1
|
Dibattista M, Pifferi S, Hernandez-Clavijo A, Menini A. The physiological roles of anoctamin2/TMEM16B and anoctamin1/TMEM16A in chemical senses. Cell Calcium 2024; 120:102889. [PMID: 38677213 DOI: 10.1016/j.ceca.2024.102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Chemical senses allow animals to detect and discriminate a vast array of molecules. The olfactory system is responsible of the detection of small volatile molecules, while water dissolved molecules are detected by taste buds in the oral cavity. Moreover, many animals respond to signaling molecules such as pheromones and other semiochemicals through the vomeronasal organ. The peripheral organs dedicated to chemical detection convert chemical signals into perceivable information through the employment of diverse receptor types and the activation of multiple ion channels. Two ion channels, TMEM16B, also known as anoctamin2 (ANO2) and TMEM16A, or anoctamin1 (ANO1), encoding for Ca2+-activated Cl¯ channels, have been recently described playing critical roles in various cell types. This review aims to discuss the main properties of TMEM16A and TMEM16B-mediated currents and their physiological roles in chemical senses. In olfactory sensory neurons, TMEM16B contributes to amplify the odorant response, to modulate firing, response kinetics and adaptation. TMEM16A and TMEM16B shape the pattern of action potentials in vomeronasal sensory neurons increasing the interspike interval. In type I taste bud cells, TMEM16A is activated during paracrine signaling mediated by ATP. This review aims to shed light on the regulation of diverse signaling mechanisms and neuronal excitability mediated by Ca-activated Cl¯ channels, hinting at potential new roles for TMEM16A and TMEM16B in the chemical senses.
Collapse
Affiliation(s)
- Michele Dibattista
- Department of Translational Biomedicine and Neuroscience, University of Bari A. Moro, 70121 Bari, Italy
| | - Simone Pifferi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy.
| | - Andres Hernandez-Clavijo
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy.
| |
Collapse
|
2
|
Guarneri G, Pifferi S, Dibattista M, Reisert J, Menini A. Paradoxical electro-olfactogram responses in TMEM16B knock-out mice. Chem Senses 2023; 48:bjad003. [PMID: 36744918 PMCID: PMC9951260 DOI: 10.1093/chemse/bjad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 02/07/2023] Open
Abstract
The Ca2+-activated Cl¯ channel TMEM16B carries up to 90% of the transduction current evoked by odorant stimulation in olfactory sensory neurons and control the number of action potential firing and therefore the length of the train of action potentials. A loss of function approach revealed that TMEM16B is required for olfactory-driven behaviors such as tracking unfamiliar odors. Here, we used the electro-olfactogram (EOG) technique to investigate the contribution of TMEM16B to odorant transduction in the whole olfactory epithelium. Surprisingly, we found that EOG responses from Tmem16b knock out mice have a bigger amplitude compared to those of wild type. Moreover, the kinetics of EOG responses is faster in absence of TMEM16B, while the ability to adapt to repeated stimulation is altered in knock out mice. The larger EOG responses in Tmem16b knock out may be the results of the removal of the clamping and/or shunting action of the Ca2+-activated Cl¯ currents leading to the paradox of having smaller transduction current but larger generator potential.
Collapse
Affiliation(s)
- Giorgia Guarneri
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Simone Pifferi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Michele Dibattista
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | | | - Anna Menini
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| |
Collapse
|
3
|
Hu X, Yang J, Song Z, Wang Q, Chu Z, Zhang L, Lin D, Xu Y, Liang L, Yang WC. The perceived effects of augmented trail sensing and mood recognition abilities in a human-fish biohybrid system. BIOINSPIRATION & BIOMIMETICS 2022; 18:015008. [PMID: 36379063 DOI: 10.1088/1748-3190/aca308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The use of technologies to enhance human and animal perception has been explored in pioneering research about artificial life and biohybrid systems. These attempts have revealed that augmented sensing abilities can emerge from new interactions between individuals within or across species. Nevertheless, the diverse effects of different augmented capabilities have been less examined and compared. In this work, we built a human-fish biohybrid system that enhanced the vision of the ornamental fish by projecting human participants onto the arena background. In contrast, human participants were equipped with a mixed-reality device, which visualized individual fish trails (representing situation-oriented perceptions) and emotions (representing communication-oriented perceptions). We investigated the impacts of the two enhanced perceptions on the human side and documented the perceived effects from three aspects. First, both augmented perceptions considerably increase participants' attention toward ornamental fish, and the impact of emotion recognition is more potent than trail sense. Secondly, the frequency of human-fish interactions increases with the equipped perceptions. The mood recognition ability on the human side can indirectly promote the recorded positive mood of fish. Thirdly, most participants mentioned that they felt closer to those fish which had mood recognition ability, even if we added some mistakes in the accuracy of mood recognition. In contrast, the addition of trail sensing ability does not lead to a similar effect on the mental bond. These findings reveal several aspects of different perceived effects between the enhancements of communication-oriented and situation-oriented perceptions.
Collapse
Affiliation(s)
- Xin Hu
- Intelligent Systems Lab, NeuHelium Co., Ltd. Shanghai 200090 People's Republic of China
| | - Jinxin Yang
- Intelligent Systems Lab, NeuHelium Co., Ltd. Shanghai 200090 People's Republic of China
| | - Zhihua Song
- Intelligent Systems Lab, NeuHelium Co., Ltd. Shanghai 200090 People's Republic of China
| | - Qian Wang
- Intelligent Systems Lab, NeuHelium Co., Ltd. Shanghai 200090 People's Republic of China
| | - Ziyue Chu
- Intelligent Systems Lab, NeuHelium Co., Ltd. Shanghai 200090 People's Republic of China
| | - Lei Zhang
- Intelligent Systems Lab, NeuHelium Co., Ltd. Shanghai 200090 People's Republic of China
| | - Daoyuan Lin
- Intelligent Systems Lab, NeuHelium Co., Ltd. Shanghai 200090 People's Republic of China
| | - Yangyang Xu
- Intelligent Systems Lab, NeuHelium Co., Ltd. Shanghai 200090 People's Republic of China
| | - Longfei Liang
- Intelligent Systems Lab, NeuHelium Co., Ltd. Shanghai 200090 People's Republic of China
| | - Wen-Chi Yang
- Intelligent Systems Lab, NeuHelium Co., Ltd. Shanghai 200090 People's Republic of China
| |
Collapse
|
4
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Intricacies of GABA A Receptor Function: The Critical Role of the β3 Subunit in Norm and Pathology. Int J Mol Sci 2021; 22:ijms22031457. [PMID: 33535681 PMCID: PMC7867123 DOI: 10.3390/ijms22031457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Neuronal intracellular chloride ([Cl−]i) is a key determinant in γ-aminobutyric acid type A (GABA)ergic signaling. γ-Aminobutyric acid type A receptors (GABAARs) mediate both inhibitory and excitatory neurotransmission, as the passive fluxes of Cl− and HCO3− via pores can be reversed by changes in the transmembrane concentration gradient of Cl−. The cation–chloride co-transporters (CCCs) are the primary systems for maintaining [Cl−]i homeostasis. However, despite extensive electrophysiological data obtained in vitro that are supported by a wide range of molecular biological studies on the expression patterns and properties of CCCs, the presence of ontogenetic changes in [Cl−]i—along with the consequent shift in GABA reversal potential—remain a subject of debate. Recent studies showed that the β3 subunit possesses properties of the P-type ATPase that participates in the ATP-consuming movement of Cl− via the receptor. Moreover, row studies have demonstrated that the β3 subunit is a key player in GABAAR performance and in the appearance of serious neurological disorders. In this review, we discuss the properties and driving forces of CCCs and Cl−, HCO3−ATPase in the maintenance of [Cl−]i homeostasis after changes in upcoming GABAAR function. Moreover, we discuss the contribution of the β3 subunit in the manifestation of epilepsy, autism, and other syndromes.
Collapse
|
6
|
Boccaccio A, Menini A, Pifferi S. The cyclic AMP signaling pathway in the rodent main olfactory system. Cell Tissue Res 2021; 383:429-443. [PMID: 33447881 DOI: 10.1007/s00441-020-03391-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 01/15/2023]
Abstract
Odor perception begins with the detection of odorant molecules by the main olfactory epithelium located in the nasal cavity. Odorant molecules bind to and activate a large family of G-protein-coupled odorant receptors and trigger a cAMP-mediated transduction cascade that converts the chemical stimulus into an electrical signal transmitted to the brain. Morever, odorant receptors and cAMP signaling plays a relevant role in olfactory sensory neuron development and axonal targeting to the olfactory bulb. This review will first explore the physiological response of olfactory sensory neurons to odorants and then analyze the different components of cAMP signaling and their different roles in odorant detection and olfactory sensory neuron development.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, National Research Council (CNR), Genova, Italy.
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.,Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
7
|
Neureither F, Stowasser N, Frings S, Möhrlen F. Tracking of unfamiliar odors is facilitated by signal amplification through anoctamin 2 chloride channels in mouse olfactory receptor neurons. Physiol Rep 2018; 5:5/15/e13373. [PMID: 28784854 PMCID: PMC5555898 DOI: 10.14814/phy2.13373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
Many animals follow odor trails to find food, nesting sites, or mates, and they require only faint olfactory cues to do so. The performance of a tracking dog, for instance, poses the question on how the animal is able to distinguish a target odor from the complex chemical background around the trail. Current concepts of odor perception suggest that animals memorize each odor as an olfactory object, a percept that enables fast recognition of the odor and the interpretation of its valence. An open question still is how this learning process operates efficiently at the low odor concentrations that typically prevail when animals inspect an odor trail. To understand olfactory processing under these conditions, we studied the role of an amplification mechanism that boosts signal transduction at low stimulus intensities, a process mediated by calcium‐gated anoctamin 2 chloride channels. Genetically altered Ano2−/− mice, which lack these channels, display an impaired cue‐tracking behavior at low odor concentrations when challenged with an unfamiliar, but not with a familiar, odor. Moreover, recordings from the olfactory epithelium revealed that odor coding lacks sensitivity and temporal resolution in anoctamin 2‐deficient mice. Our results demonstrate that the detection of an unfamiliar, weak odor, as well as its memorization as an olfactory object, require signal amplification in olfactory receptor neurons. This process may contribute to the phenomenal tracking abilities of animals that follow odor trails.
