1
|
Gamberucci A, Nanni C, Pierantozzi E, Serano M, Protasi F, Rossi D, Sorrentino V. TAM-associated CASQ1 mutants diminish intracellular Ca 2+ content and interfere with regulation of SOCE. J Muscle Res Cell Motil 2024; 45:275-284. [PMID: 39126637 PMCID: PMC11554935 DOI: 10.1007/s10974-024-09681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Tubular aggregate myopathy (TAM) is a rare myopathy characterized by muscle weakness and myalgia. Muscle fibers from TAM patients show characteristic accumulation of membrane tubules that contain proteins from the sarcoplasmic reticulum (SR). Gain-of-function mutations in STIM1 and ORAI1, the key proteins participating in the Store-Operated Ca2+ Entry (SOCE) mechanism, were identified in patients with TAM. Recently, the CASQ1 gene was also found to be mutated in patients with TAM. CASQ1 is the main Ca2+ buffer of the SR and a negative regulator of SOCE. Previous characterization of CASQ1 mutants in non-muscle cells revealed that they display altered Ca2+dependent polymerization, reduced Ca2+storage capacity and alteration in SOCE inhibition. We thus aimed to assess how mutations in CASQ1 affect calcium regulation in skeletal muscles, where CASQ1 is naturally expressed. We thus expressed CASQ1 mutants in muscle fibers from Casq1 knockout mice, which provide a valuable model for studying the Ca2+ storage capacity of TAM-associated mutants. Moreover, since Casq1 knockout mice display a constitutively active SOCE, the effect of CASQ1 mutants on SOCE inhibition can be also properly examined in fibers from these mice. Analysis of intracellular Ca2+ confirmed that CASQ1 mutants have impaired ability to store Ca2+and lose their ability to inhibit skeletal muscle SOCE; this is in agreement with the evidence that alterations in Ca2+entry due to mutations in either STIM1, ORAI1 or CASQ1 represents a hallmark of TAM.
Collapse
Affiliation(s)
- Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
| | - Claudio Nanni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
| | - Matteo Serano
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
| | - Feliciano Protasi
- Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Chieti, I-66100, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, I-66100, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, I-53100, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy.
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, I-53100, Italy.
| |
Collapse
|
2
|
Marcucci L, Michelucci A, Reggiani C. Cytosolic Ca 2+ gradients and mitochondrial Ca 2+ uptake in resting muscle fibers: A model analysis. BIOPHYSICAL REPORTS 2023; 3:100117. [PMID: 37576797 PMCID: PMC10412765 DOI: 10.1016/j.bpr.2023.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Calcium ions (Ca2+) enter mitochondria via the mitochondrial Ca2+ uniporter, driven by electrical and concentration gradients. In this regard, transgenic mouse models, such as calsequestrin knockout (CSQ-KO) mice, with higher mitochondrial Ca2+ concentrations ([Ca2+]mito), should display higher cytosolic Ca2+ concentrations ([Ca2+]cyto). However, repeated measurements of [Ca2+]cyto in quiescent CSQ-KO fibers never showed a difference between WT and CSQ-KO. Starting from the consideration that fluorescent Ca2+ probes (Fura-2 and Indo-1) measure averaged global cytosolic concentrations, in this report we explored the role of local Ca2+ concentrations (i.e., Ca2+ microdomains) in regulating mitochondrial Ca2+ in resting cells, using a multicompartmental diffusional Ca2+ model. Progressively including the inward and outward fluxes of sarcoplasmic reticulum (SR), extracellular space, and mitochondria, we explored their contribution to the local Ca2+ distribution within the cell. The model predicts Ca2+ concentration gradients with hot spots or microdomains even at rest, minor but similar to those of evoked Ca2+ release. Due to their specific localization close to Ca2+ release units (CRU), mitochondria could take up Ca2+ directly from high-concentration microdomains, thus sensibly raising [Ca2+]mito, despite minor, possibly undetectable, modifications of the average [Ca2+]cyto.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Antonio Michelucci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| |
Collapse
|
3
|
Murzilli S, Serano M, Pietrangelo L, Protasi F, Paolini C. Structural Adaptation of the Excitation-Contraction Coupling Apparatus in Calsequestrin1-Null Mice during Postnatal Development. BIOLOGY 2023; 12:1064. [PMID: 37626950 PMCID: PMC10452101 DOI: 10.3390/biology12081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
The precise arrangement and peculiar interaction of transverse tubule (T-tubule) and sarcoplasmic reticulum (SR) membranes efficiently guarantee adequate contractile properties of skeletal muscle fibers. Fast muscle fibers from mice lacking calsequestrin 1 (CASQ1) are characterized by the profound ultrastructural remodeling of T-tubule/SR junctions. This study investigates the role of CASQ1, an essential component of calcium release units (CRUs), in the postnatal development of muscle fibers. By using CASQ1-knockout mice, we examined the maturation of CRUs and the involvement of different junctional proteins in the juxtaposition of the membrane system. Our morphological investigation of both wild-type (WT) and CASQ1-null extensor digitorum longus (EDL) fibers, from 1 week to 4 months of age, yielded noteworthy findings. Firstly, we observed that the absence of CASQ1 hindered the full maturation of CRUs, despite the correct localization of key junctional components (ryanodine receptor, dihydropyridine receptor, and triadin) to the junctional SR in adult animals. Furthermore, analysis of protein expression profiles related to T-tubule biogenesis and organization (junctophilin 1, amphiphysin 2, caveolin 3, and mitsugumin 29) demonstrated delayed progression in their expression during postnatal development in the absence of CASQ1, suggesting the impaired maturation of CRUs. The absence of CASQ1 directly impacts the proper assembly of CRUs during development and influences the expression and coordination of other proteins involved in T-tubule biogenesis and organization.
Collapse
Affiliation(s)
- Stefania Murzilli
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy;
| | - Matteo Serano
- Department of Medicine and Aging Sciences (DMSI), Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.S.); (L.P.); (F.P.)
| | - Laura Pietrangelo
- Department of Medicine and Aging Sciences (DMSI), Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.S.); (L.P.); (F.P.)
| | - Feliciano Protasi
- Department of Medicine and Aging Sciences (DMSI), Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.S.); (L.P.); (F.P.)
| | - Cecilia Paolini
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
4
|
Michelucci A, Pietrangelo L, Rastelli G, Protasi F, Dirksen RT, Boncompagni S. Constitutive assembly of Ca2+ entry units in soleus muscle from calsequestrin knockout mice. J Gen Physiol 2022; 154:213542. [PMID: 36222861 PMCID: PMC9565155 DOI: 10.1085/jgp.202213114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Calcium (Ca2+) entry units (CEUs) are junctions within the I band of the sarcomere between stacks of sarcoplasmic reticulum (SR) cisternae and extensions of the transverse (T)-tubule. CEUs contain STIM1 and Orai1 proteins, the molecular machinery of store-operated Ca2+ entry (SOCE). In extensor digitorum longus (EDL) fibers of wild-type (WT) mice, CEUs transiently assemble during acute exercise and disassemble several hours thereafter. By contrast, calsequestrin-1 (CASQ1) ablation induces a compensatory constitutive assembly of CEUs in EDL fibers, resulting in enhanced constitutive and maximum SOCE that counteracts SR Ca2+ depletion during repetitive activity. However, whether CEUs form in slow-twitch fibers, which express both the skeletal CASQ1 and the cardiac CASQ2 isoforms, is unknown. Herein, we compared the structure and function of soleus muscles from WT and knockout mice that lack either CASQ1 (CASQ1-null) or both CASQs (dCASQ-null). Ultrastructural analyses showed that SR/T-tubule junctions at the I band, virtually identical to CEUs in EDL muscle, were present and more frequent in CASQ1-null than WT mice, with dCASQ-null exhibiting the highest incidence. The greater incidence of CEUs in soleus from dCASQ-null mice correlated with increased specific force production during repetitive, high-frequency stimulation, which depended on Ca2+ entry. Consistent with this, Orai1 expression was significantly increased in soleus of CASQ1-null mice, but even more in dCASQ-null mice, compared with WT. Together, these results strengthen the concept that CEU assembly strongly depends on CASQ expression and provides an alternative source of Ca2+ needed to refill SR Ca2+ stores to maintain specific force production during sustained muscle activity.
Collapse
Affiliation(s)
- Antonio Michelucci
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Giorgia Rastelli
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY
| | - Simona Boncompagni
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
Baraldo M, Zorzato S, Dondjang AHT, Geremia A, Nogara L, Dumitras AG, Canato M, Marcucci L, Nolte H, Blaauw B. Inducible deletion of raptor and mTOR from adult skeletal muscle impairs muscle contractility and relaxation. J Physiol 2022; 600:5055-5075. [PMID: 36255030 DOI: 10.1113/jp283686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle weakness has been associated with different pathological conditions, including sarcopenia and muscular dystrophy, and is accompanied by altered mammalian target of rapamycin (mTOR) signalling. We wanted to elucidate the functional role of mTOR in muscle contractility. Most loss-of-function studies for mTOR signalling have used the drug rapamycin to inhibit some of the signalling downstream of mTOR. However, given that rapamycin does not inhibit all mTOR signalling completely, we generated a double knockout for mTOR and for the scaffold protein of mTORC1, raptor, in skeletal muscle. We found that double knockout in mice results in a more severe phenotype compared with deletion of raptor or mTOR alone. Indeed, these animals display muscle weakness, increased fibre denervation and a slower muscle relaxation following tetanic stimulation. This is accompanied by a shift towards slow-twitch fibres and changes in the expression levels of calcium-related genes, such as Serca1 and Casq1. Double knockout mice show a decrease in calcium decay kinetics after tetanus in vivo, suggestive of a reduced calcium reuptake. In addition, RNA sequencing analysis revealed that many downregulated genes, such as Tcap and Fhod3, are linked to sarcomere organization. These results suggest a key role for mTOR signalling in maintaining proper fibre relaxation in skeletal muscle. KEY POINTS: Skeletal muscle wasting and weakness have been associated with different pathological conditions, including sarcopenia and muscular dystrophy, and are accompanied by altered mammalian target of rapamycin (mTOR) signalling. Mammalian target of rapamycin plays a crucial role in the maintenance of muscle mass and functionality. We found that the loss of both mTOR and raptor results in contractile abnormalities, with severe muscle weakness and delayed relaxation following tetanic stimulation. These results are associated with alterations in the expression of genes involved in sarcomere organization and calcium handling and with an impairment in calcium reuptake after contraction. Taken together, these results provide a mechanistic insight into the role of mTOR in muscle contractility.
