/2023] Open
Abstract
In the developing central nervous system, spontaneous activity appears well before the brain responds to external sensory inputs. One of the earliest activities is observed in the hindbrain and spinal cord, which is detected as rhythmic electrical discharges of cranial and spinal motoneurons or oscillations of Ca(2+)- and voltage-related optical signals. Shortly after the initial expression, the spontaneous activity appearing in the hindbrain and spinal cord exhibits a large-scale correlated wave that propagates over a wide region of the central nervous system, maximally extending to the lumbosacral cord and to the forebrain. In this review, we describe several aspects of this synchronized activity by focusing on the basic properties, development, origin, propagation pattern, pharmacological characteristics, and possible mechanisms underlying the generation of the activity. These profiles differ from those of the respiratory and locomotion pattern generators observed in the mature brainstem and spinal cord, suggesting that the wave is primordial activity that appears during a specific period of embryonic development and plays some important roles in the development of the central nervous system.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Health and Nutrition, College of Human Environmental Studies, Kanto Gakuin UniversityYokohama, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's UniversityTokyo, Japan
| |
Collapse
|
16
|
Sindhurakar A, Bradley NS. Light accelerates morphogenesis and acquisition of interlimb stepping in chick embryos. PLoS One 2012; 7:e51348. [PMID: 23236480 PMCID: PMC3516530 DOI: 10.1371/journal.pone.0051348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/05/2012] [Indexed: 11/19/2022] Open
Abstract
Chicks are bipedal precocious vertebrates that achieve adaptive locomotor skill within hours after hatching. Development of limb movement has been extensively studied in the chicken embryo, but few studies have focused on the preparations leading to precocious locomotor skill. Chicks typically hatch after 21 days of incubation, and recent studies provided evidence that the neural circuits for intralimb control of stepping are established between embryonic days (E) 18-20. It has also been shown that variations in light exposure during embryogenesis can accelerate or delay the onset of hatching and walking by 1 to 2 days. Our earlier work revealed that despite these differences in time to hatch, chicks incubated in different light conditions achieved similar locomotor skill on the day of hatching. Results suggested to us that light exposure during incubation may have accelerated development of locomotor circuits in register with earlier hatching. Thus, in this study, embryos were incubated in 1 of 3 light conditions to determine if development of interlimb coordination at a common time point, 19 days of incubation, varied with light exposure during embryogenesis. Leg muscle activity was recorded bilaterally and burst analyses were performed for sequences of spontaneous locomotor-related activity in one or more ankle muscles to quantify the extent of interlimb coordination in ovo. We report findings indicating that the extent of interlimb coordination varied with light exposure, and left-right alternating steps were a more reliable attribute of interlimb coordination for embryos incubated in constant bright light. We provide evidence that morphological development of the leg varied with light exposure. Based on these findings, we propose that light can accelerate the development of interlimb coordination in register with earlier hatching. Our results lead us to further propose that alternating left-right stepping is the default pattern of interlimb coordination produced by locomotor circuits during embryogenesis.
Collapse
Affiliation(s)
- Anil Sindhurakar
- Burke-Cornell Medical Research Institute, White Plains, New York, United States of America
| | - Nina S. Bradley
- Biokinesiology and Physical Therapy, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Markowski VP, Reeve EA, Onos K, Assadollahzadeh M, McKay N. Effects of prenatal exposure to sodium arsenite on motor and food-motivated behaviors from birth to adulthood in C57BL6/J mice. Neurotoxicol Teratol 2012; 34:221-31. [PMID: 22266078 DOI: 10.1016/j.ntt.2012.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/04/2012] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
Consumption of arsenic-contaminated drinking water is associated with numerous cancers and dermal and vascular diseases. Arsenic is also a potent nervous system toxicant and epidemiological studies indicate that intellectual functions in children are compromised following early developmental exposure. This study was designed to examine the effects of arsenic on a broad range of age-specific behaviors including basic sensory-motor responses in neonates, locomotor activity and grip strength in juveniles, and operant measures of learning and attention in adults. Pregnant C57BL6/J mice consumed drinking water containing 0, 8, 25, or 80 ppm sodium arsenite from the fourth day of gestation until birth. Arsenic produced a range of behavioral impairments in male and female offspring at each of the test ages. The most striking effects of arsenic were on the development of gait and other motor responses including acoustic startle, righting reflexes, and forelimb grip. These results suggest that developmental arsenic exposure can produce other behavioral impairments in children in addition to cognitive impairment.
Collapse
Affiliation(s)
- Vincent P Markowski
- Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, Maine 04104, United States.
| | | | | | | | | |
Collapse
|
18
|
Nishimaru H, Sakagami H, Kakizaki M, Yanagawa Y. Locomotor-related activity of GABAergic interneurons localized in the ventrolateral region in the isolated spinal cord of neonatal mice. J Neurophysiol 2011; 106:1782-92. [PMID: 21734105 DOI: 10.1152/jn.00385.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inhibitory neurons are an essential element of the locomotor network in the mammalian spinal cord. However, little is known about the firing pattern and synaptic modulation during locomotion in the majority of them. In this study, we performed whole cell recording in visually identified ventrolaterally located GABAergic neurons (VL-GNs) in the rostral (L2 segment) and caudal (L5 segment) lumbar cord using isolated spinal cord preparations taken from glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mouse neonates. These neurons did not respond to electrical stimulation of the ventral root, indicating that they were not Renshaw cells. Ninety-five percent of VL-GNs in the L2 segment and fifty percent of those in the L5 segment showed significant rhythmic firing during locomotor-like rhythmic activity induced by bath application of 5-HT and NMDA. Seventy percent of these neurons fired mainly during the extensor phase, and twenty-five percent fired mainly during the flexor phase. Voltage-clamp recordings revealed that most of these neurons received rhythmic inhibition during the nonfiring phase and excitatory synaptic inputs during the firing phase. Morphological examination of recorded neurons filled with neurobiotin showed that their soma was located lateral to the motoneuron pool and that they extended their processes into the local ipsilateral ventromedial region and dorsal regions. The present study indicates that these GABAergic interneurons located in the ventrolateral region adjacent to the motoneuron pool are rhythmically active during locomotion and involved in the inhibitory modulation of local locomotor network in the lumbar spinal cord.
Collapse
Affiliation(s)
- Hiroshi Nishimaru
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| | | | | | | |
Collapse
|
19
|
Stil A, Jean-Xavier C, Liabeuf S, Brocard C, Delpire E, Vinay L, Viemari JC. Contribution of the potassium-chloride co-transporter KCC2 to the modulation of lumbar spinal networks in mice. Eur J Neurosci 2011; 33:1212-22. [PMID: 21255132 DOI: 10.1111/j.1460-9568.2010.07592.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spontaneous activity is observed in most developing neuronal circuits, such as the retina, hippocampus, brainstem and spinal cord. In the spinal cord, spontaneous activity is important for generating embryonic movements critical for the proper development of motor axons, muscles and synaptic connections. A spontaneous bursting activity can be recorded in vitro from ventral roots during perinatal development. The depolarizing action of the inhibitory amino acids γ-aminobutyric acid and glycine is widely proposed to contribute to spontaneous activity in several immature systems. During development, the intracellular chloride concentration decreases, leading to a shift of equilibrium potential for Cl(-) ions towards more negative values, and thereby to a change in glycine- and γ-aminobutyric acid-evoked potentials from depolarization/excitation to hyperpolarization/inhibition. The up-regulation of the outward-directed Cl(-) pump, the neuron-specific potassium-chloride co-transporter type 2 KCC2, has been shown to underlie this shift. Here, we investigated whether spontaneous and locomotor-like activities are altered in genetically modified mice that express only 8-20% of KCC2, compared with wild-type animals. We show that a reduced amount of KCC2 leads to a depolarized equilibrium potential for Cl(-) ions in lumbar motoneurons, an increased spontaneous activity and a faster locomotor-like activity. However, the left-right and flexor-extensor alternating pattern observed during fictive locomotion was not affected. We conclude that neuronal networks within the spinal cord are more excitable in KCC2 mutant mice, which suggests that KCC2 strongly modulates the excitability of spinal cord networks.