Collapse
Affiliation(s)
- Franziska Neureither
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Nadine Stowasser
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Menzikov S. Biochemical properties of the sensitivity to GABA Aergic ligands, Cl -/HCO 3--ATPase isolated from fish (Cyprinus carpio) olfactory mucosa and brain. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:583-597. [PMID: 29218440 DOI: 10.1007/s10695-017-0455-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
This paper presents a comparative study of the roles of Cl- and HCO3- in the functioning of the GABAAR-associated Cl-/HCO3--ATPase of the plasma membranes of the olfactory sensory neurons (OSNs) and mature brain neurons (MBNs) of fish. The ATPase activity of OSNs and its dephosphorylation were increased twofold by Cl-(15-30 mmol l-1), whereas the enzyme from MBNs was not significantly affected by Cl-. By contrast, HCO3-(15-30 mmol l-1) significantly activated the MBN enzyme and its dephosphorylation, but had no effect on the OSN ATPase. The maximum ATPase activity and protein dephosphorylation was observed in the presence of both Cl-(15 mmol l-1)/HCO3-(27 mmol l-1) and these activities were inhibited in the presence of picrotoxin (100 μmol l-1), bumetanide (150 μmol l-1), and DIDS (1000 μmol l-1). SDS-PAGE revealed that ATPases purified from the neuronal membrane have a subunit with molecular mass of ~ 56 kDa that binds [3H]muscimol and [3H]flunitrazepam. Direct phosphorylation of the enzymes in the presence of ATP-γ-32P and Mg2+, as well as Cl-/HCO3- sensitive dephosphorylation, is also associated with this 56 kDa peptide. Both preparations also showed one subunit with molecular mass 56 kDa that was immunoreactive with GABAAR β3 subunit. The use of a fluorescent dye for Cl- demonstrated that HCO3-(27 mmol l-1) causes a twofold increase in Cl- influx into proteoliposomes containing reconstituted ATPases from MBNs, but HCO3- had no effect on the reconstituted enzyme from OSNs. These data are the first to demonstrate a differential effect of Cl- and HCO3- in the regulation of the Cl-/HCO3--ATPases functioning in neurons with different specializations.
Collapse
Affiliation(s)
- Sergey Menzikov
- Department Russian Academy of Science, Institute of General Pathology and Pathophysiology, 8, Baltiyskaya st., Moscow, Russia, 125315.
| |
Collapse
|
9
|
Pérez-Rodríguez MJ, Velazquez-Lagunas I, Pluma-Pluma A, Barragán-Iglesias P, Granados-Soto V. Anion exchanger 3 in dorsal root ganglion contributes to nerve injury-induced chronic mechanical allodynia and thermal hyperalgesia. J Pharm Pharmacol 2018; 70:374-382. [DOI: 10.1111/jphp.12868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/25/2017] [Indexed: 12/21/2022]
Abstract
Abstract
Objective
To determine the role of anion exchanger 3 (AE3) in dorsal root ganglion (DRG) in nerve injury-induced chronic nociception in the rat.
Methods
Spared nerve injury (SNI) was used to induce neuropathic pain. Von Frey filaments and Hargreaves test were used to assess tactile allodynia and thermal hyperalgesia, respectively. Drugs were given by intrathecal administration. Western blotting was used to determine AE3 expression in DRG.
Key findings
SNI produced long-lasting mechanical allodynia and thermal hyperalgesia. AE3 was found in DRG of sham-operated rats. SNI enhanced baseline AE3 expression in L4 and L5 DRGs at days 7 and 14, respectively. In contrast, SNI did not affect AE3 expression in L6 DRG. AE3 expression returned to baseline levels 21 days after SNI. Intrathecal 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) (5–50 μg) pretreatment prevented SNI-induced allodynia and, at a lesser extent, hyperalgesia. Moreover, DIDS (50 μg) reduced SNI-induced AE3 upregulation in L4, but not L5, DRGs. Intrathecal DIDS (5–50 μg) or anti-AE3 antibody (1 μg), but not vehicle, post-treatment (6 days) partially reversed SNI-induced allodynia and hyperalgesia. DIDS or anti-AE3 antibody post-treatment diminished SNI-induced AE3 upregulation in L4 and L5 DRGs.
Conclusions
Data suggest that AE3 is present in DRG and contributes to mechanical allodynia and thermal hyperalgesia in neuropathic rats.
Collapse
Affiliation(s)
- Marian J Pérez-Rodríguez
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Unidad Coapa, Ciudad de México, Mexico
| | - Isabel Velazquez-Lagunas
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Unidad Coapa, Ciudad de México, Mexico
| | - Alejandro Pluma-Pluma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Unidad Coapa, Ciudad de México, Mexico
| | - Paulino Barragán-Iglesias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Unidad Coapa, Ciudad de México, Mexico
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Unidad Coapa, Ciudad de México, Mexico
| |
Collapse
|
10
|
Vikhareva EA, Zamoyski VL, Grigoriev VV. Modification of Calcium-Activated Chloride Currents in Cerebellar Purkinje Neurons. Bull Exp Biol Med 2017; 162:709-713. [PMID: 28429218 DOI: 10.1007/s10517-017-3694-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 11/30/2022]
Abstract
The whole-cell voltage clamp technique was employed to record the total ionic currents in rat cerebellar Purkinje neurons. When intrapipette solution contained 120 mM KCl, replacement of the standard external physiological saline with Na-free solution resulted in appearance of inward tail current after the end of the depolarizing pulse. When intrapipette potassium ions were replaced for cesium ones, the tail currents were observed even in the presence of normal Na+ concentration (140 mM) in the external solution. Tail currents were not observed when external solution contained no Cl- and/or Ca2+ ions. Niflumic acid (25-100 μM) blocked these currents by 80-100%. Complete replacement of external Na+ for Tris ions pronouncedly augmented the amplitude and duration of the tail currents. These findings suggest that the tail transients in rat cerebellar Purkinje neurons are calcium-activated chloride currents whose amplitude and kinetics depend on ionic composition of the extracellular and intracellular solutions.
Collapse
Affiliation(s)
- E A Vikhareva
- Laboratory of Neuroreception, Institute of Physiologically Active Substances, Russian Academy of Sciences, Chernogolovka, Moscow, Region, Russia
| | - V L Zamoyski
- Laboratory of Neuroreception, Institute of Physiologically Active Substances, Russian Academy of Sciences, Chernogolovka, Moscow, Region, Russia.
| | - V V Grigoriev
- Laboratory of Neuroreception, Institute of Physiologically Active Substances, Russian Academy of Sciences, Chernogolovka, Moscow, Region, Russia
| |
Collapse
|
11
|
Glykys J, Dzhala V, Egawa K, Kahle KT, Delpire E, Staley K. Chloride Dysregulation, Seizures, and Cerebral Edema: A Relationship with Therapeutic Potential. Trends Neurosci 2017; 40:276-294. [PMID: 28431741 DOI: 10.1016/j.tins.2017.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/18/2022]
Abstract
Pharmacoresistant seizures and cytotoxic cerebral edema are serious complications of ischemic and traumatic brain injury. Intraneuronal Cl- concentration ([Cl-]i) regulation impacts on both cell volume homeostasis and Cl--permeable GABAA receptor-dependent membrane excitability. Understanding the pleiotropic molecular determinants of neuronal [Cl-]i - cytoplasmic impermeant anions, polyanionic extracellular matrix (ECM) glycoproteins, and plasmalemmal Cl- transporters - could help the identification of novel anticonvulsive and neuroprotective targets. The cation/Cl- cotransporters and ECM metalloproteinases may be particularly druggable targets for intervention. We establish here a paradigm that accounts for recent data regarding the complex regulatory mechanisms of neuronal [Cl-]i and how these mechanisms impact on neuronal volume and excitability. We propose approaches to modulate [Cl-]i that are relevant for two common clinical sequela of brain injury: edema and seizures.
Collapse
Affiliation(s)
- Joseph Glykys
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Volodymyr Dzhala
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Hospital, Sapporo 0010019, Japan
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin Staley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Singh R, Kursan S, Almiahoub MY, Almutairi MM, Garzón-Muvdi T, Alvarez-Leefmans FJ, Di Fulvio M. Plasma Membrane Targeting of Endogenous NKCC2 in COS7 Cells Bypasses Functional Golgi Cisternae and Complex N-Glycosylation. Front Cell Dev Biol 2017; 4:150. [PMID: 28101499 PMCID: PMC5209364 DOI: 10.3389/fcell.2016.00150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/14/2016] [Indexed: 12/04/2022] Open
Abstract
Na+K+2Cl− co-transporters (NKCCs) effect the electroneutral movement of Na+-K+ and 2Cl− ions across the plasma membrane of vertebrate cells. There are two known NKCC isoforms, NKCC1 (Slc12a2) and NKCC2 (Slc12a1). NKCC1 is a ubiquitously expressed transporter involved in cell volume regulation, Cl− homeostasis and epithelial salt secretion, whereas NKCC2 is abundantly expressed in kidney epithelial cells of the thick ascending loop of Henle, where it plays key roles in NaCl reabsorption and electrolyte homeostasis. Although NKCC1 and NKCC2 co-transport the same ions with identical stoichiometry, NKCC1 actively co-transports water whereas NKCC2 does not. There is growing evidence showing that NKCC2 is expressed outside the kidney, but its function in extra-renal tissues remains unknown. The present study shows molecular and functional evidence of endogenous NKCC2 expression in COS7 cells, a widely used mammalian cell model. Endogenous NKCC2 is primarily found in recycling endosomes, Golgi cisternae, Golgi-derived vesicles, and to a lesser extent in the endoplasmic reticulum. Unlike NKCC1, NKCC2 is minimally hybrid/complex N-glycosylated under basal conditions and yet it is trafficked to the plasma membrane region of hyper-osmotically challenged cells through mechanisms that require minimal complex N-glycosylation or functional Golgi cisternae. Control COS7 cells exposed to slightly hyperosmotic (~6.7%) solutions for 16 h were not shrunken, suggesting that either one or both NKCC1 and NKCC2 may participate in cell volume recovery. However, NKCC2 targeted to the plasma membrane region or transient over-expression of NKCC2 failed to rescue NKCC1 in COS7 cells where NKCC1 had been silenced. Further, COS7 cells in which NKCC1, but not NKCC2, was silenced exhibited reduced cell size compared to control cells. Altogether, these results suggest that NKCC2 does not participate in cell volume recovery and therefore, NKCC1 and NKCC2 are functionally different Na+K+2Cl− co-transporters.
