1
|
Kaminski TW, Katoch O, Li Z, Hanway CB, Dubey RK, Alagbe A, Brzoska T, Zhang H, Sundd P, Kato GJ, Novelli EM, Pradhan-Sundd T. Impaired hemoglobin clearance by sinusoidal endothelium promotes vaso-occlusion and liver injury in sickle cell disease. Haematologica 2024; 109:1535-1550. [PMID: 37941440 PMCID: PMC11063870 DOI: 10.3324/haematol.2023.283792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
Sickle cell disease (SCD) is a monogenic disorder that affects 100,000 African-Americans and millions of people worldwide. Intra-erythrocytic polymerization of sickle hemoglobin (HbS) promotes erythrocyte sickling, impaired rheology, ischemia and hemolysis, leading to the development of progressive liver injury in SCD. Liver-resident macrophages and monocytes are known to enable the clearance of HbS; however, the role of liver sinusoidal endothelial cells (LSEC) in HbS clearance and liver injury in SCD remains unknown. Using real-time intravital (in vivo) imaging in mice liver as well as flow cytometric analysis and confocal imaging of primary human LSEC, we show for the first time that liver injury in SCD is associated with accumulation of HbS and iron in the LSEC, leading to senescence of these cells. Hemoglobin uptake by LSEC was mediated by micropinocytosis. Hepatic monocytes were observed to attenuate LSEC senescence by accelerating HbS clearance in the liver of SCD mice; however, this protection was impaired in P-selectin-deficient SCD mice secondary to reduced monocyte recruitment in the liver. These findings are the first to suggest that LSEC contribute to HbS clearance and HbS-induced LSEC senescence promotes progressive liver injury in SCD mice. Our results provide a novel insight into the pathogenesis of hemolysis-induced chronic liver injury in SCD caused by LSEC senescence. Identifying the regulators of LSEC-mediated HbS clearance may lead to new therapies to prevent the progression of liver injury in SCD.
Collapse
Affiliation(s)
- Tomasz W Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Omika Katoch
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ziming Li
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Corrine B Hanway
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Rikesh K Dubey
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Adekunle Alagbe
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tomasz Brzoska
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Enrico M Novelli
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tirthadipa Pradhan-Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA.
| |
Collapse
|
2
|
Oevel K, Hohensee S, Kumar A, Rosas-Brugada I, Bartolini F, Soykan T, Haucke V. Rho GTPase signaling and mDia facilitate endocytosis via presynaptic actin. eLife 2024; 12:RP92755. [PMID: 38502163 PMCID: PMC10950329 DOI: 10.7554/elife.92755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Neurotransmission at synapses is mediated by the fusion and subsequent endocytosis of synaptic vesicle membranes. Actin has been suggested to be required for presynaptic endocytosis but the mechanisms that control actin polymerization and its mode of action within presynaptic nerve terminals remain poorly understood. We combine optical recordings of presynaptic membrane dynamics and ultrastructural analysis with genetic and pharmacological manipulations to demonstrate that presynaptic endocytosis is controlled by actin regulatory diaphanous-related formins mDia1/3 and Rho family GTPase signaling in mouse hippocampal neurons. We show that impaired presynaptic actin assembly in the near absence of mDia1/3 and reduced RhoA activity is partly compensated by hyperactivation of Rac1. Inhibition of Rac1 signaling further aggravates impaired presynaptic endocytosis elicited by loss of mDia1/3. Our data suggest that interdependent mDia1/3-Rho and Rac1 signaling pathways cooperatively act to facilitate synaptic vesicle endocytosis by controlling presynaptic F-actin.
Collapse
Affiliation(s)
- Kristine Oevel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Svea Hohensee
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Atul Kumar
- Department of Pathology and Cell Biology, Columbia University Medical CenterNew York CityUnited States
| | | | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Medical CenterNew York CityUnited States
| | - Tolga Soykan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität BerlinBerlinGermany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
3
|
Tian H, Gu C, Li W, Tong T, Wang Y, Yang Y, Wang H, Dai Z, Chen P, Wang F, Lin X, Shangguan L, Wang L. Neutralization of Intracellular pH Homeostasis to Inhibit Osteoclasts Based on a Spatiotemporally Selective Delivery System. NANO LETTERS 2023; 23:4101-4110. [PMID: 37183806 DOI: 10.1021/acs.nanolett.2c04295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Osteoporosis is a global disease caused by abnormal overactivation of osteoclasts. The acidic environment in sealing zone of osteoclasts with H+ pumped from cytoplasm is critical to the maturation of osteoclasts. Therefore, reducing the intracellular H+ concentration can reduce the H+ secretion of osteoclasts from the source. In our study, we developed a novel nanovesicle which encapsulates Na2HPO4 with a liposome hybridizes with preosteoclast membrane (Na2HPO4@Lipo-pOCm). These nanovesicles release Na2HPO4 into the preosteoclast by targeting preosteoclasts and membrane fusion, reducing the intracellular H+ concentration, and achieve biological cascade regulation of osteoclasts through simple pH regulation. In vitro and in vivo experiments confirmed that these nanovesicles reduce mitochondrial membrane potential by decreasing intracellular H+ concentration, thereby reducing the ROS in osteoclasts as well as the expression of the upstream transcription factor FOXM1 of Acp5. In short, this nanovesicle can significantly inhibit the osteoclasts and ameliorate osteoporosis caused by OVX.
Collapse
Affiliation(s)
- Hongsen Tian
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Chenhui Gu
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Wenshuai Li
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Tong Tong
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Yunsheng Wang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Yang Yang
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Haoli Wang
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Zhanqiu Dai
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Pengfei Chen
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Feng Wang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Xianfeng Lin
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Liqing Shangguan
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Linfeng Wang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| |
Collapse
|
4
|
Wu LG, Chan CY. Multiple Roles of Actin in Exo- and Endocytosis. Front Synaptic Neurosci 2022; 14:841704. [PMID: 35308832 PMCID: PMC8931529 DOI: 10.3389/fnsyn.2022.841704] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Cytoskeletal filamentous actin (F-actin) has long been considered a molecule that may regulate exo- and endocytosis. However, its exact roles remained elusive. Recent studies shed new light on many crucial roles of F-actin in regulating exo- and endocytosis. Here, this progress is reviewed from studies of secretory cells, particularly neurons and endocrine cells. These studies reveal that F-actin is involved in mediating all kinetically distinguishable forms of endocytosis, including ultrafast, fast, slow, bulk, and overshoot endocytosis, likely via membrane pit formation. F-actin promotes vesicle replenishment to the readily releasable pool most likely via active zone clearance, which may sustain synaptic transmission and overcome short-term depression of synaptic transmission during repetitive firing. By enhancing plasma membrane tension, F-actin promotes fusion pore expansion, vesicular content release, and a fusion mode called shrink fusion involving fusing vesicle shrinking. Not only F-actin, but also the F-actin assembly pathway, including ATP hydrolysis, N-WASH, and formin, are involved in mediating these roles of exo- and endocytosis. Neurological disorders, including spinocerebellar ataxia 13 caused by Kv3.3 channel mutation, may involve impairment of F-actin and its assembly pathway, leading in turn to impairment of exo- and endocytosis at synapses that may contribute to neurological disorders.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | | |
Collapse
|
5
|
Ivanova D, Cousin MA. Synaptic Vesicle Recycling and the Endolysosomal System: A Reappraisal of Form and Function. Front Synaptic Neurosci 2022; 14:826098. [PMID: 35280702 PMCID: PMC8916035 DOI: 10.3389/fnsyn.2022.826098] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
The endolysosomal system is present in all cell types. Within these cells, it performs a series of essential roles, such as trafficking and sorting of membrane cargo, intracellular signaling, control of metabolism and degradation. A specific compartment within central neurons, called the presynapse, mediates inter-neuronal communication via the fusion of neurotransmitter-containing synaptic vesicles (SVs). The localized recycling of SVs and their organization into functional pools is widely assumed to be a discrete mechanism, that only intersects with the endolysosomal system at specific points. However, evidence is emerging that molecules essential for endolysosomal function also have key roles within the SV life cycle, suggesting that they form a continuum rather than being isolated processes. In this review, we summarize the evidence for key endolysosomal molecules in SV recycling and propose an alternative model for membrane trafficking at the presynapse. This includes the hypotheses that endolysosomal intermediates represent specific functional SV pools, that sorting of cargo to SVs is mediated via the endolysosomal system and that manipulation of this process can result in both plastic changes to neurotransmitter release and pathophysiology via neurodegeneration.
Collapse
Affiliation(s)
- Daniela Ivanova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Daniela Ivanova,
| | - Michael A. Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Michael A. Cousin,
| |
Collapse
|
6
|
Control of Synapse Structure and Function by Actin and Its Regulators. Cells 2022; 11:cells11040603. [PMID: 35203254 PMCID: PMC8869895 DOI: 10.3390/cells11040603] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023] Open
Abstract
Neurons transmit and receive information at specialized junctions called synapses. Excitatory synapses form at the junction between a presynaptic axon terminal and a postsynaptic dendritic spine. Supporting the shape and function of these junctions is a complex network of actin filaments and its regulators. Advances in microscopic techniques have enabled studies of the organization of actin at synapses and its dynamic regulation. In addition to highlighting recent advances in the field, we will provide a brief historical perspective of the understanding of synaptic actin at the synapse. We will also highlight key neuronal functions regulated by actin, including organization of proteins in the pre- and post- synaptic compartments and endocytosis of ion channels. We review the evidence that synapses contain distinct actin pools that differ in their localization and dynamic behaviors and discuss key functions for these actin pools. Finally, whole exome sequencing of humans with neurodevelopmental and psychiatric disorders has identified synaptic actin regulators as key disease risk genes. We briefly summarize how genetic variants in these genes impact neurotransmission via their impact on synaptic actin.