Collapse
Affiliation(s)
- Martina Baraldo
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Sabrina Zorzato
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Achille Homère Tchampda Dondjang
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alessia Geremia
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ana Georgia Dumitras
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marta Canato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Hendrik Nolte
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Protasi F, Girolami B, Serano M, Pietrangelo L, Paolini C. Ablation of Calsequestrin-1, Ca 2+ unbalance, and susceptibility to heat stroke. Front Physiol 2022; 13:1033300. [PMID: 36311237 PMCID: PMC9598425 DOI: 10.3389/fphys.2022.1033300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction: Ca2+ levels in adult skeletal muscle fibers are mainly controlled by excitation-contraction (EC) coupling, a mechanism that translates action potentials in release of Ca2+ from the sarcoplasmic reticulum (SR) release channels, i.e. the ryanodine receptors type-1 (RyR1). Calsequestrin (Casq) is a protein that binds large amounts of Ca2+ in the lumen of the SR terminal cisternae, near sites of Ca2+ release. There is general agreement that Casq is not only important for the SR ability to store Ca2+, but also for modulating the opening probability of the RyR Ca2+ release channels. The initial studies: About 20 years ago we generated a mouse model lacking Casq1 (Casq1-null mice), the isoform predominantly expressed in adult fast twitch skeletal muscle. While the knockout was not lethal as expected, lack of Casq1 caused a striking remodeling of membranes of SR and of transverse tubules (TTs), and mitochondrial damage. Functionally, CASQ1-knockout resulted in reduced SR Ca2+ content, smaller Ca2+ transients, and severe SR depletion during repetitive stimulation. The myopathic phenotype of Casq1-null mice: After the initial studies, we discovered that Casq1-null mice were prone to sudden death when exposed to halogenated anaesthetics, heat and even strenuous exercise. These syndromes are similar to human malignant hyperthermia susceptibility (MHS) and environmental-exertional heat stroke (HS). We learned that mechanisms underlying these syndromes involved excessive SR Ca2+ leak and excessive production of oxidative species: indeed, mortality and mitochondrial damage were significantly prevented by administration of antioxidants and reduction of oxidative stress. Though, how Casq1-null mice could survive without the most important SR Ca2+ binding protein was a puzzling issue that was not solved. Unravelling the mystery: The mystery was finally solved in 2020, when we discovered that in Casq1-null mice the SR undergoes adaptations that result in constitutively active store-operated Ca2+ entry (SOCE). SOCE is a mechanism that allows skeletal fibers to use external Ca2+ when SR stores are depleted. The post-natal compensatory mechanism that allows Casq1-null mice to survive involves the assembly of new SR-TT junctions (named Ca2+ entry units) containing Stim1 and Orai1, the two proteins that mediate SOCE.
Collapse
Affiliation(s)
- Feliciano Protasi
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Barbara Girolami
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Matteo Serano
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Cecilia Paolini
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
7
|
Serano M, Pietrangelo L, Paolini C, Guarnier FA, Protasi F. Oxygen Consumption and Basal Metabolic Rate as Markers of Susceptibility to Malignant Hyperthermia and Heat Stroke. Cells 2022; 11:2468. [PMID: 36010545 PMCID: PMC9406760 DOI: 10.3390/cells11162468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/28/2022] Open
Abstract
Calsequestrin 1 (CASQ1) and Ryanodine receptor 1 (RYR1) are two of the main players in excitation-contraction (EC) coupling. CASQ1-knockout mice and mice carrying a mutation in RYR1 (Y522S) linked to human malignant hyperthermia susceptibility (MHS) both suffer lethal hypermetabolic episodes when exposed to halothane (MHS crises) and to environmental heat (heat stroke, HS). The phenotype of Y522S is more severe than that of CASQ1-null mice. As MHS and HS are hypermetabolic responses, we studied the metabolism of adult CASQ1-null and Y522S mice using wild-type (WT) mice as controls. We found that CASQ1-null and Y522S mice have increased food consumption and higher core temperature at rest. By indirect calorimetry, we then verified that CASQ1-null and Y522S mice show an increased oxygen consumption and a lower respiratory quotient (RQ). The accelerated metabolism of CASQ1-null and Y522S mice was also accompanied with a reduction in body fat. Moreover, both mouse models displayed increased oxygen consumption and a higher core temperature during heat stress. The results collected suggest that metabolic rate, oxygen consumption, and body temperature at rest, all more elevated in Y522S than in CASQ1-null mice, could possibly be used as predictors of the level of susceptibility to hyperthermic crises of mice (and possibly humans).
Collapse
Affiliation(s)
- Matteo Serano
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Cecilia Paolini
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Flavia A. Guarnier
- Department of General Pathology, Londrina State University, Londrina 86057-970, Brazil
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
8
|
Store-Operated Ca 2+ Entry in Skeletal Muscle Contributes to the Increase in Body Temperature during Exertional Stress. Int J Mol Sci 2022; 23:ijms23073772. [PMID: 35409132 PMCID: PMC8998704 DOI: 10.3390/ijms23073772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 12/15/2022] Open
Abstract
Exertional heat stroke (HS) is a hyperthermic crisis triggered by an excessive accumulation of Ca2+ in skeletal muscle fibers. We demonstrated that exercise leads to the formation of calcium entry units (CEUs), which are intracellular junctions that reduce muscle fatigue by promoting the recovery of extracellular Ca2+ via store-operated Ca2+ entry (SOCE). Here, we tested the hypothesis that exercise-induced assembly of CEUs may increase the risk of HS when physical activity is performed in adverse environmental conditions (high temperature and humidity). Adult mice were: (a) first, divided into three experimental groups: control, trained-1 month (voluntary running in wheel cages), and acutely exercised-1 h (incremental treadmill run); and (b) then subjected to an exertional stress (ES) protocol, a treadmill run in an environmental chamber at 34 °C and 40% humidity. The internal temperature of the mice at the end of the ES was higher in both pre-exercised groups. During an ES ex-vivo protocol, extensor digitorum longus(EDL) muscles from the trained-1 month and exercised-1 h mice generated greater basal tension than in the control and were those that contained a greater number of CEUs, assessed by electron microscopy. The data collected suggest that the entry of Ca2+ from extracellular space via CEUs could contribute to exertional HS when exercise is performed in adverse environmental conditions.
Collapse
|
9
|
Quantification of the calcium signaling deficit in muscles devoid of triadin. PLoS One 2022; 17:e0264146. [PMID: 35213584 PMCID: PMC8880904 DOI: 10.1371/journal.pone.0264146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Triadin, a protein of the sarcoplasmic reticulum (SR) of striated muscles, anchors the calcium-storing protein calsequestrin to calcium release RyR channels at the junction with t-tubules, and modulates these channels by conformational effects. Triadin ablation induces structural SR changes and alters the expression of other proteins. Here we quantify alterations of calcium signaling in single skeletal myofibers of constitutive triadin-null mice. We find higher resting cytosolic and lower SR-luminal [Ca2+], 40% lower calsequestrin expression, and more CaV1.1, RyR1 and SERCA1. Despite the increased CaV1.1, the mobile intramembrane charge was reduced by ~20% in Triadin-null fibers. The initial peak of calcium release flux by pulse depolarization was minimally altered in the null fibers (revealing an increase in peak calcium permeability). The “hump” phase that followed, attributable to calcium detaching from calsequestrin, was 25% lower, a smaller change than expected from the reduced calsequestrin content and calcium saturation. The exponential decay rate of calcium transients was 25% higher, consistent with the higher SERCA1 content. Recovery of calcium flux after a depleting depolarization was faster in triadin-null myofibers, consistent with the increased uptake rate and lower SR calsequestrin content. In sum, the triadin knockout determines an increased RyR1 channel openness, which depletes the SR, a substantial loss of calsequestrin and gains in other couplon proteins. Powerful functional compensations ensue: activation of SOCE that increases [Ca2+]cyto; increased SERCA1 activity, which limits the decrease in [Ca2+]SR and a restoration of SR calcium storage of unknown substrate. Together, they effectively limit the functional loss in skeletal muscles.
Collapse
|
10
|
Lamboley CR, Pearce L, Seng C, Meizoso-Huesca A, Singh DP, Frankish BP, Kaura V, Lo HP, Ferguson C, Allen PD, Hopkins PM, Parton RG, Murphy RM, van der Poel C, Barclay CJ, Launikonis BS. Ryanodine receptor leak triggers fiber Ca 2+ redistribution to preserve force and elevate basal metabolism in skeletal muscle. SCIENCE ADVANCES 2021; 7:eabi7166. [PMID: 34705503 PMCID: PMC8550231 DOI: 10.1126/sciadv.abi7166] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Muscle contraction depends on tightly regulated Ca2+ release. Aberrant Ca2+ leak through ryanodine receptor 1 (RyR1) on the sarcoplasmic reticulum (SR) membrane can lead to heatstroke and malignant hyperthermia (MH) susceptibility, as well as severe myopathy. However, the mechanism by which Ca2+ leak drives these pathologies is unknown. Here, we investigate the effects of four mouse genotypes with increasingly severe RyR1 leak in skeletal muscle fibers. We find that RyR1 Ca2+ leak initiates a cascade of events that cause precise redistribution of Ca2+ among the SR, cytoplasm, and mitochondria through altering the Ca2+ permeability of the transverse tubular system membrane. This redistribution of Ca2+ allows mice with moderate RyR1 leak to maintain normal function; however, severe RyR1 leak with RYR1 mutations reduces the capacity to generate force. Our results reveal the mechanism underlying force preservation, increased ATP metabolism, and susceptibility to MH in individuals with gain-of-function RYR1 mutations.
Collapse
Affiliation(s)
- Cedric R. Lamboley
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Luke Pearce
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Crystal Seng
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aldo Meizoso-Huesca
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel P. Singh
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Barnaby P. Frankish
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Vikas Kaura
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Harriet P. Lo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Paul D. Allen
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, Australia
| | - Robyn M. Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Chris van der Poel
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Christopher J. Barclay
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bradley S. Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Corresponding author.
| |
Collapse
|
11
|
Michelucci A, Boncompagni S, Pietrangelo L, Takano T, Protasi F, Dirksen RT. Pre-assembled Ca2+ entry units and constitutively active Ca2+ entry in skeletal muscle of calsequestrin-1 knockout mice. J Gen Physiol 2021; 152:152001. [PMID: 32761048 PMCID: PMC7537346 DOI: 10.1085/jgp.202012617] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ influx mechanism triggered by depletion of Ca2+ stores from the endoplasmic/sarcoplasmic reticulum (ER/SR). We recently reported that acute exercise in WT mice drives the formation of Ca2+ entry units (CEUs), intracellular junctions that contain STIM1 and Orai1, the two key proteins mediating SOCE. The presence of CEUs correlates with increased constitutive- and store-operated Ca2+ entry, as well as sustained Ca2+ release and force generation during repetitive stimulation. Skeletal muscle from mice lacking calsequestrin-1 (CASQ1-null), the primary Ca2+-binding protein in the lumen of SR terminal cisternae, exhibits significantly reduced total Ca2+ store content and marked SR Ca2+ depletion during high-frequency stimulation. Here, we report that CEUs are constitutively assembled in extensor digitorum longus (EDL) and flexor digitorum brevis (FDB) muscles of sedentary CASQ1-null mice. The higher density of CEUs in EDL (39.6 ± 2.1/100 µm2 versus 2.0 ± 0.3/100 µm2) and FDB (16.7 ± 1.0/100 µm2 versus 2.7 ± 0.5/100 µm2) muscles of CASQ1-null compared with WT mice correlated with enhanced constitutive- and store-operated Ca2+ entry and increased expression of STIM1, Orai1, and SERCA. The higher ability to recover Ca2+ ions via SOCE in CASQ1-null muscle served to promote enhanced maintenance of peak Ca2+ transient amplitude, increased dependence of luminal SR Ca2+ replenishment on BTP-2-sensitive SOCE, and increased maintenance of contractile force during repetitive, high-frequency stimulation. Together, these data suggest that muscles from CASQ1-null mice compensate for the lack of CASQ1 and reduction in total releasable SR Ca2+ content by assembling CEUs to promote constitutive and store-operated Ca2+ entry.