Collapse
Affiliation(s)
- Richa Singh
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Shams Kursan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Mohamed Y Almiahoub
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Tomás Garzón-Muvdi
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Francisco J Alvarez-Leefmans
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University Dayton, OH, USA
| |
Collapse
|
13
|
Cyclic-nucleotide-gated cation current and Ca2+-activated Cl current elicited by odorant in vertebrate olfactory receptor neurons. Proc Natl Acad Sci U S A 2016; 113:11078-11087. [PMID: 27647918 DOI: 10.1073/pnas.1613891113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Olfactory transduction in vertebrate olfactory receptor neurons (ORNs) involves primarily a cAMP-signaling cascade that leads to the opening of cyclic-nucleotide-gated (CNG), nonselective cation channels. The consequent Ca2+ influx triggers adaptation but also signal amplification, the latter by opening a Ca2+-activated Cl channel (ANO2) to elicit, unusually, an inward Cl current. Hence the olfactory response has inward CNG and Cl components that are in rapid succession and not easily separable. We report here success in quantitatively separating these two currents with respect to amplitude and time course over a broad range of odorant strengths. Importantly, we found that the Cl current is the predominant component throughout the olfactory dose-response relation, down to the threshold of signaling to the brain. This observation is very surprising given a recent report by others that the olfactory-signal amplification effected by the Ca2+-activated Cl current does not influence the behavioral olfactory threshold in mice.
Collapse
|
14
|
Genovese F, Thews M, Möhrlen F, Frings S. Properties of an optogenetic model for olfactory stimulation. J Physiol 2016; 594:3501-16. [PMID: 26857095 DOI: 10.1113/jp271853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS In olfactory research it is difficult to deliver stimuli with defined intensity and duration to olfactory sensory neurons. Expression of channelrhodopsin 2 (ChR2) in olfactory sensory neurons provides a means to activate these neurons with light flashes. Appropriate mouse models are available. The present study explores the suitability of an established olfactory marker protein (OMP)/ChR2-yellow fluorescent protein (YFP) mouse model for ex vivo experimentation. Expression of ChR2 in sensory neurons of the main olfactory epithelium, the septal organ and vomeronasal organ is characterized. Expression pattern of ChR2 in olfactory receptor neurons and the properties of light responses indicate that light stimulation does not impact on signal transduction in the chemosensory cilia. Light-induced electro-olfactograms are characterized with light flashes of different intensities, durations and frequencies. The impact of light-induced afferent stimulation on the olfactory bulb is examined with respect to response amplitude, polarity and low-pass filtering. ABSTRACT For the examination of sensory processing, it is helpful to deliver stimuli in precisely defined temporal and spatial patterns with accurate control of stimulus intensity. This is challenging in experiments with the mammalian olfactory system because airborne odorants have to be transported into the intricate sensory structures of the nose and must dissolve in mucus to be detected by sensory neurons. Defined and reproducible activity can be generated in olfactory sensory neurons that express the light-gated ion channel channelrhodopsin 2 (ChR2). The neurons can be stimulated by light flashes in a controlled fashion by this optogenetic approach. Here we examined the application of an olfactory marker protein (OMP)/ChR2-yellow fluorescent protein (YFP) model for ex vivo exploration of the olfactory epithelium and the olfactory bulb of the mouse. We studied the expression patterns of ChR2 in the main olfactory system, the vomeronasal system, and the septal organ, and we found that ChR2 is absent from the sensory cilia of olfactory sensory neurons. In the olfactory epithelium, we characterized light-induced electro-olfactograms with respect to peripheral encoding of stimulus intensity, stimulus duration and stimulus frequency. In acute slices of the olfactory bulb, we identified specific aspects of the ChR2-induced input signal, concerning its dynamic range, its low-pass filter property and its response to prolonged stimulation. Our study describes the performance of the OMP/ChR2-YFP model for ex vivo experimentation on the peripheral olfactory system and documents its versatility and its limitations for olfactory research.
Collapse
Affiliation(s)
- Federica Genovese
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Marion Thews
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Chloride Accumulators NKCC1 and AE2 in Mouse GnRH Neurons: Implications for GABAA Mediated Excitation. PLoS One 2015; 10:e0131076. [PMID: 26110920 PMCID: PMC4482508 DOI: 10.1371/journal.pone.0131076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/28/2015] [Indexed: 11/30/2022] Open
Abstract
A developmental “switch” in chloride transporters occurs in most neurons resulting in GABAA mediated hyperpolarization in the adult. However, several neuronal cell subtypes maintain primarily depolarizing responses to GABAA receptor activation. Among this group are gonadotropin-releasing hormone-1 (GnRH) neurons, which control puberty and reproduction. NKCC1 is the primary chloride accumulator in neurons, expressed at high levels early in development and contributes to depolarization after GABAA receptor activation. In contrast, KCC2 is the primary chloride extruder in neurons, expressed at high levels in the adult and contributes to hyperpolarization after GABAA receptor activation. Anion exchangers (AEs) are also potential modulators of responses to GABAA activation since they accumulate chloride and extrude bicarbonate. To evaluate the mechanism(s) underlying GABAA mediated depolarization, GnRH neurons were analyzed for 1) expression of chloride transporters and AEs in embryonic, pre-pubertal, and adult mice 2) responses to GABAA receptor activation in NKCC1-/- mice and 3) function of AEs in these responses. At all ages, GnRH neurons were immunopositive for NKCC1 and AE2 but not KCC2 or AE3. Using explants, calcium imaging and gramicidin perforated patch clamp techniques we found that GnRH neurons from NKCC1-/- mice retained relatively normal responses to the GABAA agonist muscimol. However, acute pharmacological inhibition of NKCC1 with bumetanide eliminated the depolarization/calcium response to muscimol in 40% of GnRH neurons from WT mice. In the remaining GnRH neurons, HCO3- mediated mechanisms accounted for the remaining calcium responses to muscimol. Collectively these data reveal mechanisms responsible for maintaining depolarizing GABAA mediated transmission in GnRH neurons.
Collapse
|
16
|
Haering C, Kanageswaran N, Bouvain P, Scholz P, Altmüller J, Becker C, Gisselmann G, Wäring-Bischof J, Hatt H. Ion transporter NKCC1, modulator of neurogenesis in murine olfactory neurons. J Biol Chem 2015; 290:9767-79. [PMID: 25713142 DOI: 10.1074/jbc.m115.640656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 12/28/2022] Open
Abstract
Olfaction is one of the most crucial senses for vertebrates regarding foraging and social behavior. Therefore, it is of particular interest to investigate the sense of smell, its function on a molecular level, the signaling proteins involved in the process and the mechanism of required ion transport. In recent years, the precise role of the ion transporter NKCC1 in olfactory sensory neuron (OSN) chloride accumulation has been a controversial subject. NKCC1 is expressed in OSNs and is involved in chloride accumulation of dissociated neurons, but it had not been shown to play a role in mouse odorant sensation. Here, we present electro-olfactogram recordings (EOG) demonstrating that NKCC1-deficient mice exhibit significant defects in perception of a complex odorant mixture (Henkel100) in both air-phase and submerged approaches. Using next generation sequencing (NGS) and RT-PCR experiments of NKCC1-deficient and wild type mouse transcriptomes, we confirmed the absence of a highly expressed ion transporter that could compensate for NKCC1. Additional histological investigations demonstrated a reduced number of cells in the olfactory epithelium (OE), resulting in a thinner neuronal layer. Therefore, we conclude that NKCC1 is an important transporter involved in chloride ion accumulation in the olfactory epithelium, but it is also involved in OSN neurogenesis.
Collapse
Affiliation(s)
- Claudia Haering
- From Cell Physiology, Ruhr-University Bochum, Universitaetsstr.150, 44780 Bochum, Germany and
| | - Ninthujah Kanageswaran
- From Cell Physiology, Ruhr-University Bochum, Universitaetsstr.150, 44780 Bochum, Germany and
| | - Pascal Bouvain
- From Cell Physiology, Ruhr-University Bochum, Universitaetsstr.150, 44780 Bochum, Germany and
| | - Paul Scholz
- From Cell Physiology, Ruhr-University Bochum, Universitaetsstr.150, 44780 Bochum, Germany and
| | - Janine Altmüller
- the University of Köln, Cologne Center for Genomics, Köln, Germany
| | - Christian Becker
- the University of Köln, Cologne Center for Genomics, Köln, Germany
| | - Günter Gisselmann
- From Cell Physiology, Ruhr-University Bochum, Universitaetsstr.150, 44780 Bochum, Germany and
| | - Janine Wäring-Bischof
- From Cell Physiology, Ruhr-University Bochum, Universitaetsstr.150, 44780 Bochum, Germany and
| | - Hanns Hatt
- From Cell Physiology, Ruhr-University Bochum, Universitaetsstr.150, 44780 Bochum, Germany and
| |
Collapse
|
17
|
Kanageswaran N, Demond M, Nagel M, Schreiner BSP, Baumgart S, Scholz P, Altmüller J, Becker C, Doerner JF, Conrad H, Oberland S, Wetzel CH, Neuhaus EM, Hatt H, Gisselmann G. Deep sequencing of the murine olfactory receptor neuron transcriptome. PLoS One 2015; 10:e0113170. [PMID: 25590618 PMCID: PMC4295871 DOI: 10.1371/journal.pone.0113170] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/25/2014] [Indexed: 11/18/2022] Open
Abstract
The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.
