1
|
Oestreicher D, Malpede AM, Reitmeier A, Bräuer CP, Schoch L, Strenzke N, Pangrsic T. Noise-induced ribbon synapse loss in the mouse basal cochlear region does not reduce inner hair cell exocytosis. Front Cell Neurosci 2025; 18:1523978. [PMID: 39839350 PMCID: PMC11747652 DOI: 10.3389/fncel.2024.1523978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Noise-induced hearing loss is one of the most common forms of hearing loss in adults and also one of the most common occupational diseases. Extensive previous work has shown that the highly sensitive synapses of the inner hair cells (IHCs) may be the first target for irreparable damage and permanent loss in the noise-exposed cochlea, more precisely in the cochlear base. However, how such synaptic loss affects the synaptic physiology of the IHCs in this particularly vulnerable part of the cochlea has not yet been investigated. To address this question, we exposed 3-4-week-old C57BL/6J mice to 8-16 kHz noise for 2 h under isoflurane anesthesia. We then employed hearing measurements, immunohistochemistry and patch-clamp to assess IHC synaptic function. Two noise sound pressure levels (SPLs) were used to evoke acute hearing threshold elevations with different levels of recovery 2 weeks post-exposure. Regardless of noise intensity, the exposure resulted in a loss of approximately 25-36% of ribbon synapses in the basal portions of the cochlea that persisted 2 weeks after exposure. Perforated patch-clamp recordings were made in the IHCs of the basal regions of the cochlea where the greatest synaptic losses were observed. Depolarization-evoked calcium currents in IHCs 2 weeks after exposure were slightly but not significantly smaller as compared to controls from age-matched non-exposed animals. Exocytic changes monitored as changes in membrane capacitance did not follow that trend and remained similar to controls despite significant loss of ribbons, likely reflecting increased exocytosis at the remaining synapses. Additionally, we report for the first time that acute application of isoflurane reduces IHC calcium currents, which may have implications for noise-induced IHC synaptic loss.
Collapse
Affiliation(s)
- David Oestreicher
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alfonso Mauro Malpede
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Annalena Reitmeier
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Paula Bräuer
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Laura Schoch
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nicola Strenzke
- Auditory Systems Physiology Group, Institute for Auditory Neuroscience, InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Tina Pangrsic
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Tichacek O, Mistrík P, Jungwirth P. From the outer ear to the nerve: A complete computer model of the peripheral auditory system. Hear Res 2023; 440:108900. [PMID: 37944408 DOI: 10.1016/j.heares.2023.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Computer models of the individual components of the peripheral auditory system - the outer, middle, and inner ears and the auditory nerve - have been developed in the past, with varying level of detail, breadth, and faithfulness of the underlying parameters. Building on previous work, we advance the modeling of the ear by presenting a complete, physiologically justified, bottom-up computer model based on up-to-date experimental data that integrates all of these parts together seamlessly. The detailed bottom-up design of the present model allows for the investigation of partial hearing mechanisms and their defects, including genetic, molecular, and microscopic factors. Also, thanks to the completeness of the model, one can study microscopic effects in the context of their implications on hearing as a whole, enabling the correlation with neural recordings and non-invasive psychoacoustic methods. Such a model is instrumental for advancing quantitative understanding of the mechanism of hearing, for investigating various forms of hearing impairment, as well as for devising next generation hearing aids and cochlear implants.
Collapse
Affiliation(s)
- Ondrej Tichacek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 160 00 Prague 6, Czech Republic.
| | | | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 160 00 Prague 6, Czech Republic.
| |
Collapse
|
3
|
Faran M, Furst M. Inner-hair-cell induced hearing loss: A biophysical modeling perspective. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1776. [PMID: 37002110 DOI: 10.1121/10.0017627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
In recent years, experimental studies have demonstrated that malfunction of the inner-hair cells and their synapse to the auditory nerve is a significant hearing loss (HL) contributor. This study presents a detailed biophysical model of the inner-hair cells embedded in an end-to-end computational model of the auditory pathway with an acoustic signal as an input and prediction of human audiometric thresholds as an output. The contribution of the outer hair cells is included in the mechanical model of the cochlea. Different types of HL were simulated by changing mechanical and biochemical parameters of the inner and outer hair cells. The predicted thresholds yielded common audiograms of hearing impairment. Outer hair cell damage could only introduce threshold shifts at mid-high frequencies up to 40 dB. Inner hair cell damage affects low and high frequencies differently. All types of inner hair cell deficits yielded a maximum of 40 dB HL at low frequencies. Only a significant reduction in the number of cilia of the inner-hair cells yielded HL of up to 120 dB HL at high frequencies. Sloping audiograms can be explained by a combination of gradual change in the number of cilia of inner and outer hair cells along the cochlear partition from apex to base.
Collapse
Affiliation(s)
- Michael Faran
- School of Electrical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Miriam Furst
- School of Electrical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
4
|
Manca M, Yen P, Spaiardi P, Russo G, Giunta R, Johnson SL, Marcotti W, Masetto S. Current Response in Ca V 1.3 -/- Mouse Vestibular and Cochlear Hair Cells. Front Neurosci 2021; 15:749483. [PMID: 34955713 PMCID: PMC8694397 DOI: 10.3389/fnins.2021.749483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
Signal transmission by sensory auditory and vestibular hair cells relies upon Ca2+-dependent exocytosis of glutamate. The Ca2+ current in mammalian inner ear hair cells is predominantly carried through CaV1.3 voltage-gated Ca2+ channels. Despite this, CaV1.3 deficient mice (CaV1.3–/–) are deaf but do not show any obvious vestibular phenotype. Here, we compared the Ca2+ current (ICa) in auditory and vestibular hair cells from wild-type and CaV1.3–/– mice, to assess whether differences in the size of the residual ICa could explain, at least in part, the two phenotypes. Using 5 mM extracellular Ca2+ and near-body temperature conditions, we investigated the cochlear primary sensory receptors inner hair cells (IHCs) and both type I and type II hair cells of the semicircular canals. We found that the residual ICa in both auditory and vestibular hair cells from CaV1.3–/– mice was less than 20% (12–19%, depending on the hair cell type and age investigated) compared to controls, indicating a comparable expression of CaV1.3 Ca2+ channels in both sensory organs. We also showed that, different from IHCs, type I and type II hair cells from CaV1.3–/– mice were able to acquire the adult-like K+ current profile in their basolateral membrane. Intercellular K+ accumulation was still present in CaV1.3–/– mice during IK,L activation, suggesting that the K+-based, non-exocytotic, afferent transmission is still functional in these mice. This non-vesicular mechanism might contribute to the apparent normal vestibular functions in CaV1.3–/– mice.
Collapse
Affiliation(s)
- Marco Manca
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Piece Yen
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Paolo Spaiardi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Giancarlo Russo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Roberta Giunta
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Stuart L Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom.,Sheffield Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom.,Sheffield Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Sergio Masetto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Lin X, Luo J, Tan J, Yang L, Wang M, Li P. Experimental animal models of drug-induced sensorineural hearing loss: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1393. [PMID: 34733945 PMCID: PMC8506545 DOI: 10.21037/atm-21-2508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
Objective This narrative review describes experimental animal models of sensorineural hearing loss (SNHL) caused by ototoxic agents. Background SNHL primarily results from damage to the sensory organ within the inner ear or the vestibulocochlear nerve (cranial nerve VIII). The main etiology of SNHL includes genetic diseases, presbycusis, ototoxic agents, infection, and noise exposure. Animal models with functional and anatomic damage to the sensory organ within the inner ear or the vestibulocochlear nerve mimicking the damage seen in humans are employed to explore the mechanism and potential treatment of SNHL. These animal models of SNHL are commonly established using ototoxic agents. Methods A literature search of PubMed, Embase, and Web of Science was performed for research articles on hearing loss and ototoxic agents in animal models of hearing loss. Conclusions Common ototoxic medications such as aminoglycoside antibiotics (AABs) and platinum antitumor drugs are extensively used to induce SNHL in experimental animals. The effect of ototoxic agents in vivo is influenced by the chemical mechanisms of the ototoxic agents, the species of animal, routes of administration of the ototoxic agents, and the dosage of ototoxic agents. Animal models of drug-induced SNHL contribute to understanding the hearing mechanism and reveal the function of different parts of the auditory system in humans.
Collapse
Affiliation(s)
- Xuexin Lin
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Luo
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingqian Tan
- Department of Otolaryngology Head and Neck Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Luoying Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mitian Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University Yuedong Hospital, Meizhou, China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Moglie MJ, Wengier DL, Elgoyhen AB, Goutman JD. Synaptic Contributions to Cochlear Outer Hair Cell Ca 2+ Dynamics. J Neurosci 2021; 41:6812-6821. [PMID: 34253627 PMCID: PMC8360681 DOI: 10.1523/jneurosci.3008-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/30/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
For normal cochlear function, outer hair cells (OHCs) require a precise control of intracellular Ca2+ levels. In the absence of regulatory elements such as proteinaceous buffers or extrusion pumps, OHCs degenerate, leading to profound hearing impairment. Influx of Ca2+ occurs both at the stereocilia tips and the basolateral membrane. In this latter compartment, two different origins for Ca2+ influx have been poorly explored: voltage-gated L-type Ca2+ channels (VGCCs) at synapses with Type II afferent neurons, and α9α10 cholinergic nicotinic receptors at synapses with medio-olivochlear complex (MOC) neurons. Using functional imaging in mouse OHCs, we dissected Ca2+ influx individually through each of these sources, either by applying step depolarizations to activate VGCC, or stimulating MOC axons. Ca2+ ions originated in MOC synapses, but not by VGCC activation, was confined by Ca2+-ATPases most likely present in nearby synaptic cisterns. Although Ca2+ currents in OHCs are small, VGCC Ca2+ signals were comparable in size to those elicited by α9α10 receptors, and were potentiated by ryanodine receptors (RyRs). In contrast, no evidence of potentiation by RyRs was found for MOC Ca2+ signals over a wide range of presynaptic stimulation strengths. Our study shows that despite the fact that these two Ca2+ entry sites are closely positioned, they differ in their regulation by intracellular cisterns and/or organelles, suggesting the existence of well-tuned mechanisms to separate the two different OHC synaptic functions.SIGNIFICANCE STATEMENT Outer hair cells (OHCs) are sensory cells in the inner ear operating under very special constraints. Acoustic stimulation leads to fast changes both in membrane potential and in the intracellular concentration of metabolites such as Ca2+ Tight mechanisms for Ca2+ control in OHCs have been reported. Interestingly, Ca2+ is crucial for two important synaptic processes: inhibition by efferent cholinergic neurons, and glutamate release onto Type II afferent fibers. In the current study we functionally imaged Ca2+ at these two different synapses, showing close positioning within the basolateral compartment of OHCs. In addition, we show differential regulation of these two Ca2+ sources by synaptic cisterns and/or organelles, which could result crucial for functional segregation during normal hearing.
