1
|
Biringer RG. Migraine signaling pathways: amino acid metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2022; 477:2269-2296. [PMID: 35482233 DOI: 10.1007/s11010-022-04438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Migraine is a common, debilitating disorder for which attacks typically result in a throbbing, pulsating headache. Although much is known about migraine, its complexity renders understanding the complete etiology currently out of reach. However, two important facts are clear, the brain and the metabolism of the migraineur differ from that of the non-migraineur. This review centers on the altered amino acid metabolism in migraineurs and how it helps define the pathology of migraine.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
2
|
Hyperthermia and Serotonin: The Quest for a “Better Cyproheptadine”. Int J Mol Sci 2022; 23:ijms23063365. [PMID: 35328784 PMCID: PMC8952796 DOI: 10.3390/ijms23063365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Fine temperature control is essential in homeothermic animals. Both hyper- and hypothermia can have deleterious effects. Multiple, efficient and partly redundant mechanisms of adjusting the body temperature to the value set by the internal thermostat exist. The neural circuitry of temperature control and the neurotransmitters involved are reviewed. The GABAergic inhibitory output from the brain thermostat in the preoptic area POA to subaltern neural circuitry of temperature control (Nucleus Raphe Dorsalis and Nucleus Raphe Pallidus) is a function of the balance between the (opposite) effects mediated by the transient receptor potential receptor TRPM2 and EP3 prostaglandin receptors. Activation of TRPM2-expressing neurons in POA favors hypothermia, while inhibition has the opposite effect. Conversely, EP3 receptors induce elevation in body temperature. Activation of EP3-expressing neurons in POA results in hyperthermia, while inhibition has the opposite effect. Agonists at TRPM2 and/or antagonists at EP3 could be beneficial in hyperthermia control. Activity of the neural circuitry of temperature control is modulated by a variety of 5-HT receptors. Based on the theoretical model presented the “ideal” antidote against serotonin syndrome hyperthermia appears to be an antagonist at the 5-HT receptor subtypes 2, 4 and 6 and an agonist at the receptor subtypes 1, 3 and 7. Very broadly speaking, such a profile translates in a sympatholytic effect. While a compound with such an ideal profile is presently not available, better matches than the conventional antidote cyproheptadine (used off-label in severe serotonin syndrome cases) appear to be possible and need to be identified.
Collapse
|
3
|
Voronova IP. 5-HT Receptors and Temperature Homeostasis. Biomolecules 2021; 11:1914. [PMID: 34944557 PMCID: PMC8699715 DOI: 10.3390/biom11121914] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
The present review summarizes the data concerning the influence of serotonin (5-HT) receptors on body temperature in warm-blooded animals and on processes associated with its maintenance. This review includes the most important part of investigations from the first studies to the latest ones. The established results on the pharmacological activation of 5-HT1A, 5-HT3, 5-HT7 and 5-HT2 receptor types are discussed. Such activation of the first 3 type of receptors causes a decrease in body temperature, whereas the 5-HT2 activation causes its increase. Physiological mechanisms leading to changes in body temperature as a result of 5-HT receptors' activation are discussed. In case of 5-HT1A receptor, they include an inhibition of shivering and non-shivering thermogenesis, as well simultaneous increase of peripheral blood flow, i.e., the processes of heat production and heat loss. The physiological processes mediated by 5-HT2 receptor are opposite to those of the 5-HT1A receptor. Mechanisms of 5-HT3 and 5-HT7 receptor participation in these processes are yet to be studied in more detail. Some facts indicating that in natural conditions, without pharmacological impact, these 5-HT receptors are important links in the system of temperature homeostasis, are also discussed.
Collapse
Affiliation(s)
- Irina P. Voronova
- Department of Thermophysiology, Scientific Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| |
Collapse
|
4
|
Ivanova N, Nenchovska Z, Atanasova M, Laudon M, Mitreva R, Tchekalarova J. Chronic Piromelatine Treatment Alleviates Anxiety, Depressive Responses and Abnormal Hypothalamic-Pituitary-Adrenal Axis Activity in Prenatally Stressed Male and Female Rats. Cell Mol Neurobiol 2021; 42:2257-2272. [PMID: 34003403 DOI: 10.1007/s10571-021-01100-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
The prenatal stress (PNS) model in rodents can induce different abnormal responses that replicate the pathophysiology of depression. We applied this model to evaluate the efficacy of piromelatine (Pir), a novel melatonin analog developed for the treatment of insomnia, in male and female offspring. Adult PNS rats from both sexes showed comparable disturbance associated with high levels of anxiety and depressive responses. Both males and females with PNS demonstrated impaired feedback inhibition of the hypothalamic-pituitary-adrenal (HPA) axis compared to the intact offspring and increased glucocorticoid receptors in the hippocampus. However, opposite to female offspring, the male PNS rats showed an increased expression of mineralocorticoid receptors in the hippocampus. Piromelatine (20 mg/kg, i.p., for 21 days injected from postnatal day 60) attenuated the high anxiety level tested in the open field, elevated plus-maze and light-dark test, and depressive-like behavior in the sucrose preference and the forced swimming tests in a sex-specific manner. The drug reversed to control level stress-induced increase of plasma corticosterone 120 min later in both sexes. Piromelatine also corrected to control level the PNS-induced alterations of corticosteroid receptors only in male offspring. Our findings suggest that the piromelatine treatment exerts beneficial effects on impaired behavioral responses and dysregulated HPA axis in both sexes, while it corrects the PNS-induced changes in the hippocampal corticosteroid receptors only in male offspring.
Collapse
Affiliation(s)
- Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria.
| | - Zlatina Nenchovska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, 5800, Pleven, Bulgaria
| | - Moshe Laudon
- Drug Discovery, Neurim Pharmaceuticals Ltd., Tel-Aviv, Israel
| | - Rumyana Mitreva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria.
| |
Collapse
|
5
|
Mota CMD, Branco LGS, Morrison SF, Madden CJ. Systemic serotonin inhibits brown adipose tissue sympathetic nerve activity via a GABA input to the dorsomedial hypothalamus, not via 5HT 1A receptor activation in raphe pallidus. Acta Physiol (Oxf) 2020; 228:e13401. [PMID: 31599481 DOI: 10.1111/apha.13401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/18/2022]
Abstract
AIM Serotonin (5-hydroxytryptamine, 5-HT), an important neurotransmitter and hormone, modulates many physiological functions including body temperature. We investigated neural mechanisms involved in the inhibition of brown adipose tissue (BAT) sympathetic nerve activity (SNA) and BAT thermogenesis evoked by 5-HT. METHODS Electrophysiological recordings, intravenous (iv) injections and nanoinjections in the brains of anaesthetized rats. RESULTS Cooling-evoked increases in BAT SNA were inhibited by the intra-rostral raphé pallidus (rRPa) and the iv administration of the 5-HT1A receptor agonist, 8-OH-DPAT or 5-HT. The intra-rRPa 5-HT, the intra-rRPa and the iv 8-OH-DPAT, but not the iv 5-HT-induced inhibition of BAT SNA were prevented by nanoinjection of a 5-HT1A receptor antagonist in the rRPa. The increase in BAT SNA evoked by nanoinjection of NMDA in the rRPa was not inhibited by iv 5-HT, indicating that iv 5-HT does not inhibit BAT SNA by acting in the rRPa or in the sympathetic pathway distal to the rRPa. In contrast, under a warm condition, blockade of 5HT1A receptors in the rRPa increased BAT SNA and BAT thermogenesis, suggesting that endogenous 5-HT in the rRPa contributes to the suppression of BAT SNA and BAT thermogenesis. The increases in BAT SNA and BAT thermogenesis evoked by nanoinjection of NMDA in the dorsomedial hypothalamus (DMH) were inhibited by iv 5-HT, but those following bicuculline nanoinjection in the DMH were not inhibited. CONCLUSIONS The systemic 5-HT-induced inhibition of BAT SNA requires a GABAergic inhibition of BAT sympathoexcitatory neurones in the DMH. In addition, during warming, 5-HT released endogenously in rRPa inhibits BAT SNA.
Collapse
Affiliation(s)
- Clarissa M. D. Mota
- Department of Neurological Surgery Oregon Health and Science University Portland OR USA
- Department of Physiology School of Medicine of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Luiz G. S. Branco
- Department of Physiology School of Medicine of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
- Department of Morphology, Physiology, and Basic Pathology School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Shaun F. Morrison
- Department of Neurological Surgery Oregon Health and Science University Portland OR USA
| | - Christopher J. Madden
- Department of Neurological Surgery Oregon Health and Science University Portland OR USA
| |
Collapse
|
6
|
Blessing W, McAllen R, McKinley M. Control of the Cutaneous Circulation by the Central Nervous System. Compr Physiol 2016; 6:1161-97. [PMID: 27347889 DOI: 10.1002/cphy.c150034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The central nervous system (CNS), via its control of sympathetic outflow, regulates blood flow to the acral cutaneous beds (containing arteriovenous anastomoses) as part of the homeostatic thermoregulatory process, as part of the febrile response, and as part of cognitive-emotional processes associated with purposeful interactions with the external environment, including those initiated by salient or threatening events (we go pale with fright). Inputs to the CNS for the thermoregulatory process include cutaneous sensory neurons, and neurons in the preoptic area sensitive to the temperature of the blood in the internal carotid artery. Inputs for cognitive-emotional control from the exteroceptive sense organs (touch, vision, sound, smell, etc.) are integrated in forebrain centers including the amygdala. Psychoactive drugs have major effects on the acral cutaneous circulation. Interoceptors, chemoreceptors more than baroreceptors, also influence cutaneous sympathetic outflow. A major advance has been the discovery of a lower brainstem control center in the rostral medullary raphé, regulating outflow to both brown adipose tissue (BAT) and to the acral cutaneous beds. Neurons in the medullary raphé, via their descending axonal projections, increase the discharge of spinal sympathetic preganglionic neurons controlling the cutaneous vasculature, utilizing glutamate, and serotonin as neurotransmitters. Present evidence suggests that both thermoregulatory and cognitive-emotional control of the cutaneous beds from preoptic, hypothalamic, and forebrain centers is channeled via the medullary raphé. Future studies will no doubt further unravel the details of neurotransmitter pathways connecting these rostral control centers with the medullary raphé, and those operative within the raphé itself. © 2016 American Physiological Society. Compr Physiol 6:1161-1197, 2016.