Collapse
Affiliation(s)
- Antonio Michelucci
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY.,Center for Advanced Studies and Technologies, University G. d'Annunzio of Chieti, Chieti, Italy
| | - Simona Boncompagni
- Center for Advanced Studies and Technologies, University G. d'Annunzio of Chieti, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti, Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technologies, University G. d'Annunzio of Chieti, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti, Chieti, Italy
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Feliciano Protasi
- Center for Advanced Studies and Technologies, University G. d'Annunzio of Chieti, Chieti, Italy.,Department of Medicine and Ageing Sciences, University G. d'Annunzio of Chieti, Chieti, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
12
|
Agellon LB, Michalak M. A View of the Endoplasmic Reticulum Through the Calreticulin Lens. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:1-11. [PMID: 34050859 DOI: 10.1007/978-3-030-67696-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Calreticulin is well known as an ER-resident protein that serves as the major endoplasmic reticulum (ER) Ca2+ binding protein. This protein has been the major topic of discussion in an international workshop that has been meeting for a quarter of a century. In sharing information about this protein, the field also witnessed remarkable insights into the importance of the ER as an organelle and the role of ER Ca2+ in coordinating ER and cellular functions. Recent technological advances have helped to uncover the contributions of calreticulin in maintaining Ca2+ homeostasis in the ER and to unravel its involvement in a multitude of cellular processes as highlighted in this collection of articles. The continuing revelations of unexpected involvement of calreticulin and Ca2+ in many critical aspects of cellular function promises to further improve insights into the significance of this protein in the promotion of physiology as well as prevention of pathology.
Collapse
Affiliation(s)
- Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Hanna AD, Lee CS, Babcock L, Wang H, Recio J, Hamilton SL. Pathological mechanisms of vacuolar aggregate myopathy arising from a Casq1 mutation. FASEB J 2021; 35:e21349. [PMID: 33786938 DOI: 10.1096/fj.202001653rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 11/11/2022]
Abstract
Mice with a mutation (D244G, DG) in calsequestrin 1 (CASQ1), analogous to a human mutation in CASQ1 associated with a delayed onset human myopathy (vacuolar aggregate myopathy), display a progressive myopathy characterized by decreased activity, decreased ability of fast twitch muscles to generate force and low body weight after one year of age. The DG mutation causes CASQ1 to partially dissociate from the junctional sarcoplasmic reticulum (SR) and accumulate in the endoplasmic reticulum (ER). Decreased junctional CASQ1 reduces SR Ca2+ release. Muscles from older DG mice display ER stress, ER expansion, increased mTOR signaling, inadequate clearance of aggregated proteins by the proteasomes, and elevation of protein aggregates and lysosomes. This study suggests that the myopathy associated with the D244G mutation in CASQ1 is driven by CASQ1 mislocalization, reduced SR Ca2+ release, CASQ1 misfolding/aggregation and ER stress. The subsequent maladaptive increase in protein synthesis and decreased protein aggregate clearance are likely to contribute to disease progression.
Collapse
Affiliation(s)
- Amy D Hanna
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Chang Seok Lee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Lyle Babcock
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Hui Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Recio
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Susan L Hamilton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Protasi F, Pietrangelo L, Boncompagni S. Improper Remodeling of Organelles Deputed to Ca 2+ Handling and Aerobic ATP Production Underlies Muscle Dysfunction in Ageing. Int J Mol Sci 2021; 22:6195. [PMID: 34201319 PMCID: PMC8228829 DOI: 10.3390/ijms22126195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Proper skeletal muscle function is controlled by intracellular Ca2+ concentration and by efficient production of energy (ATP), which, in turn, depend on: (a) the release and re-uptake of Ca2+ from sarcoplasmic-reticulum (SR) during excitation-contraction (EC) coupling, which controls the contraction and relaxation of sarcomeres; (b) the uptake of Ca2+ into the mitochondrial matrix, which stimulates aerobic ATP production; and finally (c) the entry of Ca2+ from the extracellular space via store-operated Ca2+ entry (SOCE), a mechanism that is important to limit/delay muscle fatigue. Abnormalities in Ca2+ handling underlie many physio-pathological conditions, including dysfunction in ageing. The specific focus of this review is to discuss the importance of the proper architecture of organelles and membrane systems involved in the mechanisms introduced above for the correct skeletal muscle function. We reviewed the existing literature about EC coupling, mitochondrial Ca2+ uptake, SOCE and about the structural membranes and organelles deputed to those functions and finally, we summarized the data collected in different, but complementary, projects studying changes caused by denervation and ageing to the structure and positioning of those organelles: a. denervation of muscle fibers-an event that contributes, to some degree, to muscle loss in ageing (known as sarcopenia)-causes misplacement and damage: (i) of membrane structures involved in EC coupling (calcium release units, CRUs) and (ii) of the mitochondrial network; b. sedentary ageing causes partial disarray/damage of CRUs and of calcium entry units (CEUs, structures involved in SOCE) and loss/misplacement of mitochondria; c. functional electrical stimulation (FES) and regular exercise promote the rescue/maintenance of the proper architecture of CRUs, CEUs, and of mitochondria in both denervation and ageing. All these structural changes were accompanied by related functional changes, i.e., loss/decay in function caused by denervation and ageing, and improved function following FES or exercise. These data suggest that the integrity and proper disposition of intracellular organelles deputed to Ca2+ handling and aerobic generation of ATP is challenged by inactivity (or reduced activity); modifications in the architecture of these intracellular membrane systems may contribute to muscle dysfunction in ageing and sarcopenia.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
15
|
Melzer W. ECC meets CEU-New focus on the backdoor for calcium ions in skeletal muscle cells. J Gen Physiol 2020; 152:152046. [PMID: 32851409 PMCID: PMC7537343 DOI: 10.1085/jgp.202012679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this issue, Michelucci et al. report the existence of specific sites acting as Ca2+ entry units (CEUs) in fast skeletal muscle of mice lacking calsequestrin (CASQ1), the major Ca2+ binding protein of the SR. The CEU provides constitutive and store-operated Ca2+ entry (SOCE) and resistance to force decline resulting from SR Ca2+ depletion during repetitive muscle activity.
Collapse
Affiliation(s)
- Werner Melzer
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
16
|
Woo JS, Jeong SY, Park JH, Choi JH, Lee EH. Calsequestrin: a well-known but curious protein in skeletal muscle. Exp Mol Med 2020; 52:1908-1925. [PMID: 33288873 PMCID: PMC8080761 DOI: 10.1038/s12276-020-00535-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Calsequestrin (CASQ) was discovered in rabbit skeletal muscle tissues in 1971 and has been considered simply a passive Ca2+-buffering protein in the sarcoplasmic reticulum (SR) that provides Ca2+ ions for various Ca2+ signals. For the past three decades, physiologists, biochemists, and structural biologists have examined the roles of the skeletal muscle type of CASQ (CASQ1) in skeletal muscle and revealed that CASQ1 has various important functions as (1) a major Ca2+-buffering protein to maintain the SR with a suitable amount of Ca2+ at each moment, (2) a dynamic Ca2+ sensor in the SR that regulates Ca2+ release from the SR to the cytosol, (3) a structural regulator for the proper formation of terminal cisternae, (4) a reverse-directional regulator of extracellular Ca2+ entries, and (5) a cause of human skeletal muscle diseases. This review is focused on understanding these functions of CASQ1 in the physiological or pathophysiological status of skeletal muscle.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 10833, USA
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Ji Hee Park
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
17
|
Pelletier L, Petiot A, Brocard J, Giannesini B, Giovannini D, Sanchez C, Travard L, Chivet M, Beaufils M, Kutchukian C, Bendahan D, Metzger D, Franzini Armstrong C, Romero NB, Rendu J, Jacquemond V, Fauré J, Marty I. In vivo RyR1 reduction in muscle triggers a core-like myopathy. Acta Neuropathol Commun 2020; 8:192. [PMID: 33176865 PMCID: PMC7657350 DOI: 10.1186/s40478-020-01068-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mutations in the RYR1 gene, encoding the skeletal muscle calcium channel RyR1, lead to congenital myopathies, through expression of a channel with abnormal permeability and/or in reduced amount, but the direct functional whole organism consequences of exclusive reduction in RyR1 amount have never been studied. We have developed and characterized a mouse model with inducible muscle specific RYR1 deletion. Tamoxifen-induced recombination in the RYR1 gene at adult age resulted in a progressive reduction in the protein amount reaching a stable level of 50% of the initial amount, and was associated with a progressive muscle weakness and atrophy. Measurement of calcium fluxes in isolated muscle fibers demonstrated a reduction in the amplitude of RyR1-related calcium release mirroring the reduction in the protein amount. Alterations in the muscle structure were observed, with fibers atrophy, abnormal mitochondria distribution and membrane remodeling. An increase in the expression level of many proteins was observed, as well as an inhibition of the autophagy process. This model demonstrates that RyR1 reduction is sufficient to recapitulate most features of Central Core Disease, and accordingly similar alterations were observed in muscle biopsies from Dusty Core Disease patients (a subtype of Central Core Disease), pointing to common pathophysiological mechanisms related to RyR1 reduction.
Collapse
|
18
|
Protasi F, Pietrangelo L, Boncompagni S. Calcium entry units (CEUs): perspectives in skeletal muscle function and disease. J Muscle Res Cell Motil 2020; 42:233-249. [PMID: 32812118 PMCID: PMC8332569 DOI: 10.1007/s10974-020-09586-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
In the last decades the term Store-operated Ca2+ entry (SOCE) has been used in the scientific literature to describe an ubiquitous cellular mechanism that allows recovery of calcium (Ca2+) from the extracellular space. SOCE is triggered by a reduction of Ca2+ content (i.e. depletion) in intracellular stores, i.e. endoplasmic or sarcoplasmic reticulum (ER and SR). In skeletal muscle the mechanism is primarily mediated by a physical interaction between stromal interaction molecule-1 (STIM1), a Ca2+ sensor located in the SR membrane, and ORAI1, a Ca2+-permeable channel of external membranes, located in transverse tubules (TTs), the invaginations of the plasma membrane (PM) deputed to propagation of action potentials. It is generally accepted that in skeletal muscle SOCE is important to limit muscle fatigue during repetitive stimulation. We recently discovered that exercise promotes the assembly of new intracellular junctions that contains colocalized STIM1 and ORAI1, and that the presence of these new junctions increases Ca2+ entry via ORAI1, while improving fatigue resistance during repetitive stimulation. Based on these findings we named these new junctions Ca2+ Entry Units (CEUs). CEUs are dynamic organelles that assemble during muscle activity and disassemble during recovery thanks to the plasticity of the SR (containing STIM1) and the elongation/retraction of TTs (bearing ORAI1). Interestingly, similar structures described as SR stacks were previously reported in different mouse models carrying mutations in proteins involved in Ca2+ handling (calsequestrin-null mice; triadin and junctin null mice, etc.) or associated to microtubules (MAP6 knockout mice). Mutations in Stim1 and Orai1 (and calsequestrin-1) genes have been associated to tubular aggregate myopathy (TAM), a muscular disease characterized by: (a) muscle pain, cramping, or weakness that begins in childhood and worsens over time, and (b) the presence of large accumulations of ordered SR tubes (tubular aggregates, TAs) that do not contain myofibrils, mitochondria, nor TTs. Interestingly, TAs are also present in fast twitch muscle fibers of ageing mice. Several important issues remain un-answered: (a) the molecular mechanisms and signals that trigger the remodeling of membranes and the functional activation of SOCE during exercise are unclear; and (b) how dysfunctional SOCE and/or mutations in Stim1, Orai1 and calsequestrin (Casq1) genes lead to the formation of tubular aggregates (TAs) in aging and disease deserve investigation.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy.
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy.