Collapse
Affiliation(s)
| | - Marilen Demond
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- University Duisburg-Essen, Institute of Medical Radiation Biology, Essen, Germany
| | - Maximilian Nagel
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | | | - Sabrina Baumgart
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Paul Scholz
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | | | | | - Julia F. Doerner
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Heike Conrad
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- Cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sonja Oberland
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian H. Wetzel
- University of Regensburg, Department of Psychiatry and Psychotherapy, Molecular Neurosciences, Regensburg, Germany
| | - Eva M. Neuhaus
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Günter Gisselmann
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| |
Collapse
|
18
|
Kemter E, Rathkolb B, Becker L, Bolle I, Busch DH, Dalke C, Elvert R, Favor J, Graw J, Hans W, Ivandic B, Kalaydjiev S, Klopstock T, Rácz I, Rozman J, Schrewe A, Schulz H, Zimmer A, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Wolf E, Aigner B. Standardized, systemic phenotypic analysis of Slc12a1I299F mutant mice. J Biomed Sci 2014; 21:68. [PMID: 25084970 PMCID: PMC4237776 DOI: 10.1186/s12929-014-0068-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/17/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Type I Bartter syndrome is a recessive human nephropathy caused by loss-of-function mutations in the SLC12A1 gene coding for the Na+-K+-2Cl- cotransporter NKCC2. We recently established the mutant mouse line Slc12a1I299F exhibiting kidney defects highly similar to the late-onset manifestation of this hereditary human disease. Besides the kidney defects, low blood pressure and osteopenia were revealed in the homozygous mutant mice which were also described in humans. Beside its strong expression in the kidney, NKCC2 has been also shown to be expressed in other tissues in rodents i.e. the gastrointestinal tract, pancreatic beta cells, and specific compartments of the ear, nasal tissue and eye. RESULTS To examine if, besides kidney defects, further organ systems and/or metabolic pathways are affected by the Slc12a1I299F mutation as primary or secondary effects, we describe a standardized, systemic phenotypic analysis of the mutant mouse line Slc12a1I299F in the German Mouse Clinic. Slc12a1I299F homozygous mutant mice and Slc12a1I299F heterozygous mutant littermates as controls were tested at the age of 4-6 months. Beside the already published changes in blood pressure and bone metabolism, a significantly lower body weight and fat content were found as new phenotypes for Slc12a1I299F homozygous mutant mice. Small additional effects included a mild erythropenic anemia in homozygous mutant males as well as a slight hyperalgesia in homozygous mutant females. For other functions, such as immunology, lung function and neurology, no distinct alterations were observed. CONCLUSIONS In this systemic analysis no clear primary effects of the Slc12a1I299F mutation appeared for the organs other than the kidneys where Slc12a1 expression has been described. On the other hand, long-term effects additional and/or secondary to the kidney lesions might also appear in humans harboring SLC12A1 mutations.
Collapse
|
19
|
Zhu G, Wang L, Tang W, Liu D, Yang J. De novo transcriptomes of olfactory epithelium reveal the genes and pathways for spawning migration in japanese grenadier anchovy (Coilia nasus). PLoS One 2014; 9:e103832. [PMID: 25084282 PMCID: PMC4118956 DOI: 10.1371/journal.pone.0103832] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/08/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Coilia nasus (Japanese grenadier anchovy) undergoes spawning migration from the ocean to fresh water inland. Previous studies have suggested that anadromous fish use olfactory cues to perform successful migration to spawn. However, limited genomic information is available for C. nasus. To understand the molecular mechanisms of spawning migration, it is essential to identify the genes and pathways involved in the migratory behavior of C. nasus. RESULTS Using de novo transcriptome sequencing and assembly, we constructed two transcriptomes of the olfactory epithelium from wild anadromous and non-anadromous C. nasus. Over 178 million high-quality clean reads were generated using Illumina sequencing technology and assembled into 176,510 unigenes (mean length: 843 bp). About 51% (89,456) of the unigenes were functionally annotated using protein databases. Gene ontology analysis of the transcriptomes indicated gene enrichment not only in signal detection and transduction, but also in regulation and enzymatic activity. The potential genes and pathways involved in the migratory behavior were identified. In addition, simple sequence repeats and single nucleotide polymorphisms were analyzed to identify potential molecular markers. CONCLUSION We, for the first time, obtained high-quality de novo transcriptomes of C. nasus using a high-throughput sequencing approach. Our study lays the foundation for further investigation of C. nasus spawning migration and genome evolution.
Collapse
Affiliation(s)
- Guoli Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Wenqiao Tang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- * E-mail:
| | - Dong Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jinquan Yang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
20
|
Barragán-Iglesias P, Rocha-González HI, Pineda-Farias JB, Murbartián J, Godínez-Chaparro B, Reinach PS, Cunha TM, Cunha FQ, Granados-Soto V. Inhibition of peripheral anion exchanger 3 decreases formalin-induced pain. Eur J Pharmacol 2014; 738:91-100. [PMID: 24877687 DOI: 10.1016/j.ejphar.2014.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 05/10/2014] [Indexed: 01/01/2023]
Abstract
We determined the role of chloride-bicarbonate anion exchanger 3 in formalin-induced acute and chronic rat nociception. Formalin (1%) produced acute (first phase) and tonic (second phase) nociceptive behaviors (flinching and licking/lifting) followed by long-lasting evoked secondary mechanical allodynia and hyperalgesia in both paws. Local peripheral pre-treatment with the chloride-bicarbonate anion exchanger inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid and 4-acetamido-4'-isothiocyanato-2,2'-stilbenedisulfonic acid prevented formalin-induced nociception mainly during phase 2. These drugs also prevented in a dose-dependent fashion long-lasting evoked secondary mechanical allodynia and hyperalgesia in both paws. Furthermore, post-treatment (on day 1 or 6) with 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid reversed established hypersensitivity. Anion exchanger 3 was expressed in dorsal root ganglion neurons and it co-localized with neuronal nuclei protein (NeuN), substance P and purinergic P2X3 receptors. Furthermore, Western blot analysis revealed a band of about 85 kDa indicative of anion exchanger 3 protein expression in dorsal root ganglia of naïve rats, which was enhanced at 1 and 6 days after 1% formalin injection. On the other hand, this rise failed to occur during 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid exposure. These results suggest that anion exchanger 3 is present in dorsal root ganglia and participates in the development and maintenance of short and long-lasting formalin-induced nociception.
Collapse
Affiliation(s)
- Paulino Barragán-Iglesias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - Héctor I Rocha-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F., Mexico
| | - Jorge Baruch Pineda-Farias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - Janet Murbartián
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - Beatriz Godínez-Chaparro
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, México, D.F., Mexico
| | - Peter S Reinach
- Department of Pharmacology, Riberao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Riberao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Riberao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico.
| |
Collapse
|
21
|
Abstract
TMEM16 proteins, also known as anoctamins, are involved in a variety of functions that include ion transport, phospholipid scrambling, and regulation of other membrane proteins. The first two members of the family, TMEM16A (anoctamin-1, ANO1) and TMEM16B (anoctamin-2, ANO2), function as Ca2+-activated Cl- channels (CaCCs), a type of ion channel that plays important functions such as transepithelial ion transport, smooth muscle contraction, olfaction, phototransduction, nociception, and control of neuronal excitability. Genetic ablation of TMEM16A in mice causes impairment of epithelial Cl- secretion, tracheal abnormalities, and block of gastrointestinal peristalsis. TMEM16A is directly regulated by cytosolic Ca2+ as well as indirectly by its interaction with calmodulin. Other members of the anoctamin family, such as TMEM16C, TMEM16D, TMEM16F, TMEM16G, and TMEM16J, may work as phospholipid scramblases and/or ion channels. In particular, TMEM16F (ANO6) is a major contributor to the process of phosphatidylserine translocation from the inner to the outer leaflet of the plasma membrane. Intriguingly, TMEM16F is also associated with the appearance of anion/cation channels activated by very high Ca2+ concentrations. Furthermore, a TMEM16 protein expressed in Aspergillus fumigatus displays both ion channel and lipid scramblase activity. This finding suggests that dual function is an ancestral characteristic of TMEM16 proteins and that some members, such as TMEM16A and TMEM16B, have evolved to a pure channel function. Mutations in anoctamin genes (ANO3, ANO5, ANO6, and ANO10) cause various genetic diseases. These diseases suggest the involvement of anoctamins in a variety of cell functions whose link with ion transport and/or lipid scrambling needs to be clarified.
Collapse
|
22
|
Baumgart S, Jansen F, Bintig W, Kalbe B, Herrmann C, Klumpers F, Köster SD, Scholz P, Rasche S, Dooley R, Metzler-Nolte N, Spehr M, Hatt H, Neuhaus EM. The scaffold protein MUPP1 regulates odorant-mediated signaling in olfactory sensory neurons. J Cell Sci 2014; 127:2518-27. [PMID: 24652834 DOI: 10.1242/jcs.144220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The olfactory signal transduction cascade transforms odor information into electrical signals by a cAMP-based amplification mechanism. The mechanisms underlying the very precise temporal and spatial organization of the relevant signaling components remains poorly understood. Here, we identify, using co-immunoprecipitation experiments, a macromolecular assembly of signal transduction components in mouse olfactory neurons, organized through MUPP1. Disruption of the PDZ signaling complex, through use of an inhibitory peptide, strongly impaired odor responses and changed the activation kinetics of olfactory sensory neurons. In addition, our experiments demonstrate that termination of the response is dependent on PDZ-based scaffolding. These findings provide new insights into the functional organization, and regulation, of olfactory signal transduction.