Collapse
Affiliation(s)
- Aurélie Stil
- Laboratoire Plasticité et Physio-Pathologie de la Motricité (UMR 6196), CNRS & Aix-Marseille Université, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Klein DA, Tresch MC. Specificity of intramuscular activation during rhythms produced by spinal patterning systems in the in vitro neonatal rat with hindlimb attached preparation. J Neurophysiol 2010; 104:2158-68. [PMID: 20660414 DOI: 10.1152/jn.00477.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In intact adult vertebrates, muscles can be activated with a high degree of specificity, so that even within a single traditionally defined muscle, groups of motor units can be differentially activated. Such differential activation might reflect detailed control by descending systems, potentially resulting from postnatal experience such that activation of motor units is precisely tailored to their mechanical actions. Here we examine the degree to which such specific activation can be seen in the rhythmic patterns produced by isolated spinal motor systems in neonates. We examined motor output produced by the in vitro neonatal rat spinal cord with hindlimb attached. We recorded the activity of different regions within the posterior portion of biceps femoris (BFp; i.e., excluding the anterior/vertebral head). We found that in the rhythms evoked by bath application of serotonin/N-methyl-d-aspartate (5-HT/NMDA), all regions of BFp were active during extension. However, the regions of BFp were activated in a specific sequence, with the activation of rostral regions consistently preceding those of more caudal regions in both afferented and deafferented preparations. In the rhythms evoked by cauda equina (CE) stimulation, rostral and middle regions of BFp remained active in extension, but the caudal region of BFp was usually active in flexion. Stimulation of L5 and S2 dorsal roots typically evoked rhythms with all regions of BFp active during extension; although the same rostral to caudal sequence of activation observed in 5-HT/NMDA evoked rhythms could also be observed in these rhythms, we also observed cases with reversed sequences, with activity proceeding from caudal to rostral. S2 dorsal root stimulation occasionally evoked rhythms with flexor activity in caudal BFp, similar to CE-evoked rhythms. Taken together, these results suggest a high degree of individuated control of muscles by spinal pattern generating networks, even at birth.
Collapse
Affiliation(s)
- David A Klein
- Department of Biomedical Engineering, Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
21
|
Allain AE, Ségu L, Meyrand P, Branchereau P. Serotonin controls the maturation of the GABA phenotype in the ventral spinal cord via 5-HT1b receptors. Ann N Y Acad Sci 2010; 1198:208-19. [PMID: 20536936 DOI: 10.1111/j.1749-6632.2010.05433.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) is a pleiotropic neurotransmitter known to play a crucial modulating role during the construction of brain circuits. Descending bulbo-spinal 5-HT fibers, coming from the caudal medullary cell groups of the raphe nuclei, progressively invade the mouse spinal cord and arrive at lumbar segments at E15.5 when the number of ventral GABA immunoreactive (GABA-ir) interneurons reaches its maximum. We thus raised the question of a possible interaction between these two neurotransmitter systems and investigated the effect of 5-HT descending inputs on the maturation of the GABA phenotype in ventral spinal interneurons. Using a quantitative anatomical study performed on acute and cultured embryonic mouse spinal cord, we found that the GABAergic neuronal population matured according to a similar rostro-caudal gradient both in utero and in organotypic culture. We showed that 5-HT delayed the maturation of the GABA phenotype in lumbar but not brachial interneurons. Using pharmacological treatments and mice lacking 5-HT(1B) or 5-HT(1A), we demonstrated that the 5-HT repressing effect on the GABAergic phenotype was specifically attributed to 5-HT(1B) receptors.
Collapse
Affiliation(s)
- Anne-Emilie Allain
- Centre de Neurosciences Intégratives et Cognitives, Université de Bordeaux, CNRS, Talence, France
| | | | | | | |
Collapse
|
22
|
Kiehn O, Dougherty KJ, Hägglund M, Borgius L, Talpalar A, Restrepo CE. Probing spinal circuits controlling walking in mammals. Biochem Biophys Res Commun 2010; 396:11-8. [PMID: 20494103 DOI: 10.1016/j.bbrc.2010.02.107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/17/2010] [Indexed: 01/14/2023]
Abstract
Locomotion in mammals is a complex motor act that involves the activation of a large number of muscles in a well-coordinated pattern. Understanding the network organization of the intrinsic spinal networks that control the locomotion, the central pattern generators, has been a challenge to neuroscientists. However, experiments using the isolated rodent spinal cord and combining electrophysiology and molecular genetics to dissect the locomotor network have started to shed new light on the network structure. In the present review, we will discuss findings that have revealed the role of designated populations of neurons for the key network functions including coordinating muscle activity and generating rhythmic activity. These findings are summarized in proposed organizational principles for the mammalian segmental CPG.
Collapse
Affiliation(s)
- Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
23
|
Klein DA, Patino A, Tresch MC. Flexibility of motor pattern generation across stimulation conditions by the neonatal rat spinal cord. J Neurophysiol 2010; 103:1580-90. [PMID: 20089814 DOI: 10.1152/jn.00961.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previous studies have demonstrated that "locomotor-like" rhythmic patterns can be evoked in the isolated neonatal rat spinal cord by several means, including pharmacological neuromodulation and electrical stimulation of various pathways. Recent studies have used stimulation of afferent pathways to evoke rhythmic patterns, relying on synaptic activation of interneuronal systems rather than global imposition of neuromodulatory state by pharmacological agents. We use the in vitro neonatal rat spinal cord with attached hindlimb to examine the muscle activation patterns evoked by stimulation of these different pathways and evaluate whether stimulation of these pathways all evoke the same patterns. We find that the patterns evoked by bath application of serotonin (5-HT) and N-methyl-D-aspartic acid (NMDA) consisted of alternation between hip flexors and extensors and similar alternation was observed in the patterns evoked by electrical stimulation of the cauda equina (CE) or contralateral fifth lumbar (L(5)) dorsal nerve root. In contrast, the knee extensor/hip flexor rectus femoris (RF) and knee flexor/hip extensor semitendinosus (ST) were activated differentially across stimulation conditions. In 5-HT/NMDA patterns, RF was active in late flexion and ST in late extension. In CE patterns, these two muscles switched places with RF typically active in late extension and ST active in flexion. In L(5) patterns, ST was activated in extension and RF was silent or weakly active during flexion. There were also systematic differences in the consistency of rhythms evoked by each stimulation method: patterns evoked by electrical stimulation of CE or L(5) were less consistently modulated with the rhythm when compared with 5-HT/NMDA-evoked patterns. All differences were preserved following deafferentation, demonstrating that they reflect intrinsic properties of spinal systems. These results highlight the intrinsic flexibility of motor pattern generation by spinal motor circuitry which is present from birth and provides important information to many studies examining spinal pattern generating networks.