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
- DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
19
|
Calsequestrin Deletion Facilitates Hippocampal Synaptic Plasticity and Spatial Learning in Post-Natal Development. Int J Mol Sci 2020; 21:ijms21155473. [PMID: 32751833 PMCID: PMC7432722 DOI: 10.3390/ijms21155473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Experimental evidence highlights the involvement of the endoplasmic reticulum (ER)-mediated Ca2+ signals in modulating synaptic plasticity and spatial memory formation in the hippocampus. Ca2+ release from the ER mainly occurs through two classes of Ca2+ channels, inositol 1,4,5-trisphosphate receptors (InsP3Rs) and ryanodine receptors (RyRs). Calsequestrin (CASQ) and calreticulin (CR) are the most abundant Ca2+-binding proteins allowing ER Ca2+ storage. The hippocampus is one of the brain regions expressing CASQ, but its role in neuronal activity, plasticity, and the learning processes is poorly investigated. Here, we used knockout mice lacking both CASQ type-1 and type-2 isoforms (double (d)CASQ-null mice) to: a) evaluate in adulthood the neuronal electrophysiological properties and synaptic plasticity in the hippocampal Cornu Ammonis 1 (CA1) field and b) study the performance of knockout mice in spatial learning tasks. The ablation of CASQ increased the CA1 neuron excitability and improved the long-term potentiation (LTP) maintenance. Consistently, (d)CASQ-null mice performed significantly better than controls in the Morris Water Maze task, needing a shorter time to develop a spatial preference for the goal. The Ca2+ handling analysis in CA1 pyramidal cells showed a decrement of Ca2+ transient amplitude in (d)CASQ-null mouse neurons, which is consistent with a decrease in afterhyperpolarization improving LTP. Altogether, our findings suggest that CASQ deletion affects activity-dependent ER Ca2+ release, thus facilitating synaptic plasticity and spatial learning in post-natal development.
Collapse
|
20
|
Wang Q, Michalak M. Calsequestrin. Structure, function, and evolution. Cell Calcium 2020; 90:102242. [PMID: 32574906 DOI: 10.1016/j.ceca.2020.102242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/25/2022]
Abstract
Calsequestrin is the major Ca2+ binding protein in the sarcoplasmic reticulum (SR), serves as the main Ca2+ storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal and cardiac muscle. It is anchored at the junctional SR membrane through interactions with membrane proteins and undergoes reversible polymerization with increasing Ca2+ concentration. Calsequestrin provides high local Ca2+ at the junctional SR and communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an essential component of excitation-contraction coupling. Recent studies reveal new insights on calsequestrin trafficking, Ca2+ binding, protein evolution, protein-protein interactions, stress responses and the molecular basis of related human muscle disease, including catecholaminergic polymorphic ventricular tachycardia (CPVT). Here we provide a comprehensive overview of calsequestrin, with recent advances in structure, diverse functions, phylogenetic analysis, and its role in muscle physiology, stress responses and human pathology.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada.
| |
Collapse
|
21
|
Rossi D, Gamberucci A, Pierantozzi E, Amato C, Migliore L, Sorrentino V. Calsequestrin, a key protein in striated muscle health and disease. J Muscle Res Cell Motil 2020; 42:267-279. [PMID: 32488451 DOI: 10.1007/s10974-020-09583-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Calsequestrin (CASQ) is the most abundant Ca2+ binding protein localized in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. The genome of vertebrates contains two genes, CASQ1 and CASQ2. CASQ1 and CASQ2 have a high level of homology, but show specific patterns of expression. Fast-twitch skeletal muscle fibers express only CASQ1, both CASQ1 and CASQ2 are present in slow-twitch skeletal muscle fibers, while CASQ2 is the only protein present in cardiomyocytes. Depending on the intraluminal SR Ca2+ levels, CASQ monomers assemble to form large polymers, which increase their Ca2+ binding ability. CASQ interacts with triadin and junctin, two additional SR proteins which contribute to localize CASQ to the junctional region of the SR (j-SR) and also modulate CASQ ability to polymerize into large macromolecular complexes. In addition to its ability to bind Ca2+ in the SR, CASQ appears also to be able to contribute to regulation of Ca2+ homeostasis in muscle cells. Both CASQ1 and CASQ2 are able to either activate and inhibit the ryanodine receptors (RyRs) calcium release channels, likely through their interactions with junctin and triadin. Additional evidence indicates that CASQ1 contributes to regulate the mechanism of store operated calcium entry in skeletal muscle via a direct interaction with the Stromal Interaction Molecule 1 (STIM1). Mutations in CASQ2 and CASQ1 have been identified, respectively, in patients with catecholamine-induced polymorphic ventricular tachycardia and in patients with some forms of myopathy. This review will highlight recent developments in understanding CASQ1 and CASQ2 in health and diseases.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Alessandra Gamberucci
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Caterina Amato
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Loredana Migliore
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| |
Collapse
|
22
|
Reggiani C. Caffeine as a tool to investigate sarcoplasmic reticulum and intracellular calcium dynamics in human skeletal muscles. J Muscle Res Cell Motil 2020; 42:281-289. [PMID: 32034582 DOI: 10.1007/s10974-020-09574-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
Caffeine is worldwide used for its power to increase cognitive and physical performance. The ergogenic effects of caffeine, however, do not depend on a direct action on muscles. Actually, the actions of caffeine on skeletal muscles, take place at millimolar concentrations which are far above the micromolar level reached after a regular consumption of coffee or similar drinks, and close to a lethal concentration. At millimolar concentrations caffeine exerts a powerful effect on sarcoplasmic reticulum (SR) activating the release of calcium via ryanodine receptors and, possibly, inhibiting calcium reuptake. For this reason caffeine has become a valuable tool for studying SR function and for diagnostics of SR related muscle disorders. This review aims to briefly describe the effects and the mechanism of action of caffeine on sarcoplasmic reticulum and to focus on its use to study intracellular calcium dynamics in human muscle fibers in physiological and pathological conditions.
Collapse
Affiliation(s)
- Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Via Marzolo 3, 35131, Padua, Italy. .,ZRS-Science and Research Center, Koper, Slovenia.
| |
Collapse
|
23
|
Fusto A, Moyle LA, Gilbert PM, Pegoraro E. Cored in the act: the use of models to understand core myopathies. Dis Model Mech 2019; 12:dmm041368. [PMID: 31874912 PMCID: PMC6955215 DOI: 10.1242/dmm.041368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The core myopathies are a group of congenital myopathies with variable clinical expression - ranging from early-onset skeletal-muscle weakness to later-onset disease of variable severity - that are identified by characteristic 'core-like' lesions in myofibers and the presence of hypothonia and slowly or rather non-progressive muscle weakness. The genetic causes are diverse; central core disease is most often caused by mutations in ryanodine receptor 1 (RYR1), whereas multi-minicore disease is linked to pathogenic variants of several genes, including selenoprotein N (SELENON), RYR1 and titin (TTN). Understanding the mechanisms that drive core development and muscle weakness remains challenging due to the diversity of the excitation-contraction coupling (ECC) proteins involved and the differential effects of mutations across proteins. Because of this, the use of representative models expressing a mature ECC apparatus is crucial. Animal models have facilitated the identification of disease progression mechanisms for some mutations and have provided evidence to help explain genotype-phenotype correlations. However, many unanswered questions remain about the common and divergent pathological mechanisms that drive disease progression, and these mechanisms need to be understood in order to identify therapeutic targets. Several new transgenic animals have been described recently, expanding the spectrum of core myopathy models, including mice with patient-specific mutations. Furthermore, recent developments in 3D tissue engineering are expected to enable the study of core myopathy disease progression and the effects of potential therapeutic interventions in the context of human cells. In this Review, we summarize the current landscape of core myopathy models, and assess the hurdles and opportunities of future modeling strategies.
Collapse
Affiliation(s)
- Aurora Fusto
- Department of Neuroscience, University of Padua, Padua 35128, Italy
| | - Louise A Moyle
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
- Institute of Biomaterials and Biochemical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Penney M Gilbert
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
- Institute of Biomaterials and Biochemical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Elena Pegoraro
- Department of Neuroscience, University of Padua, Padua 35128, Italy
| |
Collapse
|
24
|
Wang WA, Agellon LB, Michalak M. Organellar Calcium Handling in the Cellular Reticular Network. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a038265. [PMID: 31358518 DOI: 10.1101/cshperspect.a038265] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ is an important intracellular messenger affecting diverse cellular processes. In eukaryotic cells, Ca2+ is handled by a myriad of Ca2+-binding proteins found in organelles that are organized into the cellular reticular network (CRN). The network is comprised of the endoplasmic reticulum, Golgi apparatus, lysosomes, membranous components of the endocytic and exocytic pathways, peroxisomes, and the nuclear envelope. Membrane contact sites between the different components of the CRN enable the rapid movement of Ca2+, and communication of Ca2+ status, within the network. Ca2+-handling proteins that reside in the CRN facilitate Ca2+ sensing, buffering, and cellular signaling to coordinate the many processes that operate within the cell.
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| |
Collapse
|
25
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
26
|
Yamaguchi N. Molecular Insights into Calcium Dependent Regulation of Ryanodine Receptor Calcium Release Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1131:321-336. [DOI: 10.1007/978-3-030-12457-1_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Anderson LB, Latour CD, Khader O, Massey BH, Cobb B, Pond AL. Ether-a-go-go related gene-1a potassium channel abundance varies within specific skeletal muscle fiber type. Eur J Transl Myol 2019; 29:8402. [PMID: 31579487 PMCID: PMC6767934 DOI: 10.4081/ejtm.2019.8402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/28/2019] [Indexed: 01/24/2023] Open
Abstract
The ERG1A K+ channel, which is partially responsible for repolarization of the cardiac action potential, has also been reported in skeletal muscle where it modulates ubiquitin proteolysis. Because ERG1A protein appears variably expressed in muscles composed of mixed fiber types, we hypothesized that its abundance in skeletal muscle might differ with fiber type. Indeed, skeletal muscle fibers vary in speed of contraction (fast or slow), which is mainly determined by myosin heavy chain (MyHC) isoform content, but a sarcolemmal K+ channel might also modulate contraction speed. To test our hypothesis, we cryo-sectioned Soleus (SOL), Extensor Digitorum Longus (EDL), and Gastrocnemius muscles from five rats. These muscles were chosen because the SOL and EDL contain an abundance of slow- and fast-twitch fibers, respectively, while the Gastrocnemius has a more heterogeneous composition. The muscle sections were co-immunostained for the ERG1A protein and either the fast- or slow-twitch MyHC to identify fiber type. ERG1A fluorescence was then measured in the sarcolemma of each fiber type and compared. The data reveal that the ERG1A protein is more abundant in the fibers of the SOL than in the EDL muscles, suggesting ERG1A may be more abundant in the slow than the fast fibers, and this was confirmed with immunoblot. However, because of the homogeneity of fiber type within these muscles, it was not possible to get enough data from both fiber types within a single muscle to compare ERG1A composition within fiber type. However, immunohistochemistry of sections from the fiber type heterogeneous Gastrocnemius muscle reveals that slow fibers had, on average, a 17.2% greater ERG1A fluorescence intensity than fast fibers (p<0.03). Further, immunoblot reveals that ERG1A protein is 41.6% more abundant (p=0.051) in old than in young rat Gastrocnemius muscle. We postulate that this membrane bound voltage-gated channel may affect membrane characteristics, the duration of the action potential generated, and/or the speed of contraction. Indeed, ERG1A protein is more abundant in aged and atrophic skeletal muscle, both of which exhibit slower rates of contraction.