Collapse
Affiliation(s)
- Sabrina Baumgart
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Fabian Jansen
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Willem Bintig
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Benjamin Kalbe
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Christian Herrmann
- Physical Chemistry I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Fabian Klumpers
- Physical Chemistry I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - S David Köster
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Paul Scholz
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Sebastian Rasche
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Ruth Dooley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Nils Metzler-Nolte
- Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH-Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Hanns Hatt
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Eva M Neuhaus
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany Pharmacology and Toxicology, University Hospital Jena, Drakendorfer Weg 1, 07743 Jena, Germany
| |
Collapse
|
23
|
Pervez N, Ham HG, Kim S. Interplay of Signaling Molecules in Olfactory Sensory Neuron toward Signal Amplification. ACTA ACUST UNITED AC 2014. [DOI: 10.7599/hmr.2014.34.3.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Nayab Pervez
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Hyoung-Geol Ham
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - Sangseong Kim
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| |
Collapse
|
24
|
Abstract
Ca(2+)-activated Cl(-) channels (CaCCs) are plasma membrane proteins involved in various important physiological processes. In epithelial cells, CaCC activity mediates the secretion of Cl(-) and of other anions, such as bicarbonate and thiocyanate. In smooth muscle and excitable cells of the nervous system, CaCCs have an excitatory role coupling intracellular Ca(2+) elevation to membrane depolarization. Recent studies indicate that TMEM16A (transmembrane protein 16 A or anoctamin 1) and TMEM16B (transmembrane protein 16 B or anoctamin 2) are CaCC-forming proteins. Induced expression of TMEM16A and B in null cells by transfection causes the appearance of Ca(2+)-activated Cl(-) currents similar to those described in native tissues. Furthermore, silencing of TMEM16A by RNAi causes disappearance of CaCC activity in cells from airway epithelium, biliary ducts, salivary glands, and blood vessel smooth muscle. Mice devoid of TMEM16A expression have impaired Ca(2+)-dependent Cl(-) secretion in the epithelial cells of the airways, intestine, and salivary glands. These animals also show a loss of gastrointestinal motility, a finding consistent with an important function of TMEM16A in the electrical activity of gut pacemaker cells, that is, the interstitial cells of Cajal. Identification of TMEM16 proteins will help to elucidate the molecular basis of Cl(-) transport.
Collapse
Affiliation(s)
- Loretta Ferrera
- Laboratory of Molecular Genetics, Istituto Giannina Gaslini, Genova, Italy
| | | | | |
Collapse
|
25
|
Kurtenbach S, Wewering S, Hatt H, Neuhaus EM, Lübbert H. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models. PLoS One 2013; 8:e77509. [PMID: 24204848 PMCID: PMC3813626 DOI: 10.1371/journal.pone.0077509] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 09/12/2013] [Indexed: 11/18/2022] Open
Abstract
Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson’s disease (PD) mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs) and an olfactory behavior test (cookie-finding test). We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Administration, Intranasal
- Animals
- Brain/metabolism
- Brain/physiopathology
- Discrimination Learning
- Disease Models, Animal
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
- Female
- Gene Expression
- Humans
- Injections, Intraperitoneal
- Male
- Mice
- Mutation
- Odorants
- Olfactory Mucosa/metabolism
- Olfactory Mucosa/physiopathology
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/genetics
- Parkinson Disease, Secondary/metabolism
- Parkinson Disease, Secondary/physiopathology
- Smell/physiology
- Ubiquitin-Protein Ligases/deficiency
- Ubiquitin-Protein Ligases/genetics
- alpha-Synuclein/genetics
- alpha-Synuclein/metabolism
Collapse
Affiliation(s)
- Stefan Kurtenbach
- Department of Cell Physiology, Ruhr University Bochum, Bochum, Germany
- * E-mail:
| | - Sonja Wewering
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr University Bochum, Bochum, Germany
| | - Eva M. Neuhaus
- NeuroScience Research Center, Charité-Universitätsmedizin, Berlin, Germany
- Cluster of Excellence NeuroCure, Charite-Universitätsmedizin, Berlin, Germany
| | - Hermann Lübbert
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
26
|
Liu Q, Hu N, Zhang F, Zhang D, Hsia KJ, Wang P. Olfactory epithelium biosensor: odor discrimination of receptor neurons from a bio-hybrid sensing system. Biomed Microdevices 2013; 14:1055-61. [PMID: 23053447 DOI: 10.1007/s10544-012-9705-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bio-hybrid systems provide an opportunity for integrating a living bio-active unit and a proper biosensing system, to employ the unique properties of the bio-active unit. The biological olfactory system can sense and identify thousands of trace odors. The purpose of this study is to combine olfactory epithelium with microelectrode array (MEA) to establish an olfactory epithelium-MEA hybrid system to record the odor-induced electrophysiological activities of the tissue. In our experiments, extracellular potential of olfactory receptor neurons in intact epithelium were measured in the presence of ethyl ether, acetic acid, butanedione, and acetone, respectively. After the odor-induced response signals were analyzed in the time and frequency domain, the temporal characteristics of response signals were extracted. We found that olfactory epithelium-MEA hybrid system can reflect the in vitro odor information of different signal characteristics and firing modes in vitro. The bio-hybrid sensing system can represent a useful instrument to sense and detect the odorant molecules with well recognizing patterns. With the development of sensor technology, bio-hybrid systems will represent emerging and promising platforms for wide applications, ranging from health care to environmental monitoring.
Collapse
Affiliation(s)
- Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Nickell MD, Breheny P, Stromberg AJ, McClintock TS. Genomics of mature and immature olfactory sensory neurons. J Comp Neurol 2013; 520:2608-29. [PMID: 22252456 DOI: 10.1002/cne.23052] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The continuous replacement of neurons in the olfactory epithelium provides an advantageous model for investigating neuronal differentiation and maturation. By calculating the relative enrichment of every mRNA detected in samples of mature mouse olfactory sensory neurons (OSNs), immature OSNs, and the residual population of neighboring cell types, and then comparing these ratios against the known expression patterns of >300 genes, enrichment criteria that accurately predicted the OSN expression patterns of nearly all genes were determined. We identified 847 immature OSN-specific and 691 mature OSN-specific genes. The control of gene expression by chromatin modification and transcription factors, and neurite growth, protein transport, RNA processing, cholesterol biosynthesis, and apoptosis via death domain receptors, were overrepresented biological processes in immature OSNs. Ion transport (ion channels), presynaptic functions, and cilia-specific processes were overrepresented in mature OSNs. Processes overrepresented among the genes expressed by all OSNs were protein and ion transport, ER overload response, protein catabolism, and the electron transport chain. To more accurately represent gradations in mRNA abundance and identify all genes expressed in each cell type, classification methods were used to produce probabilities of expression in each cell type for every gene. These probabilities, which identified 9,300 genes expressed in OSNs, were 96% accurate at identifying genes expressed in OSNs and 86% accurate at discriminating genes specific to mature and immature OSNs. This OSN gene database not only predicts the genes responsible for the major biological processes active in OSNs, but also identifies thousands of never before studied genes that support OSN phenotypes.
Collapse
Affiliation(s)
- Melissa D Nickell
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | |
Collapse
|
28
|
Daiber P, Genovese F, Schriever VA, Hummel T, Möhrlen F, Frings S. Neuropeptide receptors provide a signalling pathway for trigeminal modulation of olfactory transduction. Eur J Neurosci 2012. [PMID: 23205840 DOI: 10.1111/ejn.12066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mammalian olfactory epithelium contains olfactory receptor neurons and trigeminal sensory endings. The former mediate odor detection, the latter the detection of irritants. The two apparently parallel chemosensory systems are in reality interdependent in various well-documented ways. Psychophysical studies have shown that virtually all odorants can act as irritants, and that most irritants have an odor. Thus, the sensory perception of odorants and irritants is based on simultaneous input from the two systems. Moreover, functional interactions between the olfactory system and the trigeminal system exist on both peripheral and central levels. Here we examine the impact of trigeminal stimulation on the odor response of olfactory receptor neurons. Using an odorant with low trigeminal potency (phenylethyl alcohol) and a non-odorous irritant (CO(2) ), we have explored this interaction in psychophysical experiments with human subjects and in electroolfactogram (EOG) recordings from rats. We have demonstrated that simultaneous activation of the trigeminal system attenuates the perception of odor intensity and distorts the EOG response. On the molecular level, we have identified a route for this cross-modal interaction. The neuropeptide calcitonin-gene related peptide (CGRP), which is released from trigeminal sensory fibres upon irritant stimulation, inhibits the odor response of olfactory receptor neurons. CGRP receptors expressed by these neurons mediate this neuromodulatory effect. This study demonstrates a site of trigeminal-olfactory interaction in the periphery. It reveals a pathway for trigeminal impact on olfactory signal processing that influences odor perception.
Collapse
Affiliation(s)
- Philipp Daiber
- Department of Molecular Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Trigeminal ganglion neurons of mice show intracellular chloride accumulation and chloride-dependent amplification of capsaicin-induced responses. PLoS One 2012; 7:e48005. [PMID: 23144843 PMCID: PMC3493563 DOI: 10.1371/journal.pone.0048005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/19/2012] [Indexed: 12/21/2022] Open
Abstract
Intracellular Cl− concentrations ([Cl−]i) of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG) and olfactory sensory neurons (OSNs), Cl− is accumulated by the Na+-K+-2Cl− cotransporter 1 (NKCC1), resulting in a [Cl−]i above electrochemical equilibrium and a depolarizing Cl− efflux upon Cl− channel opening. Here, we investigate the [Cl−]i and function of Cl− in primary sensory neurons of trigeminal ganglia (TG) of wild type (WT) and NKCC1−/− mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl−]i of WT TG neurons indicated active NKCC1-dependent Cl− accumulation. Gamma-aminobutyric acid (GABA)A receptor activation induced a reduction of [Cl−]i as well as Ca2+ transients in a corresponding fraction of TG neurons. Ca2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca2+ channels (VGCCs). Ca2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1) were diminished in NKCC1−/− TG neurons, but elevated under conditions of a lowered [Cl−]o suggesting a Cl−-dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS), we found expression of different Ca2+-activated Cl− channels (CaCCs) in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1−/− mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca2+-activated Cl−-dependent signal amplification mechanism in TG neurons that requires intracellular Cl− accumulation by NKCC1 and the activation of CaCCs.