Collapse
Affiliation(s)
- William Blessing
- Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, S.A., Australia
| | - Robin McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| | - Michael McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| |
Collapse
|
7
|
Ootsuka Y, Tanaka M. Control of cutaneous blood flow by central nervous system. Temperature (Austin) 2015; 2:392-405. [PMID: 27227053 PMCID: PMC4843916 DOI: 10.1080/23328940.2015.1069437] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023] Open
Abstract
Hairless skin acts as a heat exchanger between body and environment, and thus greatly contributes to body temperature regulation by changing blood flow to the skin (cutaneous) vascular bed during physiological responses such as cold- or warm-defense and fever. Cutaneous blood flow is also affected by alerting state; we 'go pale with fright'. The rabbit ear pinna and the rat tail have hairless skin, and thus provide animal models for investigating central pathway regulating blood flow to cutaneous vascular beds. Cutaneous blood flow is controlled by the centrally regulated sympathetic nervous system. Sympathetic premotor neurons in the medullary raphé in the lower brain stem are labeled at early stage after injection of trans-synaptic viral tracer into skin wall of the rat tail. Inactivation of these neurons abolishes cutaneous vasomotor changes evoked as part of thermoregulatory, febrile or psychological responses, indicating that the medullary raphé is a common final pathway to cutaneous sympathetic outflow, receiving neural inputs from upstream nuclei such as the preoptic area, hypothalamic nuclei and the midbrain. Summarizing evidences from rats and rabbits studies in the last 2 decades, we will review our current understanding of the central pathways mediating cutaneous vasomotor control.
Collapse
Affiliation(s)
- Youichirou Ootsuka
- Centre for Neuroscience; Department of Human Physiology; School of Medicine; Flinders University; Bedford Park; South Australia, Australia
- Department of Physiology; Graduate School of Medical and Dental Sciences; Kagoshima University; Kagoshima, Japan
| | - Mutsumi Tanaka
- Health Effects Research Group; Energy and Environment Research Division; Japan Automobile Research Institute; Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Sassarini J, Krishnadas R, Cavanagh J, Nicol A, Pimlott SL, Ferrell W, Lumsden MA. Venlafaxine alters microvascular perfusion, [123I]-beta-CIT binding and BDI scores in flushing postmenopausal women. Maturitas 2014; 77:267-73. [DOI: 10.1016/j.maturitas.2013.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/06/2013] [Accepted: 12/07/2013] [Indexed: 11/16/2022]
|
9
|
Ishiwata T. Role of serotonergic system in thermoregulation in rats. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Fiorino F, Severino B, Magli E, Ciano A, Caliendo G, Santagada V, Frecentese F, Perissutti E. 5-HT(1A) receptor: an old target as a new attractive tool in drug discovery from central nervous system to cancer. J Med Chem 2013; 57:4407-26. [PMID: 24295064 DOI: 10.1021/jm400533t] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The serotonin receptor subtype 5-HT(1A) was one of the first serotonin receptor subtypes pharmacologically characterized. This receptor subtype has long been object of intense research and is implicated in the pathogenesis and treatment of anxiety and depressive disorders. In recent years, new chemical entities targeting the 5-HT(1A) receptor (alone or in combination with other molecular targets) have been proposed for novel therapeutic uses in neuroprotection, cognitive impairment, Parkinson's disease, pain treatment, malignant carcinoid syndrome, and prostate cancer. This Perspective compares existing data on expression and signaling activity of the 5-HT(1A) receptor to a ligand with an intrinsic agonist or antagonist profile. Our purpose is also to make a complete overview, useful for underlining the features needed to select a specific pharmacological profile rather than another one. This aspect could be really interesting to consider and justify the 5-HT(1A) receptor as a new attractive target for drug discovery.
Collapse
Affiliation(s)
- Ferdinando Fiorino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , Via D. Montesano, 49, 80131, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
The Value of Desmethylclozapine and Serum CRP in Clozapine Toxicity: A Case Report. Case Rep Psychiatry 2012; 2012:592784. [PMID: 22934219 PMCID: PMC3426183 DOI: 10.1155/2012/592784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/03/2012] [Indexed: 11/18/2022] Open
Abstract
Clozapine, an atypical antipsychotic, has proved to be superior to other antipsychotics in treating patients with refractory schizophrenia. An increased plasma clozapine level above the therapeutic window may be associated with serious adverse events including paralytic ileus. Clozapine toxicity may occur in association with infection or after drug overdose. In a medical emergency situation, differentiating between a toxic clozapine ingestion and an infection-induced toxicity might be hindered by associated CNS changes and by the clozapine modulation of the inflammatory process. This may delay prompt initiation of a tailored treatment strategy. Here, we report a case of paralytic ileus developed within the context of clozapine toxicity. Although the underlying cause of toxicity was not clinically obvious, giving antimicrobial therapy resulted in an improvement in the patient's clinical condition. This report indicates the value of serum levels of C-reactive protein and desmethylclozapine, major metabolite of clozapine, in the treatment of aetiologically unclear clozapine toxicity.
Collapse
|
12
|
Facilitation of hypothermia by quinpirole and 8-OH-DPAT in a rat model of cardiac arrest. Resuscitation 2012; 83:232-7. [DOI: 10.1016/j.resuscitation.2011.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 06/20/2011] [Accepted: 07/18/2011] [Indexed: 11/22/2022]
|
13
|
Horiuchi J, Atik A, Iigaya K, McDowall LM, Killinger S, Dampney RAL. Activation of 5-hydroxytryptamine-1A receptors suppresses cardiovascular responses evoked from the paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1088-97. [DOI: 10.1152/ajpregu.00144.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of central 5-hydroxytryptamine-1A (5-HT1A) receptors powerfully inhibits stress-evoked cardiovascular responses mediated by the dorsomedial hypothalamus (DMH), as well as responses evoked by direct activation of neurons within the DMH. The hypothalamic paraventricular nucleus (PVN) also has a crucial role in cardiovascular regulation and is believed to regulate heart rate and renal sympathetic activity via pathways that are independent of the DMH. In this study, we determined whether cardiovascular responses evoked from the PVN are also modulated by activation of central 5-HT1A receptors. In anesthetized rats, the increases in heart rate and renal sympathetic nerve activity evoked by bicuculline injection into the PVN were greatly reduced (by 54% and 61%, respectively) by intravenous administration of (±)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), an agonist of 5-HT1A receptors, but were then completely restored by subsequent administration of WAY-100635, a selective antagonist of 5-HT1A receptors. Microinjection of 8-OH-DPAT directly into the PVN did not significantly affect the responses to bicuculline injection into the PVN, nor did systemic administration of WAY-100635 alone. In control experiments, a large renal sympathoexcitatory response was evoked from both the PVN and DMH but not from the intermediate region in between; thus the evoked responses from the PVN were not due to activation of neurons in the DMH. The results indicate that activation of central 5-HT1A receptors located outside the PVN powerfully inhibits the tachycardia and renal sympathoexcitation evoked by stimulation of neurons in the PVN.
Collapse
Affiliation(s)
- Jouji Horiuchi
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Alp Atik
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Kamon Iigaya
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Lachlan M. McDowall
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Suzanne Killinger
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Roger A. L. Dampney
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Voronova IP, Naumenko VS, Khramova GM, Kozyreva TV, Popova NK. Central 5-HT3 receptor-induced hypothermia is associated with reduced metabolic rate and increased heat loss. Neurosci Lett 2011; 504:209-14. [PMID: 21964386 DOI: 10.1016/j.neulet.2011.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/05/2011] [Accepted: 09/14/2011] [Indexed: 11/29/2022]
Abstract
Activation of central 5-HT(3) receptors by the selective agonist m-CPBG (1-(3-chlorophenyl)biguanide hydrochloride, 40 nM i.c.v.) produced stronger hypothermic effect in mice than activation of 5-HT(1A) receptors by their agonist 8-OH-DPAT (8-hydroxy-2-(di-n-propilamino)tetralin) injected by the same route at an equimolar dose. The hypothermic effect of m-CPBG was realized by influence on both the heat production and the heat loss: oxygen consumption and CO(2) expiration were decreased; heat dissipation determined by the tail skin temperature was increased. The heat loss effect of 5-HT(3) receptors was significantly shorter than the decrease in metabolism indicating the prevalent role of heat production decrease in 5-HT(3) receptor-induced deep and long-lasing hypothermia. In addition, the decrease in the respiratory exchange ratio (RER) was shown suggesting that the activation of the 5-HT(3) receptors switched metabolism to prevalent use of lipids as the main energetic substrate. 5-HT(1A) receptor agonist 8-OH-DPAT (40 nM i.c.v.) produced less depressing effect on general metabolism: a decrease in oxygen consumption and CO(2) excretion began later and was not so deep as after m-CPBG administration. Heat-loss effect of 5-HT(1A) receptors activation was not observed. In contrast to m-CPBG effect, RER after 5-HT(1A) receptors activation raised immediately after injection and then gradually decreased to the values observed in m-CPBG-treated mice. Obtained results show that activation of central 5-HT(3) receptors are more effective in hypothermia induction due to marked decrease in thermogenesis and increase in heat loss.