Collapse
|
7
|
Peng YJ, Geng J, Wu Y, Pinales C, Langen J, Chang YC, Buser C, Chang KT. Minibrain kinase and calcineurin coordinate activity-dependent bulk endocytosis through synaptojanin. J Cell Biol 2021; 220:212674. [PMID: 34596663 PMCID: PMC8491876 DOI: 10.1083/jcb.202011028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Neurons use multiple modes of endocytosis, including clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE), during mild and intense neuronal activity, respectively, to maintain stable neurotransmission. While molecular players modulating CME are well characterized, factors regulating ADBE and mechanisms coordinating CME and ADBE activations remain poorly understood. Here we report that Minibrain/DYRK1A (Mnb), a kinase mutated in autism and up-regulated in Down's syndrome, plays a novel role in suppressing ADBE. We demonstrate that Mnb, together with calcineurin, delicately coordinates CME and ADBE by controlling the phosphoinositol phosphatase activity of synaptojanin (Synj) during varying synaptic demands. Functional domain analyses reveal that Synj's 5'-phosphoinositol phosphatase activity suppresses ADBE, while SAC1 activity is required for efficient ADBE. Consequently, Parkinson's disease mutation in Synj's SAC1 domain impairs ADBE. These data identify Mnb and Synj as novel regulators of ADBE and further indicate that CME and ADBE are differentially governed by Synj's dual phosphatase domains.
Collapse
Affiliation(s)
- Yi-Jheng Peng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Junhua Geng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ying Wu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Jennifer Langen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yen-Ching Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Karen T Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA.,Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
8
|
Kudryashova IV. The Reorganization of the Actin Matrix as a Factor of Presynaptic Plasticity. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421030089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Li TN, Chen YJ, Lu TY, Wang YT, Lin HC, Yao CK. A positive feedback loop between Flower and PI(4,5)P 2 at periactive zones controls bulk endocytosis in Drosophila. eLife 2020; 9:60125. [PMID: 33300871 PMCID: PMC7748424 DOI: 10.7554/elife.60125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
Synaptic vesicle (SV) endocytosis is coupled to exocytosis to maintain SV pool size and thus neurotransmitter release. Intense stimulation induces activity-dependent bulk endocytosis (ADBE) to recapture large quantities of SV constituents in large endosomes from which SVs reform. How these consecutive processes are spatiotemporally coordinated remains unknown. Here, we show that Flower Ca2+ channel-dependent phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) compartmentalization governs control of these processes in Drosophila. Strong stimuli trigger PI(4,5)P2 microdomain formation at periactive zones. Upon exocytosis, Flower translocates from SVs to periactive zones, where it increases PI(4,5)P2 levels via Ca2+ influxes. Remarkably, PI(4,5)P2 directly enhances Flower channel activity, thereby establishing a positive feedback loop for PI(4,5)P2 microdomain compartmentalization. PI(4,5)P2 microdomains drive ADBE and SV reformation from bulk endosomes. PI(4,5)P2 further retrieves Flower to bulk endosomes, terminating endocytosis. We propose that the interplay between Flower and PI(4,5)P2 is the crucial spatiotemporal cue that couples exocytosis to ADBE and subsequent SV reformation.
Collapse
Affiliation(s)
- Tsai-Ning Li
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Jung Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ting-Yi Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - You-Tung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsin-Chieh Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Kuang Yao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Reshetniak S, Rizzoli SO. Interrogating Synaptic Architecture: Approaches for Labeling Organelles and Cytoskeleton Components. Front Synaptic Neurosci 2019; 11:23. [PMID: 31507402 PMCID: PMC6716447 DOI: 10.3389/fnsyn.2019.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/02/2019] [Indexed: 01/06/2023] Open
Abstract
Synaptic transmission has been studied for decades, as a fundamental step in brain function. The structure of the synapse, and its changes during activity, turned out to be key aspects not only in the transfer of information between neurons, but also in cognitive processes such as learning and memory. The overall synaptic morphology has traditionally been studied by electron microscopy, which enables the visualization of synaptic structure in great detail. The changes in the organization of easily identified structures, such as the presynaptic active zone, or the postsynaptic density, are optimally studied via electron microscopy. However, few reliable methods are available for labeling individual organelles or protein complexes in electron microscopy. For such targets one typically relies either on combination of electron and fluorescence microscopy, or on super-resolution fluorescence microscopy. This review focuses on approaches and techniques used to specifically reveal synaptic organelles and protein complexes, such as cytoskeletal assemblies. We place the strongest emphasis on methods detecting the targets of interest by affinity binding, and we discuss the advantages and limitations of each method.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
- International Max Planck Research School for Molecular Biology, Göttingen, Germany
| | - Silvio O. Rizzoli
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Rampérez A, Bartolomé-Martín D, García-Pascual A, Sánchez-Prieto J, Torres M. Photoconversion of FM1-43 Reveals Differences in Synaptic Vesicle Recycling and Sensitivity to Pharmacological Disruption of Actin Dynamics in Individual Synapses. ACS Chem Neurosci 2019; 10:2045-2059. [PMID: 30763065 DOI: 10.1021/acschemneuro.8b00712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The cycling of synaptic vesicles ensures that neurons can communicate adequately through their synapses on repeated occasions when activity is sustained, and several steps in this cycle are modulated by actin. The effects of pharmacological stabilization of actin with jasplakinolide or its depolymerization with latrunculin A was assessed on the synaptic vesicle cycle at individual boutons of cerebellar granule cells, using FM1-43 imaging to track vesicle recycling and its photoconversion to specifically label recycled organelles. Remarkable differences in the recycling capacity of individual boutons are evident, and their dependence on the actin cytoskeleton for recycling is clear. Disrupting actin dynamics causes a loss of functional boutons, and while this indicates that exo/endocytotic cycling in boutons is fully dependent on such events, this dependence is only partial in other boutons. Indeed, exocytosis and vesicle trafficking are impaired significantly by stabilizing or depolymerizing actin, whereas repositioning recycled vesicles at the active zone seems to be dependent on actin polymerization alone. These findings support the hypothesis that different steps of synaptic vesicle cycling depend on actin dynamics and that such dependence varies among individual boutons.
Collapse
Affiliation(s)
- Alberto Rampérez
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - David Bartolomé-Martín
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Angeles García-Pascual
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Jose Sánchez-Prieto
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Magdalena Torres
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| |
Collapse
|
12
|
Activity-dependent bulk endocytosis proteome reveals a key presynaptic role for the monomeric GTPase Rab11. Proc Natl Acad Sci U S A 2018; 115:E10177-E10186. [PMID: 30301801 PMCID: PMC6205440 DOI: 10.1073/pnas.1809189115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The maintenance of neurotransmission by synaptic vesicle (SV) recycling is critical to brain function. The dominant SV recycling mode during intense activity is activity-dependent bulk endocytosis (ADBE), suggesting it will perform a pivotal role in neurotransmission. However, the role of ADBE is still undetermined, due to the absence of identified molecules specific for this process. The determination of the bulk endosome proteome (a key ADBE organelle) revealed that it has a unique molecular signature and identified a role for Rab11 in presynaptic function. This work provides the molecular inventory of ADBE, a resource that will be of significant value to researchers wishing to modulate neurotransmission during intense neuronal activity in both health and disease. Activity-dependent bulk endocytosis (ADBE) is the dominant mode of synaptic vesicle endocytosis during high-frequency stimulation, suggesting it should play key roles in neurotransmission during periods of intense neuronal activity. However, efforts in elucidating the physiological role of ADBE have been hampered by the lack of identified molecules which are unique to this endocytosis mode. To address this, we performed proteomic analysis on purified bulk endosomes, which are a key organelle in ADBE. Bulk endosomes were enriched via two independent approaches, a classical subcellular fractionation method and isolation via magnetic nanoparticles. There was a 77% overlap in proteins identified via the two protocols, and these molecules formed the ADBE core proteome. Bioinformatic analysis revealed a strong enrichment in cell adhesion and cytoskeletal and signaling molecules, in addition to expected synaptic and trafficking proteins. Network analysis identified Rab GTPases as a central hub within the ADBE proteome. Subsequent investigation of a subset of these Rabs revealed that Rab11 both facilitated ADBE and accelerated clathrin-mediated endocytosis. These findings suggest that the ADBE proteome will provide a rich resource for the future study of presynaptic function, and identify Rab11 as a regulator of presynaptic function.