Collapse
|
30
|
Alshahrani S, Di Fulvio M. Enhanced insulin secretion and improved glucose tolerance in mice with homozygous inactivation of the Na(+)K(+)2Cl(-) co-transporter 1. J Endocrinol 2012; 215:59-70. [PMID: 22872759 DOI: 10.1530/joe-12-0244] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The intracellular chloride concentration ([Cl(-)](i)) in β-cells plays an important role in glucose-stimulated plasma membrane depolarisation and insulin secretion. [Cl(-)](i) is maintained above equilibrium in β-cells by the action of Cl(-) co-transporters of the solute carrier family 12 group A (Slc12a). β-Cells express Slc12a1 and Slc12a2, which are known as the bumetanide (BTD)-sensitive Na(+)-dependent K(+)2Cl(-) co-transporters 2 and 1 respectively. We show that mice lacking functional alleles of the Slc12a2 gene exhibit better fasting glycaemia, increased insulin secretion in response to glucose, and improved glucose tolerance when compared with wild-type (WT). This phenomenon correlated with increased sensitivity of β-cells to glucose in vitro and with increased β-cell mass. Further, administration of low doses of BTD to mice deficient in Slc12a2 worsened their glucose tolerance, and low concentrations of BTD directly inhibited glucose-stimulated insulin secretion from β-cells deficient in Slc12a2 but expressing intact Slc12a1 genes. Together, our results suggest for the first time that the Slc12a2 gene is not necessary for insulin secretion and that its absence increases β-cell secretory capacity. Further, impairment of insulin secretion with BTD in vivo and in vitro in islets lacking Slc12a2 genes unmasks a potential new role for Slc12a1 in β-cell physiology.
Collapse
Affiliation(s)
- Saeed Alshahrani
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, 216 HSB, Dayton, Ohio 45435, USA
| | | |
Collapse
|
31
|
Billig GM, Pál B, Fidzinski P, Jentsch TJ. Ca2+-activated Cl− currents are dispensable for olfaction. Nat Neurosci 2011; 14:763-9. [PMID: 21516098 DOI: 10.1038/nn.2821] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 03/30/2011] [Indexed: 11/09/2022]
Abstract
Canonical olfactory signal transduction involves the activation of cyclic AMP-activated cation channels that depolarize the cilia of receptor neurons and raise intracellular calcium. Calcium then activates Cl(-) currents that may be up to tenfold larger than cation currents and are believed to powerfully amplify the response. We identified Anoctamin2 (Ano2, also known as TMEM16B) as the ciliary Ca(2+)-activated Cl(-) channel of olfactory receptor neurons. Ano2 is expressed in the main olfactory epithelium (MOE) and in the vomeronasal organ (VNO), which also expresses the related Ano1 channel. Disruption of Ano2 in mice virtually abolished Ca(2+)-activated Cl(-) currents in the MOE and VNO. Ano2 disruption reduced fluid-phase electro-olfactogram responses by only ∼40%, did not change air-phase electro-olfactograms and did not reduce performance in olfactory behavioral tasks. In contrast with the current view, cyclic nucleotide-gated cation channels do not need a boost by Cl(-) channels to achieve near-physiological levels of olfaction.
Collapse
Affiliation(s)
- Gwendolyn M Billig
- Leibniz-Institut für Molekulare Pharmakologie (FMP)/Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | | | | | | |
Collapse
|
32
|
Extracellular recording of spatiotemporal patterning in response to odors in the olfactory epithelium by microelectrode arrays. Biosens Bioelectron 2011; 27:12-7. [PMID: 21775126 DOI: 10.1016/j.bios.2011.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/27/2011] [Accepted: 03/08/2011] [Indexed: 11/20/2022]
Abstract
In olfactory biosensors, microelectronic sensor chips combined with biological olfactory cells are a promising platform for odor detection. In our investigation, olfactory epithelium stripped from rat was fixed on the surface of microelectrode arrays (MEAs). Electrophysiological activities of olfactory receptor neurons in intact epithelium were measured in the form of extracellular potentials. Based on multi-channel recording performance of MEA and structural and functional integrality of native olfactory epithelium, the spatiotemporal analysis was carried out to study the extracellular activity pattern of neurons in the tissue. The variation of spatiotemporal patterns corresponding to different odors displayed the signals firing image characteristic intuitionally. It is an effective method in the form of patterns for monitoring the state of tissue both in time and space domain, promoting the platform for olfactory sensing mechanism research.
Collapse
|
33
|
Jaén C, Ozdener MH, Reisert J. Mechanisms of chloride uptake in frog olfactory receptor neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:339-49. [PMID: 21253748 DOI: 10.1007/s00359-010-0618-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/19/2010] [Accepted: 12/21/2010] [Indexed: 11/25/2022]
Abstract
Odorant stimulation of olfactory receptor neurons (ORNs) leads to the activation of a Ca(2+) permeable cyclic nucleotide-gated (CNG) channel followed by opening of an excitatory Ca(2+)-activated Cl(-) channel, which carries about 70% of the odorant-induced receptor current. This requires ORNs to have a [Cl(-)](i) above the electrochemical equilibrium to render this anionic current excitatory. In mammalian ORNs, the Na(+)-K(+)-2Cl(-) co-transporter 1 (NKCC1) has been characterized as the principal mechanism by which these neurons actively accumulate Cl(-). To determine if NKCC activity is needed in amphibian olfactory transduction, and to characterize its cellular location, we used the suction pipette technique to record from Rana pipiens ORNs. Application of bumetanide, an NKCC blocker, produced a 50% decrease of the odorant-induced current. Similar effects were observed when [Cl(-)](i) was decreased by bathing ORNs in low Cl(-) solution. Both manipulations reduced only the Cl(-) component of the current. Application of bumetanide only to the ORN cell body and not to the cilia decreased the current by again about 50%. The results show that NKCC is required for amphibian olfactory transduction, and suggest that the co-transporter is located basolaterally at the cell body although its presence at the cilia could not be discarded.
Collapse
Affiliation(s)
- Cristina Jaén
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
34
|
Odorant Detection and Discrimination in the Olfactory System. LECTURE NOTES IN ELECTRICAL ENGINEERING 2011. [DOI: 10.1007/978-94-007-1324-6_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Liu Q, Ye W, Hu N, Cai H, Yu H, Wang P. Olfactory receptor cells respond to odors in a tissue and semiconductor hybrid neuron chip. Biosens Bioelectron 2010; 26:1672-8. [PMID: 20943368 DOI: 10.1016/j.bios.2010.09.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 11/30/2022]
Abstract
Olfactory systems of human beings and animals have the abilities to sense and distinguish varieties of odors. In this study, a bioelectronic nose was constructed by fixing biological tissues onto the surface of light-addressable potentiometric sensor (LAPS) to mimic human olfaction and realize odor differentiation. The odorant induced potentials on tissue-semiconductor interface was analyzed by sensory transduction theory and sheet conductor model. The extracellular potentials of the receptor cells in the olfactory epithelium were detected by LAPS. Being stimulated by different odorants, such as acetic acid and butanedione, olfactory epithelium activities were analyzed on basis of local field potentials and presented different firing modes. The signals fired in different odorants could be distinguished into different clusters by principal component analysis (PCA). Therefore, with cellular populations well preserved, the epithelium tissue and LAPS hybrid system will be a promising neuron chip of olfactory biosensors for odor detecting.
Collapse
Affiliation(s)
- Qingjun Liu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | | | | | | | | | | |
Collapse
|
36
|
Involvement of anion exchanger-2 in apoptosis of endothelial cells induced by high glucose through an mPTP-ROS-Caspase-3 dependent pathway. Apoptosis 2010; 15:693-704. [PMID: 20180022 DOI: 10.1007/s10495-010-0477-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Excess apoptosis of endothelial cells (EC) plays crucial roles in the onset and progression of vasculopathy in diabetes mellitus. Anion exchanger-2 (AE2) might be involved in the vasculopathy. However, little is known about the molecular mechanisms that AE2 mediated the apoptosis of EC. The purpose of this study was to explore the role of AE2 in the apoptosis of HUVECs induced by high glucose (HG) and its possible mechanisms. First, HUVECs were exposed to different glucose concentrations (5.5, 17.8, 35.6, 71.2 and 142.4 mmol/l, respectively, pH = 7.40) for different time points (12, 24, 48, 72, 120, and 168 h, respectively). Intracellular Cl(-) concentration ([Cl(-)]i), AE2 expression and the apoptosis were assayed. Then, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), Cl(-)-free media or specific RNA interference (RNAi) for AE2 was used to confirm whether AE2 could mediate the apoptosis induced by HG. Finally, the mechanisms of the AE2-mediated apoptosis were investigated by detecting mitochondrial permeability transition pore (mPTP, DeltaPsim) openings, reactive oxygen species (ROS) levels and Caspase-3 activity. We found that HG upregulated the AE2 expression and activity, increased [Cl(-)]i and induced the apoptosis in a time- and concentration-dependent manner. The apoptosis of HUVECs by HG was possibly mediated by AE2 through an mPTP-ROS-Caspase-3 dependent pathway. These findings suggested that AE2 was likely to be a glucose-sensitive transmembrane transporter and a novel potential therapeutic target for diabetic vasculopathy.
Collapse
|
37
|
Molecular components of signal amplification in olfactory sensory cilia. Proc Natl Acad Sci U S A 2010; 107:6052-7. [PMID: 20231443 DOI: 10.1073/pnas.0909032107] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mammalian olfactory system detects an unlimited variety of odorants with a limited set of odorant receptors. To cope with the complexity of the odor world, each odorant receptor must detect many different odorants. The demand for low odor selectivity creates problems for the transduction process: the initial transduction step, the synthesis of the second messenger cAMP, operates with low efficiency, mainly because odorants bind only briefly to their receptors. Sensory cilia of olfactory receptor neurons have developed an unusual solution to this problem. They accumulate chloride ions at rest and discharge a chloride current upon odor detection. This chloride current amplifies the receptor potential and promotes electrical excitation. We have studied this amplification process by examining identity, subcellular localization, and regulation of its molecular components. We found that the Na(+)/K(+)/2Cl(-) cotransporter NKCC1 is expressed in the ciliary membrane, where it mediates chloride accumulation into the ciliary lumen. Gene silencing experiments revealed that the activity of this transporter depends on the kinases SPAK and OSR1, which are enriched in the cilia together with their own activating kinases, WNK1 and WNK4. A second Cl(-) transporter, the Cl(-)/HCO(3)(-) exchanger SLC4A1, is expressed in the cilia and may support Cl(-) accumulation. The calcium-dependent chloride channel TMEM16B (ANO2) provides a ciliary pathway for the excitatory chloride current. These findings describe a specific set of ciliary proteins involved in anion-based signal amplification. They provide a molecular concept for the unique strategy that allows olfactory sensory neurons to operate as efficient transducers of weak sensory stimuli.