Collapse
Affiliation(s)
- Irina P Voronova
- Institute of Physiology, Siberian Branch of Russian Academy of Medical Sciences, 4, Timakov Street, 630117 Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
15
|
Blessing E, Kader L, Arpandy R, Ootsuka Y, Blessing WW, Pantelis C. Atypical antipsychotics cause an acute increase in cutaneous hand blood flow in patients with schizophrenia and schizoaffective disorder. Aust N Z J Psychiatry 2011; 45:646-53. [PMID: 21870922 DOI: 10.3109/00048674.2011.587397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Clinical studies suggest resting thermoregulatory cutaneous vasomotor tone could be increased in schizophrenia, resulting in reduced hand blood flow. In animal models, atypical antipsychotics including clozapine potently inhibit sympathetic neural outflow to the thermoregulatory cutaneous vascular beds. We have now determined whether antipsychotic medication administration is associated with an acute increase in hand blood flow in patients with schizophrenia and schizoaffective disorder, and whether this increase correlates with clinical status. METHOD Hand temperature was measured with an infrared camera in 12 patients with chronic schizophrenia or schizoaffective disorder 30 min prior to, then 30 and 60 min following medication. Clinical status was assessed via the Brief Psychiatric Rating Scale (BPRS). Results were compared using regression and repeated measures analysis of variance. RESULTS A robust and significant increase in hand temperature (p < 0.001) was observed following antipsychotic administration. The mean increase after 60 min was 4.1 ± 2.4°C. This increase was significantly associated with colder hand temperature prior to medication (p < 0.05; suggestive of increased resting vasoconstriction) and with more severe psychiatric symptoms (p < 0.05). CONCLUSIONS Atypical antipsychotics were associated with increased hand blood flow, consistent with inhibition of thermoregulatory sympathetic outflow to the cutaneous vascular bed in patients with schizophrenia and schizoaffective disorder. This increase correlated with symptom severity. Hand temperature increase following antipsychotic medication may therefore be a simple and informative physiological marker of disease activity and potential response in patients with schizophreniform disorders. Given that antipsychotics also inhibit sympathetic outflow to brown adipose tissue, which normally converts energy to heat, future studies should examine whether antipsychotic-induced hand temperature increase is associated with antipsychotic-induced weight gain.
Collapse
Affiliation(s)
- Esther Blessing
- Department of Psychiatry, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Evidence for in vivo thermosensitivity of serotonergic neurons in the rat dorsal raphe nucleus and raphe pallidus nucleus implicated in thermoregulatory cooling. Exp Neurol 2011; 227:264-78. [DOI: 10.1016/j.expneurol.2010.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/27/2010] [Accepted: 11/15/2010] [Indexed: 11/17/2022]
|
17
|
Jaehne EJ, Majumder I, Salem A, Irvine RJ. Increased effects of 3,4-methylenedioxymethamphetamine (ecstasy) in a rat model of depression. Addict Biol 2011; 16:7-19. [PMID: 20192951 DOI: 10.1111/j.1369-1600.2009.00196.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is associated with increases in core body temperature (T(C)) and depressive mood states in users. Flinders Sensitive Line (FSL) rats represent a rat model of depression originally bred from Sprague-Dawley (SD) rats. They are more sensitive to both muscarinic and serotonergic agonists and have altered thermoregulatory responses to various drugs. To examine the link between MDMA and depression, eight FSL and eight SD rats were administered saline and 5 and 7.5 mg/kg MDMA. Immediately following administration, rats were confined to an area with an ambient temperature (T(A)) of 30 ± 1°C for 30 minutes before being allowed access to a thermal gradient for four hours. The brains were removed one week after final dose of MDMA and concentrations of serotonin and dopamine were measured. Treatment with MDMA at both doses led to a higher T(C) in the FSL rats than the SD rats at high T(A) (P < 0.01). Fatalities due to hyperthermia occurred in the FSL rats after both doses, whereas all but one of the SD rats recovered well. Heart rate was also much higher after MDMA in the FSL rats throughout the experiments. The FSL rats showed significant decreases in all transmitters measured (P < 0.05). These differences between strains were not accounted for by altered blood or brain concentrations of MDMA. The results indicate that the FSL rats may be more susceptible to developing MDMA-induced hyperthermia and possible damage to the brain. These findings may be of importance to human users of MDMA who also have depression.
Collapse
|
18
|
Vianna DML, Carrive P. Inhibition of the cardiovascular response to stress by systemic 5-HT1A activation: sympathoinhibition or anxiolysis? Am J Physiol Regul Integr Comp Physiol 2009; 297:R495-501. [DOI: 10.1152/ajpregu.00232.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
5-HT1A agonists given systemically are known to produce anxiolytic effects. In addition, a growing body of research is showing that those compounds also have central sympathoinhibitory properties. Since emotional arousal gives rise to sympathetic activation, it is not clear whether systemic treatment with a 5-HT1A agonist reduces the sympathetic response to emotional stress primarily by a direct action on sympathetic-related sites in the brain or indirectly through reducing anxiety. To test this, we compared the effect of intraperitoneal injections of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.05 and 0.25 mg/kg), a preferential 5-HT1A agonist, or vehicle on the cardiovascular responses to four stressors known to produce sympathetic activation, three being emotional stressors, and one physiological. In conscious rats, 30-min exposure to either a neutral context, a fear-conditioned context, or to restraint stress led to increases in heart rate and blood pressure, which were attenuated by 8-OH-DPAT. In contrast, the same treatment did not reduce the cardiovascular response to 30-min cold exposure (4°C). The results suggest that 8-OH-DPAT acts preferentially on limbic, rather than central, autonomic sites. Hence, doses of 5-HT1A agonists, which are just sufficient to produce anxiolysis, are not enough to cause true sympathoinhibition.
Collapse
|
19
|
Stress-induced hyperthermia and basal body temperature are mediated by different 5-HT(1A) receptor populations: a study in SERT knockout rats. Eur J Pharmacol 2008; 590:190-7. [PMID: 18606402 DOI: 10.1016/j.ejphar.2008.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 05/17/2008] [Accepted: 06/02/2008] [Indexed: 02/08/2023]
Abstract
Disturbances in the serotonergic system are implicated in many central nervous system disorders. The serotonin transporter (SERT) regulates the serotonin homeostasis in the synapse. We recently developed a rat which lacks the serotonin transporter (SERT(-/-)). It is likely that adaptive changes take place at the level of pre- and postsynaptic 5-HT receptors. Because autonomic responses are often used to measure 5-HT(1A) receptor function, we analysed these responses by examining the effects of a 5-HT(1A) receptor agonist and antagonist under in vivo conditions in the SERT(-/-) rat. Moreover, we studied the effect of a mild stressor on the body temperature (stress-induced hyperthermia) because of the known involvement of 5-HT(1A) receptors in this phenomenon. Results show that core body temperature did not differ between genotypes under basal, non-stressed conditions. Compared to SERT(+/+) rats, stress-induced hyperthermia was reduced in SERT(-/-) rats. The 5-HT(1A) receptor agonist [R(+)-N-(2[4-(2,3-dihydro-2-2-hydroxy-methyl-1,4-benzodioxin-5-yl)-1-piperazininyl]ethyl)-4-fluorobenzoamide HCl (flesinoxan) reduced stress-induced hyperthermia in both genotypes. The flesinoxan-induced hypothermia in SERT(+/+) rats was blocked by the 5-HT(1A) receptor antagonist [N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridinyl) cyclohexane carboxamide 3HCl (WAY100635). Moreover, WAY100635-induced hyperthermia in SERT(-/-), but not in SERT(+/+) rats. In SERT(-/-) rats, WAY100635 completely blocked the flesinoxan-induced reduction of stress-induced hyperthermia. Interestingly, flesinoxan-induced hypothermia was absent in SERT(-/-) rats. It is concluded that the SERT knockout rat reveals that 5-HT(1A) receptors modulating stress-induced hyperthermia belong to a population of receptors that differs from that involved in hypothermia.