Collapse
|
13
|
Role of Actin Filament on Synaptic Vesicle Pooling in Cultured Hippocampal Neuron. Appl Microsc 2018. [DOI: 10.9729/am.2018.48.3.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Rudling JE, Drever BD, Reid B, Bewick GS. Importance of Full-Collapse Vesicle Exocytosis for Synaptic Fatigue-Resistance at Rat Fast and Slow Muscle Neuromuscular Junctions. Int J Mol Sci 2018; 19:ijms19071936. [PMID: 30004407 PMCID: PMC6073735 DOI: 10.3390/ijms19071936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 11/16/2022] Open
Abstract
Neurotransmitter release during trains of activity usually involves two vesicle pools (readily releasable pool, or RRP, and reserve pool, or RP) and two exocytosis mechanisms (“full-collapse” and “kiss-and-run”). However, synaptic terminals are adapted to differing patterns of use and the relationship of these factors to enabling terminals to adapt to differing transmitter release demands is not clear. We have therefore tested their contribution to a terminal’s ability to maintain release, or synaptic fatiguability in motor terminals innervating fast-twitch (fatiguable), and postural slow-twitch (fatigue-resistant) muscles. We used electrophysiological recording of neurotransmission and fluorescent dye markers of vesicle recycling to compare the effects of kinase inhibitors of varying myosin light chain kinase (MLCK) selectivity (staurosporine, wortmannin, LY294002 & ML-9) on vesicle pools, exocytosis mechanisms, and sustained neurotransmitter release, using postural-type activity train (20 Hz for 10 min) in these muscles. In both muscles, a small, rapidly depleted vesicle pool (the RRP) was inhibitor insensitive, continuing to release FM1-43, which is a marker of full-collapse exocytosis. MLCK-inhibiting kinases blocked all remaining FM1-43 loss from labelled vesicles. However, FM2-10 release only slowed, indicating continuing kiss-and-run exocytosis. Despite this, kinase inhibitors did not affect transmitter release fatiguability under normal conditions. However, augmenting release in high Ca2+ entirely blocked the synaptic fatigue-resistance of terminals in slow-twitch muscles. Thus, full-collapse exocytosis from most vesicles (the RP) is not essential for maintaining release during a single prolonged train. However, it becomes critical in fatigue-resistant terminals during high vesicle demand.
Collapse
Affiliation(s)
- Jane E Rudling
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Benjamin D Drever
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Brian Reid
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Guy S Bewick
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
15
|
Lou X. Sensing Exocytosis and Triggering Endocytosis at Synapses: Synaptic Vesicle Exocytosis-Endocytosis Coupling. Front Cell Neurosci 2018; 12:66. [PMID: 29593500 PMCID: PMC5861208 DOI: 10.3389/fncel.2018.00066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/29/2022] Open
Abstract
The intact synaptic structure is critical for information processing in neural circuits. During synaptic transmission, rapid vesicle exocytosis increases the size of never terminals and endocytosis counteracts the increase. Accumulating evidence suggests that SV exocytosis and endocytosis are tightly connected in time and space during SV recycling, and this process is essential for synaptic function and structural stability. Research in the past has illustrated the molecular details of synaptic vesicle (SV) exocytosis and endocytosis; however, the mechanisms that timely connect these two fundamental events are poorly understood at central synapses. Here we discuss recent progress in SV recycling and summarize several emerging mechanisms by which synapses can “sense” the occurrence of exocytosis and timely initiate compensatory endocytosis. They include Ca2+ sensing, SV proteins sensing, and local membrane stress sensing. In addition, the spatial organization of endocytic zones adjacent to active zones provides a structural basis for efficient coupling between SV exocytosis and endocytosis. Through linking different endocytosis pathways with SV fusion, these mechanisms ensure necessary plasticity and robustness of nerve terminals to meet diverse physiological needs.
Collapse
Affiliation(s)
- Xuelin Lou
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
16
|
Wang J, Richards DA. The actin binding protein scinderin acts in PC12 cells to tether dense-core vesicles prior to secretion. Mol Cell Neurosci 2017; 85:12-18. [PMID: 28823945 DOI: 10.1016/j.mcn.2017.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Mechanistic understanding of the control of vesicle motion from within a secretory cell to the site of exocytosis remains incomplete. In this work, we have used total internal reflection (TIRF) microscopy to examine the mobility of secretory vesicles at the plasma membrane. Under resting conditions, we found vesicles showed little lateral mobility. Anchoring of vesicles in this membrane proximal compartment could be disrupted with latrunculin A, indicating an apparent actin dependent process. A candidate intermediary between vesicles and the actin skeleton is the actin binding protein scinderin. Co-transfection of an shRNA construct against scinderin blocked secretion, and also increased the mobility of vesicles in the membrane-proximal section of the cell, indicating a dual role for scinderin in secretion; tethering vesicles to the cytoskeleton, as well as liberating them following stimulation through the previously described calcium dependent actin severing activity. Analysis of lipid dependence indicates that scinderin exhibits calcium dependent binding to phosphatidyl-inositol monophosphate, providing a possible mechanism for vesicle binding.
Collapse
Affiliation(s)
- J Wang
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, MLC2001, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - D A Richards
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, MLC2001, 3333 Burnet Avenue, Cincinnati, OH 45229, United States; Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, 1 College Circle, Bangor, ME 04401, United States.
| |
Collapse
|
17
|
Gormal R, Valmas N, Fath T, Meunier F. A role for tropomyosins in activity-dependent bulk endocytosis? Mol Cell Neurosci 2017; 84:112-118. [PMID: 28545680 DOI: 10.1016/j.mcn.2017.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
Bulk endocytosis allows stimulated neurons to take up a large portion of the presynaptic plasma membrane in order to regenerate synaptic vesicle pools. Actin, one of the most abundant proteins in eukaryotic cells, plays an important role in this process, but a detailed mechanistic understanding of the involvement of the cortical actin network is still lacking, in part due to the relatively small size of nerve terminals and the limitation of optical microscopy. We recently discovered that neurosecretory cells display a similar, albeit much larger, form of bulk endocytosis in response to secretagogue stimulation. This allowed us to identify a novel highly dynamic role for the acto-myosin II cortex in generating constricting rings that precede the fission of nascent bulk endosomes. In this review we focus on the mechanism underpinning this dramatic switch in the organization and function of the cortical actin network. We provide additional experimental data that suggest a role of tropomyosin Tpm3.1 and Tpm4.2 in this process, together with an emerging model of how actin controls bulk endocytosis.
Collapse
Affiliation(s)
- Rachel Gormal
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| | - Nicholas Valmas
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia
| | - Thomas Fath
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Frederic Meunier
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
18
|
Actin Is Crucial for All Kinetically Distinguishable Forms of Endocytosis at Synapses. Neuron 2016; 92:1020-1035. [PMID: 27840001 DOI: 10.1016/j.neuron.2016.10.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 06/16/2016] [Accepted: 10/04/2016] [Indexed: 01/18/2023]
Abstract
Mechanical force is needed to mediate endocytosis. Whether actin, the most abundant force-generating molecule, is essential for endocytosis is highly controversial in mammalian cells, particularly synapses, likely due to the use of actin blockers, the efficiency and specificity of which are often unclear in the studied cell. Here we addressed this issue using a knockout approach combined with measurements of membrane capacitance and fission pore conductance, imaging of vesicular protein endocytosis, and electron microscopy. We found that two actin isoforms, β- and γ-actin, are crucial for slow, rapid, bulk, and overshoot endocytosis at large calyx-type synapses, and for slow endocytosis and bulk endocytosis at small hippocampal synapses. Polymerized actin provides mechanical force to form endocytic pits. Actin also facilitates replenishment of the readily releasable vesicle pool, likely via endocytic clearance of active zones. We conclude that polymerized actin provides mechanical force essential for all kinetically distinguishable forms of endocytosis at synapses.
Collapse
|
19
|
Mahapatra S, Lou X. Dynamin-1 deletion enhances post-tetanic potentiation and quantal size after tetanic stimulation at the calyx of Held. J Physiol 2016; 595:193-206. [PMID: 27229184 DOI: 10.1113/jp271937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/18/2016] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Post-tetanic potentiation (PTP) is attributed mainly to an increase in release probability (Pr ) and/or readily-releasable pool (RRP) in many synapses, but the role of endocytosis in PTP is unknown. Using the calyx of Held synapse from tissue-specific dynamin-1 knockout (cKO) mice (P16-20), we report that cKO synapses show enhanced PTP compared to control. We found significant increases in both spontaneous excitatory postsynaptic current (spEPSC) amplitude and RRP size (estimated by a train of 30 APs at 100 Hz) in cKO over control during PTP. Actin depolymerization blocks the increase in spEPSC amplitude in both control and cKO, and it abolishes the enhancement of PTP in cKO. PTP is sensitive to the PKC inhibitor GF109203X in both control and cKO. We conclude that an activity-dependent quantal size increase contributes to the enhancement of PTP in cKO over control and an altered endocytosis affects short-term plasticity through quantal size changes. ABSTRACT High-frequency stimulation leads to post-tetanic potentiation (PTP) at many types of synapses. Previous studies suggest that PTP results primarily from a protein kinase C (PKC)-dependent increase in release probability (Pr ) and/or readily-releasable pool (RRP) of synaptic vesicles (SVs), but the role of SV endocytosis in PTP is unknown. Using the mature calyx of Held (P16-20), we report that tissue-specific ablation of dynamin-1 (cKO), an endocytic protein crucial for SV regeneration, enhances PTP in cKO over control. To explore the mechanism of this enhancement, we estimated the changes in paired-pulse ratios (PPRs) and RRP size during PTP. RRP was estimated by the back-extrapolation of cumulative EPSC amplitudes during a train of 30 action potentials at 100 Hz (termed RRPtrain ). We found an increase in RRPtrain during PTP in both control and cKO, but no significant changes in the PPR. Moreover, the amplitude and frequency of spontaneous excitatory postsynaptic currents (spEPSCs) increased during PTP in both control and cKO; however, the spEPSC amplitude in cKO during PTP was significantly larger than in control. Actin depolymerization reagent latrunculin-B (Lat-B) abolished the activity-dependent increase in spEPSC amplitude in both control and cKO, but selectively blocked the enhancement of PTP in cKO, without affecting PTP in control. PKC inhibitor GF109203X nearly abolished PTP in both control and cKO. These data suggest that the quantal size increase contributes to the enhancement of PTP in dynamin-1 cKO, and this change depends on strong synaptic activity and actin polymerization.