Collapse
|
38
|
Liu Q, Ye W, Xiao L, Du L, Hu N, Wang P. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosens Bioelectron 2010; 25:2212-7. [PMID: 20356727 DOI: 10.1016/j.bios.2010.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/11/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
Human beings and animals have sensitive olfactory systems that can sense and identify a variety of odors. The purpose of this study is to combine biological cells with micro-chips to establish a novel bioelectronic nose system for odor detection by electrophysiological sensing measurements of olfactory tissue. In our experiments, 36-channel microelectrode arrays (MEAs) with the diameter of 30 microm were fabricated on the glass substrate, and olfactory epithelium was stripped from rats and fixed on the surface of MEA. Electrophysiological activities of olfactory receptor neurons in intact epithelium were measured through the multi-channel recording system. The extracellular potentials of cell networks could be effectively analyzed by correlation analysis between different channels. After being stimulated by odorants, such as acetic acid and butanedione, the olfactory cells generate different firing modes. These firing characteristics can be derived by time-domain and frequency-domain analysis, and they were different from spontaneous potentials. The investigation of olfactory epithelium can provide more information of olfactory system for artificial olfaction biomimetic design.
Collapse
Affiliation(s)
- Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 2010; 11:188-200. [DOI: 10.1038/nrn2789] [Citation(s) in RCA: 373] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Mayer U, Küller A, Daiber PC, Neudorf I, Warnken U, Schnölzer M, Frings S, Möhrlen F. The proteome of rat olfactory sensory cilia. Proteomics 2009; 9:322-34. [PMID: 19086097 DOI: 10.1002/pmic.200800149] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Olfactory sensory neurons expose to the inhaled air chemosensory cilia which bind odorants and operate as transduction organelles. Odorant receptors in the ciliary membrane activate a transduction cascade which uses cAMP and Ca(2+) for sensory signaling in the ciliary lumen. Although the canonical transduction pathway is well established, molecular components for more complex aspects of sensory transduction, like adaptation, regulation, and termination of the receptor response have not been systematically identified. Moreover, open questions in olfactory physiology include how the cilia exchange solutes with the surrounding mucus, assemble their highly polarized set of proteins, and cope with noxious substances in the ambient air. A specific ciliary proteome would promote research efforts in all of these fields. We have improved a method to detach cilia from rat olfactory sensory neurons and have isolated a preparation specifically enriched in ciliary membrane proteins. Using LC-ESI-MS/MS analysis, we identified 377 proteins which constitute the olfactory cilia proteome. These proteins represent a comprehensive data set for olfactory research since more than 80% can be attributed to the characteristic functions of olfactory sensory neurons and their cilia: signal processing, protein targeting, neurogenesis, solute transport, and cytoprotection. Organellar proteomics thus yielded decisive information about the diverse physiological functions of a sensory organelle.
Collapse
Affiliation(s)
- Ulrich Mayer
- Department of Molecular Physiology, Institute of Zoology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci U S A 2009; 106:11776-81. [PMID: 19561302 DOI: 10.1073/pnas.0903304106] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For vertebrate olfactory signal transduction, a calcium-activated chloride conductance serves as a major amplification step. However, the molecular identity of the olfactory calcium-activated chloride channel (CaCC) is unknown. Here we report a proteomic screen for cilial membrane proteins of mouse olfactory sensory neurons (OSNs) that identified all the known olfactory transduction components as well as Anoctamin 2 (ANO2). Ano2 transcripts were expressed specifically in OSNs in the olfactory epithelium, and ANO2::EGFP fusion protein localized to the OSN cilia when expressed in vivo using an adenoviral vector. Patch-clamp analysis revealed that ANO2, when expressed in HEK-293 cells, forms a CaCC and exhibits channel properties closely resembling the native olfactory CaCC. Considering these findings together, we propose that ANO2 constitutes the olfactory calcium-activated chloride channel.
Collapse
|
42
|
Takeuchi H, Ishida H, Hikichi S, Kurahashi T. Mechanism of olfactory masking in the sensory cilia. J Gen Physiol 2009; 133:583-601. [PMID: 19433623 PMCID: PMC2713142 DOI: 10.1085/jgp.200810085] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 04/22/2009] [Indexed: 12/02/2022] Open
Abstract
Olfactory masking has been used to erase the unpleasant sensation in human cultures for a long period of history. Here, we show a positive correlation between the human masking and the odorant suppression of the transduction current through the cyclic nucleotide-gated (CNG) and Ca2+-activated Cl- (Cl(Ca)) channels. Channels in the olfactory cilia were activated with the cytoplasmic photolysis of caged compounds, and their sensitiveness to odorant suppression was measured with the whole cell patch clamp. When 16 different types of chemicals were applied to cells, cyclic AMP (cAMP)-induced responses (a mixture of CNG and Cl(Ca) currents) were suppressed widely with these substances, but with different sensitivities. Using the same chemicals, in parallel, we measured human olfactory masking with 6-rate scoring tests and saw a correlation coefficient of 0.81 with the channel block. Ringer's solution that was just preexposed to the odorant-containing air affected the cAMP-induced current of the single cell, suggesting that odorant suppression occurs after the evaporation and air/water partition of the odorant chemicals at the olfactory mucus. To investigate the contribution of Cl(Ca), the current was exclusively activated by using the ultraviolet photolysis of caged Ca, DM-nitrophen. With chemical stimuli, it was confirmed that Cl(Ca) channels were less sensitive to the odorant suppression. It is interpreted, however, that in the natural odorant response the Cl(Ca) is affected by the reduction of Ca2+ influx through the CNG channels as a secondary effect. Because the signal transmission between CNG and Cl(Ca) channels includes nonlinear signal-boosting process, CNG channel blockage leads to an amplified reduction in the net current. In addition, we mapped the distribution of the Cl(Ca) channel in living olfactory single cilium using a submicron local [Ca2+]i elevation with the laser photolysis. Cl(Ca) channels are expressed broadly along the cilia. We conclude that odorants regulate CNG level to express masking, and Cl(Ca) in the cilia carries out the signal amplification and reduction evenly spanning the entire cilia. The present findings may serve possible molecular architectures to design effective masking agents, targeting olfactory manipulation at the nano-scale ciliary membrane.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Graduate School of Frontier Biosciences, Osaka University, Osaka 560-8531, Japan
| | - Hirohiko Ishida
- Perfumery Development Research Laboratories, Kao Corporation, Tokyo, 131-8501, Japan
| | - Satoshi Hikichi
- Perfumery Development Research Laboratories, Kao Corporation, Tokyo, 131-8501, Japan
| | - Takashi Kurahashi
- Graduate School of Frontier Biosciences, Osaka University, Osaka 560-8531, Japan
| |
Collapse
|
43
|
Primary processes in sensory cells: current advances. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 195:1-19. [PMID: 19011871 DOI: 10.1007/s00359-008-0389-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 10/25/2008] [Accepted: 10/25/2008] [Indexed: 12/20/2022]
Abstract
In the course of evolution, the strong and unremitting selective pressure on sensory performance has driven the acuity of sensory organs to its physical limits. As a consequence, the study of primary sensory processes illustrates impressively how far a physiological function can be improved if the survival of a species depends on it. Sensory cells that detect single-photons, single molecules, mechanical motions on a nanometer scale, or incredibly small fluctuations of electromagnetic fields have fascinated physiologists for a long time. It is a great challenge to understand the primary sensory processes on a molecular level. This review points out some important recent developments in the search for primary processes in sensory cells that mediate touch perception, hearing, vision, taste, olfaction, as well as the analysis of light polarization and the orientation in the Earth's magnetic field. The data are screened for common transduction strategies and common transduction molecules, an aspect that may be helpful for researchers in the field.
Collapse
|
44
|
Scott JW, Sherrill L. Effects of odor stimulation on antidromic spikes in olfactory sensory neurons. J Neurophysiol 2008; 100:3074-85. [PMID: 18842957 DOI: 10.1152/jn.90399.2008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spikes were evoked in rat olfactory sensory neuron (OSN) populations by electrical stimulation of the olfactory bulb nerve layer in pentobarbital anesthetized rats. The latencies and recording positions for these compound spikes showed that they originated in olfactory epithelium. Dual simultaneous recordings indicated conduction velocities in the C-fiber range, around 0.5 m/s. These spikes are concluded to arise from antidromically activated olfactory sensory neurons. Electrical stimulation at 5 Hz was used to track changes in the size and latency of the antidromic compound population spike during the odor response. Strong odorant stimuli suppressed the spike size and prolonged its latency. The latency was prolonged throughout long odor stimuli, indicating continued activation of olfactory receptor neuron axons. The amounts of spike suppression and latency change were strongly correlated with the electroolfactogram (EOG) peak size evoked at the same site across odorants and across stimulus intensities. We conclude that the curve of antidromic spike suppression gives a reasonable representation of spiking activity in olfactory sensory neurons driven by odorants and that the correlation of peak spike suppression with the peak EOG shows the accuracy of the EOG as an estimate of intracellular potential in the population of olfactory sensory neurons. In addition, these results have important implications about traffic in olfactory nerve bundles. We did not observe multiple peaks corresponding to stimulated and unstimulated receptor neurons. This suggests synchronization of spikes in olfactory nerve, perhaps by ephaptic interactions. The long-lasting effect on spike latency shows that action potentials continue in the nerve throughout the duration of an odor stimulus in spite of many reports of depolarization block in olfactory receptor neuron cell bodies. Finally, strong odor stimulation caused almost complete block of antidromic spikes. This indicates that a very large proportion of olfactory axons was activated by single strong odor stimuli.