Collapse
|
20
|
Central 5-HT receptors in cardiovascular control during stress. Neurosci Biobehav Rev 2008; 33:95-106. [PMID: 18573276 DOI: 10.1016/j.neubiorev.2008.05.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/03/2008] [Accepted: 05/28/2008] [Indexed: 11/22/2022]
Abstract
Our aim is to consolidate recent data on relationship between central serotonergic neurotransmission and stress-elicited cardiovascular changes. Activation of central of 5-HT1A receptors attenuates tachycardic and pressor changes elicited by a wide range of stressors (airjet, restraint, open field, fear conditioning, social defeat), supporting the previous view of these receptors as "sympathoinhibitory". Their likely location is the medullary raphe. It is still unknown whether 5-TH1A receptors are sympathoinhibitory in physiological condition, as 5-HT1A antagonists do not affect basal or stress-altered cardiovascular parameters. In contrast to the established view that central 5-HT2A receptors are "sympathoexcitatory", experiments with new selective antagonists indicate that these receptors do not mediate stress-induced pressor and tachycardic responses, and are not involved in cardiovascular control at rest. The exception is control of cutaneous vascular bed, both at rest and during stress, likely at the spinal level. 5-HT3 receptors located in the nucleus tractus silitarius (NTS) contribute to stress-induced suppression of the baroreflex. 5-HT3 receptors located in sympathetic ganglia possibly contribute to the development of sustained hypertension in chronically stressed rats.
Collapse
|
21
|
When administered to rats in a cold environment, 3,4-methylenedioxymethamphetamine reduces brown adipose tissue thermogenesis and increases tail blood flow: effects of pretreatment with 5-HT1A and dopamine D2 antagonists. Neuroscience 2008; 154:1619-26. [PMID: 18534763 DOI: 10.1016/j.neuroscience.2008.04.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 03/19/2008] [Accepted: 04/22/2008] [Indexed: 11/21/2022]
Abstract
When given in a warm environment MDMA (3,4-methylenedioxymethamphetamine, ecstasy) causes hyperthermia by increasing interscapular brown adipose tissue (iBAT) heat production and decreasing heat loss via cutaneous vasoconstriction. When given in a cold environment, however, MDMA causes hypothermia by an unknown mechanism. This paper addresses these mechanisms and in addition examines whether antagonists at 5-HT(1A) and D(2) receptors reduce the hypothermic action of MDMA. Male Sprague-Dawley rats instrumented with a Doppler probe for measuring tail blood flow, and probes for measuring core and iBAT temperatures, were placed in a temperature-controlled chamber. The chamber temperature was reduced to 10 degrees C and vehicle (0.5 ml Ringer), the 5-HT(1A) antagonist WAY 100635 (0.5 mg/kg), the D(2) antagonist spiperone (20 mug/kg), or the combination of Way 100635 and spiperone were injected s.c. Thirty minutes later the antagonists were injected again along with MDMA (10 mg/kg) or vehicle. MDMA reduced core body temperature by preventing cold-elicited iBAT thermogenesis and by transiently reversing cold-elicited cutaneous vasoconstriction. Pretreatment with WAY 100635 prevented MDMA induced increases in tail blood flow, and briefly attenuated MDMA's effects on iBAT and core temperature. While spiperone alone failed to affect any of the parameters, the combination of spiperone and WAY 100635 decreased MDMA-mediated hypothermia by attenuating both the effects on tail blood flow and iBAT thermogenesis. MDMA's prevention of cold-induced iBAT thermogenesis appears to have a central origin as it rapidly reverses cold-induced increases in iBAT sympathetic nerve discharge in anesthetized rats. Our results demonstrate that MDMA in a cold environment reduces core body temperature by inhibiting iBAT thermogenesis and tail artery vasoconstriction and suggest that mechanisms by which this occurs include the activation of 5-HT1A and dopamine D2 receptors.
Collapse
|
22
|
Vinkers CH, van Bogaert MJV, Klanker M, Korte SM, Oosting R, Hanania T, Hopkins SC, Olivier B, Groenink L. Translational aspects of pharmacological research into anxiety disorders: the stress-induced hyperthermia (SIH) paradigm. Eur J Pharmacol 2008; 585:407-25. [PMID: 18420191 DOI: 10.1016/j.ejphar.2008.02.097] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/01/2008] [Accepted: 02/13/2008] [Indexed: 11/29/2022]
Abstract
In anxiety research, the search for models with sufficient clinical predictive validity to support the translation of animal studies on anxiolytic drugs to clinical research is often challenging. This review describes the stress-induced hyperthermia (SIH) paradigm, a model that studies the activation of the autonomic nervous system in response to stress by measuring body temperature. The reproducible and robust SIH response, combined with ease of testing, make the SIH paradigm very suitable for drug screening. We will review the current knowledge on the neurobiology of the SIH response, discuss the role of GABA(A) and serotonin (5-HT) pharmacology, as well as how the SIH response relates to infectious fever. Furthermore, we will present novel data on the SIH response variance across different mice and their sensitivity to anxiolytic drugs. The SIH response is an autonomic stress response that can be successfully studied at the level of its physiology, pharmacology, neurobiology and genetics and possesses excellent animal-to-human translational properties.
Collapse
Affiliation(s)
- Christiaan H Vinkers
- Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS) and Rudolf Magnus Institute of Neuroscience, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hodges MR, Tattersall GJ, Harris MB, McEvoy SD, Richerson DN, Deneris ES, Johnson RL, Chen ZF, Richerson GB. Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J Neurosci 2008; 28:2495-505. [PMID: 18322094 PMCID: PMC6671195 DOI: 10.1523/jneurosci.4729-07.2008] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/21/2008] [Accepted: 01/21/2008] [Indexed: 01/28/2023] Open
Abstract
Serotonergic neurons project widely throughout the CNS and modulate many different brain functions. Particularly important, but controversial, are the contributions of serotonin (5-HT) neurons to respiratory and thermoregulatory control. To better define the roles of 5-HT neurons in breathing and thermoregulation, we took advantage of a unique conditional knock-out mouse in which Lmx1b is genetically deleted in Pet1-expressing cells (Lmx1b(f/f/p)), resulting in near-complete absence of central 5-HT neurons. Here, we show that the hypercapnic ventilatory response in adult Lmx1b(f/f/p) mice was decreased by 50% compared with wild-type mice, whereas baseline ventilation and the hypoxic ventilatory response were normal. In addition, Lmx1b(f/f/p) mice rapidly became hypothermic when exposed to an ambient temperature of 4 degrees C, decreasing core temperature to 30 degrees C within 120 min. This failure of thermoregulation was caused by impaired shivering and nonshivering thermogenesis, whereas thermosensory perception and heat conservation were normal. Finally, intracerebroventricular infusion of 5-HT stimulated baseline ventilation, and rescued the blunted hypercapnic ventilatory response. These data identify a previously unrecognized role of 5-HT neurons in the CO(2) chemoreflex, whereby they enhance the response of the rest of the respiratory network to CO(2). We conclude that the proper function of the 5-HT system is particularly important under conditions of environmental stress and contributes significantly to the hypercapnic ventilatory response and thermoregulatory cold defense.
Collapse
Affiliation(s)
- Matthew R Hodges
- Department of Neurology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brown JW, Sirlin EA, Benoit AM, Hoffman JM, Darnall RA. Activation of 5-HT1A receptors in medullary raphé disrupts sleep and decreases shivering during cooling in the conscious piglet. Am J Physiol Regul Integr Comp Physiol 2008; 294:R884-94. [DOI: 10.1152/ajpregu.00655.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of 5-HT1A receptors in the medullary raphé decreases sympathetically mediated brown adipose tissue (BAT) thermogenesis and peripheral vasoconstriction when previously activated with leptin, LPS, prostaglandins, or cooling. It is not known whether shivering is also modulated by medullary raphé 5-HT1A receptors. We previously showed in conscious piglets that activation of 5-HT1A receptors with (±)-8-hydroxy-2-(dipropylamino)-tetralin (8-OH-DPAT) in the paragigantocellularis lateralis (PGCL), a medullary region lateral to the raphé that contains substantial numbers of 5-HT neurons, eliminates rapid eye movement (REM) sleep and decreases shivering in a cold environment, but does not attenuate peripheral vasoconstriction. Hoffman JM, Brown JW, Sirlin EA, Benoit AM, Gill WH, Harris MB, Darnall RA. Am J Physiol Regul Integr Comp Physiol 293: R518–R527, 2007. We hypothesized that, during cooling, activation of 5-HT1A receptors in the medullary raphé would also eliminate REM sleep and, in contrast to activation of 5-HT1A receptors in the PGCL, would attenuate both shivering and peripheral vasoconstriction. In a continuously cool environment, dialysis of 8-OH-DPAT into the medullary raphé resulted in alternating brief periods of non-REM sleep and wakefulness and eliminated REM sleep, as observed when 8-OH-DPAT is dialyzed into the PGCL. Moreover, both shivering and peripheral vasoconstriction were significantly attenuated after 8-OH-DPAT dialysis into the medullary raphé. The effects of 8-OH-DPAT were prevented after dialysis of the selective 5-HT1A receptor antagonist WAY-100635. We conclude that, during cooling, exogenous activation of 5-HT1A receptors in the medullary raphé decreases both shivering and peripheral vasoconstriction. Our data are consistent with the hypothesis that neurons expressing 5-HT1A receptors in the medullary raphé facilitate spinal motor circuits involved in shivering, as well as sympathetic stimulation of other thermoregulatory effector mechanisms.