Collapse
Affiliation(s)
- David A Klein
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
24
|
Taccola G, Mladinic M, Nistri A. Dynamics of early locomotor network dysfunction following a focal lesion in an in vitro model of spinal injury. Eur J Neurosci 2009; 31:60-78. [PMID: 20092556 DOI: 10.1111/j.1460-9568.2009.07040.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is unclear how a localized spinal cord injury may acutely affect locomotor networks of segments initially spared by the lesion. To investigate the process of secondary damage following spinal injury, we used the in vitro model of the neonatal rat isolated spinal cord with transverse barriers at the low thoracic-upper lumbar region to allow focal application of kainate in hypoxic and aglycemic solution (with reactive oxygen species). The time-course and nature of changes in spinal locomotor networks downstream of the lesion site were investigated over the first 24 h, with electrophysiological recordings monitoring fictive locomotion (alternating oscillations between flexor and extensor motor pools on either side) and correlating any deficit with histological alterations. The toxic solution irreversibly suppressed synaptic transmission within barriers without blocking spinal reflexes outside. This effect was focally associated with extensive white matter damage and ventral gray neuronal loss. Although cell losses were < 10% outside barriers, microglial activation with neuronal phagocytosis was detected. Downstream motor networks still generated locomotor activity 24 h later when stimulated with N-methyl-d-aspartate (NMDA) and serotonin, but not with repeated dorsal root stimuli. In the latter case, cumulative depolarization was recorded from ventral roots at a slower rate of rise, suggesting failure to recruit network premotoneurons. Our data indicate that, within the first 24 h of injury, locomotor networks below the lesion remained morphologically intact and functional when stimulated by NMDA and serotonin. Nevertheless, microglial activation and inability to produce locomotor patterns by dorsal afferent stimuli suggest important challenges to long-term network operation.
Collapse
Affiliation(s)
- Giuliano Taccola
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Beirut 2-4, 34151 Trieste, Italy
| | | | | |
Collapse
|
25
|
Sibilla S, Fabbro A, Grandolfo M, D'Andrea P, Nistri A, Ballerini L. The patterns of spontaneous Ca2+ signals generated by ventral spinal neurons in vitro show time-dependent refinement. Eur J Neurosci 2009; 29:1543-59. [PMID: 19419420 DOI: 10.1111/j.1460-9568.2009.06708.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Embryonic spinal neurons maintained in organotypic slice culture are known to mimic certain maturation-dependent signalling changes. With such a model we investigated, in embryonic mouse spinal segments, the age-dependent spatio-temporal control of intracellular Ca(2+) signalling generated by neuronal populations in ventral circuits and its relation with electrical activity. We used Ca(2+) imaging to monitor areas located within the ventral spinal horn at 1 and 2 weeks of in vitro growth. Primitive patterns of spontaneous neuronal Ca(2+) transients (detected at 1 week) were typically synchronous. Remarkably, such transients originated from widespread propagating waves that became organized into large-scale rhythmic bursts. These activities were associated with the generation of synaptically mediated inward currents under whole-cell patch-clamp. Such patterns disappeared during longer culture of spinal segments: at 2 weeks in culture, only a subset of ventral neurons displayed spontaneous, asynchronous and repetitive Ca(2+) oscillations dissociated from background synaptic activity. We observed that the emergence of oscillations was a restricted phenomenon arising together with the transformation of ventral network electrophysiological bursting into asynchronous synaptic discharges. This change was accompanied by the appearance of discrete calbindin immunoreactivity against an unchanged background of calretinin-positive cells. It is attractive to assume that periodic oscillations of Ca(2+) confer a summative ability to these cells to shape the plasticity of local circuits through different changes (phasic or tonic) in intracellular Ca(2+).
Collapse
Affiliation(s)
- Sara Sibilla
- Physiology and Pathology Department, Centre for Neuroscience BRAIN, University of Trieste, via Fleming 22, 34127 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Sibilla S, Ballerini L. GABAergic and glycinergic interneuron expression during spinal cord development: dynamic interplay between inhibition and excitation in the control of ventral network outputs. Prog Neurobiol 2009; 89:46-60. [PMID: 19539686 DOI: 10.1016/j.pneurobio.2009.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 04/10/2009] [Accepted: 06/09/2009] [Indexed: 11/28/2022]
Abstract
A key objective of neuroscience research is to understand the processes leading to mature neural circuitries in the central nervous system (CNS) that enable the control of different behaviours. During development, network-constitutive neurons undergo dramatic rearrangements, involving their intrinsic properties, such as the blend of ion channels governing their firing activity, and their synaptic interactions. The spinal cord is no exception to this rule; in fact, in the ventral horn the maturation of motor networks into functional circuits is a complex process where several mechanisms cooperate to achieve the development of motor control. Elucidating such a process is crucial in identifying neurons more vulnerable to degenerative or traumatic diseases or in developing new strategies aimed at rebuilding damaged tissue. The focus of this review is on recent advances in understanding the spatio-temporal expression of the glycinergic/GABAergic system and on the contribution of this system to early network function and to motor pattern transformation along with spinal maturation. During antenatal development, the operation of mammalian spinal networks strongly depends on the activity of glycinergic/GABAergic neurons, whose action is often excitatory until shortly before birth when locomotor networks acquire the ability to generate alternating motor commands between flexor and extensor motor neurons. At this late stage of prenatal development, GABA-mediated excitation is replaced by synaptic inhibition mediated by glycine and/or GABA. At this stage of spinal maturation, the large majority of GABAergic neurons are located in the dorsal horn. We propose that elucidating the role of inhibitory systems in development will improve our knowledge on the processes regulating spinal cord maturation.
Collapse
Affiliation(s)
- Sara Sibilla
- Life Science Department, Center for Neuroscience B.R.A.I.N., University of Trieste, via Fleming 22, 34127 Trieste, Italy
| | | |
Collapse
|
27
|
Endo T, Kiehn O. Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord. J Neurophysiol 2008; 100:3043-54. [PMID: 18829847 DOI: 10.1152/jn.90729.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rhythmic voltage oscillations in motor neurons (MNs) during locomotor movements reflect the operation of the pre-MN central pattern generator (CPG) network. Recordings from MNs can thus be used as a method to deduct the organization of CPGs. Here, we use continuous conductance measurements and decomposition methods to quantitatively assess the weighting and phase tuning of synaptic inputs to different flexor and extensor MNs during locomotor-like activity in the isolated neonatal mice lumbar spinal cord preparation. Whole cell recordings were obtained from 22 flexor and 18 extensor MNs in rostral and caudal lumbar segments. In all flexor and the large majority of extensor MNs the extracted excitatory and inhibitory synaptic conductances alternate but with a predominance of inhibitory conductances, most pronounced in extensors. These conductance changes are consistent with a "push-pull" operation of locomotor CPG. The extracted excitatory and inhibitory synaptic conductances varied between 2 and 56% of the mean total conductance. Analysis of the phase tuning of the extracted synaptic conductances in flexor and extensor MNs in the rostral lumbar cord showed that the flexor-phase-related synaptic conductance changes have sharper locomotor-phase tuning than the extensor-phase-related conductances, suggesting a modular organization of premotor CPG networks consisting of reciprocally coupled, but differently composed, flexor and extensor CPG networks. There was a clear difference between phase tuning in rostral and caudal MNs, suggesting a distinct operation of CPG networks in different lumbar segments. The highly asymmetric features were preserved throughout all ranges of locomotor frequencies investigated and with different combinations of locomotor-inducing drugs. The asymmetric nature of CPG operation and phase tuning of the conductance profiles provide important clues to the organization of the rodent locomotor CPG and are compatible with a multilayered and distributed structure of the network.