Collapse
Affiliation(s)
- John W Scott
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
45
|
Kleene SJ. The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses 2008; 33:839-59. [PMID: 18703537 DOI: 10.1093/chemse/bjn048] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Most vertebrate olfactory receptor neurons share a common G-protein-coupled pathway for transducing the binding of odorant into depolarization. The depolarization involves 2 currents: an influx of cations (including Ca2+) through cyclic nucleotide-gated channels and a secondary efflux of Cl- through Ca2+-gated Cl- channels. The relation between stimulus strength and receptor current shows positive cooperativity that is attributed to the channel properties. This cooperativity amplifies the responses to sufficiently strong stimuli but reduces sensitivity and dynamic range. The odor response is transient, and prolonged or repeated stimulation causes adaptation and desensitization. At least 10 mechanisms may contribute to termination of the response; several of these result from an increase in intraciliary Ca2+. It is not known to what extent regulation of ionic concentrations in the cilium depends on the dendrite and soma. Although many of the major mechanisms have been identified, odor transduction is not well understood at a quantitative level.
Collapse
Affiliation(s)
- Steven J Kleene
- Department of Cancer and Cell Biology, University of Cincinnati, PO Box 670667, 231 Albert Sabin Way, Cincinnati, OH 45267-0667, USA.
| |
Collapse
|
46
|
Modulation of chloride homeostasis by inflammatory mediators in dorsal root ganglion neurons. Mol Pain 2008; 4:32. [PMID: 18700020 PMCID: PMC2526990 DOI: 10.1186/1744-8069-4-32] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 08/12/2008] [Indexed: 01/10/2023] Open
Abstract
Background Chloride currents in peripheral nociceptive neurons have been implicated in the generation of afferent nociceptive signals, as Cl- accumulation in sensory endings establishes the driving force for depolarizing, and even excitatory, Cl- currents. The intracellular Cl- concentration can, however, vary considerably between individual DRG neurons. This raises the question, whether the contribution of Cl- currents to signal generation differs between individual afferent neurons, and whether the specific Cl- levels in these neurons are subject to modulation. Based on the hypothesis that modulation of the peripheral Cl- homeostasis is involved in the generation of inflammatory hyperalgesia, we examined the effects of inflammatory mediators on intracellular Cl- concentrations and on the expression levels of Cl- transporters in rat DRG neurons. Results We developed an in vitro assay for testing how inflammatory mediators influence Cl- concentration and the expression of Cl- transporters. Intact DRGs were treated with 100 ng/ml NGF, 1.8 μM ATP, 0.9 μM bradykinin, and 1.4 μM PGE2 for 1–3 hours. Two-photon fluorescence lifetime imaging with the Cl--sensitive dye MQAE revealed an increase of the intracellular Cl- concentration within 2 hours of treatment. This effect coincided with enhanced phosphorylation of the Na+-K+-2Cl- cotransporter NKCC1, suggesting that an increased activity of that transporter caused the early rise of intracellular Cl- levels. Immunohistochemistry of NKCC1 and KCC2, the main neuronal Cl- importer and exporter, respectively, exposed an inverse regulation by the inflammatory mediators. While the NKCC1 immunosignal increased, that of KCC2 declined after 3 hours of treatment. In contrast, the mRNA levels of the two transporters did not change markedly during this time. These data demonstrate a fundamental transition in Cl- homeostasis toward a state of augmented Cl- accumulation, which is induced by a 1–3 hour treatment with inflammatory mediators. Conclusion Our findings indicate that inflammatory mediators impact on Cl- homeostasis in DRG neurons. Inflammatory mediators raise intracellular Cl- levels and, hence, the driving force for depolarizing Cl- efflux. These findings corroborate current concepts for the role of Cl- regulation in the generation of inflammatory hyperalgesia and allodynia. As the intracellular Cl- concentration rises in DRG neurons, afferent signals can be boosted by excitatory Cl- currents in the presynaptic terminals. Moreover, excitatory Cl- currents in peripheral sensory endings may also contribute to the generation or modulation of afferent signals, especially in inflamed tissue.
Collapse
|
47
|
Steinke A, Meier-Stiegen S, Drenckhahn D, Asan E. Molecular composition of tight and adherens junctions in the rat olfactory epithelium and fila. Histochem Cell Biol 2008. [PMID: 18523797 DOI: 10.1007/s00418‐008‐0441‐8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tight and adherens junctions (TJs, AJs) between neurons, epithelial and glial cells provide barrier and adhesion properties in the olfactory epithelium (OE), and subserve functions such as compartmentalization and axon growth in the fila olfactoria (FO). Immunofluorescence and immunoelectronmicroscopy were combined in sections of rat OE and FO to document the cellular and subcellular localization of TJ proteins occludin(Occl), claudins(Cl) 1-5 and zonula occludens(ZO) proteins 1-3, and of AJ proteins N-cadherin(cad), E-cad, and alpha-, beta- and p120-catenin(cat). With the exception of Cl2, all TJ proteins were colocalized in OE junctions. Differences in relative immunolabeling intensities were noted between neuronal and epithelial TJs. In the FO, Cl5-reactivity was localized in olfactory ensheathing cell (OEC) junctions, Cl1-reactivity in the FO periphery, with differential colocalization with ZOs. Supporting cells formed N-cad-immunoreactive (ir) AJs with olfactory sensory neurons, E-cad-ir junctions with microvillar and gland duct cells, and both N-cad and E-cad-ir junctions in homotypic contacts. Alpha, beta- and p120-cat were localized in all AJs of the OE. AJs were scarce in the globose basal cell layer. Immature and mature neurons formed numerous contacts. In the FO, AJs were documented between OECs, between OECs and axons, and between axons. Most AJs colocalized N-cad with catenins, occasionally E-cad-ir AJs were found in the FO periphery. Characteristics of molecular composition suggest differential properties of TJs formed by neuronal, epithelial and glial cells in the OE and FO. The presence and molecular composition of AJs are consistent with a role of AJ proteins in neuroplastic processes in the peripheral olfactory pathway.
Collapse
Affiliation(s)
- Axel Steinke
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstr. 6, 97070, Wuerzburg, Germany
| | | | | | | |
Collapse
|
48
|
Steinke A, Meier-Stiegen S, Drenckhahn D, Asan E. Molecular composition of tight and adherens junctions in the rat olfactory epithelium and fila. Histochem Cell Biol 2008; 130:339-61. [PMID: 18523797 DOI: 10.1007/s00418-008-0441-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2008] [Indexed: 10/24/2022]
Abstract
Tight and adherens junctions (TJs, AJs) between neurons, epithelial and glial cells provide barrier and adhesion properties in the olfactory epithelium (OE), and subserve functions such as compartmentalization and axon growth in the fila olfactoria (FO). Immunofluorescence and immunoelectronmicroscopy were combined in sections of rat OE and FO to document the cellular and subcellular localization of TJ proteins occludin(Occl), claudins(Cl) 1-5 and zonula occludens(ZO) proteins 1-3, and of AJ proteins N-cadherin(cad), E-cad, and alpha-, beta- and p120-catenin(cat). With the exception of Cl2, all TJ proteins were colocalized in OE junctions. Differences in relative immunolabeling intensities were noted between neuronal and epithelial TJs. In the FO, Cl5-reactivity was localized in olfactory ensheathing cell (OEC) junctions, Cl1-reactivity in the FO periphery, with differential colocalization with ZOs. Supporting cells formed N-cad-immunoreactive (ir) AJs with olfactory sensory neurons, E-cad-ir junctions with microvillar and gland duct cells, and both N-cad and E-cad-ir junctions in homotypic contacts. Alpha, beta- and p120-cat were localized in all AJs of the OE. AJs were scarce in the globose basal cell layer. Immature and mature neurons formed numerous contacts. In the FO, AJs were documented between OECs, between OECs and axons, and between axons. Most AJs colocalized N-cad with catenins, occasionally E-cad-ir AJs were found in the FO periphery. Characteristics of molecular composition suggest differential properties of TJs formed by neuronal, epithelial and glial cells in the OE and FO. The presence and molecular composition of AJs are consistent with a role of AJ proteins in neuroplastic processes in the peripheral olfactory pathway.
Collapse
Affiliation(s)
- Axel Steinke
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstr. 6, 97070, Wuerzburg, Germany
| | | | | | | |
Collapse
|
49
|
Smith DW, Thach S, Marshall EL, Mendoza MG, Kleene SJ. Mice lacking NKCC1 have normal olfactory sensitivity. Physiol Behav 2007; 93:44-9. [PMID: 17719611 PMCID: PMC2257478 DOI: 10.1016/j.physbeh.2007.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/19/2007] [Accepted: 07/23/2007] [Indexed: 10/23/2022]
Abstract
When olfactory receptor neurons respond to odors, a depolarizing Cl(-) efflux is a substantial part of the response. This requires that the resting neuron accumulate Cl(-) against an electrochemical gradient. In isolated olfactory receptor neurons, the Na(+)+K(+)+2Cl(-) cotransporter NKCC1 is essential for Cl(-) accumulation. However, in intact epithelium, a robust electrical olfactory response persists in mice lacking NKCC1. To determine whether NKCC1 is required for normal olfactory sensitivity, olfactory sensitivity was compared between knockout (KO) mice carrying a null mutation for NKCC1 and wild-type (WT) littermates. Using operant behavioral techniques, olfactory sensitivity was measured using a commercial liquid-dilution olfactometer. Detection thresholds for the simple odorants cineole, 1-heptanol, and 1-propanol were compared in KO and WT animals. Regardless of the stimulus conditions employed, no systematic differences in behavioral thresholds were evident between KO and WT animals. We conclude that NKCC1 is not required for normal olfactory sensitivity.
Collapse
Affiliation(s)
- David W. Smith
- Department of Psychology, University of Florida, Gainesville, FL 32611
- University of Florida Center for Smell and Taste, Gainesville, FL 32611
- Department of Otolaryngology, University of Florida, Gainesville, FL 32611
| | | | - Erika L. Marshall
- Department of Psychology, University of Florida, Gainesville, FL 32611
| | | | - Steven J. Kleene
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, OH 45267-0667
- *Corresponding author: Steven J. Kleene, Department of Cell and Cancer Biology, University of Cincinnati, PO Box 670667, 231 Albert Sabin Way, Cincinnati, OH 45267-0667, , 1-513-558-6099 (phone), 1-513-558-2727 (FAX)
| |
Collapse
|