Collapse
|
25
|
Madden CJ, Morrison SF. Brown adipose tissue sympathetic nerve activity is potentiated by activation of 5-hydroxytryptamine (5-HT)1A/5-HT7 receptors in the rat spinal cord. Neuropharmacology 2007; 54:487-96. [PMID: 18082230 DOI: 10.1016/j.neuropharm.2007.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 09/13/2007] [Accepted: 10/24/2007] [Indexed: 12/01/2022]
Abstract
In urethane-chloralose anesthetized, neuromuscularly blocked, ventilated rats, microinjection of NMDA (12 pmol) into the right fourth thoracic segment (T4) spinal intermediolateral nucleus (IML) immediately increased ipsilateral brown adipose tissue (BAT) sympathetic nerve activity (SNA; peak +492% of control), expired CO2 (+0.1%) heart rate (+48 beats min(-1)) and arterial pressure (+8 mmHg). The increase in BAT SNA evoked by T4 IML microinjection of NMDA was potentiated when it was administered immediately following a T4 IML microinjection of 5-hydroxytryptamine (5-HT, 100 pmol) or the 5-HT1A/5-HT7 receptor agonist, 8-OH-DPAT (600 pmol), (area under the curve: 184%, and 259% of the NMDA-only response, respectively). In contrast, T4 IML microinjection of the 5-HT2 receptor agonist, DOI (28 pmol) did not potentiate the NMDA-evoked increase in BAT SNA (101% of NMDA-only response). Microinjection into the T4 IML of the selective 5-HT1A antagonist, WAY-100635 (500 pmol), plus the 5-HT7 antagonist, SB-269970 (500 pmol), prevented the 5-HT-induced potentiation of the NMDA-evoked increase in BAT SNA. When administered separately, WAY-100635 (800 pmol) and SB-269970 (800 pmol) attenuated the 8-OH-DPAT-induced potentiation of the NMDA-evoked increase in BAT SNA through effects on the amplitude and duration of the response, respectively. The selective 5-HT2 receptor antagonist, ketanserin (100 pmol), did not attenuate the potentiations of the NMDA-evoked increase in BAT SNA induced by either 5-HT or 8-OH-DPAT. These results demonstrate that activation of 5-HT1A/5-HT7 receptors can act synergistically with NMDA receptor activation within the IML to markedly increase BAT SNA.
Collapse
Affiliation(s)
- C J Madden
- Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
26
|
Rusyniak DE, Zaretskaia MV, Zaretsky DV, DiMicco JA. 3,4-Methylenedioxymethamphetamine- and 8-hydroxy-2-di-n-propylamino-tetralin-induced hypothermia: role and location of 5-hydroxytryptamine 1A receptors. J Pharmacol Exp Ther 2007; 323:477-87. [PMID: 17702902 DOI: 10.1124/jpet.107.126169] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The popular drug of abuse 3,4-methylenedioxymethamphetamine (MDMA) has complex interactions with thermoregulatory systems, resulting in either hyperthermia or hypothermia. MDMA induces hypothermia when given to animals housed at a low ambient temperature. In this study we report that MDMA (7.5 mg/kg i.p.) given at normal ambient temperatures of 24 to 25 degrees C caused, in conscious freely moving rats, hypothermia (mean decrease from baseline of 1.1 +/- 0.06 degrees C at 40 min). Pretreating animals with a 0.5 mg/kg i.p. dose of the 5-hydroxytryptamine 1A (5-HT(1A)) antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY 100635) not only prevented MDMA-induced hypothermia, but resulted in the development of hyperthermia (mean temperature increase from baseline of 0.74 +/- 0.2 degrees C at 120 min). After treatment with WAY 100635, MDMA also elicited an enhanced tachycardia (mean increases in heart rate from baseline of 110 +/- 16 beats/min at 90 min). To identify the location of 5-HT(1A) receptors responsible for hypothermia induced by MDMA, we first investigated the role of 5-HT(1A) receptors in the rostral raphe pallidus (rRP) in decreases in temperature evoked by the known 5-HT(1A) agonist 8-hydroxy-2-di-n-propylamino-tetralin (DPAT). Microinjections of 0.5 nmol of WAY 100635 into the rRP significantly attenuated DPAT (0.2 mg/kg i.p.)-elicited hypothermia. In parallel experiments, we found that microinjections of WAY 100635 into the rRP, while significantly augmenting MDMA-mediated tachycardia, did not alter body temperature. These results demonstrate that although hypothermia mediated by both MDMA and DPAT shares a common dependence on the activation of 5-HT(1A) receptors, the location of these receptors is different for each drug.
Collapse
Affiliation(s)
- Daniel E Rusyniak
- Departments of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | | | |
Collapse
|
27
|
Hoffman JM, Brown JW, Sirlin EA, Benoit AM, Gill WH, Harris MB, Darnall RA. Activation of 5-HT1A receptors in the paragigantocellularis lateralis decreases shivering during cooling in the conscious piglet. Am J Physiol Regul Integr Comp Physiol 2007; 293:R518-27. [PMID: 17409258 DOI: 10.1152/ajpregu.00816.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of 5-HT1A receptors in the medullary raphé decreases sympathetic outflow to thermoregulatory mechanisms, including brown adipose tissue (BAT), thermogenesis, and peripheral vasoconstriction when these mechanisms are previously activated with leptin, prostaglandins, or cooling. These same mechanisms are also inhibited during rapid eye movement (REM) sleep. It is not known whether shivering is also modulated by medullary raphé neurons. We previously showed in the conscious piglet that activation of 5-HT1A receptors with 8-OH-DPAT (DPAT) in the paragigantocellularis lateralis (PGCL), a medullary region lateral to the midline raphé that contains 5-HT neurons, decreases heart rate, body temperature and muscle activity during non-rapid eye movement (NREM) sleep. We therefore hypothesized that activation of 5-HT1A receptors in the PGCL would also attenuate shivering and peripheral vasoconstriction during cooling. During REM sleep in a cool environment, shivering, carbon dioxide production, and body temperature decreased, and ear capillary blood flow and ear skin temperature increased. Shivering associated with rapid cooling was attenuated after dialysis of DPAT into the PGCL. In animals maintained in a continuously cool environment, dialysis of DPAT into the PGCL attenuated shivering and decreased body temperature, but there were no significant increases in ear capillary blood flow or ear skin temperature. We conclude that both naturally occurring REM sleep and exogenous activation of 5-HT1A receptors in the PGCL are associated with a suspension of shivering during cooling. Our data are consistent with the hypothesis that 5-HT neurons in the PGCL facilitate oscillating spinal motor circuits involved in shivering but are less involved in modulating sympathetically mediated thermoregulatory mechanisms.
Collapse
Affiliation(s)
- J M Hoffman
- Department of Physiology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Ootsuka Y, McAllen RM. Comparison between two rat sympathetic pathways activated in cold defense. Am J Physiol Regul Integr Comp Physiol 2006; 291:R589-95. [PMID: 16601257 DOI: 10.1152/ajpregu.00850.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In cold defense and fever, activity increases in sympathetic nerves supplying both tail vessels and interscapular brown adipose tissue (iBAT). These mediate cutaneous vasoconstrictor and thermogenic responses, respectively, and both depend upon neurons in the rostral medullary raphé. To examine the commonality of brain circuits driving these two outflows, sympathetic nerve activity (SNA) was recorded simultaneously from sympathetic fibers in the ventral tail artery (tail SNA) and the nerve to iBAT (iBAT SNA) in urethane-anesthetized rats. From a warm baseline, cold-defense responses were evoked by intermittently circulating cold water through a water jacket around the animal's shaved trunk. Repeated episodes of trunk skin cooling decreased core (rectal) temperature. The threshold skin temperature to activate iBAT SNA was 37.3 +/- 0.5 degrees C (n = 7), significantly lower than that to activate tail SNA (40.1 +/- 0.4 degrees C; P < 0.01, n = 7). A fall in core temperature always strongly activated tail SNA (threshold 38.3 +/- 0.2 degrees C, n = 7), but its effect on iBAT SNA was absent (2 of 7 rats) or weak (threshold 36.9 +/- 0.1 degrees C, n = 5). The relative sensitivity to core vs. skin cooling (K-ratio) was significantly greater for tail SNA than for iBAT SNA. Spectral analysis of paired recordings showed significant coherence between tail SNA and iBAT SNA only at 1.0 +/- 0.1 Hz. The coherence was due entirely to the modulation of both signals by the ventilatory cycle because it disappeared when the coherence spectrum was partialized with respect to airway pressure. These findings indicate that independent central pathways drive cutaneous vasoconstrictor and thermogenic sympathetic pathways during cold defense.
Collapse
Affiliation(s)
- Youichirou Ootsuka
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
29
|
Tóth IE, Tóth DE, Boldogkoi Z, Hornyák A, Palkovits M, Blessing WW. Serotonin-Synthesizing Neurons in the Rostral Medullary Raphé/Parapyramidal Region Transneuronally Labelled After Injection of Pseudorabies Virus into the Rat Tail. Neurochem Res 2006; 31:277-86. [PMID: 16570210 DOI: 10.1007/s11064-005-9018-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2005] [Indexed: 11/29/2022]
Abstract
Serotonin-synthesizing raphé/parapyramidal neurons (5-HT neurons) may function as sympathetic premotor neurons regulating sympathetic outflow to the cutaneous vascular bed. In the present study a genetically engineered pseudorabies virus (PRV) expressing green fluorescent protein (GFP) was injected into the rat tail. After survival for 3-4 days the medulla oblongata was examined using double-label immunohistochemistry, with an antibody against GFP for the virus and an antibody against phenylalanine hydroxylase 8 (PH8) for 5-HT synthesis. Sections were examined using light microscopy, and conventional and confocal fluorescence microscopy. There were two subpopulations of PRV+ve neurons in the raphé/parapyramidal region: a more dorsally and laterally located subgroup of medium-sized and large neurons, mainly non-serotonergic, and a more ventrally located subgroup of small mainly serotonin-synthesizing neurons, including those just dorsal to the pyramids, those in raphé pallidus, and those in close relationship to the ventral surface in the parapyramidal-subependymal zone.