Collapse
Affiliation(s)
- Marcelo J Moglie
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI) (Consejo Nacional de Investigaciones Científicas y Tecnológicas), Ciudad Autónoma de Buenos Aires 1428, Argentina
| | - Diego L Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI) (Consejo Nacional de Investigaciones Científicas y Tecnológicas), Ciudad Autónoma de Buenos Aires 1428, Argentina
| | - A Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI) (Consejo Nacional de Investigaciones Científicas y Tecnológicas), Ciudad Autónoma de Buenos Aires 1428, Argentina
| | - Juan D Goutman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI) (Consejo Nacional de Investigaciones Científicas y Tecnológicas), Ciudad Autónoma de Buenos Aires 1428, Argentina
| |
Collapse
|
7
|
Rutherford MA, von Gersdorff H, Goutman JD. Encoding sound in the cochlea: from receptor potential to afferent discharge. J Physiol 2021; 599:2527-2557. [PMID: 33644871 PMCID: PMC8127127 DOI: 10.1113/jp279189] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Ribbon-class synapses in the ear achieve analog to digital transformation of a continuously graded membrane potential to all-or-none spikes. In mammals, several auditory nerve fibres (ANFs) carry information from each inner hair cell (IHC) to the brain in parallel. Heterogeneity of transmission among synapses contributes to the diversity of ANF sound-response properties. In addition to the place code for sound frequency and the rate code for sound level, there is also a temporal code. In series with cochlear amplification and frequency tuning, neural representation of temporal cues over a broad range of sound levels enables auditory comprehension in noisy multi-speaker settings. The IHC membrane time constant introduces a low-pass filter that attenuates fluctuations of the receptor potential above 1-2 kHz. The ANF spike generator adds a high-pass filter via its depolarization-rate threshold that rejects slow changes in the postsynaptic potential and its phasic response property that ensures one spike per depolarization. Synaptic transmission involves several stochastic subcellular processes between IHC depolarization and ANF spike generation, introducing delay and jitter that limits the speed and precision of spike timing. ANFs spike at a preferred phase of periodic sounds in a process called phase-locking that is limited to frequencies below a few kilohertz by both the IHC receptor potential and the jitter in synaptic transmission. During phase-locking to periodic sounds of increasing intensity, faster and facilitated activation of synaptic transmission and spike generation may be offset by presynaptic depletion of synaptic vesicles, resulting in relatively small changes in response phase. Here we review encoding of spike-timing at cochlear ribbon synapses.
Collapse
Affiliation(s)
- Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Hearing Research Center, Oregon Health and Sciences University, Portland, Oregon 97239
| | | |
Collapse
|
8
|
Wang S, Cortes CJ. Interactions with PDZ proteins diversify voltage-gated calcium channel signaling. J Neurosci Res 2020; 99:332-348. [PMID: 32476168 DOI: 10.1002/jnr.24650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 11/12/2022]
Abstract
Voltage-gated Ca2+ (CaV ) channels are crucial for neuronal excitability and synaptic transmission upon depolarization. Their properties in vivo are modulated by their interaction with a variety of scaffolding proteins. Such interactions can influence the function and localization of CaV channels, as well as their coupling to intracellular second messengers and regulatory pathways, thus amplifying their signaling potential. Among these scaffolding proteins, a subset of PDZ (postsynaptic density-95, Drosophila discs-large, and zona occludens)-domain containing proteins play diverse roles in modulating CaV channel properties. At the presynaptic terminal, PDZ proteins enrich CaV channels in the active zone, enabling neurotransmitter release by maintaining a tight and vital link between channels and vesicles. In the postsynaptic density, these interactions are essential in regulating dendritic spine morphology and postsynaptic signaling cascades. In this review, we highlight the studies that demonstrate dynamic regulations of neuronal CaV channels by PDZ proteins. We discuss the role of PDZ proteins in controlling channel activity, regulating channel cell surface density, and influencing channel-mediated downstream signaling events. We highlight the importance of PDZ protein regulations of CaV channels and evaluate the link between this regulatory effect and human disease.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Cell Biology, Duke University, Durham, NC, USA.,Department of Neurology, Duke University, Durham, NC, USA
| | - Constanza J Cortes
- Department of Neurology, Duke University, Durham, NC, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Tang F, Chen X, Jia L, Li H, Li J, Yuan W. Differential Gene Expression Patterns Between Apical and Basal Inner Hair Cells Revealed by RNA-Seq. Front Mol Neurosci 2020; 12:332. [PMID: 32038162 PMCID: PMC6985465 DOI: 10.3389/fnmol.2019.00332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/27/2019] [Indexed: 12/27/2022] Open
Abstract
Tonotopic differences in the structure and physiological function, e.g., synapse number, membrane properties, Ca2+ channels, Ca2+ dependence of exocytosis and vesicle pool replenishment of inner hair cells (IHCs) along the longitudinal cochlear axis have recently been discovered, suggesting different gene expression patterns of IHCs. To determine whether IHCs present different gene expression patterns along the longitudinal cochlear axis, apical and basal IHCs were collected separately using the suction pipette technique from adult mouse cochleae for RNA-seq and genome-wide transcriptome analysis. We found 689 annotated genes showed more than 2-fold increase in expression. Interestingly, 93.4% of the differentially expressed genes (DEGs) was upregulated in apical IHCs. Although a subset of genes that related to IHC machinery and deafness were found to be differentially expressed, a gradient of gene expression was indeed detected in Ocm, Pvalb, Prkd1, Fbxo32, Nme2, and Sncg, which may play putative roles in the Ca2+ buffering and survival regulation. The expression of these genes was validated by real-time quantitative PCR (RT-qPCR) or immunostaining. We conclude that IHCs from different mouse cochlear longitudinal position have different gene expression profiles. Our data might serve as a valuable resource for exploring the molecular mechanisms underlying different biological properties as well as the survival regulation of IHCs.
Collapse
Affiliation(s)
- Feng Tang
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoling Chen
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lifeng Jia
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hai Li
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jingya Li
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Yuan
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
10
|
Ortner NJ, Pinggera A, Hofer NT, Siller A, Brandt N, Raffeiner A, Vilusic K, Lang I, Blum K, Obermair GJ, Stefan E, Engel J, Striessnig J. RBP2 stabilizes slow Cav1.3 Ca 2+ channel inactivation properties of cochlear inner hair cells. Pflugers Arch 2019; 472:3-25. [PMID: 31848688 PMCID: PMC6960213 DOI: 10.1007/s00424-019-02338-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/18/2019] [Accepted: 12/04/2019] [Indexed: 01/31/2023]
Abstract
Cav1.3 L-type Ca2+ channels (LTCCs) in cochlear inner hair cells (IHCs) are essential for hearing as they convert sound-induced graded receptor potentials into tonic postsynaptic glutamate release. To enable fast and indefatigable presynaptic Ca2+ signaling, IHC Cav1.3 channels exhibit a negative activation voltage range and uniquely slow inactivation kinetics. Interaction with CaM-like Ca2+-binding proteins inhibits Ca2+-dependent inactivation, while the mechanisms underlying slow voltage-dependent inactivation (VDI) are not completely understood. Here we studied if the complex formation of Cav1.3 LTCCs with the presynaptic active zone proteins RIM2α and RIM-binding protein 2 (RBP2) can stabilize slow VDI. We detected both RIM2α and RBP isoforms in adult mouse IHCs, where they co-localized with Cav1.3 and synaptic ribbons. Using whole-cell patch-clamp recordings (tsA-201 cells), we assessed their effect on the VDI of the C-terminal full-length Cav1.3 (Cav1.3L) and a short splice variant (Cav1.342A) that lacks the C-terminal RBP2 interaction site. When co-expressed with the auxiliary β3 subunit, RIM2α alone (Cav1.342A) or RIM2α/RBP2 (Cav1.3L) reduced Cav1.3 VDI to a similar extent as observed in IHCs. Membrane-anchored β2 variants (β2a, β2e) that inhibit inactivation on their own allowed no further modulation of inactivation kinetics by RIM2α/RBP2. Moreover, association with RIM2α and/or RBP2 consolidated the negative Cav1.3 voltage operating range by shifting the channel's activation threshold toward more hyperpolarized potentials. Taken together, the association with "slow" β subunits (β2a, β2e) or presynaptic scaffolding proteins such as RIM2α and RBP2 stabilizes physiological gating properties of IHC Cav1.3 LTCCs in a splice variant-dependent manner ensuring proper IHC function.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Alexandra Pinggera
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Nadja T Hofer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Anita Siller
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Niels Brandt
- Department of Biophysics and CIPMM, Saarland University, Homburg, Germany
| | - Andrea Raffeiner
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Kristina Vilusic
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Isabelle Lang
- Department of Biophysics and CIPMM, Saarland University, Homburg, Germany
| | - Kerstin Blum
- Department of Biophysics and CIPMM, Saarland University, Homburg, Germany
| | - Gerald J Obermair
- Division of Physiology, Medical University Innsbruck, Innsbruck, Austria.,Division Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Eduard Stefan
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Jutta Engel
- Department of Biophysics and CIPMM, Saarland University, Homburg, Germany
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
11
|
Vincent PFY, Cho S, Tertrais M, Bouleau Y, von Gersdorff H, Dulon D. Clustered Ca 2+ Channels Are Blocked by Synaptic Vesicle Proton Release at Mammalian Auditory Ribbon Synapses. Cell Rep 2019; 25:3451-3464.e3. [PMID: 30566869 DOI: 10.1016/j.celrep.2018.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/31/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
A Ca2+ current transient block (ICaTB) by protons occurs at some ribbon-type synapses after exocytosis, but this has not been observed at mammalian hair cells. Here we show that a robust ICaTB occurs at post-hearing mouse and gerbil inner hair cell (IHC) synapses, but not in immature IHC synapses, which contain non-compact active zones, where Ca2+ channels are loosely coupled to the release sites. Unlike ICaTB at other ribbon synapses, ICaTB in mammalian IHCs displays a surprising multi-peak structure that mirrors the EPSCs seen in paired recordings. Desynchronizing vesicular release with intracellular BAPTA or by deleting otoferlin, the Ca2+ sensor for exocytosis, greatly reduces ICaTB, whereas enhancing release synchronization by raising Ca2+ influx or temperature increases ICaTB. This suggests that ICaTB is produced by fast multivesicular proton-release events. We propose that ICaTB may function as a submillisecond feedback mechanism contributing to the auditory nerve's fast spike adaptation during sound stimulation.