Collapse
Affiliation(s)
- Satyajit Mahapatra
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xuelin Lou
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
20
|
Li L, Wu X, Yue HY, Zhu YC, Xu J. Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons. J Neurochem 2016; 138:60-73. [PMID: 27062289 DOI: 10.1111/jnc.13635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/27/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
At nerve terminals, endocytosis efficiently recycles vesicle membrane to maintain synaptic transmission under different levels of neuronal activity. Ca(2+) and its downstream signal pathways are critical for the activity-dependent regulation of endocytosis. An activity- and Ca(2+) -dependent kinase, myosin light chain kinase (MLCK) has been reported to regulate vesicle mobilization, vesicle cycling, and motility in different synapses, but whether it has a general contribution to regulation of endocytosis at nerve terminals remains unknown. We investigated this issue at rat hippocampal boutons by imaging vesicle endocytosis as the real-time retrieval of vesicular synaptophysin tagged with a pH-sensitive green fluorescence protein. We found that endocytosis induced by 200 action potentials (5-40 Hz) was slowed by acute inhibition of MLCK and down-regulation of MLCK with RNA interference, while the total amount of vesicle exocytosis and somatic Ca(2+) channel current did not change with MLCK down-regulation. Acute inhibition of myosin II similarly impaired endocytosis. Furthermore, down-regulation of MLCK prevented depolarization-induced phosphorylation of myosin light chain, an effect shared by blockers of Ca(2+) channels and calmodulin. These results suggest that MLCK facilitates vesicle endocytosis through activity-dependent phosphorylation of myosin downstream of Ca(2+) /calmodulin, probably as a widely existing mechanism among synapses. Our study suggests that MLCK is an important activity-dependent regulator of vesicle recycling in hippocampal neurons, which are critical for learning and memory. The kinetics of vesicle membrane endocytosis at nerve terminals has long been known to depend on activity and Ca(2+) . This study provides evidence suggesting that myosin light chain kinase increases endocytosis efficiency at hippocampal neurons by mediating Ca(2+) /calmodulin-dependent phosphorylation of myosin. The authors propose that this signal cascade may serve as a common pathway contributing to the activity-dependent regulation of vesicle endocytosis at synapses.
Collapse
Affiliation(s)
- Lin Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | - Xiaomei Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA.,Department of Neurochemistry, Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, China
| | - Hai-Yuan Yue
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | - Yong-Chuan Zhu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | - Jianhua Xu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA.,Department of Neurology, Medical College of Georgia, Augusta, Georgia, USA
| |
Collapse
|
21
|
Thimiri Govinda Raj DB, Khan NA. Designer nanoparticle: nanobiotechnology tool for cell biology. NANO CONVERGENCE 2016; 3:22. [PMID: 28191432 PMCID: PMC5271163 DOI: 10.1186/s40580-016-0082-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/29/2016] [Indexed: 05/17/2023]
Abstract
This article discusses the use of nanotechnology for subcellular compartment isolation and its application towards subcellular omics. This technology review significantly contributes to our understanding on use of nanotechnology for subcellular systems biology. Here we elaborate nanobiotechnology approach of using superparamagnetic nanoparticles (SPMNPs) optimized with different surface coatings for subcellular organelle isolation. Using pulse-chase approach, we review that SPMNPs interacted differently with the cell depending on its surface functionalization. The article focuses on the use of functionalized-SPMNPs as a nanobiotechnology tool to isolate high quality (both purity and yield) plasma membranes and endosomes or lysosomes. Such nanobiotechnology tool can be applied in generating subcellular compartment inventories. As a future perspective, this strategy could be applied in areas such as immunology, cancer and stem cell research.
Collapse
Affiliation(s)
- Deepak B. Thimiri Govinda Raj
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation and Unit of Virus Host-Cell Interactions (UVHCI), UJF-EMBL-CNRS, UMR 5233 Grenoble, France
- Envirotransgene Bio-solutions Global, Chennai, India
- Biotechnology Centre for Oslo, Centre for Molecular Medicine Norway (NCMM), P.O. Box 1137, Blindern, 0318 Oslo, Norway
| | - Niamat Ali Khan
- Laboratory of Lipid Metabolism and Cancer, O&N I, Herestraat 49, Box 902, 3000 Louvain, Belgium
| |
Collapse
|
22
|
Nicholson-Fish JC, Cousin MA, Smillie KJ. Phosphatidylinositol 3-Kinase Couples Localised Calcium Influx to Activation of Akt in Central Nerve Terminals. Neurochem Res 2015. [PMID: 26198194 PMCID: PMC4799249 DOI: 10.1007/s11064-015-1663-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The efficient retrieval of synaptic vesicle membrane and cargo in central nerve terminals is dependent on the efficient recruitment of a series of endocytosis modes by different patterns of neuronal activity. During intense neuronal activity the dominant endocytosis mode is activity-dependent endocytosis (ADBE). Triggering of ADBE is linked to calcineurin-mediated dynamin I dephosphorylation since the same stimulation intensities trigger both. Dynamin I dephosphorylation is maximised by a simultaneous inhibition of its kinase glycogen synthase kinase 3 (GSK3) by the protein kinase Akt, however it is unknown how increased neuronal activity is transduced into Akt activation. To address this question we determined how the activity-dependent increases in intracellular free calcium ([Ca2+]i) control activation of Akt. This was achieved using either trains of high frequency action potentials to evoke localised [Ca2+]i increases at active zones, or a calcium ionophore to raise [Ca2+]i uniformly across the nerve terminal. Through the use of either non-specific calcium channel antagonists or intracellular calcium chelators we found that Akt phosphorylation (and subsequent GSK3 phosphorylation) was dependent on localised [Ca2+]i increases at the active zone. In an attempt to determine mechanism, we antagonised either phosphatidylinositol 3-kinase (PI3K) or calmodulin. Activity-dependent phosphorylation of both Akt and GSK3 was arrested on inhibition of PI3K, but not calmodulin. Thus localised calcium influx in central nerve terminals activates PI3K via an unknown calcium sensor to trigger the activity-dependent phosphorylation of Akt and GSK3.
Collapse
Affiliation(s)
- Jessica C Nicholson-Fish
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, UK
| | - Michael A Cousin
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, UK
| | - Karen J Smillie
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, UK.
| |
Collapse
|
23
|
Yue HY, Xu J. Cholesterol regulates multiple forms of vesicle endocytosis at a mammalian central synapse. J Neurochem 2015; 134:247-60. [PMID: 25893258 DOI: 10.1111/jnc.13129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/01/2015] [Accepted: 03/31/2015] [Indexed: 01/10/2023]
Abstract
Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from non-specific effects after cholesterol manipulation. Furthermore, it remains unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole-cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase or methyl-β-cyclodextrin impaired three different forms of endocytosis, including slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca(2+) channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of methyl-β-cyclodextrin reduced exocytosis, mainly by decreasing the readily releasable pool and the vesicle replenishment after readily releasable pool depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses.
Collapse
Affiliation(s)
- Hai-Yuan Yue
- Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia, USA
| | - Jianhua Xu
- Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia, USA.,Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| |
Collapse
|
24
|
An acto-myosin II constricting ring initiates the fission of activity-dependent bulk endosomes in neurosecretory cells. J Neurosci 2015; 35:1380-9. [PMID: 25632116 DOI: 10.1523/jneurosci.3228-14.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent bulk endocytosis allows neurons to internalize large portions of the plasma membrane in response to stimulation. However, whether this critical type of compensatory endocytosis is unique to neurons or also occurs in other excitable cells is currently unknown. Here we used fluorescent 70 kDa dextran to demonstrate that secretagogue-induced bulk endocytosis also occurs in bovine chromaffin cells. The relatively large size of the bulk endosomes found in this model allowed us to investigate how the neck of the budding endosomes constricts to allow efficient recruitment of the fission machinery. Using time-lapse imaging of Lifeact-GFP-transfected chromaffin cells in combination with fluorescent 70 kDa dextran, we detected acto-myosin II rings surrounding dextran-positive budding endosomes. Importantly, these rings were transient and contracted before disappearing, suggesting that they might be involved in restricting the size of the budding endosome neck. Based on the complete recovery of dextran fluorescence after photobleaching, we demonstrated that the actin ring-associated budding endosomes were still connected with the extracellular fluid. In contrast, no such recovery was observed following the constriction and disappearance of the actin rings, suggesting that these structures were pinched-off endosomes. Finally, we showed that the rings were initiated by a circular array of phosphatidylinositol(4,5)bisphosphate microdomains, and that their constriction was sensitive to both myosin II and dynamin inhibition. The acto-myosin II rings therefore play a key role in constricting the neck of budding bulk endosomes before dynamin-dependent fission from the plasma membrane of neurosecretory cells.
Collapse
|
25
|
Delivery of nucleic acids and nanomaterials by cell-penetrating peptides: opportunities and challenges. BIOMED RESEARCH INTERNATIONAL 2015; 2015:834079. [PMID: 25883975 PMCID: PMC4391616 DOI: 10.1155/2015/834079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022]
Abstract
Many viral and nonviral systems have been developed to aid delivery of biologically active molecules into cells. Among these, cell-penetrating peptides (CPPs) have received increasing attention in the past two decades for biomedical applications. In this review, we focus on opportunities and challenges associated with CPP delivery of nucleic acids and nanomaterials. We first describe the nature of versatile CPPs and their interactions with various types of cargoes. We then discuss in vivo and in vitro delivery of nucleic acids and nanomaterials by CPPs. Studies on the mechanisms of cellular entry and limitations in the methods used are detailed.