Collapse
Affiliation(s)
- Ida E Tóth
- Joint Research Laboratory of Neuromorphology, Semmelweis University of Medicine and Hungarian Academy of Sciences, H-1094 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
30
|
Ootsuka Y, Blessing WW. Thermogenesis in brown adipose tissue: Increase by 5-HT2A receptor activation and decrease by 5-HT1A receptor activation in conscious rats. Neurosci Lett 2006; 395:170-4. [PMID: 16293365 DOI: 10.1016/j.neulet.2005.10.062] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 10/25/2005] [Accepted: 10/26/2005] [Indexed: 11/18/2022]
Abstract
Body temperature is decreased by 5-hydroxytryptamine 1A (5-HT1A) agonists and increased by 5-HT2A agonists. The present study determined whether changes in interscapular brown adipose tissue (iBAT) thermogenesis contribute to these effects in conscious unrestrained animals. Male Sprague-Dawley rats were pre-instrumented for measurement of iBAT and core temperature and tail artery blood flow one week before experiments. In the first series of experiments, rats were transferred from warm (25-28 degrees C) to cold (5-10 degrees C) environments. This increased iBAT temperature (+1.3 +/- 0.2 degrees C, P<0.01, n = 7) and reduced tail artery flow. Injection of the 5-HT1A agonist, 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin, 0.5 mg/kg, s.c.) reversed the increase in iBAT thermogenesis (-1.5 +/- 0.4 degrees C, P<0.01, n = 6), and decreased core temperature (-1.5 +/- 0.4 degrees C, P<0.01, n = 6). Pre-treatment with WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride), a 5-HT1A antagonist, prevented effects of 8-OH-DPAT. In the second series of experiments, injection of a 5-HT2A agonist, DOI (R(-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride, 0.1 mg/kg, s.c.) increased both iBAT (+1.9 +/- 0.1 degrees C, P<0.01, n = 7) and core temperatures (+1.4+/-0.2 degrees C, P<0.01, n=7), and decreased tail artery blood flow. Subsequent injection of SR 46349B (trans-4-((3Z)3-[(2-dimethylaminoethyl)oxyimino]-3-(2-fluorophenyl) propen-1-yl)-phenol, hemifumarate, 0.5 mg/kg, s.c.), a 5-HT2A antagonist, reduced all these changes. Results indicate that activation of 5-HT1A receptors reduces sympathetic outflow to BAT and that activation of 5-HT2A receptors increases this outflow. Changes in core temperature mediated by brain/spinal pathways regulated by 5-HT1A and 5-HT2A receptors reflect coordinated changes in BAT-mediated heat production as well as changes in heat dissipation via the thermoregulatory cutaneous vascular beds.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/innervation
- Adipose Tissue, Brown/metabolism
- Animals
- Consciousness
- Male
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Regional Blood Flow/drug effects
- Regional Blood Flow/physiology
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Tail/drug effects
- Tail/physiology
- Thermogenesis/drug effects
- Thermogenesis/physiology
Collapse
Affiliation(s)
- Youichirou Ootsuka
- Department of Human Physiology, Centre for Neuroscience, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia.
| | | |
Collapse
|
31
|
Ootsuka Y, Blessing WW. Activation of 5-HT1A receptors in rostral medullary raphé inhibits cutaneous vasoconstriction elicited by cold exposure in rabbits. Brain Res 2006; 1073-1074:252-61. [PMID: 16455061 DOI: 10.1016/j.brainres.2005.12.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/09/2005] [Accepted: 12/09/2005] [Indexed: 11/22/2022]
Abstract
In both conscious and anesthetized rabbits, we determined whether microinjection of a 5-hydroxytryptamine (5-HT) 1A receptor agonist 8-hydroxy-2-(di-n-propylaminio) tetralin (8-OH-DPAT) into the medullary raphé/parapyramidal region inhibits thermoregulatory vasoconstriction and whether microinjection of a 5-HT1A receptor antagonist (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride) (WAY-100635) into the raphé reverses the cutaneous vasomotor changes induced by intravenous administration of 8-OH-DPAT. In conscious rabbits with measuring ear pinna blood flow, after microinjection of 8-OH-DPAT (3-5 nmol in 300-500 nl) into the raphé, transferring the animal from a warm cage (25-28 degrees C) to a cold cage (5-10 degrees C) did not reduce the ear pinna flow (from 57 +/- 7 cm/s to 59 +/- 3 cm/s, P > 0.05, n = 5), unlike Ringer-treated animals. Microinjection of WAY-100635 (5 nmol in 500 nl) into the raphé reversed ear pinna flow changes induced by intravenous administration of 8-OH-DPAT (0.1 mg/kg, i.v.). In anesthetized rabbits with measuring postganglionic ear pinna sympathetic nerve activity, microinjection of 8-OH-DPAT (1-2 nmol in 100-200 nl) into the raphé reduced resting ear pinna sympathetic nerve activity to 14 +/- 4% of pre-injection level (P < 0.01, n = 12) and attenuated increases in ear pinna sympathetic nerve activity normally elicited by cooling the animal's trunk. WAY-100635 (2 nmol into 200 nl) into the raphé reversed inhibition of ear pinna sympathetic nerve activity elicited by 8-OH-DPAT (0.1 mg/kg, i.v.). The activation of 5-HT1A receptors expressed on the medullary raphé neurons results in reversal of cold-elicited cutaneous vasoconstriction possibly through inhibition of sympathetic premotor neurons that innervate sympathetic preganglionic neurons controlling cutaneous vasomotion.
Collapse
Affiliation(s)
- Youichirou Ootsuka
- Department of Human Physiology, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia.
| | | |
Collapse
|
32
|
Ittner K, Pawlik M, Zimmermann M, Taeger K, Faerber L. Urapidil enhances subcutaneous tissue oxygen tension during convective rewarming of mildly hypothermic rats. J Therm Biol 2006. [DOI: 10.1016/j.jtherbio.2005.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Blessing WW. Clozapine increases cutaneous blood flow and reduces sympathetic cutaneous vasomotor alerting responses (SCVARs) in rats: comparison with effects of haloperidol. Psychopharmacology (Berl) 2005; 181:518-28. [PMID: 15986198 DOI: 10.1007/s00213-005-0012-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 03/30/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Clozapine inhibits sympathetic outflow to the cutaneous vascular bed. Clozapine reverses hyperthermia and cutaneous vasoconstriction induced by 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) or by lipopolysaccharide (LPS). Clozapine also reverses cutaneous vasoconstriction elicited by exposure to cold. These actions distinguish clozapine from haloperidol. Clozapine could also inhibit sympathetic cutaneous vasomotor alerting responses (SCVARs), vasoconstrictor episodes that reflect emotional/psychological function, and this property might also distinguish clozapine from haloperidol. OBJECTIVES Experiments in rats determined whether clozapine and haloperidol inhibit SCVARs, and whether SR46349B (a 5HT2A receptor antagonist), 8-OH-DPAT (a 5-HT1A agonist), L741,626 (a dopamine D2 antagonist) or SCH23390 (a dopamine D1 antagonist) have clozapine-like effects on SCVARs. METHODS Mean level and pulse amplitude of the tail artery Doppler flow signal were recorded in conscious freely moving rats before and after alerting stimuli (e.g. tapping the cage), and expressed as a SCVAR index (fall to zero flow implies SCVAR index of 100%, no fall implies 0%). RESULTS Clozapine (0.0625-1.0 mg/kg, s.c.) dose-dependently increased resting tail blood flow. After 1 mg/kg, the SCVAR index was 18+/-1%, compared with 83+/-2% after vehicle. SR46349B (0.01-1.0 mg/kg) and 8-OH-DPAT (0.25 mg/kg) had similar but less potent effects on cutaneous blood flow and on SCVARs. Haloperidol (0.005-0.5 mg/kg) and L741,626 (1 mg/kg) had no or little effect on these variables. SCH23390 mildly inhibited SCVARs. CONCLUSIONS Clozapine, but not haloperidol, increases resting cutaneous blood flow and decreases SCVARs. Antagonism at 5-HT2A receptors and agonism at 5-HT1A receptors could contribute to these actions.
Collapse
Affiliation(s)
- William Walter Blessing
- Department of Physiology, Centre for Neuroscience, Flinders University, Adelaide, Australia.
| |
Collapse
|
34
|
Ootsuka Y, Blessing WW. Inhibition of medullary raphé/parapyramidal neurons prevents cutaneous vasoconstriction elicited by alerting stimuli and by cold exposure in conscious rabbits. Brain Res 2005; 1051:189-93. [PMID: 15993863 DOI: 10.1016/j.brainres.2005.05.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 05/25/2005] [Accepted: 05/27/2005] [Indexed: 10/25/2022]
Abstract
In conscious rabbits, microinjection of muscimol into the medullary raphé/parapyramidal region decreased fluctuation (coefficient variation) of resting ear blood flow (from 62 +/- 8 to 25 +/- 4%, P < 0.01, n = 8). The muscimol injection also prevented falls in ear blood flow that normally occur in response to alerting stimuli and to cold exposure. Thus, raphé/parapyramidal neurons constitute an important brainstem center for mediating cutaneous vasoconstriction initiated by alerting stimuli and by cold exposure.