Collapse
Affiliation(s)
- Luke B. Anderson
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL
| | - Chase D. Latour
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO
| | - Omar Khader
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL
| | | | - Brittan Cobb
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL
| | - Amber L. Pond
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL
| |
Collapse
|
28
|
Pozzer D, Varone E, Chernorudskiy A, Schiarea S, Missiroli S, Giorgi C, Pinton P, Canato M, Germinario E, Nogara L, Blaauw B, Zito E. A maladaptive ER stress response triggers dysfunction in highly active muscles of mice with SELENON loss. Redox Biol 2018; 20:354-366. [PMID: 30391828 PMCID: PMC6223234 DOI: 10.1016/j.redox.2018.10.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/02/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
Selenoprotein N (SELENON) is an endoplasmic reticulum (ER) protein whose loss of function leads to human SELENON-related myopathies. SelenoN knockout (KO) mouse limb muscles, however, are protected from the disease, and display no major alterations in muscle histology or contractile properties. Interestingly, we find that the highly active diaphragm muscle shows impaired force production, in line with the human phenotype. In addition, after repeated stimulation with a protocol which induces muscle fatigue, also hind limb muscles show altered relaxation times. Mechanistically, muscle SELENON loss alters activity-dependent calcium handling selectively impinging on the Ca2+ uptake of the sarcoplasmic reticulum and elicits an ER stress response, including the expression of the maladaptive CHOP-induced ERO1. In SELENON-devoid models, ERO1 shifts ER redox to a more oxidised poise, and further affects Ca2+ uptake. Importantly, CHOP ablation in SelenoN KO mice completely prevents diaphragm dysfunction, the prolonged limb muscle relaxation after fatigue, and restores Ca2+ uptake by attenuating the induction of ERO1. These findings suggest that SELENON is part of an ER stress-dependent antioxidant response and that the CHOP/ERO1 branch of the ER stress response is a novel pathogenic mechanism underlying SELENON-related myopathies.
Collapse
Affiliation(s)
- Diego Pozzer
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ersilia Varone
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alexander Chernorudskiy
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Silvia Schiarea
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sonia Missiroli
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Marta Canato
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine, Padua, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine, Padua, Italy.
| | - Ester Zito
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
29
|
Sébastien M, Giannesini B, Aubin P, Brocard J, Chivet M, Pietrangelo L, Boncompagni S, Bosc C, Brocard J, Rendu J, Gory-Fauré S, Andrieux A, Fourest-Lieuvin A, Fauré J, Marty I. Deletion of the microtubule-associated protein 6 (MAP6) results in skeletal muscle dysfunction. Skelet Muscle 2018; 8:30. [PMID: 30231928 PMCID: PMC6147105 DOI: 10.1186/s13395-018-0176-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/12/2018] [Indexed: 01/23/2023] Open
Abstract
Background The skeletal muscle fiber has a specific and precise intracellular organization which is at the basis of an efficient muscle contraction. Microtubules are long known to play a major role in the function and organization of many cells, but in skeletal muscle, the contribution of the microtubule cytoskeleton to the efficiency of contraction has only recently been studied. The microtubule network is dynamic and is regulated by many microtubule-associated proteins (MAPs). In the present study, the role of the MAP6 protein in skeletal muscle organization and function has been studied using the MAP6 knockout mouse line. Methods The presence of MAP6 transcripts and proteins was shown in mouse muscle homogenates and primary culture using RT-PCR and western blot. The in vivo evaluation of muscle force of MAP6 knockout (KO) mice was performed on anesthetized animals using electrostimulation coupled to mechanical measurement and multimodal magnetic resonance. The impact of MAP6 deletion on microtubule organization and intracellular structures was studied using immunofluorescent labeling and electron microscopy, and on calcium release for muscle contraction using Fluo-4 calcium imaging on cultured myotubes. Statistical analysis was performed using Student’s t test or the Mann-Whitney test. Results We demonstrate the presence of MAP6 transcripts and proteins in skeletal muscle. Deletion of MAP6 results in a large number of muscle modifications: muscle weakness associated with slight muscle atrophy, alterations of microtubule network and sarcoplasmic reticulum organization, and reduction in calcium release. Conclusion Altogether, our results demonstrate that MAP6 is involved in skeletal muscle function. Its deletion results in alterations in skeletal muscle contraction which contribute to the global deleterious phenotype of the MAP6 KO mice. As MAP6 KO mouse line is a model for schizophrenia, our work points to a possible muscle weakness associated to some forms of schizophrenia. Electronic supplementary material The online version of this article (10.1186/s13395-018-0176-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muriel Sébastien
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | | | - Perrine Aubin
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Julie Brocard
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Mathilde Chivet
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Laura Pietrangelo
- CeSI-Met & DNICS, University G. d' Annunzio of Chieti, I-66100, Chieti, Italy
| | - Simona Boncompagni
- CeSI-Met & DNICS, University G. d' Annunzio of Chieti, I-66100, Chieti, Italy
| | - Christophe Bosc
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Jacques Brocard
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - John Rendu
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CHU Grenoble, Biochimie et Génétique Moléculaire, F-38000, Grenoble, France
| | - Sylvie Gory-Fauré
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Annie Andrieux
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CEA-Grenoble, BIG, F-38000, Grenoble, France
| | - Anne Fourest-Lieuvin
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CEA-Grenoble, BIG, F-38000, Grenoble, France
| | - Julien Fauré
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CHU Grenoble, Biochimie et Génétique Moléculaire, F-38000, Grenoble, France
| | - Isabelle Marty
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France. .,University Grenoble Alpes, F-38000, Grenoble, France. .,GIN- Inserm U1216 - Bat EJ Safra, Chemin Fortuné Ferrini, 38700, La Tronche, France.
| |
Collapse
|
30
|
Marcucci L, Canato M, Protasi F, Stienen GJM, Reggiani C. A 3D diffusional-compartmental model of the calcium dynamics in cytosol, sarcoplasmic reticulum and mitochondria of murine skeletal muscle fibers. PLoS One 2018; 13:e0201050. [PMID: 30048500 PMCID: PMC6062086 DOI: 10.1371/journal.pone.0201050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/06/2018] [Indexed: 11/19/2022] Open
Abstract
Variations of free calcium concentration ([Ca2+]) are powerful intracellular signals, controlling contraction as well as metabolism in muscle cells. To fully understand the role of calcium redistribution upon excitation and contraction in skeletal muscle cells, the local [Ca2+] in different compartments needs to be taken into consideration. Fluorescent probes allow the determination of [Ca2+] in the cytosol where myofibrils are embedded, the lumen of the sarcoplasmic reticulum (SR) and the mitochondrial matrix. Previously, models have been developed describing intracellular calcium handling in skeletal and cardiac muscle cells. However, a comprehensive model describing the kinetics of the changes in free calcium concentration in these three compartments is lacking. We designed a new 3D compartmental model of the half sarcomere with radial symmetry, which accounts for diffusion of Ca2+ into the three compartments and simulates its dynamics at rest and at various rates of stimulation in mice skeletal muscle fibers. This model satisfactorily reproduces both the amplitude and time course of the variations of [Ca2+] in the three compartments in mouse fast fibers. As an illustration of the applicability of the model, we investigated the effects of Calsequestrin (CSQ) ablation. CSQ is the main Ca2+ buffer in the SR, localized in close proximity of its calcium release sites and near to the mitochondria. CSQ knock-out mice muscles still preserve a near-normal contractile behavior, but it is unclear whether this is caused by additional SR calcium buffering or a significant contribution of calcium entry from extracellular space, via stored-operated calcium entry (SOCE). The model enabled quantitative assessment of these two scenarios by comparison to measurements of local calcium in the cytosol, the SR and the mitochondria. In conclusion, the model represents a useful tool to investigate the impact of protein ablation and of pharmacological interventions on intracellular calcium dynamics in mice skeletal muscle.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marta Canato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Feliciano Protasi
- CeSI-Met - Center for Research on Ageing and Translational Medicine, Chieti, Italy
- Department of Medicine and Aging Science; University G. d’Annunzio, Chieti, Italy
| | - Ger J. M. Stienen
- Department of Physiology, VU University Medical Centre, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
31
|
Aerobic Training Prevents Heatstrokes in Calsequestrin-1 Knockout Mice by Reducing Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4652480. [PMID: 29849896 PMCID: PMC5903204 DOI: 10.1155/2018/4652480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/01/2018] [Accepted: 02/21/2018] [Indexed: 01/06/2023]
Abstract
Calsequestrin-1 knockout (CASQ1-null) mice suffer lethal episodes when exposed to strenuous exercise and environmental heat, crises known as exertional/environmental heatstroke (EHS). We previously demonstrated that administration of exogenous antioxidants (N-acetylcysteine and trolox) reduces CASQ1-null mortality during exposure to heat. As aerobic training is known to boost endogenous antioxidant protection, we subjected CASQ1-null mice to treadmill running for 2 months at 60% of their maximal speed for 1 h, 5 times/week. When exposed to heat stress protocol (41°C/1 h), the mortality rate of CASQ1-null mice was significantly reduced compared to untrained animals (86% versus 16%). Protection from heatstrokes was accompanied by a reduced increase in core temperature during the stress protocol and by an increased threshold of response to caffeine of isolated extensor digitorum longus muscles during in vitro contracture test. At cellular and molecular levels, aerobic training (i) improved mitochondrial function while reducing their damage and (ii) lowered calpain activity and lipid peroxidation in membranes isolated from sarcoplasmic reticulum and mitochondria. Based on this evidence, we hypothesize that the protective effect of aerobic training is essentially mediated by a reduction in oxidative stress during exposure of CASQ1-null mice to adverse environmental conditions.
Collapse
|
32
|
Franzini-Armstrong C. The relationship between form and function throughout the history of excitation-contraction coupling. J Gen Physiol 2018; 150:189-210. [PMID: 29317466 PMCID: PMC5806676 DOI: 10.1085/jgp.201711889] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Franzini-Armstrong reviews the development of the excitation–contraction coupling field over time. The concept of excitation–contraction coupling is almost as old as Journal of General Physiology. It was understood as early as the 1940s that a series of stereotyped events is responsible for the rapid contraction response of muscle fibers to an initial electrical event at the surface. These early developments, now lost in what seems to be the far past for most young investigators, have provided an endless source of experimental approaches. In this Milestone in Physiology, I describe in detail the experiments and concepts that introduced and established the field of excitation–contraction coupling in skeletal muscle. More recent advances are presented in an abbreviated form, as readers are likely to be familiar with recent work in the field.
Collapse
Affiliation(s)
- Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
33
|
A focus on extracellular Ca 2+ entry into skeletal muscle. Exp Mol Med 2017; 49:e378. [PMID: 28912570 PMCID: PMC5628281 DOI: 10.1038/emm.2017.208] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 01/06/2023] Open
Abstract
The main task of skeletal muscle is contraction and relaxation for body movement and posture maintenance. During contraction and relaxation, Ca2+ in the cytosol has a critical role in activating and deactivating a series of contractile proteins. In skeletal muscle, the cytosolic Ca2+ level is mainly determined by Ca2+ movements between the cytosol and the sarcoplasmic reticulum. The importance of Ca2+ entry from extracellular spaces to the cytosol has gained significant attention over the past decade. Store-operated Ca2+ entry with a low amplitude and relatively slow kinetics is a main extracellular Ca2+ entryway into skeletal muscle. Herein, recent studies on extracellular Ca2+ entry into skeletal muscle are reviewed along with descriptions of the proteins that are related to extracellular Ca2+ entry and their influences on skeletal muscle function and disease.