Collapse
Affiliation(s)
- Toshiaki Endo
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
28
|
Carlin KP, Liu J, Jordan LM. Postnatal Changes in the Inactivation Properties of Voltage-Gated Sodium Channels Contribute to the Mature Firing Pattern of Spinal Motoneurons. J Neurophysiol 2008; 99:2864-76. [DOI: 10.1152/jn.00059.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most mammals are born with the necessary spinal circuitry to produce a locomotor-like pattern of neural activity. However, rodents seldom demonstrate weight-supported locomotor behavior until the second or third postnatal week, possibly due to the inability of the neuromuscular system to produce sufficient force during this early postnatal period. As spinal motoneurons mature they are seen to fire an increasing number of action potentials at an increasing rate, which is a necessary component of greater force production. The mechanisms responsible for this enhanced ability of motoneurons are not completely defined. In the present study we assessed the biophysical properties of the developing voltage-gated sodium current to determine their role in the maturing firing pattern. Using dissociated postnatal lumbar motoneurons in short-term culture (18–24 h) we demonstrate that currents recorded from the most mature postnatal age group (P10–P12) were significantly better able to maintain channels in an available state during repetitive stimulation than were the younger age groups (P1–P3, P4–P6, P7–P9). This ability correlated with the ability of channels to recover more quickly and more completely from an inactivated state. These age-related differences were seen in the absence of changes in the voltage dependence of channel gating. Differences in both closed-state inactivation and slow inactivation were also noted between the age groups. The results indicate that changes in the inactivation properties of voltage-gated sodium channels are important for the development of a mature firing pattern in spinal motoneurons.
Collapse
|
29
|
Rotational responses of vestibular-nerve afferents innervating the semicircular canals in the C57BL/6 mouse. J Assoc Res Otolaryngol 2008; 9:334-48. [PMID: 18473139 DOI: 10.1007/s10162-008-0120-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 03/28/2008] [Indexed: 01/07/2023] Open
Abstract
Extracellular recordings were made from vestibular-nerve afferents innervating the semicircular canals in anesthetized C57BL/6 mice ranging in age from 4-24 weeks. A normalized coefficient of variation was used to divide afferents into regular (CV*<0.1) and irregular (CV*>0.1) groups. There were three overall conclusions from this study. First, mouse afferents resemble those of other mammals in properties such as resting discharge rate and dependence of response dynamics on discharge regularity. Second, there are differences in mouse afferents relative to other mammals that are likely related to the smaller size of the semicircular canals. The rotational sensitivity of mouse afferents is approximately threefold lower than that reported for afferents in other mammals. One consequence of the lower sensitivity is that mouse afferents have a larger linear range for encoding head velocity. The long time constant of afferent discharge, which is a measure of low-frequency response dynamics, is shorter in mouse afferents than in other species. Third, juvenile mice (age 4-7 weeks) appear to lack a class of low-sensitivity, highly irregular afferents that are present in adult animals (age 10-24 weeks). By analogy to studies in the chinchilla, these irregular afferents with low sensitivities for lower rotational frequencies correspond to calyx-only afferents. These findings suggest that, although the calyx ending on to type I hair cells is morphologically complete in mice by the age of about 1 month, the physiological response properties in these juvenile animals are not equivalent to those in adults.
Collapse
|
30
|
Furlan F, Taccola G, Grandolfo M, Guasti L, Arcangeli A, Nistri A, Ballerini L. ERG conductance expression modulates the excitability of ventral horn GABAergic interneurons that control rhythmic oscillations in the developing mouse spinal cord. J Neurosci 2007; 27:919-28. [PMID: 17251434 PMCID: PMC6672895 DOI: 10.1523/jneurosci.4035-06.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During antenatal development, the operation and maturation of mammalian spinal networks strongly depend on the activity of ventral horn GABAergic interneurons that mediate excitation first and inhibition later. Although the functional consequence of GABA actions may depend on maturational processes in target neurons, it is also likely that evolving changes in GABAergic transmission require fine-tuning in GABA release, probably via certain intrinsic mechanisms regulating GABAergic neuron excitability at different embryonic stages. Nevertheless, it has not been possible, to date, to identify certain ionic conductances upregulated or downregulated before birth in such cells. By using an experimental model with either mouse organotypic spinal cultures or isolated spinal cord preparations, the present study examined the role of the ERG current (I(K(ERG))), a potassium conductance expressed by developing, GABA-immunoreactive spinal neurons. In organotypic cultures, only ventral interneurons with fast adaptation and GABA immunoreactivity, and only after 1 week in culture, were transformed into high-frequency bursters by E4031, a selective inhibitor of I(K(ERG)) that also prolonged and made more regular spontaneous bursts. In the isolated spinal cord in which GABA immunoreactivity and m-erg mRNA were colocalized in interneurons, ventral root rhythms evoked by NMDA plus 5-hydroxytryptamine were stabilized and synchronized by E4031. All of these effects were lost after 2 weeks in culture or before birth in coincidence with decreased m-erg expression. These data suggest that, during an early stage of spinal cord development, the excitability of GABAergic ventral interneurons important for circuit maturation depended, at least in part, on the function of I(K(ERG)).
Collapse
Affiliation(s)
- Francesco Furlan
- Physiology and Pathology Department, Center for Neuroscience B.R.A.I.N., University of Trieste, 34127 Trieste, Italy
| | - Giuliano Taccola
- Neurobiology Sector, International School for Advanced Studies, 34014 Trieste, Italy, and SPINAL Project, Udine
| | - Micaela Grandolfo
- Neurobiology Sector, International School for Advanced Studies, 34014 Trieste, Italy, and SPINAL Project, Udine
| | - Leonardo Guasti
- Department of Experimental Pathology and Oncology, University of Firenze, 50134 Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental Pathology and Oncology, University of Firenze, 50134 Firenze, Italy
| | - Andrea Nistri
- Neurobiology Sector, International School for Advanced Studies, 34014 Trieste, Italy, and SPINAL Project, Udine
| | - Laura Ballerini
- Physiology and Pathology Department, Center for Neuroscience B.R.A.I.N., University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
31
|
Wallén-Mackenzie Å, Gezelius H, Thoby-Brisson M, Nygård A, Enjin A, Fujiyama F, Fortin G, Kullander K. Vesicular glutamate transporter 2 is required for central respiratory rhythm generation but not for locomotor central pattern generation. J Neurosci 2006; 26:12294-307. [PMID: 17122055 PMCID: PMC6675433 DOI: 10.1523/jneurosci.3855-06.2006] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamatergic excitatory neurotransmission is dependent on glutamate release from presynaptic vesicles loaded by three members of the solute carrier family, Slc17a6-8, which function as vesicular glutamate transporters (VGLUTs). Here, we show that VGLUT2 (Slc17a6) is required for life ex utero. Vglut2 null mutant mice die immediately after birth because of the absence of respiratory behavior. Investigations at embryonic stages revealed that neural circuits in the location of the pre-Bötzinger (PBC) inspiratory rhythm generator failed to become active. However, neurons with bursting pacemaker properties and anatomical integrity of the PBC area were preserved. Vesicles at asymmetric synapses were fewer and malformed in the Vglut2 null mutant hindbrain, probably causing the complete disruption of AMPA/kainate receptor-mediated synaptic activity in mutant PBC cells. The functional deficit results from an inability of PBC neurons to achieve synchronous activation. In contrast to respiratory rhythm generation, the locomotor central pattern generator of Vglut2 null mutant mice displayed normal rhythmic and coordinated activity, suggesting differences in their operating principles. Hence, the present study identifies VGLUT2-mediated signaling as an obligatory component of the developing respiratory rhythm generator.