Collapse
Affiliation(s)
- Youichirou Ootsuka
- Department of Human Physiology, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia.
| | | |
Collapse
|
35
|
Horiuchi J, Wakabayashi S, Dampney RAL. Activation of 5-Hydroxytryptamine 1A Receptors Suppresses the Cardiovascular Response Evoked From the Dorsomedial Hypothalamic Nucleus. Hypertension 2005; 46:173-9. [PMID: 15939808 DOI: 10.1161/01.hyp.0000169970.68151.17] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The dorsomedial hypothalamic nucleus is a key component of the central pathways subserving the cardiovascular response to psychological stress, which is believed to be an important risk factor for hypertension. Previous studies indicate that 5-hydroxytryptamine 1A receptors can modulate the cardiovascular responses associated with stress. In this study, we determined in anesthetized rats the effects of systemic or intracisternal administration of 8-hydroxy-2-(di-n-propylamino)tetralin, a selective agonist of 5-hydroxytryptamine 1A receptors, and then subsequent administration of the selective antagonist WAY-100635 on the cardiovascular response evoked by activation of the dorsomedial hypothalamic nucleus (by microinjection of bicuculline). The increase in mean arterial pressure, heart rate, and renal sympathetic nerve activity (RSNA) evoked by bicuculline injection into the dorsomedial hypothalamic nucleus was greatly reduced (by 80% to 90%) by administration of 8-hydroxy-2-(di-n-propylamino)tetralin and then completely restored by subsequent administration of WAY-100635, whether administered systemically or intracisternally. In contrast, systemic administration of 8-hydroxy-2-(di-n-propylamino)tetralin had no significant effect on the baseline level or reflex changes in RSNA evoked by chemoreceptor or baroreceptor stimulation and resulted in only a modest reduction (12 mm Hg) in baseline mean arterial pressure. The results indicate that activation of 5-hydroxytryptamine 1A receptors in the brain stem causes a potent and selective suppression of the hypertensive and sympathoexcitatory response evoked by stimulation of the dorsomedial hypothalamic nucleus but has little effect on the tonic level or baroreceptor or chemoreceptor reflex control of RSNA.
Collapse
Affiliation(s)
- Jouji Horiuchi
- Department of Physiology, Institute for Biomedical Research, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
36
|
Ootsuka Y, Blessing WW. Activation of slowly conducting medullary raphé-spinal neurons, including serotonergic neurons, increases cutaneous sympathetic vasomotor discharge in rabbit. Am J Physiol Regul Integr Comp Physiol 2005; 288:R909-18. [PMID: 15550616 DOI: 10.1152/ajpregu.00564.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurons in the rostral medullary raphé/parapyramidal region regulate cutaneous sympathetic nerve discharge. Using focal electrical stimulation at different dorsoventral raphé/parapyramidal sites in anesthetized rabbits, we have now demonstrated that increases in ear pinna cutaneous sympathetic nerve discharge can be elicited only from sites within 1 mm of the ventral surface of the medulla. By comparing the latency to sympathetic discharge following stimulation at the ventral raphé site with the corresponding latency following stimulation of the spinal cord [third thoracic (T3) dorsolateral funiculus] we determined that the axonal conduction velocity of raphé-spinal neurons exciting ear pinna sympathetic vasomotor nerves is 0.8 ± 0.1 m/s ( n = 6, range 0.6–1.1 m/s). Applications of the 5-hydroxytryptamine (HT)2A antagonist trans-4-((3 Z)3-[(2-dimethylaminoethyl)oxyimino]-3-(2-fluorophenyl)propen-1-yl)-phenol, hemifumarate (SR-46349B, 80 μg/kg in 0.8 ml) to the cerebrospinal fluid above thoracic spinal cord (T1-T7), but not the lumbar spinal cord (L2-L4), reduced raphé-evoked increases in ear pinna sympathetic vasomotor discharge from 43 ± 9 to 16 ± 6% ( P < 0.01, n = 8). Subsequent application of the excitatory amino acid (EAA) antagonist kynurenic acid (25 μmol in 0.5 ml) substantially reduced the remaining evoked discharge (22 ± 8 to 6 ± 6%, P < 0.05, n = 5). Our conduction velocity data demonstrate that only slowly conducting raphé-spinal axons, in the unmyelinated range, contribute to sympathetic cutaneous vasomotor discharge evoked by electrical stimulation of the medullary raphé/parapyramidal region. Our pharmacological data provide evidence that raphé-spinal neurons using 5-HT as a neurotransmitter contribute to excitation of sympathetic preganglionic neurons regulating cutaneous vasomotor discharge. Raphé-spinal neurons using an EAA, perhaps glutamate, make a substantial contribution to the ear sympathetic nerve discharge evoked by raphé stimulation.
Collapse
Affiliation(s)
- Youichirou Ootsuka
- Department of Human Physiology, School of Medicine, Flinders University., Bedford Park, South Australia 5042, Australia.
| | | |
Collapse
|
37
|
Nalivaiko E, Ootsuka Y, Blessing WW. Activation of 5-HT1A receptors in the medullary raphe reduces cardiovascular changes elicited by acute psychological and inflammatory stresses in rabbits. Am J Physiol Regul Integr Comp Physiol 2005; 289:R596-R604. [PMID: 15802554 DOI: 10.1152/ajpregu.00845.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present strategy for the prevention of excessive sympathetic neural traffic to the heart relies on the use of beta-blockers, drugs that act at the heart end of the brain-heart axis. In the present study, we attempted to suppress cardiac sympathetic nerve activity by affecting the relevant cardiomotoneurons in the brain using the selective serotonin-1A (5-HT(1A)) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). In conscious, unrestrained rabbits, instrumented for recordings of heart rate, arterial pressure, or cardiac output, we provoked increases in cardiac sympathetic activity by psychological (loud sound, pinprick, and air jet) or inflammatory (0.5 microg/kg iv lipopolysaccharide) stresses. Pinprick and air-jet stresses elicited transient increases in heart rate (+50 +/- 7 and +38 +/- 4 beats/min, respectively) and in mean arterial pressure (+16 +/- 2 and +15 +/- 3 mmHg, respectively). Lipopolysaccharide injection caused sustained increases in heart rate (from 210 +/- 3 to 268 +/- 10 beats/min) and in arterial pressure (from 74 +/- 3 to 92 +/- 4 mmHg). Systemically administered 8-OH-DPAT (0.004-0.1 mg/kg) substantially attenuated these responses in a dose-dependent manner. Drug effects were prevented by a selective 5-HT(1A) receptor antagonist, WAY-100635 (0.1 mg/kg iv). Similarly to systemic administration, microinjection of 8-OH-DPAT (500 nl of 10 mM solution) into the medullary raphe-parapyramidal region caused antitachycardic effects during stressful stimulation and during lipopolysaccharide-elicited tachycardia. This is the first demonstration that activation of 5-HT(1A) receptors in the medullary raphe-parapyramidal area causes suppression of neurally mediated cardiovascular changes during acute psychological and immune stresses.
Collapse
Affiliation(s)
- Eugene Nalivaiko
- Dept. of Human Physiology, Centre for Neuroscience and Flinders Medical Centre, Flinders University, Bedford Park, 5042 SA, Australia.
| | | | | |
Collapse
|
38
|
Blessing WW. BAT control shows the way: medullary raphe/parapyramidal neurons and sympathetic regulation of brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 2005; 288:R557-60. [PMID: 15699359 DOI: 10.1152/ajpregu.00808.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Blessing WW. Clozapine and olanzapine, but not haloperidol, reverse cold-induced and lipopolysaccharide-induced cutaneous vasoconstriction. Psychopharmacology (Berl) 2004; 175:487-93. [PMID: 15083260 DOI: 10.1007/s00213-004-1850-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
RATIONALE Reduction of body temperature is used as predictor of psychotropic drug action. The cutaneous circulation functions as a heat-loss component of temperature regulation. Clozapine and olanzapine reverse hyperthermia and sympathetically-mediated cutaneous vasoconstriction induced by MDMA (3,4-methylenedioxymethamphetamine, ecstasy), suggesting that these drugs might reverse other forms of sympathetically mediated cutaneous vasoconstriction. OBJECTIVES Clozapine and olanzapine were compared with haloperidol with respect to their ability to reverse cold-induced and LPS (lipopolysaccharide)-induced cutaneous vasoconstriction in rabbits. METHODS Cutaneous blood flow was measured in conscious rabbits by Doppler ultrasonic flow probe implanted around the central ear artery, and body temperature was measured telemetrically. After control observations, animals were transferred from 26 to 10 degrees C, or LPS (0.5 microLg/kg IV) was administered. After 30 min, clozapine, olanzapine or haloperidol was administered and ear pinna blood flow and body temperature were measured for another 30 min. RESULTS Clozapine, in a dose responsive manner (1, 2.5 and 5 mg/kg IV), substantially reversed cold-induced ear pinna vasoconstriction and reduced body temperature. Clozapine (1 mg/kg IV) reversed LPS-induced cutaneous vasoconstriction and reduced the LPS-induced rise in body temperature. Olanzapine had generally similar effects. Haloperidol (1 mg/kg IV in cold experiments and 0.2 mg/kg IV in LPS experiments) did not reverse ear pinna vasoconstriction, or affect body temperature. CONCLUSIONS Both clozapine and olanzapine, but not haloperidol, reverse physiologically induced cutaneous sympathetic vasomotor discharge. Because of the close link between psychological function and sympathetic regulation of cutaneous blood flow, similar neuropharmacological mechanisms might underly the cutaneous vasodilating action and the psychotropic actions of atypical antipsychotic drugs.