Collapse
Affiliation(s)
- Philippe F Y Vincent
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | - Soyoun Cho
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68131, USA; The Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Margot Tertrais
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | - Yohan Bouleau
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | | | - Didier Dulon
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France.
| |
Collapse
|
12
|
Johnson SL, Safieddine S, Mustapha M, Marcotti W. Hair Cell Afferent Synapses: Function and Dysfunction. Cold Spring Harb Perspect Med 2019; 9:a033175. [PMID: 30617058 PMCID: PMC6886459 DOI: 10.1101/cshperspect.a033175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To provide a meaningful representation of the auditory landscape, mammalian cochlear hair cells are optimized to detect sounds over an incredibly broad range of frequencies and intensities with unparalleled accuracy. This ability is largely conferred by specialized ribbon synapses that continuously transmit acoustic information with high fidelity and sub-millisecond precision to the afferent dendrites of the spiral ganglion neurons. To achieve this extraordinary task, ribbon synapses employ a unique combination of molecules and mechanisms that are tailored to sounds of different frequencies. Here we review the current understanding of how the hair cell's presynaptic machinery and its postsynaptic afferent connections are formed, how they mature, and how their function is adapted for an accurate perception of sound.
Collapse
Affiliation(s)
- Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Saaid Safieddine
- UMRS 1120, Institut Pasteur, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, Complexité du Vivant, Paris, France
| | - Mirna Mustapha
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California 94035
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
13
|
Lundt A, Soós J, Seidel R, Henseler C, Müller R, Raj Ginde V, Imran Arshaad M, Ehninger D, Hescheler J, Sachinidis A, Broich K, Wormuth C, Papazoglou A, Weiergräber M. Functional implications of Ca v 2.3 R-type voltage-gated calcium channels in the murine auditory system - novel vistas from brainstem-evoked response audiometry. Eur J Neurosci 2019; 51:1583-1604. [PMID: 31603587 DOI: 10.1111/ejn.14591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Voltage-gated Ca2+ channels (VGCCs) are considered to play a key role in auditory perception and information processing within the murine inner ear and brainstem. In the past, Cav 1.3 L-type VGCCs gathered most attention as their ablation causes congenital deafness. However, isolated patch-clamp investigation and localization studies repetitively suggested that Cav 2.3 R-type VGCCs are also expressed in the cochlea and further components of the ascending auditory tract, pointing to a potential functional role of Cav 2.3 in hearing physiology. Thus, we performed auditory profiling of Cav 2.3+/+ controls, heterozygous Cav 2.3+/- mice and Cav 2.3 null mutants (Cav 2.3-/- ) using brainstem-evoked response audiometry. Interestingly, click-evoked auditory brainstem responses (ABRs) revealed increased hearing thresholds in Cav 2.3+/- mice from both genders, whereas no alterations were observed in Cav 2.3-/- mice. Similar observations were made for tone burst-related ABRs in both genders. However, Cav 2.3 ablation seemed to prevent mutant mice from total hearing loss particularly in the higher frequency range (36-42 kHz). Amplitude growth function analysis revealed, i.a., significant reduction in ABR wave WI and WIII amplitude in mutant animals. In addition, alterations in WI -WIV interwave interval were observed in female Cav 2.3+/- mice whereas absolute latencies remained unchanged. In summary, our results demonstrate that Cav 2.3 VGCCs are mandatory for physiological auditory information processing in the ascending auditory tract.
Collapse
Affiliation(s)
- Andreas Lundt
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Julien Soós
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Robin Seidel
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Ralf Müller
- Cognitive Neurophysiology, Department of Psychiatry and Psychotherapy and University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Varun Raj Ginde
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Dan Ehninger
- Molecular and Cellular Cognition, German Center for Neurodegenerative Diseases, (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Carola Wormuth
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| |
Collapse
|
14
|
How to Build a Fast and Highly Sensitive Sound Detector That Remains Robust to Temperature Shifts. J Neurosci 2019; 39:7260-7276. [PMID: 31315946 DOI: 10.1523/jneurosci.2510-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Frogs must have sharp hearing abilities during the warm summer months to successfully find mating partners. This study aims to understand how frog hair cell ribbon-type synapses preserve both sensitivity and temporal precision during temperature changes. Under room (∼24°C) and high (∼32°C) temperature, we performed in vitro patch-clamp recordings of hair cells and their afferent fibers in amphibian papillae of either male or female bullfrogs. Afferent fibers exhibited a wide heterogeneity in membrane input resistance (Rin) from 100 mΩ to 1000 mΩ, which may contribute to variations in spike threshold and firing frequency. At higher temperatures, most fibers increased their frequency of spike firing due to an increase in spontaneous EPSC frequencies. Hair cell resting membrane potential (Vrest) remained surprisingly stable during temperature increases, because Ca2+ influx and K+ outflux increased simultaneously. This increase in Ca2+ current likely enhanced spontaneous EPSC frequencies. These larger "leak currents" at Vrest also lowered Rin and produced higher electrical resonant frequencies. Lowering Rin will reduce the hair cells receptor potential and presumably moderate the systems sensitivity. Using membrane capacitance measurements, we suggest that hair cells can partially compensate for this reduced sensitivity by increasing exocytosis efficiency and the size of the readily releasable pool of synaptic vesicles. Furthermore, paired recordings of hair cells and their afferent fibers showed that synaptic delays shortened and multivesicular release becomes more synchronous at higher temperatures, which should improve temporal precision. Together, our results explain many previous in vivo observations on the temperature dependence of spikes in auditory nerves.SIGNIFICANCE STATEMENT The vertebrate inner ear detects and transmits auditory information over a broad dynamic range of sound frequency and intensity. It achieves remarkable sensitivity to soft sounds and precise frequency selectivity. How does the ear of cold-blooded vertebrates maintain its performance level as temperature changes? More specifically, how does the hair cell to afferent fiber synapse in bullfrog amphibian papilla adjust to a wide range of physiological temperatures without losing its sensitivity and temporal fidelity to sound signals? This study uses in vitro experiments to reveal the biophysical mechanisms that explain many observations made from in vivo auditory nerve fiber recordings. We find that higher temperature facilitates vesicle exocytosis and electrical tuning to higher sound frequencies, which benefits sensitivity and selectivity.
Collapse
|
15
|
Pangrsic T, Singer JH, Koschak A. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol Rev 2019; 98:2063-2096. [PMID: 30067155 DOI: 10.1152/physrev.00030.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Calcium influx through voltage-gated Ca (CaV) channels is the first step in synaptic transmission. This review concerns CaV channels at ribbon synapses in primary sense organs and their specialization for efficient coding of stimuli in the physical environment. Specifically, we describe molecular, biochemical, and biophysical properties of the CaV channels in sensory receptor cells of the retina, cochlea, and vestibular apparatus, and we consider how such properties might change over the course of development and contribute to synaptic plasticity. We pay particular attention to factors affecting the spatial arrangement of CaV channels at presynaptic, ribbon-type active zones, because the spatial relationship between CaV channels and release sites has been shown to affect synapse function critically in a number of systems. Finally, we review identified synaptopathies affecting sensory systems and arising from dysfunction of L-type, CaV1.3, and CaV1.4 channels or their protein modulatory elements.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Joshua H Singer
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Alexandra Koschak
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
16
|
Dong W, Xia A, Raphael PD, Puria S, Applegate B, Oghalai JS. Organ of Corti vibration within the intact gerbil cochlea measured by volumetric optical coherence tomography and vibrometry. J Neurophysiol 2018; 120:2847-2857. [PMID: 30281386 PMCID: PMC6337041 DOI: 10.1152/jn.00702.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022] Open
Abstract
There is indirect evidence that the mammalian cochlea in the low-frequency apical and the more commonly studied high-frequency basal regions function in fundamentally different ways. Here, we directly tested this hypothesis by measuring sound-induced vibrations of the organ of Corti (OoC) at three turns of the gerbil cochlea using volumetric optical coherence tomography vibrometry (VOCTV), an approach that permits noninvasive imaging through the bone. In the apical turn, there was little frequency selectivity, and the displacement-vs.-frequency curves had low-pass filter characteristics with a corner frequency of ~0.5-0.9 kHz. The vibratory magnitudes increased compressively with increasing stimulus intensity at all frequencies. In the middle turn, responses were similar except for a slight peak in the response at ~2.5 kHz. The gain was ~50 dB at the peak and 30-40 dB at lower frequencies. In the basal turn, responses were sharply tuned and compressively nonlinear, consistent with observations in the literature. These data demonstrated that there is a transition of the mechanical response of the OoC along the length of the cochlea such that frequency tuning is sharper in the base than in the apex. Because the responses are fundamentally different, it is not appropriate to simply frequency shift vibratory data measured at one cochlear location to predict the cochlear responses at other locations. Furthermore, this means that the number of hair cells stimulated by sound is larger for low-frequency stimuli and smaller for high-frequency stimuli for the same intensity level. Thus the mechanisms of central processing of sounds must vary with frequency. NEW & NOTEWORTHY A volumetric optical coherence tomography and vibrometry system was used to probe cochlear mechanics within the intact gerbil cochlea. We found a gradual transition of the mechanical response of the organ of Corti along the length of the cochlea such that tuning at the base is dramatically sharper than that at the apex. These data help to explain discrepancies in the literature regarding how the cochlea processes low-frequency sounds.