Collapse
|
34
|
Dulhunty AF, Wei-LaPierre L, Casarotto MG, Beard NA. Core skeletal muscle ryanodine receptor calcium release complex. Clin Exp Pharmacol Physiol 2017; 44:3-12. [PMID: 27696487 DOI: 10.1111/1440-1681.12676] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
Abstract
The core skeletal muscle ryanodine receptor (RyR1) calcium release complex extends through three compartments of the muscle fibre, linking the extracellular environment through the cytoplasmic junctional gap to the lumen of the internal sarcoplasmic reticulum (SR) calcium store. The protein complex is essential for skeletal excitation-contraction (EC)-coupling and skeletal muscle function. Its importance is highlighted by perinatal death if any one of the EC-coupling components are missing and by myopathies associated with mutation of any of the proteins. The proteins essential for EC-coupling include the DHPR α1S subunit in the transverse tubule membrane, the DHPR β1a subunit in the cytosol and the RyR1 ion channel in the SR membrane. The other core proteins are triadin and junctin and calsequestrin, associated mainly with SR. These SR proteins are not essential for survival but exert structural and functional influences that modify the gain of EC-coupling and maintain normal muscle function. This review summarises our current knowledge of the individual protein/protein interactions within the core complex and their overall contribution to EC-coupling. We highlight significant areas that provide a continuing challenge for the field. Additional important components of the Ca2+ release complex, such as FKBP12, calmodulin, S100A1 and Stac3 are identified and reviewed elsewhere.
Collapse
Affiliation(s)
- Angela F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Lan Wei-LaPierre
- Department of Physiology and Pharmacology, University of Rochester Medical Center, Rochester, NY, USA
| | - Marco G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Nicole A Beard
- Health Research Institute, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
35
|
Antioxidant Treatment Reduces Formation of Structural Cores and Improves Muscle Function in RYR1 Y522S/WT Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6792694. [PMID: 29062463 PMCID: PMC5610828 DOI: 10.1155/2017/6792694] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/13/2017] [Indexed: 12/27/2022]
Abstract
Central core disease (CCD) is a congenital myopathy linked to mutations in the ryanodine receptor type 1 (RYR1), the sarcoplasmic reticulum Ca2+ release channel of skeletal muscle. CCD is characterized by formation of amorphous cores within muscle fibers, lacking mitochondrial activity. In skeletal muscle of RYR1Y522S/WT knock-in mice, carrying a human mutation in RYR1 linked to malignant hyperthermia (MH) with cores, oxidative stress is elevated and fibers present severe mitochondrial damage and cores. We treated RYR1Y522S/WT mice with N-acetylcysteine (NAC), an antioxidant provided ad libitum in drinking water for either 2 or 6 months. Our results show that 2 months of NAC treatment starting at 2 months of age, when mitochondrial and fiber damage was still minimal, (i) reduce formation of unstructured and contracture cores, (ii) improve muscle function, and (iii) decrease mitochondrial damage. The beneficial effect of NAC treatment is also evident following 6 months of treatment starting at 4 months of age, when structural damage was at an advanced stage. NAC exerts its protective effect likely by lowering oxidative stress, as supported by the reduction of 3-NT and SOD2 levels. This work suggests that NAC administration is beneficial to prevent mitochondrial damage and formation of cores and improve muscle function in RYR1Y522S/WT mice.
Collapse
|
36
|
Estrogens Protect Calsequestrin-1 Knockout Mice from Lethal Hyperthermic Episodes by Reducing Oxidative Stress in Muscle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6936897. [PMID: 29062464 PMCID: PMC5610815 DOI: 10.1155/2017/6936897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/11/2017] [Accepted: 07/20/2017] [Indexed: 01/12/2023]
Abstract
Oxidative stress has been proposed to play a key role in malignant hyperthermia (MH), a syndrome caused by excessive Ca2+ release in skeletal muscle. Incidence of mortality in male calsequestrin-1 knockout (CASQ1-null) mice during exposure to halothane and heat (a syndrome closely resembling human MH) is far greater than that in females. To investigate the possible role of sex hormones in this still unexplained gender difference, we treated male and female CASQ1-null mice for 1 month, respectively, with Premarin (conjugated estrogens) and leuprolide (GnRH analog) and discovered that during exposure to halothane and heat Premarin reduced the mortality rate in males (79-27% and 86-20%), while leuprolide increased the incidence of mortality in females (18-73% and 24-82%). We then evaluated the (a) responsiveness of isolated muscles to temperature and caffeine, (b) sarcoplasmic reticulum (SR) Ca2+ release in single fibers, and (c) oxidative stress and the expression levels of main enzymes involved in the regulation of the redox balance in muscle. Premarin treatment reduced the temperature and caffeine sensitivity of EDL muscles, normalized SR Ca2+ release, and reduced oxidative stress in males, suggesting that female sex hormones may protect mice from lethal hyperthermic episodes by reducing both the SR Ca2+ leak and oxidative stress.
Collapse
|
37
|
Maurício AF, de Carvalho SC, Santo Neto H, Marques MJ. Effects of dietary omega-3 on dystrophic cardiac and diaphragm muscles as evaluated by 1 H magnetic resonance spectroscopy: Metabolic profile and calcium-related proteins. Clin Nutr ESPEN 2017; 20:60-67. [DOI: 10.1016/j.clnesp.2017.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/08/2017] [Indexed: 12/22/2022]
|
38
|
Michelucci A, Paolini C, Boncompagni S, Canato M, Reggiani C, Protasi F. Strenuous exercise triggers a life-threatening response in mice susceptible to malignant hyperthermia. FASEB J 2017; 31:3649-3662. [PMID: 28465322 DOI: 10.1096/fj.201601292r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/17/2017] [Indexed: 12/26/2022]
Abstract
In humans, hyperthermic episodes can be triggered by halogenated anesthetics [malignant hyperthermia (MH) susceptibility] and by high temperature [environmental heat stroke (HS)]. Correlation between MH susceptibility and HS is supported by extensive work in mouse models that carry a mutation in ryanodine receptor type-1 (RYR1Y522S/WT) and calsequestrin-1 knockout (CASQ1-null), 2 proteins that control Ca2+ release in skeletal muscle. As overheating episodes in humans have also been described during exertion, here we subjected RYR1Y522S/WT and CASQ1-null mice to an exertional-stress protocol (incremental running on a treadmill at 34°C and 40% humidity). The mortality rate was 80 and 78.6% in RYR1Y522S/WT and CASQ1-null mice, respectively, vs. 0% in wild-type mice. Lethal crises were characterized by hyperthermia and rhabdomyolysis, classic features of MH episodes. Of importance, pretreatment with azumolene, an analog of the drug used in humans to treat MH crises, reduced mortality to 0 and 12.5% in RYR1Y522S/WT and CASQ1-null mice, respectively, thanks to a striking reduction of hyperthermia and rhabdomyolysis. At the molecular level, azumolene strongly prevented Ca2+-dependent activation of calpains and NF-κB by lowering myoplasmic Ca2+ concentration and nitro-oxidative stress, parameters that were elevated in RYR1Y522S/WT and CASQ1-null mice. These results suggest that common molecular mechanisms underlie MH crises and exertional HS in mice.-Michelucci, A., Paolini, C., Boncompagni, S., Canato, M., Reggiani, C., Protasi, F. Strenuous exercise triggers a life-threatening response in mice susceptible to malignant hyperthermia.
Collapse
Affiliation(s)
- Antonio Michelucci
- Center for Research on Ageing and Translational Medicine (CeSI-MeT), Department of Neuroscience, Imaging, and Clinical Sciences (DNICS), Università degli Studi G. d'Annunzio, Chieti, Italy
| | - Cecilia Paolini
- Center for Research on Ageing and Translational Medicine (CeSI-MeT), Department of Neuroscience, Imaging, and Clinical Sciences (DNICS), Università degli Studi G. d'Annunzio, Chieti, Italy
| | - Simona Boncompagni
- Center for Research on Ageing and Translational Medicine (CeSI-MeT), Department of Neuroscience, Imaging, and Clinical Sciences (DNICS), Università degli Studi G. d'Annunzio, Chieti, Italy
| | - Marta Canato
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Feliciano Protasi
- Center for Research on Ageing and Translational Medicine (CeSI-MeT), Department of Neuroscience, Imaging, and Clinical Sciences (DNICS), Università degli Studi G. d'Annunzio, Chieti, Italy; .,Department of Medicine and Aging Science, University G. d' Annunzio of Chieti, Chieti, Italy
| |
Collapse
|
39
|
Amici DR, Pinal-Fernandez I, Mázala DAG, Lloyd TE, Corse AM, Christopher-Stine L, Mammen AL, Chin ER. Calcium dysregulation, functional calpainopathy, and endoplasmic reticulum stress in sporadic inclusion body myositis. Acta Neuropathol Commun 2017; 5:24. [PMID: 28330496 PMCID: PMC5363023 DOI: 10.1186/s40478-017-0427-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 01/08/2023] Open
Abstract
Sporadic inclusion body myositis (IBM) is the most common primary myopathy in the elderly, but its pathoetiology is still unclear. Perturbed myocellular calcium (Ca2+) homeostasis can exacerbate many of the factors proposed to mediate muscle degeneration in IBM, such as mitochondrial dysfunction, protein aggregation, and endoplasmic reticulum stress. Ca2+ dysregulation may plausibly be initiated in IBM by immune-mediated membrane damage and/or abnormally accumulating proteins, but no studies to date have investigated Ca2+ regulation in IBM patients. We first investigated protein expression via immunoblot in muscle biopsies from IBM, dermatomyositis, and non-myositis control patients, identifying several differentially expressed Ca2+-regulatory proteins in IBM. Next, we investigated the Ca2+-signaling transcriptome by RNA-seq, finding 54 of 183 (29.5%) genes from an unbiased list differentially expressed in IBM vs. controls. Using an established statistical approach to relate genes with causal transcription networks, Ca2+ abundance was considered a significant upstream regulator of observed whole-transcriptome changes. Post-hoc analyses of Ca2+-regulatory mRNA and protein data indicated a lower protein to transcript ratio in IBM vs. controls, which we hypothesized may relate to increased Ca2+-dependent proteolysis and decreased protein translation. Supporting this hypothesis, we observed robust (4-fold) elevation in the autolytic activation of a Ca2+-activated protease, calpain-1, as well as increased signaling for translational attenuation (eIF2α phosphorylation) downstream of the unfolded protein response. Finally, in IBM samples we observed mRNA and protein under-expression of calpain-3, the skeletal muscle-specific calpain, which broadly supports proper Ca2+ homeostasis. Together, these data provide novel insight into mechanisms by which intracellular Ca2+ regulation is perturbed in IBM and offer evidence of pathological downstream effects.