Collapse
|
26
|
Capsaicin modulates acetylcholine release at the myoneural junction. Eur J Pharmacol 2014; 744:211-9. [PMID: 25446918 DOI: 10.1016/j.ejphar.2014.09.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 11/20/2022]
Abstract
Transient receptor potential (TRP) proteins are non-selective cation channel proteins that are expressed throughout the body. Previous studies demonstrated the expression of TRP Vanilloid 1 (TRPV1), capsaicin (CAP) receptor, in sensory neurons. Recently, we reported TRPV1 expression in mouse motor nerve terminals [MNTs; (Thyagarajan et al., 2009)], where we observed that CAP protected MNTs from botulinum neurotoxin A (BoNT/A). Phrenic nerve diaphragm nerve muscle preparations (NMP) isolated from isoflurane anesthetized adult mice were analyzed for twitch tension, spontaneous (mEPCs) and nerve stimulus evoked (EPCs) acetylcholine release. When acutely applied to isolated NMP, CAP produced a concentration-dependent decline of twitch tension and produced a significant decline in the amplitude of EPCs and quantal content without any effect on the mEPCs. The suppression of nerve stimulus evoked acetylcholine release by CAP was antagonized by capsazepine (CPZ), a TRPV1 antagonist. CAP did not suppress phrenic nerve stimulus evoked acetylcholine release in TRPV1 knockout mice. Also, CAP treatment, in vitro, interfered with the localization of adapter protein 2 in cholinergic Neuro 2a cells. Wortmannin, (WMN; non-selective phosphoinositol kinase inhibitor), mimicked the effects of CAP by inhibiting the acetylcholine exocytosis. Our data suggest that TRPV1 proteins expressed at the MNT are coupled to the exo-endocytic mechanisms to regulate neuromuscular functions.
Collapse
|
27
|
Santos MS, Foss SM, Park CK, Voglmaier SM. Protein interactions of the vesicular glutamate transporter VGLUT1. PLoS One 2014; 9:e109824. [PMID: 25334008 PMCID: PMC4198130 DOI: 10.1371/journal.pone.0109824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/08/2014] [Indexed: 11/18/2022] Open
Abstract
Exocytotic release of glutamate depends upon loading of the neurotransmitter into synaptic vesicles by vesicular glutamate transporters, VGLUTs. The major isoforms, VGLUT1 and 2, exhibit a complementary pattern of expression in synapses of the adult rodent brain that correlates with the probability of release and potential for plasticity. Indeed, expression of different VGLUT protein isoforms confers different properties of release probability. Expression of VGLUT1 or 2 protein also determines the kinetics of synaptic vesicle recycling. To identify molecular determinants that may be related to reported differences in VGLUT trafficking and glutamate release properties, we investigated some of the intrinsic differences between the two isoforms. VGLUT1 and 2 exhibit a high degree of sequence homology, but differ in their N- and C-termini. While the C-termini of VGLUT1 and 2 share a dileucine-like trafficking motif and a proline-, glutamate-, serine-, and threonine-rich PEST domain, only VGLUT1 contains two polyproline domains and a phosphorylation consensus sequence in a region of acidic amino acids. The interaction of a VGLUT1 polyproline domain with the endocytic protein endophilin recruits VGLUT1 to a fast recycling pathway. To identify trans-acting cellular proteins that interact with the distinct motifs found in the C-terminus of VGLUT1, we performed a series of in vitro biochemical screening assays using the region encompassing the polyproline motifs, phosphorylation consensus sites, and PEST domain. We identify interactors that belong to several classes of proteins that modulate cellular function, including actin cytoskeletal adaptors, ubiquitin ligases, and tyrosine kinases. The nature of these interactions suggests novel avenues to investigate the modulation of synaptic vesicle protein recycling.
Collapse
Affiliation(s)
- Magda S. Santos
- Department of Psychiatry, University of California San Francisco, School of Medicine, San Francisco, California, United States of America
| | - Sarah M. Foss
- Department of Psychiatry, University of California San Francisco, School of Medicine, San Francisco, California, United States of America
- Graduate Program in Cell Biology, University of California San Francisco, School of Medicine, San Francisco, California, United States of America
| | - C. Kevin Park
- Department of Psychiatry, University of California San Francisco, School of Medicine, San Francisco, California, United States of America
| | - Susan M. Voglmaier
- Department of Psychiatry, University of California San Francisco, School of Medicine, San Francisco, California, United States of America
| |
Collapse
|
28
|
Cousin MA. Synaptic Vesicle Endocytosis and Endosomal Recycling in Central Nerve Terminals: Discrete Trafficking Routes? Neuroscientist 2014; 21:413-23. [PMID: 25027635 DOI: 10.1177/1073858414542251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synaptic vesicle (SV) retrieval from the presynaptic plasma membrane occurs via a variety of different and complementary modes. The dominant retrieval mode during high-intensity stimulation is activity-dependent bulk endocytosis (ADBE). ADBE involves the generation of endosomes direct from the plasma membrane which then donate membrane and cargo to form SVs that replenish the reserve SV pool. Recent evidence has suggested that ADBE may involve an additional endosomal processing step to produce a mature, functional SV. This suggests that ADBE may utilize key molecules or indeed whole pathways from classical endocytic recycling routes that are ubiquitous across all cell types. This review will assess the current evidence for a contribution of endocytic recycling to the SV life cycle, with a particular focus on ADBE. In doing so it highlights points where both routes may either converge or exploit existing mechanisms to ensure efficient generation of SVs during high-intensity stimulation.
Collapse
Affiliation(s)
- Michael A Cousin
- Centre for Integrative Physiology, University of Edinburgh, Scotland, UK
| |
Collapse
|
29
|
Trouillon R, Ewing AG. Actin controls the vesicular fraction of dopamine released during extended kiss and run exocytosis. ACS Chem Biol 2014; 9:812-20. [PMID: 24400601 PMCID: PMC3985473 DOI: 10.1021/cb400665f] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
The effect of latrunculin A, an inhibitor
of actin cross-linking,
on exocytosis in PC12 cells was investigated with single cell amperometry.
This analysis strongly suggests that the actin cytoskeleton might
be involved in regulating exocytosis, especially by mediating the
constriction of the pore. In an extended kiss-and-run release mode,
actin could actually control the fraction of neurotransmitters released
by the vesicle. This scaffold appears to contribute, with the lipid
membrane and the protein machinery, to the closing dynamics of the
pore, in competition with other forces mediating the opening of the
exocytotic channel.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Department
of Chemistry and Molecular Biology, University of Gothenburg, S-41296 Gothenburg, Sweden
| | - Andrew G. Ewing
- Department
of Chemistry and Molecular Biology, University of Gothenburg, S-41296 Gothenburg, Sweden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Gothenburg, Sweden
| |
Collapse
|
30
|
Bulk endocytosis at neuronal synapses. SCIENCE CHINA-LIFE SCIENCES 2014; 57:378-83. [DOI: 10.1007/s11427-014-4636-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/24/2014] [Indexed: 12/16/2022]
|
31
|
Duvshani-Eshet M, Haber T, Machluf M. Insight concerning the mechanism of therapeutic ultrasound facilitating gene delivery: increasing cell membrane permeability or interfering with intracellular pathways? Hum Gene Ther 2014; 25:156-64. [PMID: 24251908 PMCID: PMC3922141 DOI: 10.1089/hum.2013.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 11/15/2013] [Indexed: 11/12/2022] Open
Abstract
Nonviral gene delivery methods encounter major barriers in plasmid DNA (pDNA) trafficking toward the nucleus. The present study aims to understand the role and contribution of therapeutic ultrasound (TUS), if any, in pDNA trafficking in primary cells such as fibroblasts and cell lines (e.g., baby hamster kidney [BHK]) during the transfection process. Using compounds that alter the endocytic pathways and the cytoskeletal network, we show that after TUS application, pDNA trafficking in the cytoplasm is not mediated by endocytosis or by the cytoskeletal network. Transfection studies and confocal analyses showed that the actin fibers impeded TUS-mediated transfection in BHK cells, but not in fibroblasts. Flow cytometric analyses indicated that pDNA uptake by cells occurs primarily when the pDNA is added before and not after TUS application. Taken together, these results suggest that TUS by itself operates as a mechanical force driving the pDNA through the cell membrane, traversing the cytoplasmic network and into the nucleus.
Collapse
Affiliation(s)
- Maayan Duvshani-Eshet
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology , Haifa 32000, Israel
| | | | | |
Collapse
|
32
|
Dason JS, Smith AJ, Marin L, Charlton MP. Cholesterol and F-actin are required for clustering of recycling synaptic vesicle proteins in the presynaptic plasma membrane. J Physiol 2013; 592:621-33. [PMID: 24297851 DOI: 10.1113/jphysiol.2013.265447] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Synaptic vesicles (SVs) and their proteins must be recycled for sustained synaptic transmission. We tested the hypothesis that SV cholesterol is required for proper sorting of SV proteins during recycling in live presynaptic terminals. We used the reversible block of endocytosis in the Drosophila temperature-sensitive dynamin mutant shibire-ts1 to trap exocytosed SV proteins, and then examined the effect of experimental treatments on the distribution of these proteins within the presynaptic plasma membrane by confocal microscopy. SV proteins synaptotagmin, vglut and csp were clustered following SV trapping in control experiments but dispersed in samples treated with the cholesterol chelator methyl-β-cyclodextrin to extract SV cholesterol. There was accumulation of phosphatidylinositol (4,5)-bisphosphate (PIP2) in presynaptic terminals following SV trapping and this was reduced following SV cholesterol extraction. Reduced PIP2 accumulation was associated with disrupted accumulation of actin in presynaptic terminals. Similar to vesicular cholesterol extraction, disruption of actin by latrunculin A after SV proteins had been trapped on the plasma membrane resulted in the dispersal of SV proteins and prevented recovery of synaptic transmission due to impaired endocytosis following relief of the endocytic block. Our results demonstrate that vesicular cholesterol is required for aggregation of exocytosed SV proteins in the presynaptic plasma membrane and are consistent with a mechanism involving regulation of PIP2 accumulation and local actin polymerization by cholesterol. Thus, alteration of membrane or SV lipids may affect the ability of synapses to undergo sustained synaptic transmission by compromising the recycling of SV proteins.