Collapse
Affiliation(s)
- Wei Dong
- VA Loma Linda Healthcare System, Loma Linda, California
- Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health , Loma Linda, California
| | - Anping Xia
- Department of Otolaryngology - Head and Neck Surgery, Stanford University , Stanford, California
| | - Patrick D Raphael
- Department of Otolaryngology - Head and Neck Surgery, Stanford University , Stanford, California
| | - Sunil Puria
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary and Harvard Medical School , Boston, Massachusetts
| | - Brian Applegate
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas
| | - John S Oghalai
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California , Los Angeles, California
| |
Collapse
|
17
|
Altoè A, Pulkki V, Verhulst S. The effects of the activation of the inner-hair-cell basolateral K + channels on auditory nerve responses. Hear Res 2018; 364:68-80. [PMID: 29678326 DOI: 10.1016/j.heares.2018.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/23/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
The basolateral membrane of the mammalian inner hair cell (IHC) expresses large voltage and Ca2+ gated outward K+ currents. To quantify how the voltage-dependent activation of the K+ channels affects the functionality of the auditory nerve innervating the IHC, this study adopts a model of mechanical-to-neural transduction in which the basolateral K+ conductances of the IHC can be made voltage-dependent or not. The model shows that the voltage-dependent activation of the K+ channels (i) enhances the phase-locking properties of the auditory fiber (AF) responses; (ii) enables the auditory nerve to encode a large dynamic range of sound levels; (iii) enables the AF responses to synchronize precisely with the envelope of amplitude modulated stimuli; and (iv), is responsible for the steep offset responses of the AFs. These results suggest that the basolateral K+ channels play a major role in determining the well-known response properties of the AFs and challenge the classical view that describes the IHC membrane as an electrical low-pass filter. In contrast to previous models of the IHC-AF complex, this study ascribes many of the AF response properties to fairly basic mechanisms in the IHC membrane rather than to complex mechanisms in the synapse.
Collapse
Affiliation(s)
- Alessandro Altoè
- Department of Signal Processing and Acoustics, School of Electrical Engineering, Aalto University, P.O. Box 13000, FI-00076, Aalto, Finland.
| | - Ville Pulkki
- Department of Signal Processing and Acoustics, School of Electrical Engineering, Aalto University, P.O. Box 13000, FI-00076, Aalto, Finland
| | - Sarah Verhulst
- WAVES Department of Information Technology, Technologiepark 15, 9052, Zwijnaarde, Belgium
| |
Collapse
|
18
|
Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hear Res 2018; 360:55-75. [DOI: 10.1016/j.heares.2017.12.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/17/2017] [Accepted: 12/23/2017] [Indexed: 11/21/2022]
|
19
|
Altoè A, Pulkki V, Verhulst S. Model-based estimation of the frequency tuning of the inner-hair-cell stereocilia from neural tuning curves. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4438. [PMID: 28679269 DOI: 10.1121/1.4985193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study proposes that the frequency tuning of the inner-hair-cell (IHC) stereocilia in the intact organ of Corti can be derived from the responses of the auditory fibers (AFs) using computational tools. The frequency-dependent relationship between the AF threshold and the amplitude of the stereocilia vibration is estimated using a model of the IHC-mediated mechanical to neural transduction. Depending on the response properties of the considered AF, the amplitude of stereocilia deflection required to drive the simulated AF above threshold is 1.4 to 9.2 dB smaller at low frequencies (≤500 Hz) than at high frequencies (≥4 kHz). The estimated frequency-dependent relationship between ciliary deflection and neural threshold is employed to derive constant-stereocilia-deflection contours from previously published AF recordings from the chinchilla cochlea. This analysis shows that the transduction process partially accounts for the observed differences between the tuning of the basilar membrane and that of the AFs.
Collapse
Affiliation(s)
- Alessandro Altoè
- Department of Signal Processing and Acoustics, School of Electrical Engineering, Aalto University, P.O. Box 13000, FI-00076 Aalto, Finland
| | - Ville Pulkki
- Department of Signal Processing and Acoustics, School of Electrical Engineering, Aalto University, P.O. Box 13000, FI-00076 Aalto, Finland
| | - Sarah Verhulst
- Department of Information Technology, Ghent University, Technologiepark 15, 9052 Zwijnaarde, Belgium
| |
Collapse
|
20
|
The Coupling between Ca 2+ Channels and the Exocytotic Ca 2+ Sensor at Hair Cell Ribbon Synapses Varies Tonotopically along the Mature Cochlea. J Neurosci 2017; 37:2471-2484. [PMID: 28154149 PMCID: PMC5354352 DOI: 10.1523/jneurosci.2867-16.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 11/24/2022] Open
Abstract
The cochlea processes auditory signals over a wide range of frequencies and intensities. However, the transfer characteristics at hair cell ribbon synapses are still poorly understood at different frequency locations along the cochlea. Using recordings from mature gerbils, we report here a surprisingly strong block of exocytosis by the slow Ca2+ buffer EGTA (10 mM) in basal hair cells tuned to high frequencies (∼30 kHz). In addition, using recordings from gerbil, mouse, and bullfrog auditory organs, we find that the spatial coupling between Ca2+ influx and exocytosis changes from nanodomain in low-frequency tuned hair cells (∼<2 kHz) to progressively more microdomain in high-frequency cells (∼>2 kHz). Hair cell synapses have thus developed remarkable frequency-dependent tuning of exocytosis: accurate low-latency encoding of onset and offset of sound intensity in the cochlea's base and submillisecond encoding of membrane receptor potential fluctuations in the apex for precise phase-locking to sound signals. We also found that synaptic vesicle pool recovery from depletion was sensitive to high concentrations of EGTA, suggesting that intracellular Ca2+ buffers play an important role in vesicle recruitment in both low- and high-frequency hair cells. In conclusion, our results indicate that microdomain coupling is important for exocytosis in high-frequency hair cells, suggesting a novel hypothesis for why these cells are more susceptible to sound-induced damage than low-frequency cells; high-frequency inner hair cells must have a low Ca2+ buffer capacity to sustain exocytosis, thus making them more prone to Ca2+-induced cytotoxicity. SIGNIFICANCE STATEMENT In the inner ear, sensory hair cells signal reception of sound. They do this by converting the sound-induced movement of their hair bundles present at the top of these cells, into an electrical current. This current depolarizes the hair cell and triggers the calcium-induced release of the neurotransmitter glutamate that activates the postsynaptic auditory fibers. The speed and precision of this process enables the brain to perceive the vital components of sound, such as frequency and intensity. We show that the coupling strength between calcium channels and the exocytosis calcium sensor at inner hair cell synapses changes along the mammalian cochlea such that the timing and/or intensity of sound is encoded with high precision.
Collapse
|
21
|
Lossi L, D’Angelo L, De Girolamo P, Merighi A. Anatomical features for an adequate choice of experimental animal model in biomedicine: II. Small laboratory rodents, rabbit, and pig. Ann Anat 2016; 204:11-28. [DOI: 10.1016/j.aanat.2015.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023]
|
22
|
Johnson SL. Membrane properties specialize mammalian inner hair cells for frequency or intensity encoding. eLife 2015; 4. [PMID: 26544545 PMCID: PMC4709266 DOI: 10.7554/elife.08177] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/06/2015] [Indexed: 01/21/2023] Open
Abstract
The auditory pathway faithfully encodes and relays auditory information to the brain with remarkable speed and precision. The inner hair cells (IHCs) are the primary sensory receptors adapted for rapid auditory signaling, but they are not thought to be intrinsically tuned to encode particular sound frequencies. Here I found that under experimental conditions mimicking those in vivo, mammalian IHCs are intrinsically specialized. Low-frequency gerbil IHCs (~0.3 kHz) have significantly more depolarized resting membrane potentials, faster kinetics, and shorter membrane time constants than high-frequency cells (~30 kHz). The faster kinetics of low-frequency IHCs allow them to follow the phasic component of sound (frequency-following), which is not required for high-frequency cells that are instead optimally configured to encode sustained, graded responses (intensity-following). The intrinsic membrane filtering of IHCs ensures accurate encoding of the phasic or sustained components of the cell’s in vivo receptor potential, crucial for sound localization and ultimately survival. DOI:http://dx.doi.org/10.7554/eLife.08177.001 Many animals’ survival depends on them accurately and quickly identifying sounds in their environment. In animals with backbones, cells with hair-like projections (called hair cells) inside the ear convert information collected from sound waves into electrical signals. These signals are then transmitted to the brain, which processes the information further. Animals like bullfrogs are adapted to hearing low frequency sounds, like their own mating calls. These frog’s hair cells are individually tuned so that they can capture sounds in this low frequency range. Mammals, on the other hand, have evolved to hear a much wider range of sounds from loud and low frequency sounds, such as thunder, to soft and high frequency sounds, like the cries of their young. In mammals, the part of inner ear involved in hearing (called the cochlea) has an elaborate spiral-like shape. The structure of the cochlea results in different frequencies of sound being transformed by the hair cells into electrical signals at different points around the spiral. Because of this, most researchers didn’t think that hair cells in mammals were individually tuned like those in bullfrogs. Now, Stuart Johnson demonstrates that hair cells in different parts of the gerbil’s cochlea are specialized for encoding sounds of specific frequencies. In conditions that mimic the environment inside the ear, a very precise jet of fluid was used to stimulate single hair cells in a similar way to a sound wave. The experiments then compared how hair cells from the upper and lower parts of the cochlea’s spiral responded. Johnson found that hair cells from the upper portion of the gerbils’ cochlea are specialized to capture low frequency sounds. They have electrical properties that allow them to quickly transmit information to the brain about low frequency sounds. In the lower portion of the cochlea, hair cells are specialized to capture high frequency sounds. That is, their electrical properties make it easier for these hair cells to transmit detailed information to the brain about the volume of high frequency sounds. Together, these findings help explain how these animals are able to localize sounds, which requires capturing both the timing and intensity of different types of sounds. DOI:http://dx.doi.org/10.7554/eLife.08177.002
Collapse
Affiliation(s)
- Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
23
|
Magistretti J, Spaiardi P, Johnson SL, Masetto S. Elementary properties of Ca(2+) channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses. Front Cell Neurosci 2015; 9:123. [PMID: 25904847 PMCID: PMC4389406 DOI: 10.3389/fncel.2015.00123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/17/2015] [Indexed: 02/05/2023] Open
Abstract
Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca2+ entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca2+ channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses.