Collapse
|
40
|
Osborn DPS, Pond HL, Mazaheri N, Dejardin J, Munn CJ, Mushref K, Cauley ES, Moroni I, Pasanisi MB, Sellars EA, Hill RS, Partlow JN, Willaert RK, Bharj J, Malamiri RA, Galehdari H, Shariati G, Maroofian R, Mora M, Swan LE, Voit T, Conti FJ, Jamshidi Y, Manzini MC. Mutations in INPP5K Cause a Form of Congenital Muscular Dystrophy Overlapping Marinesco-Sjögren Syndrome and Dystroglycanopathy. Am J Hum Genet 2017; 100:537-545. [PMID: 28190459 PMCID: PMC5339112 DOI: 10.1016/j.ajhg.2017.01.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/05/2017] [Indexed: 02/01/2023] Open
Abstract
Congenital muscular dystrophies display a wide phenotypic and genetic heterogeneity. The combination of clinical, biochemical, and molecular genetic findings must be considered to obtain the precise diagnosis and provide appropriate genetic counselling. Here we report five individuals from four families presenting with variable clinical features including muscular dystrophy with a reduction in dystroglycan glycosylation, short stature, intellectual disability, and cataracts, overlapping both the dystroglycanopathies and Marinesco-Sjögren syndrome. Whole-exome sequencing revealed homozygous missense and compound heterozygous mutations in INPP5K in the affected members of each family. INPP5K encodes the inositol polyphosphate-5-phosphatase K, also known as SKIP (skeletal muscle and kidney enriched inositol phosphatase), which is highly expressed in the brain and muscle. INPP5K localizes to both the endoplasmic reticulum and to actin ruffles in the cytoplasm. It has been shown to regulate myoblast differentiation and has also been implicated in protein processing through its interaction with the ER chaperone HSPA5/BiP. We show that morpholino-mediated inpp5k loss of function in the zebrafish results in shortened body axis, microphthalmia with disorganized lens, microcephaly, reduced touch-evoked motility, and highly disorganized myofibers. Altogether these data demonstrate that mutations in INPP5K cause a congenital muscular dystrophy syndrome with short stature, cataracts, and intellectual disability.
Collapse
Affiliation(s)
- Daniel P S Osborn
- Cardiovascular and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Heather L Pond
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Science, Washington, DC 20037, USA
| | - Neda Mazaheri
- Department of Genetics, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran; Narges Medical Genetics and Prenatal Diagnosis Laboratory, East Mihan Ave., Kianpars, Ahvaz 6155689467, Iran
| | - Jeremy Dejardin
- Cardiovascular and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Christopher J Munn
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Khaloob Mushref
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Science, Washington, DC 20037, USA
| | - Edmund S Cauley
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Science, Washington, DC 20037, USA
| | - Isabella Moroni
- Pediatric Neurology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milan, Italy
| | - Maria Barbara Pasanisi
- Pediatric Neurology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milan, Italy; Division of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy
| | - Elizabeth A Sellars
- Department of Pediatrics, Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR 72202, USA
| | - R Sean Hill
- Program in Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jennifer N Partlow
- Program in Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Jaipreet Bharj
- Cardiovascular and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Reza Azizi Malamiri
- Department of Paediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6163764648, Iran
| | - Hamid Galehdari
- Department of Genetics, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran; Narges Medical Genetics and Prenatal Diagnosis Laboratory, East Mihan Ave., Kianpars, Ahvaz 6155689467, Iran
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, East Mihan Ave., Kianpars, Ahvaz 6155689467, Iran; Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Reza Maroofian
- Cardiovascular and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK; University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Exeter EX1 2LU, UK
| | - Marina Mora
- Division of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy
| | - Laura E Swan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Thomas Voit
- NIHR GOSH Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Francesco J Conti
- NIHR GOSH Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Yalda Jamshidi
- Cardiovascular and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - M Chiara Manzini
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Science, Washington, DC 20037, USA.
| |
Collapse
|
41
|
Valle G, Vergani B, Sacchetto R, Reggiani C, De Rosa E, Maccatrozzo L, Nori A, Villa A, Volpe P. Characterization of fast-twitch and slow-twitch skeletal muscles of calsequestrin 2 (CASQ2)-knock out mice: unexpected adaptive changes of fast-twitch muscles only. J Muscle Res Cell Motil 2017; 37:225-233. [PMID: 28130614 DOI: 10.1007/s10974-016-9463-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/22/2016] [Indexed: 01/02/2023]
Abstract
This study investigates the functional role of calsequestrin 2 (CASQ2) in both fast-twitch and slow-twitch skeletal muscles by using CASQ2-/- mice; CASQ2 is expressed throughout life in slow-twitch muscles, but only in the developmental and neonatal stages in fast-twitch muscles. CASQ2-/- causes increase in calsequestrin 1 (CASQ1) expression, but without functional changes in both muscle types. CASQ2-/- mice have ultrastructural changes in fast-twitch muscles only, i.e., formation of pentads and stacks in the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Giorgia Valle
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Barbara Vergani
- Consorzio MIA (Microscopy Image Analysis), Università di Milano-Bicocca, 20052, Monza, Italy
| | - Roberta Sacchetto
- Dipartimento di Biomedicina Comparata ed Alimentazione dell'Università di Padova, Padova, Italy
| | - Carlo Reggiani
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Edith De Rosa
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Lisa Maccatrozzo
- Dipartimento di Biomedicina Comparata ed Alimentazione dell'Università di Padova, Padova, Italy
| | - Alessandra Nori
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Antonello Villa
- Consorzio MIA (Microscopy Image Analysis), Università di Milano-Bicocca, 20052, Monza, Italy
| | - Pompeo Volpe
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy.
| |
Collapse
|
42
|
Calsequestrin depolymerizes when calcium is depleted in the sarcoplasmic reticulum of working muscle. Proc Natl Acad Sci U S A 2017; 114:E638-E647. [PMID: 28069951 DOI: 10.1073/pnas.1620265114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Calsequestrin, the only known protein with cyclical storage and supply of calcium as main role, is proposed to have other functions, which remain unproven. Voluntary movement and the heart beat require this calcium flow to be massive and fast. How does calsequestrin do it? To bind large amounts of calcium in vitro, calsequestrin must polymerize and then depolymerize to release it. Does this rule apply inside the sarcoplasmic reticulum (SR) of a working cell? We answered using fluorescently tagged calsequestrin expressed in muscles of mice. By FRAP and imaging we monitored mobility of calsequestrin as [Ca2+] in the SR--measured with a calsequestrin-fused biosensor--was lowered. We found that calsequestrin is polymerized within the SR at rest and that it depolymerized as [Ca2+] went down: fully when calcium depletion was maximal (a condition achieved with an SR calcium channel opening drug) and partially when depletion was limited (a condition imposed by fatiguing stimulation, long-lasting depolarization, or low drug concentrations). With fluorescence and electron microscopic imaging we demonstrated massive movements of calsequestrin accompanied by drastic morphological SR changes in fully depleted cells. When cells were partially depleted no remodeling was found. The present results support the proposed role of calsequestrin in termination of calcium release by conformationally inducing closure of SR channels. A channel closing switch operated by calsequestrin depolymerization will limit depletion, thereby preventing full disassembly of the polymeric calsequestrin network and catastrophic structural changes in the SR.
Collapse
|
43
|
Beam TA, Loudermilk EF, Kisor DF. Pharmacogenetics and pathophysiology of CACNA1S mutations in malignant hyperthermia. Physiol Genomics 2016; 49:81-87. [PMID: 28011884 DOI: 10.1152/physiolgenomics.00126.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/14/2016] [Indexed: 12/27/2022] Open
Abstract
A review of the pharmacogenetics (PGt) and pathophysiology of calcium voltage-gated channel subunit alpha1 S (CACNA1S) mutations in malignant hyperthermia susceptibility type 5 (MHS5; MIM #60188) is presented. Malignant hyperthermia (MH) is a life-threatening hypermetabolic state of skeletal muscle usually induced by volatile, halogenated anesthetics and/or the depolarizing neuromuscular blocker succinylcholine. In addition to ryanodine receptor 1 (RYR1) mutations, several CACNA1S mutations are known to be risk factors for increased susceptibility to MH (MHS). However, the presence of these pathogenic CACNA1S gene variations cannot be used to positively predict MH since the condition is genetically heterogeneous with variable expression and incomplete penetrance. At present, one or at most six CACNA1S mutations display significant linkage or association either to clinically diagnosed MH or to MHS as determined by contracture testing. Additional pathogenic variants in CACNA1S, either alone or in combination with genes affecting Ca2+ homeostasis, are likely to be discovered in association to MH as whole exome sequencing becomes more commonplace.
Collapse
Affiliation(s)
- Teresa A Beam
- Department of Pharmaceutical Sciences, Manchester University College of Pharmacy, Natural and Health Sciences, Fort Wayne, Indiana; and
| | - Emily F Loudermilk
- Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University, College of Pharmacy, Ada, Ohio
| | - David F Kisor
- Department of Pharmaceutical Sciences, Manchester University College of Pharmacy, Natural and Health Sciences, Fort Wayne, Indiana; and
| |
Collapse
|
44
|
A Calsequestrin-1 Mutation Associated with a Skeletal Muscle Disease Alters Sarcoplasmic Ca2+ Release. PLoS One 2016; 11:e0155516. [PMID: 27196359 PMCID: PMC4873205 DOI: 10.1371/journal.pone.0155516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/30/2016] [Indexed: 02/03/2023] Open
Abstract
An autosomal dominant protein aggregate myopathy, characterized by high plasma creatine kinase and calsequestrin-1 (CASQ1) accumulation in skeletal muscle, has been recently associated with a missense mutation in CASQ1 gene. The mutation replaces an evolutionarily-conserved aspartic acid with glycine at position 244 (p.D244G) of CASQ1, the main sarcoplasmic reticulum (SR) Ca2+ binding and storage protein localized at the terminal cisternae of skeletal muscle cells. Here, immunocytochemical analysis of myotubes, differentiated from muscle-derived primary myoblasts, shows that sarcoplasmic vacuolar aggregations positive for CASQ1 are significantly larger in CASQ1-mutated cells than control cells. A strong co-immuno staining of both RyR1 and CASQ1 was also noted in the vacuoles of myotubes and muscle biopsies derived from patients. Electrophysiological recordings and sarcoplasmic Ca2+ measurements provide evidence for less Ca2+ release from the SR of mutated myotubes when compared to that of controls. These findings further clarify the pathogenic nature of the p.D244G variant and point out defects in sarcoplasmic Ca2+ homeostasis as a mechanism underlying this human disease, which could be distinctly classified as “CASQ1-couplonopathy”.
Collapse
|
45
|
Mosca B, Eckhardt J, Bergamelli L, Treves S, Bongianino R, De Negri M, Priori SG, Protasi F, Zorzato F. Role of the JP45-Calsequestrin Complex on Calcium Entry in Slow Twitch Skeletal Muscles. J Biol Chem 2016; 291:14555-65. [PMID: 27189940 PMCID: PMC4938177 DOI: 10.1074/jbc.m115.709071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 12/27/2022] Open
Abstract
We exploited a variety of mouse models to assess the roles of JP45-CASQ1 (CASQ, calsequestrin) and JP45-CASQ2 on calcium entry in slow twitch muscles. In flexor digitorum brevis (FDB) fibers isolated from JP45-CASQ1-CASQ2 triple KO mice, calcium transients induced by tetanic stimulation rely on calcium entry via La3+- and nifedipine-sensitive calcium channels. The comparison of excitation-coupled calcium entry (ECCE) between FDB fibers from WT, JP45KO, CASQ1KO, CASQ2KO, JP45-CASQ1 double KO, JP45-CASQ2 double KO, and JP45-CASQ1-CASQ2 triple KO shows that ECCE enhancement requires ablation of both CASQs and JP45. Calcium entry activated by ablation of both JP45-CASQ1 and JP45-CASQ2 complexes supports tetanic force development in slow twitch soleus muscles. In addition, we show that CASQs interact with JP45 at Ca2+ concentrations similar to those present in the lumen of the sarcoplasmic reticulum at rest, whereas Ca2+ concentrations similar to those present in the SR lumen after depolarization-induced calcium release cause the dissociation of JP45 from CASQs. Our results show that the complex JP45-CASQs is a negative regulator of ECCE and that tetanic force development in slow twitch muscles is supported by the dynamic interaction between JP45 and CASQs.