Collapse
Affiliation(s)
- Jeffrey S Dason
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.
| | | | | | | |
Collapse
|
33
|
Zhao L, Wang D, Wang Q, Rodal AA, Zhang YQ. Drosophila cyfip regulates synaptic development and endocytosis by suppressing filamentous actin assembly. PLoS Genet 2013; 9:e1003450. [PMID: 23593037 PMCID: PMC3616907 DOI: 10.1371/journal.pgen.1003450] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/28/2013] [Indexed: 01/06/2023] Open
Abstract
The formation of synapses and the proper construction of neural circuits depend on signaling pathways that regulate cytoskeletal structure and dynamics. After the mutual recognition of a growing axon and its target, multiple signaling pathways are activated that regulate cytoskeletal dynamics to determine the morphology and strength of the connection. By analyzing Drosophila mutations in the cytoplasmic FMRP interacting protein Cyfip, we demonstrate that this component of the WAVE complex inhibits the assembly of filamentous actin (F-actin) and thereby regulates key aspects of synaptogenesis. Cyfip regulates the distribution of F-actin filaments in presynaptic neuromuscular junction (NMJ) terminals. At cyfip mutant NMJs, F-actin assembly was accelerated, resulting in shorter NMJs, more numerous satellite boutons, and reduced quantal content. Increased synaptic vesicle size and failure to maintain excitatory junctional potential amplitudes under high-frequency stimulation in cyfip mutants indicated an endocytic defect. cyfip mutants exhibited upregulated bone morphogenetic protein (BMP) signaling, a major growth-promoting pathway known to be attenuated by endocytosis at the Drosophila NMJ. We propose that Cyfip regulates synapse development and endocytosis by inhibiting actin assembly. Synapses are specialized junctions at which neurons communicate with target cells. To establish properly wired neuronal circuits, synapses must grow in size and strength with a high degree of accuracy. The actin cytoskeleton plays a crucial role in the formation and function of synapses, but the underlying mechanisms remain poorly understood. The Drosophila neuromuscular junction (NMJ) is an excellent model for studying synaptic development and function. By analyzing Drosophila mutants of the cytoplasmic FMRP interacting protein Cyfip, we establish that this protein inhibits the assembly of filamentous actin (F-actin). At cyfip mutant NMJ synapses, F-actin assembly was accelerated and NMJ terminals were shorter and grew supernumerary buds. Furthermore, neurotransmission was not sustained under high-frequency stimulation. These changes could be caused by defects in synaptic endocytosis, which would compromise the endocytic attenuation of signaling pathways such as the NMJ growth-promoting bone morphogenetic protein (BMP) pathway. Indeed, BMP signaling was upregulated in cyfip mutants. We propose that Cyfip regulates synaptic development and function by inhibiting F-actin assembly, which in turn downregulates BMP signaling via endocytosis. This study establishes a novel role for Cyfip-mediated regulation of the actin cytoskeleton at the Drosophila NMJ.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
34
|
Nguyen TH, Maucort G, Sullivan RKP, Schenning M, Lavidis NA, McCluskey A, Robinson PJ, Meunier FA. Actin- and dynamin-dependent maturation of bulk endocytosis restores neurotransmission following synaptic depletion. PLoS One 2012; 7:e36913. [PMID: 22629340 PMCID: PMC3358275 DOI: 10.1371/journal.pone.0036913] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 04/09/2012] [Indexed: 11/18/2022] Open
Abstract
Bulk endocytosis contributes to the maintenance of neurotransmission at the amphibian neuromuscular junction by regenerating synaptic vesicles. How nerve terminals internalize adequate portions of the presynaptic membrane when bulk endocytosis is initiated before the end of a sustained stimulation is unknown. A maturation process, occurring at the end of the stimulation, is hypothesised to precisely restore the pools of synaptic vesicles. Using confocal time-lapse microscopy of FM1-43-labeled nerve terminals at the amphibian neuromuscular junction, we confirm that bulk endocytosis is initiated during a sustained tetanic stimulation and reveal that shortly after the end of the stimulation, nerve terminals undergo a maturation process. This includes a transient bulging of the plasma membrane, followed by the development of large intraterminal FM1-43-positive donut-like structures comprising large bulk membrane cisternae surrounded by recycling vesicles. The degree of bulging increased with stimulation frequency and the plasmalemma surface retrieved following the transient bulging correlated with the surface membrane internalized in bulk cisternae and recycling vesicles. Dyngo-4a, a potent dynamin inhibitor, did not block the initiation, but prevented the maturation of bulk endocytosis. In contrast, cytochalasin D, an inhibitor of actin polymerization, hindered both the initiation and maturation processes. Both inhibitors hampered the functional recovery of neurotransmission after synaptic depletion. Our data confirm that initiation of bulk endocytosis occurs during stimulation and demonstrates that a delayed maturation process controlled by actin and dynamin underpins the coupling between exocytosis and bulk endocytosis.
Collapse
Affiliation(s)
- Tam H. Nguyen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Guillaume Maucort
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert K. P. Sullivan
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Mitja Schenning
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nickolas A. Lavidis
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
| | - Phillip J. Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Frederic A. Meunier
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
35
|
Bleckert A, Photowala H, Alford S. Dual pools of actin at presynaptic terminals. J Neurophysiol 2012; 107:3479-92. [PMID: 22457456 DOI: 10.1152/jn.00789.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated actin's function in vesicle recycling and exocytosis at lamprey synapses and show that FM1-43 puncta and phalloidin-labeled filamentous actin (F-actin) structures are colocalized, yet recycling vesicles are not contained within F-actin clusters. Additionally, phalloidin also labels a plasma membrane-associated cortical actin. Injection of fluorescent G-actin revealed activity-independent dynamic actin incorporation into presynaptic synaptic vesicle clusters but not into cortical actin. Latrunculin-A, which sequesters G-actin, dispersed vesicle-associated actin structures and prevented subsequent labeled G-actin and phalloidin accumulation at presynaptic puncta, yet cortical phalloidin labeling persisted. Dispersal of presynaptic F-actin structures by latrunculin-A did not disrupt vesicle clustering or recycling or alter the amplitude or kinetics of excitatory postsynaptic currents (EPSCs). However, it slightly enhanced release during repetitive stimulation. While dispersal of presynaptic actin puncta with latrunculin-A failed to disperse synaptic vesicles or inhibit synaptic transmission, presynaptic phalloidin injection blocked exocytosis and reduced endocytosis measured by action potential-evoked FM1-43 staining. Furthermore, phalloidin stabilization of only cortical actin following pretreatment with latrunculin-A was sufficient to inhibit synaptic transmission. Conversely, treatment of axons with jasplakinolide, which induces F-actin accumulation but disrupts F-actin structures in vivo, resulted in increased synaptic transmission accompanied by a loss of phalloidin labeling of cortical actin but no loss of actin labeling within vesicle clusters. Marked synaptic deficits seen with phalloidin stabilization of cortical F-actin, in contrast to the minimal effects of disruption of a synaptic vesicle-associated F-actin, led us to conclude that two structurally and functionally distinct pools of actin exist at presynaptic sites.
Collapse
Affiliation(s)
- Adam Bleckert
- Dept. of Biological Sciences, Univ. of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
36
|
Abstract
Synaptic transmission is amongst the most sophisticated and tightly controlled biological phenomena in higher eukaryotes. In the past few decades, tremendous progress has been made in our understanding of the molecular mechanisms underlying multiple facets of neurotransmission, both pre- and postsynaptically. Brought under the spotlight by pioneer studies in the areas of secretion and signal transduction, phosphoinositides and their metabolizing enzymes have been increasingly recognized as key protagonists in fundamental aspects of neurotransmission. Not surprisingly, dysregulation of phosphoinositide metabolism has also been implicated in synaptic malfunction associated with a variety of brain disorders. In the present chapter, we summarize current knowledge on the role of phosphoinositides at the neuronal synapse and highlight some of the outstanding questions in this research field.
Collapse
Affiliation(s)
- Samuel G Frere
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, P&S 12-420C, 10032, New York, USA
| | | | | |
Collapse
|
37
|
Wang J, Richards DA. Spatial regulation of exocytic site and vesicle mobilization by the actin cytoskeleton. PLoS One 2011; 6:e29162. [PMID: 22195014 PMCID: PMC3237607 DOI: 10.1371/journal.pone.0029162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/22/2011] [Indexed: 01/31/2023] Open
Abstract
Numerous studies indicate a role for the actin cytoskeleton in secretion. Here, we have used evanescent wave and widefield fluorescence microscopy to study the involvement of the actin cytoskeleton in secretion from PC12 cells. Secretion was assayed as loss of ANF-EmGFP in widefield mode. Under control conditions, depolarization induced secretion showed two phases: an initial rapid rate of loss of vesicular cargo (tau = 1.4 s), followed by a slower, sustained drop in fluorescence (tau = 34.1 s). Pretreatment with Latrunculin A changed the kinetics to a single exponential, slightly faster than the fast component of control cells (1.2 s). Evanescent wave microscopy allowed us to examine this at the level of individual events, and revealed equivalent changes in the rates of vesicular arrival at the plasma membrane immediately following and during the sustained phase of release. Co-transfection of mCherry labeled β-actin and ANF-EmGFP demonstrated that sites of exocytosis had an inverse relationship with sites of actin enrichment. Disruption of visualized actin at the membrane resulted in the loss of specificity of exocytic site.