Collapse
Affiliation(s)
- Jacopo Magistretti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia Pavia, Italy
| | - Paolo Spaiardi
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield Sheffield, UK
| | - Sergio Masetto
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| |
Collapse
|
24
|
Iosub R, Avitabile D, Grant L, Tsaneva-Atanasova K, Kennedy HJ. Calcium-Induced calcium release during action potential firing in developing inner hair cells. Biophys J 2015; 108:1003-12. [PMID: 25762313 PMCID: PMC4375529 DOI: 10.1016/j.bpj.2014.11.3489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/30/2022] Open
Abstract
In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights into the calcium signaling mechanisms involved in early developmental processes.
Collapse
Affiliation(s)
- Radu Iosub
- School of Physiology and Pharmcology, University of Bristol, Bristol, United Kingdom
| | - Daniele Avitabile
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Lisa Grant
- School of Physiology and Pharmcology, University of Bristol, Bristol, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Helen J Kennedy
- School of Physiology and Pharmcology, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
25
|
EF-hand protein Ca2+ buffers regulate Ca2+ influx and exocytosis in sensory hair cells. Proc Natl Acad Sci U S A 2015; 112:E1028-37. [PMID: 25691754 DOI: 10.1073/pnas.1416424112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
EF-hand Ca(2+)-binding proteins are thought to shape the spatiotemporal properties of cellular Ca(2+) signaling and are prominently expressed in sensory hair cells in the ear. Here, we combined genetic disruption of parvalbumin-α, calbindin-D28k, and calretinin in mice with patch-clamp recording, in vivo physiology, and mathematical modeling to study their role in Ca(2+) signaling, exocytosis, and sound encoding at the synapses of inner hair cells (IHCs). IHCs lacking all three proteins showed excessive exocytosis during prolonged depolarizations, despite enhanced Ca(2+)-dependent inactivation of their Ca(2+) current. Exocytosis of readily releasable vesicles remained unchanged, in accordance with the estimated tight spatial coupling of Ca(2+) channels and release sites (effective "coupling distance" of 17 nm). Substitution experiments with synthetic Ca(2+) chelators indicated the presence of endogenous Ca(2+) buffers equivalent to 1 mM synthetic Ca(2+)-binding sites, approximately half of them with kinetics as fast as 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Synaptic sound encoding was largely unaltered, suggesting that excess exocytosis occurs extrasynaptically. We conclude that EF-hand Ca(2+) buffers regulate presynaptic IHC function for metabolically efficient sound coding.
Collapse
|
26
|
Zampini V, Johnson SL, Franz C, Knipper M, Holley MC, Magistretti J, Russo G, Marcotti W, Masetto S. Fine Tuning of CaV1.3 Ca2+ channel properties in adult inner hair cells positioned in the most sensitive region of the Gerbil Cochlea. PLoS One 2014; 9:e113750. [PMID: 25409445 PMCID: PMC4237458 DOI: 10.1371/journal.pone.0113750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/28/2014] [Indexed: 01/15/2023] Open
Abstract
Hearing relies on faithful signal transmission by cochlear inner hair cells (IHCs) onto auditory fibres over a wide frequency and intensity range. Exocytosis at IHC ribbon synapses is triggered by Ca2+ inflow through CaV1.3 (L-type) Ca2+ channels. We investigated the macroscopic (whole-cell) and elementary (cell-attached) properties of Ca2+ currents in IHCs positioned at the middle turn (frequency ∼2 kHz) of the adult gerbil cochlea, which is their most sensitive hearing region. Using near physiological recordings conditions (body temperature and a Na+ based extracellular solution), we found that the macroscopic Ca2+ current activates and deactivates very rapidly (time constant below 1 ms) and inactivates slowly and only partially. Single-channel recordings showed an elementary conductance of 15 pS, a sub-ms latency to first opening, and a very low steady-state open probability (Po: 0.024 in response to 500-ms depolarizing steps at ∼−18 mV). The value of Po was significantly larger (0.06) in the first 40 ms of membrane depolarization, which corresponds to the time when most Ca2+ channel openings occurred clustered in bursts (mean burst duration: 19 ms). Both the Po and the mean burst duration were smaller than those previously reported in high-frequency basal IHCs. Finally, we found that middle turn IHCs are likely to express about 4 times more Ca2+ channels per ribbon than basal cells. We propose that middle-turn IHCs finely-tune CaV1.3 Ca2+ channel gating in order to provide reliable information upon timing and intensity of lower-frequency sounds.
Collapse
Affiliation(s)
- Valeria Zampini
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Christoph Franz
- Department of Otolaryngology, Tübingen Hearing Research Centre, Laboratory of Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Tübingen Hearing Research Centre, Laboratory of Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Jacopo Magistretti
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Giancarlo Russo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Sergio Masetto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
27
|
ATP hydrolysis is critically required for function of CaV1.3 channels in cochlear inner hair cells via fueling Ca2+ clearance. J Neurosci 2014; 34:6843-8. [PMID: 24828638 DOI: 10.1523/jneurosci.4990-13.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sound encoding is mediated by Ca(2+) influx-evoked release of glutamate at the ribbon synapse of inner hair cells. Here we studied the role of ATP in this process focusing on Ca(2+) current through CaV1.3 channels and Ca(2+) homeostasis in mouse inner hair cells. Patch-clamp recordings and Ca(2+) imaging demonstrate that hydrolyzable ATP is essential to maintain synaptic Ca(2+) influx in inner hair cells via fueling Ca(2+)-ATPases to avoid an increase in cytosolic [Ca(2+)] and subsequent Ca(2+)/calmodulin-dependent inactivation of CaV1.3 channels.
Collapse
|
28
|
Neely A, Hidalgo P. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels. Front Physiol 2014; 5:209. [PMID: 24917826 PMCID: PMC4042065 DOI: 10.3389/fphys.2014.00209] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 11/13/2022] Open
Abstract
Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels.
Collapse
Affiliation(s)
- Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso and Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Patricia Hidalgo
- Forschungszentrum Jülich, Institute of Complex Systems 4, Zelluläre Biophysik Jülich, Germany
| |
Collapse
|
29
|
Temperature enhances activation and inactivation kinetics of potassium currents in inner hair cells isolated from Guinea-pig cochlea. Clin Exp Otorhinolaryngol 2013; 6:140-5. [PMID: 24069516 PMCID: PMC3781226 DOI: 10.3342/ceo.2013.6.3.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 11/12/2022] Open
Abstract
Objectives Until recently, most patch-clamp recordings in inner hair cells (IHCs) have been performed at room temperature. The results acquired at room temperature should be corrected if they are to be related to in vivo findings. However, the temperature dependency to ion channels in IHCs is unknown. The aim of this study was to investigate the effect of temperature on the potassium currents in IHCs. Methods IHCs were isolated from a mature guinea-pig cochlea and potassium currents were recorded at room temperature (around 25℃) and physiological temperatures (35℃-37℃). Results IHCs showed outwardly rectifying currents in response to depolarizing voltage pulses, with only a slight inward current when hyperpolarized. The amplitude of both outward and inward currents demonstrated no temperature dependency, however, activation and inactivation rates were faster at 36℃ than at room temperature. Half-time for activation was shorter at 36℃ than at room temperature at membrane potentials of -10, +10, +20, +30, and +40 mV. Q10 for the activation rate was 1.83. The inactivation time constant in outward tetraethylammonium-sensitive potassium currents was much smaller at 36℃ than at room temperature between the membrane potentials of -20 and +60 mV. Q10 for the inactivation time constant was 3.19. Conclusion The results of this study suggest that the amplitude of potassium currents in IHCs showed no temperature dependence either in outward or inward-going currents, however, activation and inactivation accelerated at physiological temperatures.