Collapse
Affiliation(s)
- Åsa Wallén-Mackenzie
- Department of Neuroscience, Unit of Developmental Genetics, Uppsala University, 751 23 Uppsala, Sweden
| | - Henrik Gezelius
- Department of Neuroscience, Unit of Developmental Genetics, Uppsala University, 751 23 Uppsala, Sweden
| | - Muriel Thoby-Brisson
- Laboratoire de Neurobiologie Génétique et Intégrative, Institut Alfred Fessard, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France, and
| | - Anna Nygård
- Department of Neuroscience, Unit of Developmental Genetics, Uppsala University, 751 23 Uppsala, Sweden
| | - Anders Enjin
- Department of Neuroscience, Unit of Developmental Genetics, Uppsala University, 751 23 Uppsala, Sweden
| | - Fumino Fujiyama
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Gilles Fortin
- Laboratoire de Neurobiologie Génétique et Intégrative, Institut Alfred Fessard, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France, and
| | - Klas Kullander
- Department of Neuroscience, Unit of Developmental Genetics, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
32
|
Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol 2006; 577:617-39. [PMID: 17008376 PMCID: PMC1890439 DOI: 10.1113/jphysiol.2006.118703] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammalian spinal cord contains a locomotor central pattern generator (CPG) that can produce alternating rhythmic activity of flexor and extensor motoneurones in the absence of rhythmic input and proprioceptive feedback. During such fictive locomotor activity in decerebrate cats, spontaneous omissions of activity occur simultaneously in multiple agonist motoneurone pools for a number of cycles. During these 'deletions', antagonist motoneurone pools usually become tonically active but may also continue to be rhythmic. The rhythmic activity that re-emerges following a deletion is often not phase shifted. This suggests that some neuronal mechanism can maintain the locomotor period when motoneurone activity fails. To account for these observations, a simplified computational model of the spinal circuitry has been developed in which the locomotor CPG consists of two levels: a half-centre rhythm generator (RG) and a pattern formation (PF) network, with reciprocal inhibitory interactions between antagonist neural populations at each level. The model represents a network of interacting neural populations with single interneurones and motoneurones described in the Hodgkin-Huxley style. The model reproduces the range of locomotor periods and phase durations observed during real locomotion in adult cats and permits independent control of the level of motoneurone activity and of step cycle timing. By altering the excitability of neural populations within the PF network, the model can reproduce deletions in which motoneurone activity fails but the phase of locomotor oscillations is maintained. The model also suggests criteria for the functional identification of spinal interneurones involved in the mammalian locomotor pattern generation.
Collapse
Affiliation(s)
- Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
33
|
Fabbro A, Pastore B, Nistri A, Ballerini L. Activity-independent intracellular Ca2+ oscillations are spontaneously generated by ventral spinal neurons during development in vitro. Cell Calcium 2006; 41:317-29. [PMID: 16950510 DOI: 10.1016/j.ceca.2006.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 05/17/2006] [Accepted: 07/05/2006] [Indexed: 11/27/2022]
Abstract
Within the CNS, distinct neurons may rely on different processes to modulate cytosolic Ca2+ depending on the network developmental phase. In particular, in the immature spinal cord, synchronous electrical discharges are coupled with biochemical signals triggered by intracellular Ca2+ waves. Nevertheless, the presence of neuronal-specific Ca2+ elevations independent from synaptic activity within mammalian spinal networks has not yet been described. The present report is the first description of repetitive calcium events generated by discrete ventral spinal neurons maintained in organotypic culture during in vitro maturation stages crucial for network evolution. Ventral interneurons in one-third of slices displayed spontaneous intracellular calcium transients suppressed by calcium-free extracellular solution or by application of cobalt, and resistant to blockers of network activity like TTX, CNQX, APV, strychnine or bicuculline. Our data suggest a primary role for mitochondria in intracellular calcium oscillations, because CCCP, that selectively collapses the mitochondrial electrochemical gradient, eliminated the ability of these neurons to show activity-independent calcium oscillations. Likewise, CGP-37157, a blocker of mitochondrial Na+/Ca2+ exchanger, inhibited oscillations in the majority of neurons. We propose that spontaneous Ca2+ transients, dynamically regulated by mitochondria, occurred in a discrete cluster of interneurons possibly to guide the development of synaptic connections.
Collapse
Affiliation(s)
- Alessandra Fabbro
- Neurobiology Sector and CNR-INFM Democritos National Simulation Center, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | | | | | | |
Collapse
|
34
|
Pagani F, Lauro C, Fucile S, Catalano M, Limatola C, Eusebi F, Grassi F. Functional properties of neurons derived from fetal mouse neurospheres are compatible with those of neuronal precursors in vivo. J Neurosci Res 2006; 83:1494-501. [PMID: 16547970 DOI: 10.1002/jnr.20835] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neural stem cells can be propagated in culture as neurospheres, yielding neurons and glial cells upon differentiation. Although the neurosphere model is widely used, the functional properties of the neurosphere-derived neurons have been only partially characterized, and it is unclear whether repeated passaging alters their functional properties. In this study, we analyzed voltage- and transmitter-gated responses in neuron-like cells obtained by differentiating fetal mouse neurospheres at increasing passages in culture. We report that neurons fire overshooting action potentials in response to depolarizing currents up to passage 10 but loose this capability at later passages, as the density of voltage-gated Na(+) and K(+) currents decreases. In contrast, the immunoreactivity for the neuronal marker beta-tubulin remains unaltered up to passage 21, indicating that this marker is not representative of cell function. In almost all neurons, gamma-aminobutyric acid (GABA) evoked bicuculline-sensitive whole-cell currents, resulting from the activation of GABA(A) receptors, which appeared to be excitatory, insofar as the reversal potential of GABA-gated current was about -50 mV. Much smaller currents were elicited by the glutamatergic agonist AMPA, and only occasional responses to glycine were detected. In these functional aspects, neurosphere-derived neurons are similar to immature neurons differentiating in vivo. Therefore, at least for a limited number of passages in vitro, neurospheres provide an adequate model of in vivo neurogenesis.