Collapse
Affiliation(s)
- Jie Wang
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - David A. Richards
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
38
|
Abstract
Filamentous (F)-actin is a known regulator of the synaptic vesicle (SV) cycle, with roles in SV mobilization, fusion, and endocytosis. However, the molecular pathways that regulate its dynamic assembly within presynaptic boutons remain unclear. In this study, we have used shRNA-mediated knockdown to demonstrate that Piccolo, a multidomain protein of the active zone cytomatrix, is a key regulator of presynaptic F-actin assembly. Boutons lacking Piccolo exhibit enhanced activity-dependent Synapsin1a dispersion and SV exocytosis, and reduced F-actin polymerization and CaMKII recruitment. These phenotypes are rescued by stabilizing F-actin filaments and mimicked by knocking down Profilin2, another regulator of presynaptic F-actin assembly. Importantly, we find that mice with a targeted deletion of exon 14 from the Pclo gene, reported to lack >95% of Piccolo, continue to express multiple Piccolo isoforms. Furthermore, neurons cultured from these mice exhibit no defects in presynaptic F-actin assembly due to the expression of these isoforms at presynaptic boutons. These data reveal that Piccolo regulates neurotransmitter release by facilitating activity-dependent F-actin assembly and the dynamic recruitment of key signaling molecules into presynaptic boutons, and highlight the need for new genetic models with which to study Piccolo loss of function.
Collapse
|
39
|
Gaffield MA, Romberg CF, Betz WJ. Live imaging of bulk endocytosis in frog motor nerve terminals using FM dyes. J Neurophysiol 2011; 106:599-607. [PMID: 21543750 DOI: 10.1152/jn.00123.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We observed endocytosis in real time in stimulated frog motor nerve terminals by imaging the growth of large membrane infoldings labeled with a low concentration of FM dye. The spatial and temporal information made available by these experiments allowed us to image several new aspects of this synaptic vesicle recycling pathway. Membrane infoldings appeared near synaptic vesicle clusters and grew rapidly during long-duration, high-frequency stimulation. In some cases, we observed large, elongated infoldings growing laterally into the terminal. We used these observations to calculate infolding growth rates. A decrease in stimulation frequency caused a decrease in growth rates, but the overall length of these structures was unaffected by frequency changes. Attempts to wash the dye from these infoldings after stimulation were unsuccessful, demonstrating that the fluorescent structures had been endocytosed. We also used this technique to trigger and image infoldings during repeated, short trains. We found that membrane uptake occurred repeatedly at individual endocytosis sites, but only during a portion of the total number of trains delivered to the terminal. Finally, we showed that phosphatidylinositol 3-kinase, but not actin, was involved in this endocytosis pathway. The ability to monitor many individual bulk endocytosis sites in real time should allow for new types of endocytosis measurements and could reveal novel and unexpected mechanisms for coordinating membrane recovery during synaptic activity.
Collapse
Affiliation(s)
- Michael A Gaffield
- Department of Physiology and Biophysics, University of Colorado-Denver, Anshutz Medical Campus, Aurora, CO 80045, USA
| | | | | |
Collapse
|
40
|
Seabrooke S, Stewart BA. Synaptic transmission and plasticity are modulated by nonmuscle myosin II at the neuromuscular junction of Drosophila. J Neurophysiol 2011; 105:1966-76. [PMID: 21325687 DOI: 10.1152/jn.00718.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The synaptic vesicle population in a nerve terminal is traditionally divided into subpopulations according to physiological criteria; the readily releasable pool (RRP), the recycling pool, and the reserve pool. It is recognized that the RRP subserves synaptic transmission evoked by low-frequency neural activity and that the recycling and reserve populations are called on to supply vesicles as neural activity increases. Here we investigated the contribution of nonmuscle myosin II (NMMII) to synaptic transmission with emphasis on the role a motor protein could play in the supply of vesicles. We used Drosophila genetics to manipulate NMMII and assessed synaptic transmission at the larval neuromuscular junction. We observed a positive correlation between synaptic strength at low-frequency stimulation and NMMII expression: reducing NMMII reduced the evoked response, while increasing NMMII increased the evoked response. Further, we found that NMMII contributed to the spontaneous release of vesicles differentially from evoked release, suggesting differential contribution to these two release mechanisms. By measuring synaptic responses under conditions of differing external calcium concentration in saline, we found that NMMII is important for normal synaptic transmission under high-frequency stimulation. This research identifies diverse functions for NMMII in synaptic transmission and suggests that this motor protein is an active contributor to the physiology of synaptic vesicle recruitment.
Collapse
Affiliation(s)
- Sara Seabrooke
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | | |
Collapse
|
41
|
Wen P, Osborne S, Meunier F. Dynamic control of neuroexocytosis by phosphoinositides in health and disease. Prog Lipid Res 2011; 50:52-61. [DOI: 10.1016/j.plipres.2010.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/02/2010] [Indexed: 10/19/2022]
|
42
|
Cabeza JM, Acosta J, Alés E. Dynamics and regulation of endocytotic fission pores: role of calcium and dynamin. Traffic 2010; 11:1579-90. [PMID: 20840456 DOI: 10.1111/j.1600-0854.2010.01120.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although endocytosis involves the fission pore, a transient structure that produces the scission between vesicle and plasma membranes, the dimensions and dynamics of fission pores remain unclear. Here we report that the pore resistance changes proceed in three distinct phases: an initial phase where the resistance increases at 31.7 ± 2.9 GΩ/second, a slower linear phase with an overall slope of 11.7 ± 1.9 GΩ/second and a final increase in resistance more steeply (1189 ± 136 GΩ/second). The kinetics of these changes was calcium dependent. These sequential stages of the fission pore may be interpreted in terms of pore geometry as changes, first in pore diameter and then in pore length, according to which, before fission, the pore diameter consistently decreased to a value near 4 nm, whereas the pore length ranged between 20 and 300 nm. Dynamin, a mechanochemical GTPase, plays an important role in accelerating the fission event, preferentially in endocytotic vesicles of regular size, by increasing the rates of pore closure during the first and second phases of the fission pore, but hardly affected larger and longer-lived endocytotic events. These results suggest that fission pores are dynamic structures that form thin and long membrane necks regulated by intracellular calcium. Between calcium mediators, dynamin functions as a catalyst to increase the speed of single vesicle endocytosis.
Collapse
Affiliation(s)
- José María Cabeza
- Departamento Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Av. Sánchez Pizjuán 4, 41009 Sevilla, Spain
| | | | | |
Collapse
|
43
|
Oliphint PA, Alieva N, Foldes AE, Tytell ED, Lau BYB, Pariseau JS, Cohen AH, Morgan JR. Regenerated synapses in lamprey spinal cord are sparse and small even after functional recovery from injury. J Comp Neurol 2010; 518:2854-72. [PMID: 20506479 DOI: 10.1002/cne.22368] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite the potential importance that synapse regeneration plays in restoring neuronal function after spinal cord injury (SCI), even the most basic questions about the morphology of regenerated synapses remain unanswered. Therefore, we set out to gain a better understanding of central synapse regeneration by examining the number, distribution, molecular composition, and ultrastructure of regenerated synapses under conditions in which behavioral recovery from SCI was robust. To do so, we used the giant reticulospinal (RS) neurons of lamprey spinal cord because they readily regenerate, are easily identifiable, and contain large synapses that serve as a classic model for vertebrate excitatory neurotransmission. Using a combination of light and electron microscopy, we found that regenerated giant RS synapses regained the basic structures and presynaptic organization observed at control giant RS synapses at a time when behavioral recovery was nearly complete. However, several obvious differences remained. Most strikingly, regenerated giant RS axons produced very few synapses. In addition, presynaptic sites within regenerated axons were less complex, had fewer vesicles, and had smaller active zones than normal. In contrast, the densities of presynapses and docked vesicles were nearly restored to control values. Thus, robust functional recovery from SCI can occur even when the structures of regenerated synapses are sparse and small, suggesting that functional recovery is due to a more complex set of compensatory changes throughout the spinal network.
Collapse
Affiliation(s)
- Paul A Oliphint
- Section of Molecular Cell and Developmental Biology; Institute for Cell and Molecular Biology, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Akbergenova Y, Bykhovskaia M. Synapsin regulates vesicle organization and activity-dependent recycling at Drosophila motor boutons. Neuroscience 2010; 170:441-52. [PMID: 20638447 DOI: 10.1016/j.neuroscience.2010.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 07/08/2010] [Accepted: 07/12/2010] [Indexed: 11/28/2022]
Abstract
Synapsin is a phosphoprotein reversibly associated with synaptic vesicles. We investigated synapsin function in mediating synaptic activity during intense stimulation at Drosophila motor boutons. Electron microscopy analysis of synapsin(-) boutons demonstrated that synapsin maintains vesicle clustering over the periphery of the bouton. Cyclosporin A pretreatment disrupted peripheral vesicle clustering, presumably due to increasing synapsin phosphorylated state. Labeling recycling vesicles with a fluorescent dye FM1-43 followed by photoconversion of the dye into electron dense product demonstrated that synapsin deficiency does not affect mixing of the reserve and recycling vesicle pools but selectively reduces the size of the reserve pool. Intense stimulation produced a significant increase in vesicle abundance and vesicle redistribution toward the central core of synapsin (+) boutons, while in synapsin (-) boutons the area occupied by vesicles did not change and the increase in vesicle numbers was not as prominent. However, intense stimulation produced an increase in basal release at synapsin(-) but not in synapsin(+) boutons, suggesting that synapsin may direct vesicles to the reserve pool. Finally, synapsin deficiency inhibited an increase in quantal size and formation of endosome-like cisternae, which was activated either by intense electrical stimulation or by high K(+) application. Taken together, these results elucidate a novel synapsin function, specifically, promoting vesicle reuptake and reserve pool formation upon intense stimulation.