Collapse
|
30
|
Lipscombe D, Allen SE, Toro CP. Control of neuronal voltage-gated calcium ion channels from RNA to protein. Trends Neurosci 2013; 36:598-609. [PMID: 23907011 DOI: 10.1016/j.tins.2013.06.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 12/22/2022]
Abstract
Voltage-gated calcium ion (CaV) channels convert neuronal activity into rapid intracellular calcium signals to trigger a myriad of cellular responses. Their involvement in major neurological and psychiatric diseases, and importance as therapeutic targets, has propelled interest in subcellular-specific mechanisms that align CaV channel activity to specific tasks. Here, we highlight recent studies that delineate mechanisms controlling the expression of CaV channels at the level of RNA and protein. We discuss the roles of RNA editing and alternative pre-mRNA splicing in generating CaV channel isoforms with activities specific to the demands of individual cells; the roles of ubiquitination and accessory proteins in regulating CaV channel expression; and the specific binding partners that contribute to both pre- and postsynaptic CaV channel function.
Collapse
Affiliation(s)
- Diane Lipscombe
- Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
31
|
Zampini V, Johnson SL, Franz C, Knipper M, Holley MC, Magistretti J, Masetto S, Marcotti W. Burst activity and ultrafast activation kinetics of CaV1.3 Ca²⁺ channels support presynaptic activity in adult gerbil hair cell ribbon synapses. J Physiol 2013; 591:3811-20. [PMID: 23713031 PMCID: PMC3764630 DOI: 10.1113/jphysiol.2013.251272] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Auditory information transfer to afferent neurons relies on precise triggering of neurotransmitter release at the inner hair cell (IHC) ribbon synapses by Ca2+ entry through CaV1.3 Ca2+ channels. Despite the crucial role of CaV1.3 Ca2+ channels in governing synaptic vesicle fusion, their elementary properties in adult mammals remain unknown. Using near-physiological recording conditions we investigated Ca2+ channel activity in adult gerbil IHCs. We found that Ca2+ channels are partially active at the IHC resting membrane potential (−60 mV). At −20 mV, the large majority (>70%) of Ca2+ channel first openings occurred with an estimated delay of about 50 μs in physiological conditions, with a mean open time of 0.5 ms. Similar to other ribbon synapses, Ca2+ channels in IHCs showed a low mean open probability (0.21 at −20 mV), but this increased significantly (up to 0.91) when Ca2+ channel activity switched to a bursting modality. We propose that IHC Ca2+ channels are sufficiently rapid to transmit fast signals of sound onset and support phase-locking. Short-latency Ca2+ channel opening coupled to multivesicular release would ensure precise and reliable signal transmission at the IHC ribbon synapse.
Collapse
Affiliation(s)
- Valeria Zampini
- Department of Biomedical Science, University of Sheffield, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Inagaki A, Lee A. Developmental alterations in the biophysical properties of Ca(v) 1.3 Ca(2+) channels in mouse inner hair cells. Channels (Austin) 2013; 7:171-81. [PMID: 23510940 PMCID: PMC3710344 DOI: 10.4161/chan.24104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prior to hearing onset, spontaneous action potentials activate voltage-gated Cav1.3 Ca2+ channels in mouse inner hair cells (IHCs), which triggers exocytosis of glutamate and excitation of afferent neurons. In mature IHCs, Cav1.3 channels open in response to evoked receptor potentials, causing graded changes in exocytosis required for accurate sound transmission. Developmental alterations in Cav1.3 properties may support distinct roles of Cav1.3 in IHCs in immature and mature IHCs, and have been reported in various species. It is not known whether such changes in Cav1.3 properties occur in mouse IHCs, but this knowledge is necessary for understanding the roles of Cav1.3 in developing and mature IHCs. Here, we describe age-dependent differences in the biophysical properties of Cav1.3 channels in mouse IHCs. In mature IHCs, Cav1.3 channels activate more rapidly and exhibit greater Ca2+-dependent inactivation (CDI) than in immature IHCs. Consistent with the properties of Cav1.3 channels in heterologous expression systems, CDI in mature IHCs is not affected by increasing intracellular Ca2+ buffering strength. However, CDI in immature IHCs is significantly reduced by strong intracellular Ca2+ buffering, which both slows the onset of, and accelerates recovery from, inactivation. These results signify a developmental decline in the sensitivity of CDI to global elevations in Ca2+, which restricts negative feedback regulation of Cav1.3 channels to incoming Ca2+ ions in mature IHCs. Together with faster Cav1.3 activation kinetics, increased reliance of Cav1.3 CDI on local Ca2+ may sharpen presynaptic Ca2+ signals and improve temporal aspects of sound coding in mature IHCs.
Collapse
Affiliation(s)
- Akira Inagaki
- Departments of Molecular Physiology and Biophysics, Otolaryngology-Head and Neck Surgery, and Neurology, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
33
|
Safieddine S, El-Amraoui A, Petit C. The auditory hair cell ribbon synapse: from assembly to function. Annu Rev Neurosci 2012; 35:509-28. [PMID: 22715884 DOI: 10.1146/annurev-neuro-061010-113705] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cochlear inner hair cells (IHCs), the mammalian auditory sensory cells, encode acoustic signals with high fidelity by Graded variations of their membrane potential trigger rapid and sustained vesicle exocytosis at their ribbon synapses. The kinetics of glutamate release allows proper transfer of sound information to the primary afferent auditory neurons. Understanding the physiological properties and underlying molecular mechanisms of the IHC synaptic machinery, and especially its high temporal acuity, which is pivotal to speech perception, is a central issue of auditory science. During the past decade, substantial progress in high-resolution imaging and electrophysiological recordings, as well as the development of genetic approaches both in humans and in mice, has produced major insights regarding the morphological, physiological, and molecular characteristics of this synapse. Here we review this recent knowledge and discuss how it enlightens the way the IHC ribbon synapse develops and functions.
Collapse
Affiliation(s)
- Saaid Safieddine
- Institut Pasteur, Unité de Génétique et Physiologie de l'Audition, F75015, Paris, France.
| | | | | |
Collapse
|
34
|
The resting transducer current drives spontaneous activity in prehearing mammalian cochlear inner hair cells. J Neurosci 2012; 32:10479-83. [PMID: 22855797 DOI: 10.1523/jneurosci.0803-12.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Spontaneous Ca(2+)-dependent electrical activity in the immature mammalian cochlea is thought to instruct the formation of the tonotopic map during the differentiation of sensory hair cells and the auditory pathway. This activity occurs in inner hair cells (IHCs) during the first postnatal week, and the pattern differs along the cochlea. During the second postnatal week, which is before the onset of hearing in most rodents, the resting membrane potential for IHCs is apparently more hyperpolarized (approximately -75 mV), and it remains unclear whether spontaneous action potentials continue to occur. We found that when mouse IHC hair bundles were exposed to the estimated in vivo endolymphatic Ca(2+) concentration (0.3 mm) present in the immature cochlea, the increased open probability of the mechanotransducer channels caused the cells to depolarize to around the action potential threshold (approximately -55 mV). We propose that, in vivo, spontaneous Ca(2+) action potentials are intrinsically generated by IHCs up to the onset of hearing and that they are likely to influence the final sensory-independent refinement of the developing cochlea.
Collapse
|
35
|
Eckrich T, Varakina K, Johnson SL, Franz C, Singer W, Kuhn S, Knipper M, Holley MC, Marcotti W. Development and function of the voltage-gated sodium current in immature mammalian cochlear inner hair cells. PLoS One 2012; 7:e45732. [PMID: 23029208 PMCID: PMC3446918 DOI: 10.1371/journal.pone.0045732] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/14/2012] [Indexed: 12/19/2022] Open
Abstract
Inner hair cells (IHCs), the primary sensory receptors of the mammalian cochlea, fire spontaneous Ca2+ action potentials before the onset of hearing. Although this firing activity is mainly sustained by a depolarizing L-type (CaV1.3) Ca2+ current (ICa), IHCs also transiently express a large Na+ current (INa). We aimed to investigate the specific contribution of INa to the action potentials, the nature of the channels carrying the current and whether the biophysical properties of INa differ between low- and high-frequency IHCs. We show that INa is highly temperature-dependent and activates at around −60 mV, close to the action potential threshold. Its size was larger in apical than in basal IHCs and between 5% and 20% should be available at around the resting membrane potential (−55 mV/−60 mV). However, in vivo the availability of INa could potentially increase to >60% during inhibitory postsynaptic potential activity, which transiently hyperpolarize IHCs down to as far as −70 mV. When IHCs were held at −60 mV and INa elicited using a simulated action potential as a voltage command, we found that INa contributed to the subthreshold depolarization and upstroke of an action potential. We also found that INa is likely to be carried by the TTX-sensitive channel subunits NaV1.1 and NaV1.6 in both apical and basal IHCs. The results provide insight into how the biophysical properties of INa in mammalian cochlear IHCs could contribute to the spontaneous physiological activity during cochlear maturation in vivo.
Collapse
Affiliation(s)
- Tobias Eckrich
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Ksenya Varakina
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Christoph Franz
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Stephanie Kuhn
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marlies Knipper
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (MH); (WM)
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (MH); (WM)
| |
Collapse
|
36
|
Levic S, Dulon D. The temporal characteristics of Ca2+ entry through L-type and T-type Ca2+ channels shape exocytosis efficiency in chick auditory hair cells during development. J Neurophysiol 2012; 108:3116-23. [PMID: 22972963 DOI: 10.1152/jn.00555.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During development, synaptic exocytosis by cochlear hair cells is first initiated by patterned spontaneous Ca(2+) spikes and, at the onset of hearing, by sound-driven graded depolarizing potentials. The molecular reorganization occurring in the hair cell synaptic machinery during this developmental transition still remains elusive. We characterized the changes in biophysical properties of voltage-gated Ca(2+) currents and exocytosis in developing auditory hair cells of a precocial animal, the domestic chick. We found that immature chick hair cells (embryonic days 10-12) use two types of Ca(2+) currents to control exocytosis: low-voltage-activating, rapidly inactivating (mibefradil sensitive) T-type Ca(2+) currents and high-voltage-activating, noninactivating (nifedipine sensitive) L-type currents. Exocytosis evoked by T-type Ca(2+) current displayed a fast release component (RRP) but lacked the slow sustained release component (SRP), suggesting an inefficient recruitment of distant synaptic vesicles by this transient Ca(2+) current. With maturation, the participation of L-type Ca(2+) currents to exocytosis largely increased, inducing a highly Ca(2+) efficient recruitment of an RRP and an SRP component. Notably, L-type-driven exocytosis in immature hair cells displayed higher Ca(2+) efficiency when triggered by prerecorded native action potentials than by voltage steps, whereas similar efficiency for both protocols was found in mature hair cells. This difference likely reflects a tighter coupling between release sites and Ca(2+) channels in mature hair cells. Overall, our results suggest that the temporal characteristics of Ca(2+) entry through T-type and L-type Ca(2+) channels greatly influence synaptic release by hair cells during cochlear development.