Collapse
Affiliation(s)
- Francesca Pagani
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Fisiologia Umana e Farmacologia and Centro di Eccellenza BEMM, Universitá di Roma La Sapienza, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Akay T, Acharya HJ, Fouad K, Pearson KG. Behavioral and electromyographic characterization of mice lacking EphA4 receptors. J Neurophysiol 2006; 96:642-51. [PMID: 16641385 DOI: 10.1152/jn.00174.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
EphA4 receptors play an important role in axon guidance during development. Disrupting the expression of these receptors in mice has been shown to modify neuronal connections in the spinal cord and results in the production of a characteristic hopping gait. The EphA4-null mouse has been used in numerous investigations aimed at establishing mechanisms responsible for patterning motor activity during walking. However, there have been no detailed behavioral or electrophysiological studies on adult EphA4-null mice. We used high-speed video recordings to determine the coordination of leg movements during locomotion in adult EphA4-null mice. Our data show that the hopping movements of the hind legs are not always associated with synchronous movements of forelegs. The coupling between the forelegs is weak, resulting in changes in their phase relationship from step to step. The synchronous coordination of the hind legs can switch to an alternating pattern for a short period of time during recovery from isoflurane anesthesia. Comparison of the kinematics of hind leg movements in EphA4-null mice and wild-type animals shows that besides the synchronous coordination in EphA4-null mice, the swing durations and the swing amplitude are shorter. Electromyographic recordings from a knee extensor muscle show double bursting in the EphA4-null animals but single bursts in wild types. This double burst changes to single-burst activity during swimming and when hind legs are stepping in alternation. These observations suggest an influence of sensory feedback in shaping the pattern of muscle activity during locomotion in the mutant animals. Our data give the first detailed description of the locomotor behavior of an adult mouse with genetically manipulated spinal networks.
Collapse
Affiliation(s)
- Turgay Akay
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
36
|
Sieber-Blum M, Schnell L, Grim M, Hu YF, Schneider R, Schwab ME. Characterization of epidermal neural crest stem cell (EPI-NCSC) grafts in the lesioned spinal cord. Mol Cell Neurosci 2006; 32:67-81. [PMID: 16626970 DOI: 10.1016/j.mcn.2006.02.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 02/14/2006] [Accepted: 02/21/2006] [Indexed: 02/07/2023] Open
Abstract
We have characterized in the contusion-lesioned murine spinal cord the behavior of acutely implanted epidermal neural crest stem cells (EPI-NCSC, formerly eNCSC). EPI-NCSC, a novel type of multipotent adult stem cell, are remnants of the embryonic neural crest. They reside in the bulge of hair follicles and have the ability to differentiate into all major neural crest derivatives (Sieber-Blum, M., Grim, M., Hu, Y.F., Szeder, V., 2004. Pluripotent neural crest stem cells in the adult hair follicle. Dev. Dyn. 231, 258-269). Grafted EPI-NCSC survived, integrated, and intermingled with host neurites in the lesioned spinal cord. EPI-NCSC were non-migratory. They did not proliferate and did not form tumors. Significant subsets expressed neuron-specific beta-III tubulin, the GABAergic marker glutamate decarboxylase 67 (GAD67), the oligodendrocyte marker, RIP, or myelin basic protein (MBP). Close physical association of non-neuronal EPI-NCSC with host neurites was observed. Glial fibrillary acidic protein (GFAP) immunofluorescence was not detected. Collectively, our data indicate that intraspinal EPI-NCSC demonstrate several desirable characteristics that may include local neural replacement and re-myelination.
Collapse
Affiliation(s)
- Maya Sieber-Blum
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Nistri A, Ostroumov K, Sharifullina E, Taccola G. Tuning and playing a motor rhythm: how metabotropic glutamate receptors orchestrate generation of motor patterns in the mammalian central nervous system. J Physiol 2006; 572:323-34. [PMID: 16469790 PMCID: PMC1779665 DOI: 10.1113/jphysiol.2005.100610] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Repeated motor activities like locomotion, mastication and respiration need rhythmic discharges of functionally connected neurons termed central pattern generators (CPGs) that cyclically activate motoneurons even in the absence of descending commands from higher centres. For motor pattern generation, CPGs require integration of multiple processes including activation of ion channels and transmitter receptors at strategic locations within motor networks. One emerging mechanism is activation of glutamate metabotropic receptors (mGluRs) belonging to group I, while group II and III mGluRs appear to play an inhibitory function on sensory inputs. Group I mGluRs generate neuronal membrane depolarization with input resistance increase and rapid fluctuations in intracellular Ca(2+), leading to enhanced excitability and rhythmicity. While synchronicity is probably due to modulation of inhibitory synaptic transmission, these oscillations occurring in coincidence with strong afferent stimuli or application of excitatory agents can trigger locomotor-like patterns. Hence, mGluR-sensitive spinal oscillators play a role in accessory networks for locomotor CPG activation. In brainstem networks supplying tongue muscle motoneurons, group I receptors facilitate excitatory synaptic inputs and evoke synchronous oscillations which stabilize motoneuron firing at regular, low frequency necessary for rhythmic tongue contractions. In this case, synchronicity depends on the strong electrical coupling amongst motoneurons rather than inhibitory transmission, while cyclic activation of K(ATP) conductances sets its periodicity. Activation of mGluRs is therefore a powerful strategy to trigger and recruit patterned discharges of motoneurons.
Collapse
Affiliation(s)
- Andrea Nistri
- Neurobiology Sector, CNR-INFM DEMOCRITOS National Simulation Center, International School for Advanced Studies (SISSA), Trieste, Italy.
| | | | | | | |
Collapse
|
38
|
Perreault MC, Pastor-Bernier A, Renaud JS, Roux S, Glover JC. C fragment of tetanus toxin hybrid proteins evaluated for muscle-specific transsynaptic mapping of spinal motor circuitry in the newborn mouse. Neuroscience 2006; 141:803-816. [PMID: 16713105 DOI: 10.1016/j.neuroscience.2006.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/08/2006] [Accepted: 04/02/2006] [Indexed: 11/17/2022]
Abstract
We investigated whether the non-toxic C fragment of tetanus toxin (TTC) fused to either beta-galactosidase or green fluorescent protein could be utilized to transsynaptically trace muscle-specific spinal circuitry in the neonatal mouse after i.m. injection into a single hindlimb muscle. We found that even with careful low volume injection (0.2-1.0 microl) into a single muscle (medial gastrocnemius), the TTC hybrid proteins spread rapidly to many other hindlimb muscles and to trunk musculature such that retrograde labeling of motoneurons could not be constrained to a single motoneuron pool. Retrogradely labeled motoneurons in the lower lumbar segments harboring the medial gastrocnemius motoneuron pool were first observed two hours after the medial gastrocnemius injection. Within the next 10 h, additional lumbar and lower thoracic motoneurons became labeled, and punctate labeling in the neuropil surrounding the motoneurons appeared. Many of the TTC hybrid protein-labeled puncta in the neuropil co-localized synaptotagmin, indicating that they represent presynaptic axon terminals onto motoneurons. Although this is consistent with retrograde transsynaptic passage, we found no evidence that the TTC hybrid proteins were transported further along premotor axons to label interneuron somata. The i.m. TTC injection procedure described here therefore provides an important tool for the study of presynaptic terminals onto motoneurons. However, additional technical modifications will be required to utilize TTC tracers for transsynaptic mapping of muscle-specific spinal motor circuitry in the neonatal mouse. We provide here a set of criteria for assessing the i.m. delivery of TTC tracers as a basis for future improvements in this technique.