Collapse
Affiliation(s)
- Barbara Mosca
- Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy
| | - Jan Eckhardt
- From the Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Leda Bergamelli
- Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy
| | - Susan Treves
- Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy From the Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Rossana Bongianino
- Molecular Cardiology Laboratories Fondazione Salvatore Maugeri, Via Maugeri 10/10°, 27100, Pavia Italy
| | - Marco De Negri
- Molecular Cardiology Laboratories Fondazione Salvatore Maugeri, Via Maugeri 10/10°, 27100, Pavia Italy
| | - Silvia G Priori
- Molecular Cardiology Laboratories Fondazione Salvatore Maugeri, Via Maugeri 10/10°, 27100, Pavia Italy, Department of Molecular Medicine, University of Pavia, Pavia Italy, and
| | - Feliciano Protasi
- Center for Research on Ageing and Translational Medicine and DNICS (Department of Neuroscience, Imaging, and Clinical Sciences), University G. d'Annunzio, 66100 Chieti, Italy
| | - Francesco Zorzato
- From the Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland, Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy
| |
Collapse
|
46
|
Ríos E, Figueroa L, Manno C, Kraeva N, Riazi S. The couplonopathies: A comparative approach to a class of diseases of skeletal and cardiac muscle. ACTA ACUST UNITED AC 2016; 145:459-74. [PMID: 26009541 PMCID: PMC4442791 DOI: 10.1085/jgp.201411321] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel category of diseases of striated muscle is proposed, the couplonopathies, as those that affect components of the couplon and thereby alter its operation. Couplons are the functional units of intracellular calcium release in excitation–contraction coupling. They comprise dihydropyridine receptors, ryanodine receptors (Ca2+ release channels), and a growing list of ancillary proteins whose alteration may lead to disease. Within a generally similar plan, the couplons of skeletal and cardiac muscle show, in a few places, marked structural divergence associated with critical differences in the mechanisms whereby they fulfill their signaling role. Most important among these are the presence of a mechanical or allosteric communication between voltage sensors and Ca2+ release channels, exclusive to the skeletal couplon, and the smaller capacity of the Ca stores in cardiac muscle, which results in greater swings of store concentration during physiological function. Consideration of these structural and functional differences affords insights into the pathogenesis of several couplonopathies. The exclusive mechanical connection of the skeletal couplon explains differences in pathogenesis between malignant hyperthermia (MH) and catecholaminergic polymorphic ventricular tachycardia (CPVT), conditions most commonly caused by mutations in homologous regions of the skeletal and cardiac Ca2+ release channels. Based on mechanistic considerations applicable to both couplons, we identify the plasmalemma as a site of secondary modifications, typically an increase in store-operated calcium entry, that are relevant in MH pathogenesis. Similar considerations help explain the different consequences that mutations in triadin and calsequestrin have in these two tissues. As more information is gathered on the composition of cardiac and skeletal couplons, this comparative and mechanistic approach to couplonopathies should be useful to understand pathogenesis, clarify diagnosis, and propose tissue-specific drug development.
Collapse
Affiliation(s)
- Eduardo Ríos
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Lourdes Figueroa
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Carlo Manno
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Natalia Kraeva
- Malignant Hyperthermia Investigation Unit, University Health Network, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, University Health Network, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
47
|
Perni S, Close M, Franzini-Armstrong C. Design Principles of Reptilian Muscles: Calcium Cycling Strategies. Anat Rec (Hoboken) 2015; 299:352-60. [PMID: 26663776 DOI: 10.1002/ar.23302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/08/2015] [Accepted: 10/29/2015] [Indexed: 11/07/2022]
Abstract
The ultrastructure of the sarcoplasmic reticulum (SR) in skeletal muscles was compared among different reptile species (watersnake, boa constrictor, lizard, and turtle) and a mammal (mouse). Morphometric analysis demonstrates a pattern of increasing calsequestrin (CASQ) content in the lumen of SR from turtle to lizard, watersnake, and boa constrictor, and this content is in all cases higher than in mouse. In all reptiles sampled except turtle, CASQ is not confined to the junctional sarcoplasmic reticulum (jSR) cisternae as it is in other species. It instead fills the entire longitudinal (free) SR (fSR) regions, and in the extreme case of snakes, the shape of the SR is modified around the extra CASQ. We suggest that high CASQ content may represent an ATP-saving adaptation that permits relatively low metabolic rates during prolonged periods of fasting and inactivity, particularly in watersnake and boa constrictor.
Collapse
Affiliation(s)
- Stefano Perni
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew Close
- Department of Biological Sciences, Williams Annex., Lehigh University, Bethlehem, Pennsylvania
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Manno C, Ríos E. A better method to measure total calcium in biological samples yields immediate payoffs. ACTA ACUST UNITED AC 2015; 145:167-71. [PMID: 25712015 PMCID: PMC4338160 DOI: 10.1085/jgp.201511370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Carlo Manno
- Department of Molecular Biophysics and Physiology, Section of Cellular Signaling, Rush University, Chicago, IL 60612
| | - Eduardo Ríos
- Department of Molecular Biophysics and Physiology, Section of Cellular Signaling, Rush University, Chicago, IL 60612
| |
Collapse
|
49
|
Lamboley CRH, Kake Guena SA, Touré F, Hébert C, Yaddaden L, Nadeau S, Bouchard P, Wei-LaPierre L, Lainé J, Rousseau EC, Frenette J, Protasi F, Dirksen RT, Pape PC. New method for determining total calcium content in tissue applied to skeletal muscle with and without calsequestrin. ACTA ACUST UNITED AC 2015; 145:127-53. [PMID: 25624449 PMCID: PMC4306712 DOI: 10.1085/jgp.201411250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The concentration of total calcium in a skeletal muscle appears to be correlated with the muscle’s likely force requirements given by the ratio of body weight to muscle weight. We describe a new method for determining the concentration of total Ca in whole skeletal muscle samples ([CaT]WM in units of mmoles/kg wet weight) using the Ca-dependent UV absorbance spectra of the Ca chelator BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid). Muscle tissue was homogenized in a solution containing 0.15 mM BAPTA and 0.5% sodium dodecyl sulfate (to permeabilize membranes and denature proteins) and then centrifuged. The solution volume was adjusted so that BAPTA captured essentially all of the Ca. [CaT]WM was obtained with Beer’s law from the absorbance change produced by adding 1 mM EGTA to capture Ca from BAPTA. Results from mouse, rat, and frog muscles were reasonably consistent with results obtained using other methods for estimating total [Ca] in whole muscles and in single muscle fibers. Results with external Ca removed before determining [CaT]WM indicate that most of the Ca was intracellular, indicative of a lack of bound Ca in the extracellular space. In both fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) muscles from mice, [CaT]WM increased approximately linearly with decreasing muscle weight, increasing approximately twofold with a twofold decrease in muscle weight. This suggests that the Ca concentration of smaller muscles might be increased relative to that in larger muscles, thereby increasing the specific force to compensate for the smaller mass. Knocking out the high capacity Ca-binding protein calsequestrin (CSQ) did not significantly reduce [CaT]WM in mouse EDL or soleus muscle. However, in EDL muscles lacking CSQ, muscle weights were significantly lower than in wild-type (WT) muscles and the values of [CaT]WM were, on average, about half the expected WT values, taking into account the above [CaT]WM versus muscle weight relationship. Because greater reductions in [CaT]WM would be predicted in both muscle types, we hypothesize that there is a substantial increase in Ca bound to other sites in the CSQ knockout muscles.
Collapse
Affiliation(s)
- Cédric R H Lamboley
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria 8001, Australia
| | - Sandrine A Kake Guena
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | - Fatou Touré
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | - Camille Hébert
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | - Louiza Yaddaden
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | - Stephanie Nadeau
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | - Patrice Bouchard
- Département de Réadaptation, Université Laval, Québec G1K 7P4, Canada
| | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jean Lainé
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | - Eric C Rousseau
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | - Jérôme Frenette
- Département de Réadaptation, Université Laval, Québec G1K 7P4, Canada
| | - Feliciano Protasi
- Center for Research on Aging and Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Paul C Pape
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| |
Collapse
|
50
|
Michelucci A, Paolini C, Canato M, Wei-Lapierre L, Pietrangelo L, De Marco A, Reggiani C, Dirksen RT, Protasi F. Antioxidants protect calsequestrin-1 knockout mice from halothane- and heat-induced sudden death. Anesthesiology 2015; 123:603-17. [PMID: 26132720 PMCID: PMC4543432 DOI: 10.1097/aln.0000000000000748] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mice lacking calsequestrin-1 (CASQ1-null), a Ca-binding protein that modulates the activity of Ca release in the skeletal muscle, exhibit lethal hypermetabolic episodes that resemble malignant hyperthermia in humans when exposed to halothane or heat stress. METHODS Because oxidative species may play a critical role in malignant hyperthermia crises, we treated CASQ1-null mice with two antioxidants, N-acetylcysteine (NAC, Sigma-Aldrich, Italy; provided ad libitum in drinking water) and (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox, Sigma-Aldrich; administered by intraperitoneal injection), before exposure to halothane (2%, 1 h) or heat (41°C, 1 h). RESULTS NAC and Trolox significantly protected CASQ1-null mice from lethal episodes, with mortality being 79% (n = 14), 25% (n = 16), and 20% (n = 5) during halothane exposure and 86% (n = 21), 29% (n = 21), and 33% (n = 6) during heat stress in untreated, NAC-treated, and Trolox-treated mice, respectively. During heat challenge, an increase in core temperature in CASQ1-null mice (42.3° ± 0.1°C, n=10) was significantly reduced by both NAC and Trolox (40.6° ± 0.3°C, n = 6 and 40.5° ± 0.2°C, n = 6). NAC treatment of CASQ1-null muscles/mice normalized caffeine sensitivity during in vitro contracture tests, Ca transients in single fibers, and significantly reduced the percentage of fibers undergoing rhabdomyolysis (37.6 ± 2.5%, 38/101 fibers in 3 mice; 11.6 ± 1.1%, 21/186 fibers in 5 mice). The protective effect of antioxidant treatment likely resulted from mitigation of oxidative stress, because NAC reduced mitochondrial superoxide production, superoxide dismutase type-1 expression, and 3-nitrotyrosine expression, and increased both reduced glutathione and reduced glutathione/oxidized glutathione ratio. CONCLUSION These studies provide a deeper understanding of the mechanisms that underlie hyperthermic crises in CASQ1-deficient muscle and demonstrate that antioxidant pretreatment may prevent them.
Collapse
Affiliation(s)
- Antonio Michelucci
- Postdoctoral Fellow, CeSI - Center for Research on Ageing & DNICS – Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti, I-66100 Chieti, Italy
| | - Cecilia Paolini
- Assistant Professor, CeSI - Center for Research on Ageing & DNICS – Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti, I-66100 Chieti, Italy
| | - Marta Canato
- Research Assistant, Department of Biomedical Sciences, University of Padova, I-35131 Italy
| | - Lan Wei-Lapierre
- Research Assistant Professor, Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Laura Pietrangelo
- Postdoctoral Fellow, CeSI - Center for Research on Ageing & DNICS – Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti, I-66100 Chieti, Italy
| | - Alessandro De Marco
- Postdoctoral fellow, CeSI - Center for Research on Ageing & DNICS – Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti, I-66100 Chieti, Italy
| | - Carlo Reggiani
- Professor, Department of Biomedical Sciences, University of Padova, I-35131 Italy
| | - Robert T. Dirksen
- Professor, Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Feliciano Protasi
- Professor, CeSI - Center for Research on Ageing & DNICS – Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti, I-66100 Chieti, Italy
| |
Collapse
|