Collapse
Affiliation(s)
- Snezana Levic
- Equipe Neurophysiologie de la Synapse Auditive, Unité Mixte de Recherche, Institut National de la Santé et de la Recherche Médicale U587 et Université Bordeaux Segalen, Institut des Neurosciences de Bordeaux, Centre Hospitalier Universitaire Pellegrin, Bordeaux, France
| | | |
Collapse
|
37
|
Molecular anatomy and physiology of exocytosis in sensory hair cells. Cell Calcium 2012; 52:327-37. [DOI: 10.1016/j.ceca.2012.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 11/23/2022]
|
38
|
Ceriani F, Mammano F. Calcium signaling in the cochlea - Molecular mechanisms and physiopathological implications. Cell Commun Signal 2012; 10:20. [PMID: 22788415 PMCID: PMC3408374 DOI: 10.1186/1478-811x-10-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/12/2012] [Indexed: 12/20/2022] Open
Abstract
Calcium ions (Ca2+) regulate numerous and diverse aspects of cochlear and vestibular physiology. This review focuses on the Ca2+ control of mechanotransduction and synaptic transmission in sensory hair cells, as well as on Ca2+ signalling in non-sensory cells of the developing cochlea.
Collapse
Affiliation(s)
- Federico Ceriani
- Dipartimento di Fisica e Astronomia "G, Galilei", Università di Padova, 35131, Padova, Italy.
| | | |
Collapse
|
39
|
Kennedy HJ. New developments in understanding the mechanisms and function of spontaneous electrical activity in the developing mammalian auditory system. J Assoc Res Otolaryngol 2012; 13:437-45. [PMID: 22526733 DOI: 10.1007/s10162-012-0325-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/25/2012] [Indexed: 01/12/2023] Open
Abstract
In the mature mammalian auditory system, inner hair cells are responsible for converting sound-evoked vibrations into graded electrical responses, resulting in release of neurotransmitter and neuronal transmission via the VIIIth cranial nerve to auditory centres in the central nervous system. Before the cochlea can reliably respond to sound, inner hair cells are not merely immature quiescent pre-hearing cells, but instead are capable of generating 'spontaneous' calcium-based action potentials. The resulting calcium signal promotes transmitter release that drives action potential firing in developing spiral ganglion neurones. These early signalling events that occur before sound-evoked activity are thought to be important in guiding and refining the initial phases of development of the auditory circuits. This review will summarise our current knowledge of the mechanisms that underlie spontaneous action potentials in developing inner hair cells and how these events are triggered and regulated.
Collapse
Affiliation(s)
- Helen J Kennedy
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
40
|
Gerbils. THE LABORATORY RABBIT, GUINEA PIG, HAMSTER, AND OTHER RODENTS 2012. [PMCID: PMC7158315 DOI: 10.1016/b978-0-12-380920-9.00052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The gerbil is usually nonaggressive and is one of the easiest rodents to maintain and handle. Its disposition, curious nature, relative freedom from naturally occurring infectious diseases, and adaptability to its environment have contributed to its popularity as a laboratory animal. Gerbils are found in deserts and semiarid geographical regions of the world. The Mongolian gerbils that are available today originated from 20 pairs of captured animals that were maintained in 1935 in a closed, random-bred colony at the Kitasato Institute in Japan. Gerbils have several unique anatomical and physiological features. Mature gerbils are smaller than rats, but larger than mice. Mongolian gerbils are attracted to saliva and use salivary cues to discriminate between siblings and nonsiblings, and females use oral cues in the selection of sociosexual partners. Gerbils have been used as experimental models in a number of areas of biomedical research. Gerbils are excellent subjects for laboratory animal research as they are susceptible to bacterial, viral, and parasitic pathogens that affect humans and other species. Gerbils may have spontaneous seizures secondary to stress such as handling, cage change, abrupt noises, or changes in the environment. Cystic ovaries are seen commonly in female gerbils over 1 year of age. Gerbils have unique characteristics, which make them appropriate for a number of animal models. Classically, gerbils have been used in research involving stroke, parasitology, infectious diseases, epilepsy, brain development and behavior, and hearing.
Collapse
|
41
|
Abstract
Hair cells in the mammalian inner ear convert sound into electrical signals that are relayed to the nervous system by the chemical neurotransmitter glutamate. Electrical information encoding sound is then passed through the central nervous system to the higher auditory centres in the brain, where it is used to construct a temporally and spatially accurate representation of the auditory landscape. To achieve this, hair cells must encode fundamental properties of sound stimuli at extremely high rates, not only during mechano-electrical transduction, which occurs in the hair bundles at the cell apex, but also during electrochemical transduction at the specialized ribbon synapses at the cell base. How is the development of such a sophisticated cell regulated? More specifically, to what extent does physiological activity contribute to the progression of the intrinsic genetic programmes that drive cell differentiation? Hair cell differentiation takes about 3 weeks in most rodents, from terminal mitosis during embryonic development to the onset of hearing around 2 weeks after birth. Until recent years, most of the molecules involved in hair cell development and function were unknown, which was mainly due to difficulties in working with the mammalian cochlea and the very small number of hair cells, about 16,000 in humans, present in the auditory organ. Recent advances in the ability to record from the acutely isolated cochlea maintained in near-physiological conditions, combined with the use of genetically modified mouse models, has allowed the identification of several proteins and molecular mechanisms that are crucial for the maturation and function of hair cells. In this article, I highlight recent findings from my laboratory that have furthered our understanding of how developing hair cells acquire the remarkable sensitivity of adult auditory sensory receptors.
Collapse
Affiliation(s)
- Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
42
|
Szalai R, Tsaneva-Atanasova K, Homer ME, Champneys AR, Kennedy HJ, Cooper NP. Nonlinear models of development, amplification and compression in the mammalian cochlea. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4183-4204. [PMID: 21969672 DOI: 10.1098/rsta.2011.0192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper reviews current understanding and presents new results on some of the nonlinear processes that underlie the function of the mammalian cochlea. These processes occur within mechano-sensory hair cells that form part of the organ of Corti. After a general overview of cochlear physiology, mathematical modelling results are presented in three parts. First, the dynamic interplay between ion channels within the sensory inner hair cells is used to explain some new electrophysiological recordings from early development. Next, the state of the art is reviewed in modelling the electro-motility present within the outer hair cells (OHCs), including the current debate concerning the role of cell body motility versus active hair bundle dynamics. A simplified model is introduced that combines both effects in order to explain observed amplification and compression in experiments. Finally, new modelling evidence is presented that structural longitudinal coupling between OHCs may be necessary in order to capture all features of the observed mechanical responses.
Collapse
Affiliation(s)
- R Szalai
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant. Neuron 2011; 70:1143-54. [PMID: 21689600 PMCID: PMC3143834 DOI: 10.1016/j.neuron.2011.04.024] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2011] [Indexed: 11/21/2022]
Abstract
Outer hair cells (OHCs) provide amplification in the mammalian cochlea using somatic force generation underpinned by voltage-dependent conformational changes of the motor protein prestin. However, prestin must be gated by changes in membrane potential on a cycle-by-cycle basis and the periodic component of the receptor potential may be greatly attenuated by low-pass filtering due to the OHC time constant (τm), questioning the functional relevance of this mechanism. Here, we measured τm from OHCs with a range of characteristic frequencies (CF) and found that, at physiological endolymphatic calcium concentrations, approximately half of the mechanotransducer (MT) channels are opened at rest, depolarizing the membrane potential to near −40 mV. The depolarized resting potential activates a voltage-dependent K+ conductance, thus minimizing τm and expanding the membrane filter so there is little receptor potential attenuation at the cell's CF. These data suggest that minimal τm filtering in vivo ensures optimal activation of prestin.
Collapse
|
44
|
Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells. Nat Neurosci 2011; 14:711-7. [PMID: 21572434 PMCID: PMC3103712 DOI: 10.1038/nn.2803] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 03/11/2011] [Indexed: 01/13/2023]
Abstract
Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion cells and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials are intrinsically generated by immature IHCs of altricial rodents and that apical IHCs exhibit bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter ACh, by fine-tuning the IHC’s resting membrane potential (Vm), is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the Vm of apical and basal IHCs by activating SK2 channels. We hypothesize that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway.