Collapse
Affiliation(s)
- M-C Perreault
- Department of Physiology, University of Oslo, Domus Medica, Sognsvannsveien 9, POB 1103 Blindern, N-0317 Oslo, Norway.
| | - A Pastor-Bernier
- Department of Physiology, University of Oslo, Domus Medica, Sognsvannsveien 9, POB 1103 Blindern, N-0317 Oslo, Norway
| | - J-S Renaud
- Department of Physiology, University of Oslo, Domus Medica, Sognsvannsveien 9, POB 1103 Blindern, N-0317 Oslo, Norway
| | - S Roux
- Unité d'Embryologie Moléculaire, Institut Pasteur, Unités de Recherche Associées 2578, Centre National de la Recherche Scientifique, 25 rue du Dr roux, 75724 Paris, France
| | - J C Glover
- Department of Physiology, University of Oslo, Domus Medica, Sognsvannsveien 9, POB 1103 Blindern, N-0317 Oslo, Norway
| |
Collapse
|
39
|
Abstract
Neuronal activity has been shown to modulate the pH of the extracellular environment. Since neuronal circuits in the ventral horn of the spinal cord are highly active during patterned movements, and voltage-gated calcium channels play an important role in the production of spinal motoneuron output, the effects of changes in extracellular pH (pH(e)) on calcium currents in ventral horn neurons of the mouse spinal cord were examined. It is demonstrated that these channels are sensitive to modulation by pH(e). The amplitude of the current mediated by these channels increased as the pH(e) was elevated. The elevated pH(e) also led to a hyperpolarizing shift in the voltage dependence of both activation and inactivation. The opposite effects were seen for a decrease in pH(e). It was also noted that a decrease in pH(e) was associated with a faster inactivation of the current. It is concluded that voltage-gated calcium currents in ventral horn neurons are modulated by changes in pH(e), and that this modulation may play a physiologically important role in determining motoneuronal excitability during behaviors such as locomotion.
Collapse
Affiliation(s)
- Kevin P Carlin
- Spinal Cord Research Centre, Department of Physiology, The University of Manitoba, 730 William Avenue, BMSB 425, Winnipeg, Manitoba R3E 3J7, Canada.
| |
Collapse
|
40
|
McDearmid JR, Drapeau P. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva. J Neurophysiol 2005; 95:401-17. [PMID: 16207779 DOI: 10.1152/jn.00844.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have examined the localization and activity of the neural circuitry that generates swimming behavior in developing zebrafish that were spinalized to isolate the spinal cord from descending brain inputs. We found that addition of the excitatory amino acid agonist N-methyl-d-aspartate (NMDA) to spinalized zebrafish at 3 days in development induced repeating episodes of rhythmic tail beating activity reminiscent of slow swimming behavior. The neural correlate of this activity, monitored by extracellular recording comprised repeating episodes of rhythmic, rostrocaudally progressing peripheral nerve discharges that alternated between the two sides of the body. Motoneuron recordings revealed an activity pattern comprising a slow oscillatory and a fast synaptic component that was consistent with fictive swimming behavior. Pharmacological and voltage-clamp analysis implicated glycine and glutamate in generation of motoneuron activity. Contralateral alternation of motor activity was disrupted with strychnine, indicating a role for glycine in coordinating left-right alternation during NMDA-induced locomotion. At embryonic stages, while rhythmic synaptic activity patterns could still be evoked in motoneurons, they were typically lower in frequency. Kinematic recordings revealed that prior to 3 days in development, NMDA was unable to reliably generate rhythmic tail beating behavior. We conclude that NMDA induces episodes of rhythmic motor activity in spinalized developing zebrafish that can be monitored physiologically in paralyzed preparations. Therefore as for other vertebrates, the zebrafish central pattern generator is intrinsic to the spinal cord and can operate in isolation provided a tonic source of excitation is given.
Collapse
Affiliation(s)
- Jonathan R McDearmid
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, MGH Neurology L7-132, 1650 Cedar Ave., Montreal, Qc, Canada H3G 1A4
| | | |
Collapse
|
41
|
Furlan F, Guasti L, Avossa D, Becchetti A, Cilia E, Ballerini L, Arcangeli A. Interneurons transiently express the ERG K+ channels during development of mouse spinal networks in vitro. Neuroscience 2005; 135:1179-92. [PMID: 16165280 DOI: 10.1016/j.neuroscience.2005.06.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 06/06/2005] [Accepted: 06/16/2005] [Indexed: 11/15/2022]
Abstract
During spinal cord maturation neuronal excitability gradually differentiates to meet different functional demands. Spontaneous activity, appearing early during spinal development, is regulated by the expression pattern of ion channels in individual neurons. While emerging excitability of embryonic motoneurons has been widely investigated, little is known about that of spinal interneurons. Voltage-dependent K+ channels are a heterogeneous class of ion channels that accomplish several functions. Recently voltage-dependent K+ channels encoded by erg subfamily genes (ERG channels) were shown to modulate excitability in immature neurons of mouse and quail. We investigated the expression of ERG channels in immature spinal interneurons, using organotypic embryonic cultures of mouse spinal cord after 1 and 2 weeks of development in vitro. We report here that all the genes of the erg family known so far (erg1a, erg1b, erg2, erg3) are expressed in embryonic spinal cultures. We demonstrate for the first time that three ERG proteins (ERG1A, ERG2 and ERG3) are co-expressed in the same neuronal population, and display a spatio-temporal distribution in the spinal slices. ERG immuno-positive cells, representing mainly GABAergic interneurons, were present in large numbers at early stages of development, while declining later, with a ventral to dorsal gradient. Patch clamp recordings confirmed these data, showing that ventral interneurons expressed functional ERG currents only transiently. Similar expression of the erg genes was observed at comparable ages in vivo. The role of ERG currents in regulating neuronal excitability during the earliest phases of spinal circuitry development will be examined in future studies.
Collapse
Affiliation(s)
- F Furlan
- Physiology and Pathology Department, Center for Neuroscience B.R.A.I.N., Psychology Faculty, University of Trieste, via Sant'Anastasio 12, 34134, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Momose-Sato Y, Honda Y, Sasaki H, Sato K. Optical Imaging of Large-Scale Correlated Wave Activity in the Developing Rat CNS. J Neurophysiol 2005; 94:1606-22. [PMID: 15872071 DOI: 10.1152/jn.00044.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Correlated neuronal activity plays a fundamental role in the development of the nervous system. Using a multiple-site optical recording technique with a fast voltage-sensitive dye, we previously reported a novel form of correlated activity in the chick embryo, which showed wide propagation throughout the CNS. In this study, we report that similar wave activity is generated in the embryonic rat CNS. Electrical stimulation applied to the cervical cord evoked wave activity that traveled over a wide region of the CNS including the medulla, pons, midbrain, diencephalon, and spinal cord. Small signals were also detected from the cerebellum and part of the cerebrum. Stimulation applied to the cranial nerves such as the trigeminal and vagus nerves evoked waves with similar patterns, indicating that the wave is triggered by external sensory inputs. This wave activity was inhibited by glutamate-, acetylcholine-, GABA- and glycine-receptor antagonists in addition to gap junction blockers such as octanol and 18β-glycyrrhetinic acid. In the immunohistochemical study, significant immunoreactivity of connexin26 and connexin32 was also observed. Wave activity detected with a voltage-sensitive dye was accompanied by a Ca2+-wave, indicating that it not only provides electrical synchrony but also biochemical signals associated with [Ca2+]i elevation. These characteristics of the wave activity are similar to those of the depolarization wave reported in the chick embryo, suggesting that the large-scale depolarization wave is globally generated across different species.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Physiology, Tokyo Medical and Dental University, Graduate School and Faculty of Medicine, Tokyo 113-8519, Japan.
| | | | | | | |
Collapse
|
43
|
Moody WJ, Bosma MM. Ion Channel Development, Spontaneous Activity, and Activity-Dependent Development in Nerve and Muscle Cells. Physiol Rev 2005; 85:883-941. [PMID: 15987798 DOI: 10.1152/physrev.00017.2004] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
At specific stages of development, nerve and muscle cells generate spontaneous electrical activity that is required for normal maturation of intrinsic excitability and synaptic connectivity. The patterns of this spontaneous activity are not simply immature versions of the mature activity, but rather are highly specialized to initiate and control many aspects of neuronal development. The configuration of voltage- and ligand-gated ion channels that are expressed early in development regulate the timing and waveform of this activity. They also regulate Ca2+influx during spontaneous activity, which is the first step in triggering activity-dependent developmental programs. For these reasons, the properties of voltage- and ligand-gated ion channels expressed by developing neurons and muscle cells often differ markedly from those of adult cells. When viewed from this perspective, the reasons for complex patterns of ion channel emergence and regression during development become much clearer.