Collapse
Affiliation(s)
- Y Akbergenova
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA
| | | |
Collapse
|
45
|
Comparison of two dimensional electrophoresis mouse colon proteomes before and after knocking out Aquaporin 8. J Proteomics 2010; 73:2031-40. [PMID: 20619372 DOI: 10.1016/j.jprot.2010.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/09/2010] [Accepted: 06/23/2010] [Indexed: 12/28/2022]
Abstract
Aquaporin (AQP) family plays a fundamental role in transmembrane water and small solutes movement. Within this family, aquaporin 8 (AQP8), showed to be widely distributed in the digestive system especially colon. To investigate the possible protein alterations involved in AQP8 regulation and trafficking, we extensively compared between wild type and AQP8 knockout mouse colon using semi-quantitative fluorescence- stained two dimensional gel electrophoresis (2-DE) coupled with nano LC-Ms/Ms. Our analysis revealed identification and regulation of 21 proteins, most notably, actin-related family which suggests its possible involvement in regulating AQP8 secretory vesicles migration to be integrated as a cell membrane protein.
Collapse
|
46
|
Activity-dependent bulk endocytosis and clathrin-dependent endocytosis replenish specific synaptic vesicle pools in central nerve terminals. J Neurosci 2010; 30:8151-61. [PMID: 20554865 DOI: 10.1523/jneurosci.0293-10.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple synaptic vesicle (SV) retrieval modes exist in central nerve terminals to maintain a continual supply of SVs for neurotransmission. Two such modes are clathrin-mediated endocytosis (CME), which is dominant during mild neuronal activity, and activity-dependent bulk endocytosis (ADBE), which is dominant during intense neuronal activity. However, little is known about how activation of these SV retrieval modes impact the replenishment of the total SV recycling pool and the pools that reside within it, the readily releasable pool (RRP) and reserve pool. To address this question, we examined the replenishment of all three SV pools by triggering these SV retrieval modes during both high- and low-intensity stimulation of primary rat neuronal cultures. SVs generated by CME and ADBE were differentially labeled using the dyes FM1-43 and FM2-10, and their replenishment of specific SV pools was quantified using stimulation protocols that selectively depleted each pool. Our studies indicate that while the RRP was replenished by CME-generated SVs, ADBE provided additional SVs to increase the capacity of the reserve pool. Morphological analysis of the uptake of the fluid phase marker horseradish peroxidase corroborated these findings. The differential replenishment of specific SV pools by independent SV retrieval modes illustrates how previously experienced neuronal activity impacts the capability of central nerve terminals to respond to future stimuli.
Collapse
|
47
|
Nesher M, Shpolansky U, Viola N, Dvela M, Buzaglo N, Cohen Ben-Ami H, Rosen H, Lichtstein D. Ouabain attenuates cardiotoxicity induced by other cardiac steroids. Br J Pharmacol 2010; 160:346-54. [PMID: 20423344 DOI: 10.1111/j.1476-5381.2010.00701.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE All cardiac steroids have a similar structure, bind to and inhibit the ubiquitous transmembrane protein Na(+), K(+)-ATPase and increase the force of contraction of heart muscle. However, there are diverse biological responses to different cardiac steroids both at the cellular and at the molecular level. Moreover, we have recently shown that ouabain inhibits digoxin- and bufalin-induced changes in membrane traffic. The present study was designed to test the hypothesis that ouabain also has an inhibitory effect on cardiotoxicity induced by other cardiac steroids. EXPERIMENTAL APPROACH The hypothesis was tested in isolated heart muscle preparations and in an in vivo model of cardiotoxicity in guinea pigs. KEY RESULTS Ouabain at a low dose attenuated the toxicity induced by bufalin and digoxin in heart muscle preparations. In addition, ouabain at the low dose (91 ng.kg(-1).h(-1)), but not at a higher dose (182 ng.kg(-1).h(-1)), delayed the development of digoxin-induced (500 microg.kg(-1).h(-1)) cardiotoxicity in anaesthetized guinea pigs, as manifested by delayed arrhythmia and terminal ventricular fibrillation, as well as a reduced heart rate. In addition, as observed with ouabain, the phosphoinositide 3-kinase inhibitor wortmannin (100 microg.kg(-1).h(-1)) delayed the digoxin-induced arrhythmia in anaesthetized guinea pigs. CONCLUSIONS AND IMPLICATIONS The present study demonstrates the inhibitory effect, probably through signal transduction pathways, of ouabain on digoxin- and bufalin-induced cardiotoxicity in guinea pigs. Further understanding of this phenomenon could be beneficial for increasing the therapeutic window for cardiac steroids in the treatment of chronic heart failure.
Collapse
Affiliation(s)
- M Nesher
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Central nerve terminals release neurotransmitter in response to a wide variety of stimuli. Because maintenance of neurotransmitter release is dependent on the continual supply of synaptic vesicles (SVs), nerve terminals possess an array of endocytosis modes to retrieve and recycle SV membrane and proteins. During mild stimulation conditions, single SV retrieval modes such as clathrin-mediated endocytosis predominate. However, during increased neuronal activity, additional SV retrieval capacity is required, which is provided by activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mechanism during elevated neuronal activity. It is a high capacity SV retrieval mode that is immediately triggered during such stimulation conditions. This review will summarize the current knowledge regarding the molecular mechanism of ADBE, including molecules required for its triggering and subsequent steps, including SV budding from bulk endosomes. The molecular relationship between ADBE and the SV reserve pool will also be discussed. It is becoming clear that an understanding of the molecular physiology of ADBE will be of critical importance in attempts to modulate both normal and abnormal synaptic function during intense neuronal activity.
Collapse
Affiliation(s)
- Emma L. Clayton
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Scotland, U.K
| | - Michael A. Cousin
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Scotland, U.K
| |
Collapse
|
49
|
Abstract
Transmitter release at high probability phasic synapses of crayfish neuromuscular junctions depresses by over 50% in 60 min when stimulated at 0.2 Hz. Inhibition of the protein phosphatase calcineurin by intracellular pre-synaptic injection of autoinhibitory peptide inhibited low-frequency depression (LFD) and resulted in facilitation of transmitter release. Since this inhibitor had no major effects when injected into the post-synaptic cell, only pre-synaptic calcineurin activity is necessary for LFD. To examine changes in phosphoproteins during LFD we performed a phosphoproteomic screen on proteins extracted from motor axons and nerve terminals after LFD induction or treatment with various drugs that affect kinase and phosphatase activity. Proteins separated by PAGE were stained with phospho-specific/total protein ratio stains (Pro-Q Diamond/SYPRO Ruby) to identify protein bands for analysis by mass spectrometry. Phosphorylation of actin and tubulin decreased during LFD, but increased when calcineurin was blocked. Tubulin and phosphoactin immunoreactivity in pre-synaptic terminals were also reduced after LFD. The actin depolymerizing drugs cytochalasin and latrunculin and the microtubule stabilizer taxol inhibited LFD. Therefore, dephosphorylation of pre-synaptic actin and tubulin and consequent changes in the cytoskeleton may regulate LFD. LFD is unlike long-term depression found in mammalian synapses because the latter requires in most instances post-synaptic calcineurin activity.Thus, this simpler invertebrate synapse discloses a novel pre-synaptic depression mechanism.
Collapse
|
50
|
Vijayakrishnan N, Woodruff EA, Broadie K. Rolling blackout is required for bulk endocytosis in non-neuronal cells and neuronal synapses. J Cell Sci 2008; 122:114-25. [PMID: 19066280 DOI: 10.1242/jcs.036673] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rolling blackout (RBO) is a Drosophila EFR3 integral membrane lipase. A conditional temperature-sensitive (TS) mutant (rbo(ts)) displays paralysis within minutes following a temperature shift from 25 degrees C to 37 degrees C, an impairment previously attributed solely to blocked synaptic-vesicle exocytosis. However, we found that rbo(ts) displays a strong synergistic interaction with the Syntaxin-1A TS allele syx(3-69), recently shown to be a dominant positive mutant that increases Syntaxin-1A function. At neuromuscular synapses, rbo(ts) showed a strong defect in styryl-FM-dye (FM) endocytosis, and rbo(ts);syx(3-69) double mutants displayed a synergistic, more severe, endocytosis impairment. Similarly, central rbo(ts) synapses in primary brain culture showed severely defective FM endocytosis. Non-neuronal nephrocyte Garland cells showed the same endocytosis defect in tracer-uptake assays. Ultrastructurally, rbo(ts) displayed a specific defect in tracer uptake into endosomes in both neuronal and non-neuronal cells. At the rbo(ts) synapse, there was a total blockade of endosome formation via activity-dependent bulk endocytosis. Clathrin-mediated endocytosis was not affected; indeed, there was a significant increase in direct vesicle formation. Together, these results demonstrate that RBO is required for constitutive and/or bulk endocytosis and/or macropinocytosis in both neuronal and non-neuronal cells, and that, at the synapse, this mechanism is responsive to the rate of Syntaxin-1A-dependent exocytosis.
Collapse
Affiliation(s)
- Niranjana Vijayakrishnan
- Department of Biological Sciences, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | | | | |
Collapse
|