Collapse
|
45
|
Mechanism of spontaneous activity in afferent neurons of the zebrafish lateral-line organ. J Neurosci 2011; 31:1614-23. [PMID: 21289170 DOI: 10.1523/jneurosci.3369-10.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many auditory, vestibular, and lateral-line afferent neurons display spontaneous action potentials. This spontaneous spiking is thought to result from hair-cell glutamate release in the absence of stimuli. Spontaneous release at hair-cell resting potentials presumably results from Ca(V)1.3 L-type calcium channel activity. Here, using intact zebrafish larvae, we recorded robust spontaneous spiking from lateral-line afferent neurons in the absence of external stimuli. Consistent with the above assumptions, spiking was absent in mutants that lacked either Vesicular glutamate transporter 3 (Vglut3) or Ca(V)1.3. We then tested the hypothesis that spontaneous spiking resulted from sustained Ca(V)1.3 activity due to depolarizing currents that are active at rest. Mechanotransduction currents (I(MET)) provide a depolarizing influence to the resting potential. However, following block of I(MET), spontaneous spiking persisted and was characterized by longer interspike intervals and increased periods of inactivity. These results suggest that an additional depolarizing influence maintains the resting potential within the activation range of Ca(V)1.3. To test whether the hyperpolarization-activated cation current, I(h) participates in setting the resting potential, we applied I(h) antagonists. Both ZD7288 and DK-AH 269 reduced spontaneous activity. Finally, concomitant block of I(MET) and I(h) essentially abolished spontaneous activity, ostensibly by hyperpolarization outside of the activation range for Ca(V)1.3. Together, our data support a mechanism for spontaneous spiking that results from Ca(2+)-dependent neurotransmitter release at hair-cell resting potentials that are maintained within the activation range of Ca(V)1.3 channels through active I(MET) and I(h).
Collapse
|
46
|
Complex distribution patterns of voltage-gated calcium channel α-subunits in the spiral ganglion. Hear Res 2011; 278:52-68. [PMID: 21281707 DOI: 10.1016/j.heares.2011.01.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/21/2011] [Accepted: 01/21/2011] [Indexed: 01/10/2023]
Abstract
As with other elements of the peripheral auditory system, spiral ganglion neurons display specializations that vary as a function of location along the tonotopic axis. Previous work has shown that voltage-gated K(+) channels and synaptic proteins show graded changes in their density that confers rapid responsiveness to neurons in the high frequency, basal region of the cochlea and slower, more maintained responsiveness to neurons in the low frequency, apical region of the cochlea. In order to understand how voltage-gated calcium channels (VGCCs) may contribute to these diverse phenotypes, we identified the VGCC α-subunits expressed in the ganglion, investigated aspects of Ca(2+)-dependent neuronal firing patterns, and mapped the intracellular and intercellular distributions of seven VGCC α-subunits in the spiral ganglion in vitro. Initial experiments with qRT-PCR showed that eight of the ten known VGCC α-subunits were expressed in the ganglion and electrophysiological analysis revealed firing patterns that were consistent with the presence of both LVA and HVA Ca(2+) channels. Moreover, we were able to study seven of the α-subunits with immunocytochemistry, and we found that all were present in spiral ganglion neurons, three of which were neuron-specific (Ca(V)1.3, Ca(V)2.2, and Ca(V)3.3). Further characterization of neuron-specific α-subunits showed that Ca(V)1.3 and Ca(V)3.3 were tonotopically-distributed, whereas Ca(V)2.2 was uniformly distributed in apical and basal neurons. Multiple VGCC α-subunits were also immunolocalized to Schwann cells, having distinct intracellular localizations, and, significantly, appearing to distinguish putative compact (Ca(V)2.3, Ca(V)3.1) from loose (Ca(V)1.2) myelin. Electrophysiological evaluation of spiral ganglion neurons in the presence of TEA revealed Ca(2+) plateau potentials with slopes that varied proportionately with the cochlear region from which neurons were isolated. Because afterhyperpolarizations were minimal or absent under these conditions, we hypothesize that differential density and/or kinetics of one or more of the VGCC α-subunits could account for observed tonotopic differences. These experiments have set the stage for defining the clear multiplicity of functional control in neurons and Schwann cells of the spiral ganglion.
Collapse
|
47
|
Mann ZF, Kelley MW. Development of tonotopy in the auditory periphery. Hear Res 2011; 276:2-15. [PMID: 21276841 DOI: 10.1016/j.heares.2011.01.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
Acoustic frequency analysis plays an essential role in sound perception, communication and behavior. The auditory systems of most vertebrates that perceive sounds in air are organized based on the separation of complex sounds into component frequencies. This process begins at the level of the auditory sensory epithelium where specific frequencies are distributed along the tonotopic axis of the mammalian cochlea or the avian/reptilian basilar papilla (BP). Mechanical and electrical mechanisms mediate this process, but the relative contribution of each mechanism differs between species. Developmentally, structural and physiological specializations related to the formation of a tonotopic axis form gradually over an extended period of time. While some aspects of tonotopy are evident at early stages of auditory development, mature frequency discrimination is typically not achieved until after the onset of hearing. Despite the importance of tonotopic organization, the factors that specify unique positional identities along the cochlea or basilar papilla are unknown. However, recent studies of developing systems, including the inner ear provide some clues regarding the signalling pathways that may be instructive for the formation of a tonotopic axis.
Collapse
Affiliation(s)
- Zoe F Mann
- Laboratory of Cochlear Development, NIDCD, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
48
|
Modulation of Cav1.3 Ca2+ channel gating by Rab3 interacting molecule. Mol Cell Neurosci 2010; 44:246-59. [PMID: 20363327 DOI: 10.1016/j.mcn.2010.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/19/2010] [Accepted: 03/25/2010] [Indexed: 01/10/2023] Open
Abstract
Neurotransmitter release and spontaneous action potentials during cochlear inner hair cell (IHC) development depend on the activity of Ca(v)1.3 voltage-gated L-type Ca(2+) channels. Their voltage- and Ca(2+)-dependent inactivation kinetics are slower than in other tissues but the underlying molecular mechanisms are not yet understood. We found that Rab3-interacting molecule-2alpha (RIM2alpha) mRNA is expressed in immature cochlear IHCs and the protein co-localizes with Ca(v)1.3 in the same presynaptic compartment of IHCs. Expression of RIM proteins in tsA-201 cells revealed binding to the beta-subunit of the channel complex and RIM-induced slowing of both Ca(2+)- and voltage-dependent inactivation of Ca(v)1.3 channels. By inhibiting inactivation, RIM induced a non-inactivating current component typical for IHC Ca(v)1.3 currents which should allow these channels to carry a substantial window current during prolonged depolarizations. These data suggest that RIM2 contributes to the stabilization of Ca(v)1.3 gating kinetics in immature IHCs.
Collapse
|
49
|
Zampini V, Johnson SL, Franz C, Lawrence ND, Münkner S, Engel J, Knipper M, Magistretti J, Masetto S, Marcotti W. Elementary properties of CaV1.3 Ca(2+) channels expressed in mouse cochlear inner hair cells. J Physiol 2009; 588:187-99. [PMID: 19917569 PMCID: PMC2817446 DOI: 10.1113/jphysiol.2009.181917] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mammalian cochlear inner hair cells (IHCs) are specialized to process developmental signals during immature stages and sound stimuli in adult animals. These signals are conveyed onto auditory afferent nerve fibres. Neurotransmitter release at IHC ribbon synapses is controlled by L-type CaV1.3 Ca2+ channels, the biophysics of which are still unknown in native mammalian cells. We have investigated the localization and elementary properties of Ca2+ channels in immature mouse IHCs under near-physiological recording conditions. CaV1.3 Ca2+ channels at the cell pre-synaptic site co-localize with about half of the total number of ribbons present in immature IHCs. These channels activated at about −70 mV, showed a relatively short first latency and weak inactivation, which would allow IHCs to generate and accurately encode spontaneous Ca2+ action potential activity characteristic of these immature cells. The CaV1.3 Ca2+ channels showed a very low open probability (about 0.15 at −20 mV: near the peak of an action potential). Comparison of elementary and macroscopic Ca2+ currents indicated that very few Ca2+ channels are associated with each docked vesicle at IHC ribbon synapses. Finally, we found that the open probability of Ca2+ channels, but not their opening time, was voltage dependent. This finding provides a possible correlation between presynaptic Ca2+ channel properties and the characteristic frequency/amplitude of EPSCs in auditory afferent fibres.
Collapse
Affiliation(s)
- Valeria Zampini
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Andrade A, Sandoval A, González-Ramírez R, Lipscombe D, Campbell KP, Felix R. The alpha(2)delta subunit augments functional expression and modifies the pharmacology of Ca(V)1.3 L-type channels. Cell Calcium 2009; 46:282-92. [PMID: 19796812 DOI: 10.1016/j.ceca.2009.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/27/2009] [Accepted: 08/28/2009] [Indexed: 11/30/2022]
Abstract
The auxiliary Ca(V)alpha(2)delta-1 subunit is an important component of voltage-gated Ca(2+) (Ca(V)) channel complexes in many tissues and of great interest as a drug target. Nevertheless, its exact role in specific cell functions is still unknown. This is particularly important in the case of the neuronal L-type Ca(V) channels where these proteins play a key role in the secretion of neurotransmitters and hormones, gene expression, and the activation of other ion channels. Therefore, using a combined approach of patch-clamp recordings and molecular biology, we studied the role of the Ca(V)alpha(2)delta-1 subunit on the functional expression and the pharmacology of recombinant L-type Ca(V)1.3 channels in HEK-293 cells. Co-expression of Ca(V)alpha(2)delta-1 significantly increased macroscopic currents and conferred the Ca(V)1.3alpha(1)/Ca(V)beta(3) channels sensitivity to the antiepileptic/analgesic drugs gabapentin and AdGABA. In contrast, Ca(V)alpha(2)delta-1 subunits harboring point mutations in N-glycosylation consensus sequences or the proteolytic site as well as in conserved cysteines in the transmembrane delta domain of the protein, reduced functionality in terms of enhancement of Ca(V)1.3alpha(1)/Ca(V)beta(3) currents. In addition, co-expression of the delta domain drastically inhibited macroscopic currents through recombinant Ca(V)1.3 channels possibly by affecting channel synthesis. Together these results provide several lines of evidence that the Ca(V)alpha(2)delta-1 auxiliary subunit may interact with Ca(V)1.3 channels and regulate their functional expression.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|