Collapse
Affiliation(s)
- William J Moody
- Department of Biology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
44
|
Xu H, Whelan PJ, Wenner P. Development of an Inhibitory Interneuronal Circuit in the Embryonic Spinal Cord. J Neurophysiol 2005; 93:2922-33. [PMID: 15574794 DOI: 10.1152/jn.01091.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Locally projecting inhibitory interneurons play a crucial role in the patterning and timing of network activity. However, because of their relative inaccessibility, little is known about their development or incorporation into circuits. In this study, we characterized the functional onset, neurotransmitters, rostrocaudal spread, and funicular distribution of one such spinal interneuronal circuit during development. The R-interneuron is the avian homologue of the mammalian Renshaw cell. Both cell types receive input from motoneuron recurrent collaterals and make direct connections back onto motoneurons. By stimulating motoneurons projecting in a given ventral root and recording the response in adjacent ventral roots, we demonstrate that the R-interneuron circuit becomes functional between embryonic day 6 (E6) and E7. This ventral root response is observed at E11 and at E14 until it can no longer be detected at E16. Using bath-applied neurotransmitter receptor antagonists, we were able to demonstrate that the circuit is predominately nicotinic and GABAergic from E7.5 to E15. We also found a glutamatergic component to the pathway throughout this developmental period. The R-interneuron projects three or more segments both rostrally and caudally through the ventrolateral funiculus. The distribution of this circuit may become more locally focused between E7.5 and E15.
Collapse
Affiliation(s)
- Huaying Xu
- Department of Physiology, Emory University, School of Medicine, Atlanta, GA 30340, USA
| | | | | |
Collapse
|
45
|
Christie KJ, Whelan PJ. Monoaminergic establishment of rostrocaudal gradients of rhythmicity in the neonatal mouse spinal cord. J Neurophysiol 2005; 94:1554-64. [PMID: 15829596 DOI: 10.1152/jn.00299.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bath application of monoamines is a potent method for evoking locomotor activity in neonatal rats and mice. Monoamines also promote functional recovery in adult animals with spinal cord injuries by activating spinal cord networks. However, the mechanisms of their actions on spinal networks are largely unknown. In this study, we tested the hypothesis that monoamines establish rostrocaudal gradients of rhythmicity in the thoracolumbar spinal cord. Isolated neonatal mouse spinal cord preparations (P0-P2) were used. To assay excitability of networks by monoamines, we evoked a disinhibited rhythm by bath application of picrotoxin and strychnine and recorded neurograms from several thoracolumbar ventral roots. We first established that rostral and caudal segments of the thoracolumbar spinal cord had equal excitability by completely transecting preparations at the L3 segmental level and recording the frequency of the disinhibited rhythm from both segments. Next we established that a majority of ventral interneurons retrogradely labeled by calcium green dextran were active during network activity. We then bath applied combinations of monoaminergic agonists [5-HT and dopamine (DA)] known to elicit locomotor activity. Our results show that monoamines establish rostrocaudal gradients of rhythmicity in the thoracolumbar spinal cord. This may be one mechanism by which combinations of monoaminergic compounds normally stably activate locomotor networks.
Collapse
|
46
|
Myers CP, Lewcock JW, Hanson MG, Gosgnach S, Aimone JB, Gage FH, Lee KF, Landmesser LT, Pfaff SL. Cholinergic Input Is Required during Embryonic Development to Mediate Proper Assembly of Spinal Locomotor Circuits. Neuron 2005; 46:37-49. [PMID: 15820692 DOI: 10.1016/j.neuron.2005.02.022] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 01/10/2005] [Accepted: 02/18/2005] [Indexed: 11/28/2022]
Abstract
Rhythmic limb movements are controlled by pattern-generating neurons within the ventral spinal cord, but little is known about how these locomotor circuits are assembled during development. At early stages of embryogenesis, motor neurons are spontaneously active, releasing acetylcholine that triggers the depolarization of adjacent cells in the spinal cord. To investigate whether acetylcholine-driven activity is required for assembly of the central pattern-generating (CPG) circuit, we studied mice lacking the choline acetyltransferase (ChAT) enzyme. Our studies show that a rhythmically active spinal circuit forms in ChAT mutants, but the duration of each cycle period is elongated, and right-left and flexor-extensor coordination are abnormal. In contrast, blocking acetylcholine receptors after the locomotor network is wired does not affect right-left or flexor-extensor coordination. These findings suggest that the cholinergic neurotransmitter pathway is involved in configuring the CPG during a transient period of development.
Collapse
Affiliation(s)
- Christopher P Myers
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rosato-Siri MD, Zoccolan D, Furlan F, Ballerini L. Interneurone bursts are spontaneously associated with muscle contractions only during early phases of mouse spinal network development: a study in organotypic cultures. Eur J Neurosci 2004; 20:2697-710. [PMID: 15548213 DOI: 10.1111/j.1460-9568.2004.03740.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For a short time during development immature circuits in the spinal cord and other parts of the central nervous system spontaneously generate synchronous patterns of rhythmic activity. In the case of the spinal cord, it is still unclear how strongly synchronized bursts generated by interneurones are associated with motoneurone firing and whether the progressive decline in spontaneous bursting during circuit maturation proceeds in parallel for motoneurone and interneurone networks. We used organotypic cocultures of spinal cord and skeletal muscle in order to investigate the ontogenic evolution of endogenous spinal network activity associated with the generation of coordinate muscle fibre contractions. A combination of multiunit electrophysiological recordings, videomicroscopy and optical flow computation allowed us to measure the correlation between interneurone firing and motoneurone outputs after 1, 2 and 3 weeks of in vitro development. We found that, in spinal organotypic slices, there is a developmental switch of spontaneous activity from stable bursting to random patterns after the first week in culture. Conversely, bursting recorded in the presence of strychnine and bicuculline became increasingly regular with time in vitro. The time course of spontaneous activity maturation in organotypic slices is similar to that previously reported for the spinal cord developing in utero. We also demonstrated that spontaneous bursts of interneurone action potentials strongly correlate with muscular contractions only during the first week in vitro and that this is due to the activation of motoneurones via AMPA-type glutamate receptors. These results indicate the occurrence in vitro of motor network development regulating bursting inputs from interneurones to motoneurones.
Collapse
Affiliation(s)
- Marcelo D Rosato-Siri
- Neurobiology Sector and Istituto Nazionale di Fisica della Materia Unit, International School for Advanced Studies (SISSA), via Beirut 2-4, 34014 Trieste, Italy.
| | | | | | | |
Collapse
|