Collapse
Affiliation(s)
- William Walter Blessing
- Department of Physiology, Centre for Neuroscience, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
40
|
Nagatomo T, Rashid M, Abul Muntasir H, Komiyama T. Functions of 5-HT2A receptor and its antagonists in the cardiovascular system. Pharmacol Ther 2004; 104:59-81. [PMID: 15500909 DOI: 10.1016/j.pharmthera.2004.08.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) receptors have conventionally been divided into seven subfamilies, most of which have several subtypes. Among them, 5-HT(2A) receptor is associated with the contraction of vascular smooth muscle, platelet aggregation and thrombus formation and coronary artery spasms. Accordingly, selective 5-HT(2A) antagonists may have potential in the treatment of cardiovascular diseases. Sarpogrelate, a selective 5-HT(2A) antagonist, has been introduced clinically as a therapeutic agent for the treatment of ischemic diseases associated with thrombosis. Molecular modeling studies also suggest that sarpogrelate is a 5-HT(2A) selective antagonist and is likely to have pharmacological effects beneficial in the treatment of cardiovascular diseases. This review describes the above findings as well as the signaling linkages of the 5-HT(2A) receptors and the mode of agonist binding to 5-HT(2A) receptor using data derived from molecular modeling and site-directed mutagenesis.
Collapse
Affiliation(s)
- Takafumi Nagatomo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 5-13-2 Kamishinei-cho, Niigata 950-2081, Japan.
| | | | | | | |
Collapse
|
41
|
Ootsuka Y, Nalivaiko E, Blessing WW. Spinal 5-HT2A receptors regulate cutaneous sympathetic vasomotor outflow in rabbits and rats; relevance for cutaneous vasoconstriction elicited by MDMA (3,4-methylenedioxymethamphetamine, “Ecstasy”) and its reversal by clozapine. Brain Res 2004; 1014:34-44. [PMID: 15212989 DOI: 10.1016/j.brainres.2004.03.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2004] [Indexed: 11/18/2022]
Abstract
We determined whether spinal 5-hydroxytryptamine 2A (5-HT2A) receptors contribute to resting cutaneous sympathetic vasomotor activity, and to increases in activity elicited by electrical stimulation of the medullary raphe/parapyramidal region, and whether these receptors are involved in the cutaneous vasoconstricting action of systemically administered MDMA (3,4-methylenedioxymethamphetamine, "Ecstasy") and its reversal by clozapine. Experiments were conducted in urethane-anesthetized rabbits and rats. Administration of the 5-HT2A antagonist, trans-4-((3Z)3-[(2-Dimethylaminoethyl)oxyimino]-3-(2-fluorophenyl)propen-1-yl)-phenol, hemifumarate (SR 46349B, 0.1 mg/kg, i.v.) inhibited resting ear pinna sympathetic vasomotor nerve discharge and reduced the extent to which raphe/parapyramidal electrical stimulation caused ear pinna (rabbit) and tail (rat) artery blood flow to fall. Clozapine (0.125-0.5 mg/kg, i.v.) also reduced the fall in ear pinna blood flow elicited by raphe/parapyramidal stimulation. In rabbits, after inactivation of raphe/parapyramidal function by local microinjection of muscimol (1 nmol in 100 nl), the 5-HT2A agonist R(-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI, 50 microg/kg, i.v.) increased ear pinna sympathetic nerve activity from 3+/-2% to 129+/-5% of pre-muscimol levels (P<0.01, n=6), and this increase was abolished by section of the ipsilateral cervical sympathetic nerve trunk. MDMA (2 mg/kg, i.v.) after muscimol decreased ear pinna blood flow from 33+/-10 to 2+/-1 cm/s (P<0.01, n=5) and increased ear pinna sympathetic nerve activity from 8+/-4% to 120+/-41% of pre-muscimol levels (P<0.01, n=6). The MDMA-elicited increase in nerve activity was abolished by SR 46349B. Data suggest that spinal 5-HT2A receptors contribute to sympathetically induced cutaneous vasoconstriction regulated by raphe/parapyramidal neurons in the brainstem, and that these receptors contribute to the cutaneous vasoconstricting action of MDMA and its reversal by clozapine.
Collapse
Affiliation(s)
- Youichirou Ootsuka
- Department of Human Physiology, School of Medicine, Flinders University, Bedford Park, South Australia 5042, Australia.
| | | | | |
Collapse
|
42
|
Morrison SF. Activation of 5-HT1A receptors in raphe pallidus inhibits leptin-evoked increases in brown adipose tissue thermogenesis. Am J Physiol Regul Integr Comp Physiol 2004; 286:R832-7. [PMID: 14742306 DOI: 10.1152/ajpregu.00678.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the central neural pathways contributing to the thermogenic component of the autonomic response to intravenous administration of leptin, experiments were conducted in urethane-chloralose-anesthetized, ventilated rats to address 1) the role of neurons in the rostral ventromedial medulla, including raphe pallidus (RPa), in the leptin-evoked stimulation of brown adipose tissue (BAT) sympathetic nerve activity (SNA); and 2) the potential thermolytic effect of 5-hydroxytryptamine1A (5-HT1A) receptors on RPa neurons that influence BAT thermogenesis. Leptin (1 mg/kg) administration increased BAT SNA by 1,219% of control, BAT temperature by 2.8°C, expired CO2 by 1.8%, heart rate by 90 beats/min, and mean arterial pressure by 12 mmHg. Microinjection of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) into RPa resulted in a prompt and sustained reversal of the leptin-evoked stimulation of BAT SNA, BAT thermogenesis, and heart rate, with these variables returning to their pre-leptin control levels. Subsequent microinjection of the selective 5-HT1A receptor antagonist WAY-100635 into RPa reversed the BAT thermolytic effects of 8-OH-DPAT, returning BAT SNA and BAT temperature to the elevated levels after leptin. In conclusion, activation of neurons in RPa, possibly BAT sympathetic premotor neurons, is essential for the increases in BAT SNA, BAT thermogenesis, and heart rate stimulated by intravenous administration of leptin. Neurons in RPa express 5-HT1A receptors whose activation leads to reversal of the BAT thermogenic and the cardiovascular responses to intravenous leptin, possibly through hyperpolarization of local sympathetic premotor neurons. These results contribute to our understanding of central neural substrates for the augmented energy expenditure stimulated by leptin.
Collapse
Affiliation(s)
- Shaun F Morrison
- Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| |
Collapse
|
43
|
Blessing WW. 5-hydroxytryptamine 1a receptor activation reduces cutaneous vasoconstriction and fever associated with the acute inflammatory response in rabbits. Neuroscience 2004; 123:1-4. [PMID: 14667435 DOI: 10.1016/j.neuroscience.2003.09.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
5-Hydroxytryptamine(1A) (5-HT1A) receptor activation reduces body temperature partially by dilating the thermoregulatory cutaneous vascular bed, thereby increasing heat transfer to the environment. Constriction of this vascular bed, with consequent reduction of heat transfer to the environment, contributes to fever associated with the acute inflammatory response. Thus activation of 5-HT1A receptors might inhibit thermoregulatory cutaneous vasoconstriction and reduce the fever associated with the acute inflammatory response. The present study tested this hypothesis in conscious unrestrained rabbits. The acute inflammatory reaction was induced with i.v. lipopolysaccharide (LPS, 0.5 microg/kg). Body temperature was measured with an i.p. telemetric probe, and ear pinna blood flow was measured with a chronically implanted Doppler ultrasonic probe. 5-HT1A receptors were activated with i.v. 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). LPS increased body temperature by +1.7+/-0.2 degrees C during the first hour after administration. The ear pinna Doppler blood flow signal fell from 69+/-11 to 5+/-1 cm/s within 15 min (n=7, P<0.01) and remained at a low level for approximately 1 h after LPS. When administered 45 min after LPS, 8-OH-DPAT (0.1 mg/kg i.v.) reversed this fall, increasing the Doppler signal from 6+/-1 to 55+/-7 cm/s (P<0.01, n=6), and reduced the rise in body temperature. Treatment with 8-OH-DPAT (0.1 mg/kg i.v.) 5 min before and 30 min after LPS entirely prevented the LPS-induced fall in ear pinna blood flow, and reduced the rise in body temperature from 1.7+/-0.2 degrees C to 0.7+/-0.2 (n=7, P<0.01). Treatment with WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride) (0.1 mg/kg i.v.) prevented and reversed the effects of 8-OH-DPAT. Thus activation of 5-HT1A receptors reduces thermoregulatory cutaneous vasoconstriction and fever occurring as part of the acute inflammatory response. Our findings elucidate the neurotransmitter mechanisms underlying expression of an important component of the febrile response, and suggest that drugs with 5-HT1A agonist properties might be therapeutically useful when it is clinically important to reduce this response.
Collapse
Affiliation(s)
- W W Blessing
- Department of Physiology, Centre for Neuroscience, Flinders Medical Centre, Flinders University, 5042 SA, Bedford Park, Australia.
| |
Collapse
|